
A new mobile state protocol for Distributed OzM. Hadim & P. Van RoyINGI-Universit�e Catholique de Louvain2 Place Sainte Barbe 1348 Louvain-la-Neuve Belgiumfpvr,muhg@info.ucl.ac.beAbstractOne of the most important issue to address when design-ing an object-oriented language for distributed program-ming is related to object mobility. We present a new mo-bile state protocol for ensuring mutually exclusive accessto mobile objects and cells in Distributed Oz. The proto-col greatly improves the locality and scalability properties.It also allows potentially to overcome the problem of faulttolerance.1 Introduction and MotivationsThere are two conicting goals in designing a lan-guage for distributed programming. First, the lan-guage should be network transparent, i.e., computa-tions behave correctly independently of how they arepartitioned among sites. Second, the language shouldgive simple and predictable control over network com-munication patterns. The Distributed Oz language[14] satis�es these two goals. Its basic design princi-ple is to distinguish clearly between the language se-mantics and the distributed semantics. Indeed, on onehand, it de�nes the language in terms of a languagesemantics, then a distributed semantics that re�nes itto take network behavior into account. On the otherhand, it incorporates mobility in a fundamental way inthe distributed semantics. This later extends the lan-guage semantics with mobility control. Namely, theability for stateful entities to migrate between sitesor to remain stationary at one site, according to theprogrammer's intention [14]. By stateful entities, wemean entities that change over time, i.e., they arede�ned by a sequence of states. Making mobility aprimitive concept; i.e., at the language level, makes itpossible to de�ne e�cient networked objects, whosemobility can be precisely controlled by the program-mer. As it is well established [3, 9] that such conceptis essential in distributed programming. Indeed manydistributed systems support some concept of mobility,and the problem of designing e�cient schemes for sup-porting access to shared object over a distributed sys-tem has been challenging. Stateful entities are mainly

cells. Objects are de�ned in a straightforward way interms of cells. Thus, in the reminder, we focus mainlyon cells. Cells semantics is given in the next section.The system contains a mobile state protocol [14] thatimplements the distributed semantics of cells, whileallowing the cell state to e�ciently migrate betweensites.To emulate a shared memory on a distributed sys-tem, the mobile state protocol uses a home-basedscheme [14]. Each cell is associated with a �xed site,termed as its home site and manages the cell access.Home-based schemes are simple and easy to imple-ment. They have been observed to work well for small-to-medium scale systems [3]. Nevertheless, they su�erfrom problems of scalability and locality. As the num-ber of sites grows, or if a cell is a \hot spot", that cellhome site is likely to become a synchronization bot-tleneck, since it must mediate all access to the cell.Moreover, if a requesting client is far from the cellhome, then it must incur the cost of communicatingwith the home, even if the site currently holding thestate in nearby. Another problem arising with suchschemes, is the crash of the home site. This situationinduce the loss of the possibility to migrate the statebetween clients, even if the site holding it is alive.One way to alleviate these problems is to introducesome concept of redundancy and locality on the set ofsites which may potentially have access to the sharedcell. In this paper, we propose, an original schemewhich extends the mobile state protocol and allows toe�ciently share cells between di�erent nodes [4]. Themain advantages of our protocol is that, �rst the com-munications necessary to migrate a cell state betweensites, are minimized to a lower bound. Second, a nicelocality/scalability property is integrated, and third,the proposed scheme allows to potentially overcomethe problem of fault tolerance, by means of a redun-dancy concept, also introduced. The basic idea consistin organizing the network into nested domains.In section 2, we give basic concepts and the mobilestate protocol. In section 3, we present the new proto-



col, and give an useful improvement in section 4. Weanalyze the protocol in section 5. In section 6, we giverelated works, and conclude in section 7.2 BasicsDistributed Oz is de�ned by transforming all itsstatements into statements of a small kernel language,called OPM (Oz Programming Model) [13]. OPM isa concurrent programming model with an interleavingsemantics. Then, the semantics of Distributed Oz isobtained by given each basic entity of OPM a wellde�ned distributed behavior. There are three networkbehaviors of OPM entities. We summarize below thesedistributed semantics:1. Stateless entities: we mean entities that do notchange over time. These entities are replicated, and theincidence of both the locality/scalability and fault tol-erance properties on them is minor.2. Single assignment entities: these are logic variables.The binding process is done by a distributed uni�cationprotocol [5], that implements their distributed seman-tics. The incidence of the locality/scalability and faulttolerance properties on them is of medium importance.3. Statefull entities: these are cells, objects andthreads. Threads reduction statements are done atthe thread home site.A cell is a mutable pointer that consists of two val-ues : its name and content-edge. A cell is mobile andmay be accessible from many sites. Its distributed se-mantics is detailed in the next section. An object ismobile, and its distribution semantics obeys its OPMde�nition. When a method is called remotely, it isreplicated to the calling site, and executed over there.Subsequent method calls are local. When the objectstate is updated, the content-edge of the cell holdingthe state will migrate to the site; i.e., this is the dis-tributed semantics of cells.Cells are the unique entities which may held astate. Improving the locality/scalability property ismost crucial for these entities. The operations on cellsare creation, exchange, and access. We give the twosemantics of the exchange. The semantics of the otheroperations can be found in [14], and are relatively moresimpler.Language semantics of Exchange. The exchangeoperation combines a read and a write operations. Thepart of the store that is not relevant to the rule isdenoted by �. This rule is reducible when its �rstargument refers to a cell name. It reduces to the newstatement X=Z, which gives access to the old contentZ through X. The content-edge is updated to refer tothe new content Y.Cell exchange fExchange C X Yg X=Z� ^ C = n ^ n : Z � ^ C = n ^ n : Y
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N1 P1 P2 P3 N3N3N2N1Figure 1: Language graph and distribution graph.Distributed semantics of Exchange. We intro-duce the notion of a representative on a site. The rep-resentative of X on site i is denoted by Xi. Assumingthat a cell with name n exists on sites 1,...,k, and thatthe content-edge is on site p with content Z, then thedistributed reduction rule of the Exchange is:fExchange C X Ygq (X=Z)qC1 = n::: ^ Ck = n ^ (n : Z)p^ C1 = n::: ^ Ck = n ^ (n : Y )q^8i = 1:::k; i 6= p : (n : ?)i ^ �r 8i=1...k, i 6= q : (n : ?)i ^ �rThe language graph. OPM programs executionare modeled using a graph transformation framework.This graph is the language graph and all its transfor-mations respect the language semantics. Each entitycorresponds to one node in this graph, and arrows cor-respond to references from (towards) an entity.The distribution graph. The language graph isextended with the notion of site. We introduce a �-nite set of sites, and annotate each node of the lan-guage graph with a site. If a node N is referenced bya node on another site, then map it to a set of nodes.One node per site and one speci�c node responsiblefor all the others (see Figure 1). The resulting graphis called the access structure of N , and the opera-tion that maps it into its access structure is called theglobalisation of N . The graph resulting after all nodeshave been globalised is the distribution graph. OPMdistributed execution is also a sequence of this graphtransformations.The access structure notion. An access structureis the framework through which the distributed se-mantics of each entity is implemented. It has a singlemanager root node and a set of proxy nodes. The prox-ies are all on di�erent sites. Each proxy points to itsmanager. The manager node has a unique global ad-dress. All access structures are constructed accordingto the same principle. Given a node N of the lan-guage graph, if a reference of this node leaves its siteto a destination site d, then two scenarios are possible:1. N 's access structure exists yet: The reference of themanager node is transmitted to the destination site d.Thus, when the operation import(N) is applied in d,the created proxy node gets a reference to its manager.2. N is a local node : The globalisation operation cre-ates an access structure for N . A manager node is
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d(M )5 7.put(value)Figure 3: The new access structurecreated in N 's site, and its reference is transmitted tosite d so as to retrieve similar conditions to case 1.The mobile state protocol. This protocol [14] man-ages the movements of the cell's state. Each site has aproxy node. The manager node is located in the cre-ation site of the cell and it has a pointer over the proxyholding the state (or will eventually hold it). When aproxy P needs the state to do an exchange, it sendsthe message get(P:Adr) to the manager (P:Adr beingthe address of P ). The manager receiving this mes-sage, sends the message forward(P:Adr) to the proxyP 0 currently holding the state. The manager there-fore serializes multiples requests, guaranteeing thatthere is no starvation. Proxy P 0 receiving the for-ward message sends then the message put(value) tothe proxy P , if it already has the state. Otherwise, itstores the address of P , waits to receive the state andthen sends it (see �gure 2).3 Extending the access structureThe new protocol consists in partitioning the net-work into a tree of leveled domains. Each domain isassociated with a manager node, that handles the pro-tocol implementing the distributed semantics of an en-tity, regarding the part d of the network. Indeed, amanagers tree is constructed such that:1. the root manager Mroot, of level 1, handles theprotocol over the network,2. each manager M of level l and domain d(M) ad-mits nc children Mi; i = 1:::nc, of level l + 1 and sub-domain d(Mi) of d(M). The union of all the domainsd(Mi); i = 1:::nc covers the domain d (see �gure 3).

3.1 The new mobile state protocolThe managers tree is constructed. Now we spe-cialize the discussion to cells. As a �rst step, assumethat for a cell C a tree of managers has been created,where the leaf managers are of level tl. Suppose thata proxy P sited at site s executes an exchange (we as-sume the state not in s). P belongs to d(Mi) domains,i = 1:::tl (M1 being the root), and it has a referenceto its father manager Mtl. To migrate the state to s,the following recursive scheme is observed:P sends the message get(P:Adr) to its fatherMtl (P:Adr being P 's address). Mtl receives the mes-sage and checks wether the state is in its domain:(a). If a proxy in d(Mtl) holds the state: Mtl sendsthe message forward(P:Adr) to that proxy. Receiv-ing this message, this later send then the messageput(value) to P . Mtl updates its state pointer to beP:Adr.(b). If the state is not in d(Mtl): Mtl sends the messageget(Mtl:Adr; P:Adr) to its father Mtl�1, while updat-ing its state pointer to be P:Adr. Mtl�1 receiving themessage, observes exactly the same treatment previ-ously observed byMtl�1. This illustrate the recursive-ness of the scheme. As the state pointer of Mroot is anonNULL address, P 's request is eventually satis�ed.Constructing the tree. We propose a lazy methodfor the tree construction. For a domain d(M), M iscreated, if and only if there are active proxies in d(M);i.e., proxies that have explicitly requested the state.Once M is created, the same process is re�ned forsubdomains of d(M), to create M 's children. Let Cbe a cell created on site s1. The �rst exportation overa site s2 will create Mroot on s1 and its address istransmitted to s2 (s1's proxy storesMroot as being itsfather manager). As long as an exportation from sto s0 is executed, the reference of Mroot is transmit-ted to s0. Now, let Mi; i = 1:::m be the yet createdchildren of a manager M . We assume that the unionof d(Mi); i = 1:::m does not necessarily cover d(M).When M receives a get(P:Adr) message from P , it�rst looks for, in its Sons table, a son of the proxy'slocation subdomain, then:1. If there is no son: M satis�es P's request regard-ing the state. It initiate the construction of a son (ifl < tl): it sends the message create manager(l + 1)to P. It enters a suspended state, waiting for the ad-dress of its son to be created. P receives the message,creates a manager, say M 0, of level l + 1 in its siteand sets its father to be M 0, and send the messageupdate sons(M 0:Addr) to M . M receives this mes-sage, suspends its suspended state, addsM 0:Adr to itsSon managers table, and updates its state pointer.2. If there exists a son M 0: M sends the message



manager(M 0:Adr) to P . The latter receives the mes-sage, updates its father to be M 0 (P is thus attachedto a nearest manager). M also sends the messageget(P:Adr; P:Adr) to M 0. M 0 receives the message,and just satis�es P 's request regarding the state.3.2 Formal speci�cation of the protocolThe protocol is de�ned as a set of nondeterminis-tic reduction rules. We consider a set of manager andproxy nodes linked by a network N , that is a multisetcontaining messages of the form d : m where d iden-ti�es a destination node, and m is a message. Theinitial con�guration consists in the unique managerMroot with a set of proxies having a reference to it.We assume the state is at proxy P1. Each node hasstate represented by a set of attributes. We denoteattribute Attribute of node N by N:Attribute. Re-duction rules are of the form: ConditionAction .Execution follows an interleaving model. At eachstep, a rule with valid conditions is selected, then re-duced atomically. A rule condition consists of booleanconditions on the node state and one optional receivecondition, Receive(d,m), meaning that d : m has ar-rived at d. Executing a rule with such a conditionremoves d : m from the network and performs theaction part of the rule. The action Send(d,m) asyn-chronously sends messagem to node d, i.e., it adds themessage d : m to N . The network and the nodes arefair: Messages to any node take arbitrary �nite timeand arrive in arbitrary order. Any rule with valid con-ditions is eventually reduced. The table below lists theattributes of proxy and manager nodes.Manager nodeAdr: manager's addressCc: pointer over the node containing the stateFm: father manager's addressl: manager's levelSons: the manager's existing set of son managersProxy nodeState: initialized to CHAIN only for P1Thread: requesting threadAddr: the address of the proxyForward: initialized to NULL for all proxiesRoot manager: initialized to Mroot for all proxiesFm: proxy's manager, initialized to Mroot for all proxiesContent: initialized to N for P1 and NULL otherwiseNewcontent: initialized to NULL for all proxiesGiven a manager M receiving a get(Addr) request,the decision function telling M wether a son manageris to be created, is obtained using, M 's level and Sonstable and the address Addr. This function is de�nedas follows:

locality(M;Addr) =( leaf if M.l=tlnegative if M.l < tl ^ 8 M 0:Addr2 M.Sons Addr =2 d(M')M'.Addr if 9 M' j M'.Addr 2 M.Sons ^ Addr 2 d(M')The managers tree is constructed. As for the in-formal description, we �rst assume the managers treeconstructed and that each proxy is attached to a man-ager of level tl. We call PR1 the corresponding pro-tocol. The rules below ensure the state migration:Managers rules.R1:8<: Receive(M,get(Addr)) ^ M.Cc6= NULL^ locality(M,Addr)=leafSend(M.Cc,forward(Addr)) ; M.Cc := AddrR2:8<: Receive(M,get(Addr)) ^ M.Cc=NULL^ locality(M,Addr)=leafSend(M.Fm,get(M.Adr,Addr)) ; M.Cc := AddrR3:� Receive(M,get(Addrm,Addr)) ^ M.Cc=NULLSend(M.Fm,get(M.Adr,Addr)) ; M.Cc := AddrmR4:� Receive(M,get(Addrm,Addr)) ^ M.Cc 6= NULLSend(M.Cc,forward(Addr)) ; M.Cc := AddrmR5:� Receive(M,forward(Addr)) ^ M.Cc 6= NULLSend(M.Cc,forward(Addr)) M.Cc := NULLProxy rules.R1:8<: Receive(P,request(T,Ny)) ^ P.State=NULLSend(P.Fm,get(P.Adr)) ; P.State:=CHAIN ;P.Thread:=T ; P.Newcontent:=NyR2:� Receive(P,request(T,Ny)) ^ P.Content6= NULLSend(T,proceed(P.Content)) ; P.Content:=Ny ;R3:8<: Receive(P,put(Nz))P.Content:=Nz ; Send(P.Thread,proceed(P.Content))P.Thread:=NULL ; P.Content:=P.NewcontentR4:� Receive(P,forward(Addr))P.Forward:=AddrR5:8<: P.Forward6= NULL ^ P.Content6= NULLSend(P.Forward,put(P.Content));P:State := NULLP.Content:=NULL ; P.Forward:=NULLiOutline of the proof. We give the proofs of thesafety and liveness properties of PR1, using an in-variant. For the simplicity sake, a proxy P is consid-ered as a manager of level tl + 1 (we assume (P:Adr 2(P:Fm):Sons)). Let nn be the number of all the treenodes. The property T1 representing the tree struc-ture is de�ned as:8<: T1(Mroot) ^T1(Mi) � 9! Mj j� Mi:Addr 2Mj :Sons^ Mi:Fm =Mj :AddrWe de�ne the operation father as: Mj=father(Mi).The Tree set is: Tree = fM; T1(M)g. We introducethe notion of a path. Intuitively, a path is a sequenceof manager nodes such that, the �rst one is a proxy,and each node Mi+1 points over Mi (and implicitly



the last node has, in N , a get message sent).P1:::k = [M1; :::; Mk]; j � M1:State = CHAIN ^Mi+1:Cc =Mi:Addr; i = 1:k � 1The root path is: Proot = [M1; :;Mroot]: On paths,we de�ne the followings: � first(P1:k) = M1 �last(P1:k) =Mk � set(P1:k) = fM1; :;Mkg. For a se-quence of paths [P1; :;Pn], we de�ne properties GW ,GW 0 as:GW ([P1; :;Pn]) �8>>><>>>: 8i 2 [1; :; n[� last(Pi):Adr : forward(first(Pi+1):Adr) 2 N� last(Pi):F orward = first(Pi+1):Adr^ last(Pn):Fm : � get(first(P1):Adr) 2 N �get(last(Pn):Adr; first(P1):Adr) 2 NGW 0([P1; :;Pn]) �8<: 8 i 2 [1; :; n[� last(Pi):Adr : forward(first(Pi+1):Adr) 2 N� last(Pi):F orward = first(Pi+1):Adr^ Pn = ProotIntuitively, GW ([P1; :;Pn]) means that managerlast(Pn) has sent a get request to its father, askingfor the state requested by the proxy first(P1) (this isthe path Pn), and there is a forward message towardeach manager last(Pi), asking for the state requestedby the proxy first(Pi+1). GW 0 di�ers from GW onlyby the fact that the path Pn is the root path Proot.By extension the operation set([P1; :;Pn]) is de�nedas: S1=ni=1 set(Pi): Then, let SP be the set of all pathsin the managers tree in some con�guration Ci. Theinvariant I1 of protocol PR1 is de�ned as:I1 = It1 ^ Isp1 ^ Igw1 ^ Irest1 ^ Iput ^ Iu, where,It1 � T1(Mi); i = 1:::nn ; Isp1 � SP = SP1 ] Uni=2 SPiIgw1 � ^ni=2GW (SPi) ^ GW 0(SP1)Iput �8><>: SP1 = [P1; :;Proot] ^( first(P1):Content = NULL ^first(P1):Adr : put(V ALUE) 2 N� first(P1):Content = V ALUEIrest1 � 8 M 2 (Tree�Sni=1 set(SPi))� M:Cc = NULL � M:State = NULL 	Iu � f all messages in N are uniqueand explicitly mentionned in I1gIntuitively, It1 means that the nodes form a tree.Isp1 means that SP is partitioned in con�guration Ciinto, one SP1 set of paths satisfying property GW 0,and all the other set of paths satisfy property GW .Iput means that the put message will traverse the chain[first(P1); :::; first(Proot)]. Irest1 means that all thenodes that are not in a path, are in a NULL state.Then, the following theorems give the safety and live-ness properties of protocol PR1.Theorem 1 Formula I1 is an invariant of PR1.Theorem 2 Assuming fairness assumptions, request-ing the state by a proxy node will cause it eventuallyto arrive once.

Constructing the managers tree. To constructthe managers tree, we add the following rules:Managers rules added.R6:8><>: Receive(M,get(Addr)) ^locality(M,Addr)=Addr1Send(Addr;manager(Addr1))Send(Addr1; get(Addr;Addr))R7:8>>><>>>: Receive(M,get(Addr)) ^ M.Cc=NULL^ locality(M,Addr)=negativeSend(M.Fm,get(M.Addr,Addr))Send(Addr,create manager(M.l+1))M.Cc := suspendedR8:8>>><>>>: Receive(M,get(Addr)) ^ M.Cc6= NULL ^locality(M,Addr)=negativeSend(M.Cc,forward(Addr))Send(Addr,create manager(M.l+1))M.Cc := suspendedR9:8<: Receive(M,update sons(Addr))Add son managers(Addr)M.Cc := Addrproxy rules added.R6:� Receive(P,manager(Addr))P.Fm:=AddrR7:8><>: Receive(P,create manager(l))Addr:=Create manager(l,P.Fm)Send(P.Fm,update sons(Addr))P.Fm:=AddrOutline of the proof. We �rst consider adding rule6 of the proxies and managers, and show that theserules allow to attach each proxy with the manager oflevel tl of its domain. We call PR2 the correspondingnew protocol. We rede�ne property GW as follows:GW2([P1; :;Pn]) �8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

8i 2 [1; :; n[� last(Pi):Addr : forward(first(Pi+1):Addr) 2 N� last(Pi):F orward = first(Pi+1):Addr8̂>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
8>>>>>>><>>>>>>>:

(father(last(Pn))):Addr :( get(first(P1):Addr) 2 N�get(last(Pn):Addr; first(P1):Addr) 2 N�̂ first(Pn):Addr : manager(M:Addr) =2 N_ (first(Pn):Fm 6=M:Addr)�8><>: 9 M j M:Addr 2 (last(Pn):Sons ^M:Addr : get(last(Pn):Addr; first(P1):Addr) 2 Nf̂irst(Pn):Addr : manager(M:Addr) 2 NThe new invariant is: I2 = It1 ^Isp1 ^Igw2 ^Irest1 ^Iput^Iu, where, Igw2 � ^ni=2GW2(SPi)^GW 0(SP1).Then we have the followings:Theorem 3 Formula I2 is an invariant of PR2.Theorem 4 Let M4 be a proxy attached to a managerM1 of level l < tl in con�guration Ci. Assuming, the
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forward(M .Adr)xFigure 4: Assumption regarding managers rule 6conditions of �gure 4 and fairness assumptions, thenreducing rule 1 by M4 allows: (1) to attach M4 to amanager M2 2 Sons(M1), of level l + 1, and domaind(M2) containing address M4:Adr, and(2:) the state to be forwarded to proxy M4.Finally, we add all the rules. Let PR3 be the pro-tocol thus obtained. We show that the managers treeis constructed and that each time a proxy requeststhe state, it will eventually receive it. We �rst clar-ify the procedure Create manager(level; Fathadr).Executing this procedure by a proxy M1, creates amanager M2 in the proxy's site. The level leveland the proxy's site allow to infer an address ADRfor M2 and the following updates are done atomi-cally: M2:Adr = ADR;M2:Cc = M1:Adr;M2:Fm =M1:Fm;M2:l = level;M2:Sons = NULL;M1:Fm =ADR: For the last invariant, we rede�ne prop-erty T2 as follows:8>>><>>>: T2(Mroot) ^T2(Mi) � 9! Mj j8<: � Mi:Adr 2 (Mj):Sons �Mj :Adr : update sons(Mi:Adr) 2 N^ Mi:Fm = Mj :Adr 9=;The new Tree set is: Tree = fM j T2(M)g. As thereare node creation messages, we rede�ne a path as:P21:k = P12 + [M3; :;Mk]; j8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
M1:State = CHAIN^8>>>>>>>>>><>>>>>>>>>>:

M2:Cc =M1:Addr ^ P12 = [M1;M2]�M2:Cc = suspended ^8>>>>><>>>>>: �M1 : create manager(M2:l + 1;M2:Addr) 2 N^ P12 = [M1;M2]�( M2 : update sons(Addr) 2 N^P12 = [M1;M 01;M2] ^ M 01:Cc =M1:Addr^ M 01:Addr = AddrMi+1:Cc =Mi:Addr; i = 2:::k � 1The last invariant is de�ned as:I3 = It2 ^ Isp2 ^ Igw3 ^ Irest1 ^ Iput ^ Iu, where It2 �T2(Mi); i = 1:::nn, and Isp2 , (resp. Igw3) are de�nedas Isp1 (resp. Igw2). The following theorems give thesafety and liveness properties of protocol PR3.Theorem 5 Formula I3 is an invariant of PR3.

Theorem 6 Let a proxy M1 attached to a man-ager M2 such that M1:Addr =2 d(M3);8M3:Addr 2M2:Sons, in con�guration Ci. If M2:l < tland fairness assumptions are ensured, then reduc-ing rule 1 by M1 allows:1. To create a son manager M3 of M2 whose domaind(M3) � d(M2) contains the address M1:Adr with theright updates, and,2. The cell content to be forwarded to M1.4 An useful improvementIn this section, we improve the new mobile stateprotocol regarding the suspension state of the man-ager nodes, when there are creation of their children.Indeed, we would allow a manager M to treat the re-quests it receives between the duration issued, since itassigns the value \suspended" to its attribute Cc anduntil it receives the updtate sons(Address) message.When M is in such a state, we consider the possibletreatment of solely the messages get(Adrman;Adress)or forward(Adress) sent respectively by one of itschildren managers or father manager. For this pur-pose, we add a new attribute \Forward", initialized toNULL, to manager nodes and the following two rules:R10:8><>: Receive(M,get(Addrman,Address)) ^M.Cc=suspendedM.Forward := AddressM.Cc := AddrmanR11:8><>: Receive(M,forward(Address)) ^M.Cc=suspendedM.Forward := AddressM.Cc = NULLNamely, when M receives one of the above mes-sages, the attribute \Forward" is then used to storethe address Address of the requesting proxy, and theprotocol simply continues to operate as usual. Whenmanager M receives the update sons(Address) mes-sage, the request of the proxy whose address is con-tained in the \Forward" attribute is then satis�ed. In-deed, rule 9 is changed in the following two rules thathandle this situation:R9a:8><>: Receive(M,update sons(Address)) ^M.Forward=NULLAdd son managers(Address)M.Cc = AddressR9b :8>>><>>>: Receive(M,update sons(Address)) ^M.Forward 6= NULLAdd son managers(Address)Send(Address, forward(M.Forward))M.Forward = NULLThen, to avoid coherence problems that may arisebecause of concurrent creations of children managersof a manager M , rules 7 and 8 are also respectivelychanged as follows:



Mroot

M1 M2 

3 M 4 M

M6 M8 9 M M10

δ1

δ2 δ1

δ2

δ2δ1

M7 

LAN 1 LAN 2

δ2 δ32 +2 

δ2 δ32 +2 δ2 δ32 +2 

M11

M5 

δ1

δ22

δ22

δ2δ2 δ2 δ2δ2δ2δ2

δ3 δ3δ3

δ4

(b)

Router  Router  Router  

Router  

Router  

Router  

 

δ4

LAN 71       2       3                     4            5                        6   

Sites 

Creation site

M12

LAN LAN LAN LAN LAN 

MAN MAN 

WAN 

NETWORK

MAN 
||

WAN

3 4 5 6 7

1 2 3

1
2

1     2    3     4     5    6     7     8    9    10   11  12   13  14   15  16   17   18  19   20   21  22   23   24 25

2
2

2

 + 2δ4

=

(a)

Figure 5: An illustration of the protocolR7:8>>><>>>: Receive(M,get(Address)) ^ M.Forward=NULL^ (locality(M,Address)=negative) ^ M.Cc=NULLSend(M.Fm,get(M.addr,Address))Send(Address,create manager((M.l +1),M.addr))M.Cc := suspendedR8:8>>><>>>: Receive(M,get(Address)) ^ M.Forward=NULL ^M.Cc=Addr ^ locality(M,Address)=negativeSend(M.Cc,forward(Address))Send(Address,create manager((M.l +1),M.addr))M.Cc = suspendedIn summary, we just use the attribute \Forward"as a bu�er variable that allows to avoid the strongsynchronization between a manager and its childrenbeing created. The safety and liveness properties ofthe protocol, with the newly added rules, continue tohold.5 Analysis of the protocolWe give some characteristics of the new protocol.We consider a network interconnected as in �gure 5(b),and a hierarchical subdivision of it into: two WANs(Wide Area Network), tree MANs (Medium Area Net-work) and 7 LANs (Local Area Network). We assume�1 (resp. �2, �3 and �4) is uniformly the transmis-sion delay within a LAN (resp. MAN, WAN and be-tween two WANs). Let C be a cell created at site11, whose access structure is as in �gure 5(a). Wecompare the delay necessary to migrate the state, inthe old and new protocols. We measure the ratio:� = Migration delay in the new protocolMigration delay in the old protocol . The table belowgives some values of � for some migration scenarios."Within LANi" (resp. "MANi") means that the state

is migrated between two sites of LANi (resp. MANi).As it brings out, migration delays are shorter in thenew protocol. �Within LAN1 (3�1)(4�2+4�3+�1) << 1Within LAN4 (3�1)(3�1) = 1Within LAN5 (3�1)�1+4�2 << 1Within LAN6 (3�1)(�1+2�2+2�3+2�4) << 1Within MAN1 (�(6�2+2�1))(6�2+4�3) << 1Within MAN2 (4�2+3�1)(�1+4�2) �= 1Within MAN3 (3�1+4�2)(6�2+4�4+4�3) << 1The new protocol improves the locality property inthat sense that migrating the state within a domainis managed locally by the corresponding manager. Asit improves the scalability property. In fact, the prox-ies are not attached to a single manager which maybe overloaded when treating their several requests.Rather, the charge of these requests is spread overseveral managers; each responsible for a subset of thewhole set. The managers tree act indeed as a hierar-chy of cache memories that enables to make remotereferences only if the state is not \within the cache":within the domain of the manager. When constructingthe tree, an improvement may be to create a managerfor a domain d only if there is a persistent request fromd; i.e., only if a constant c get requests are made fromd. This is handled simply. It just su�ces to add acontrol variable. For example, a new manager's rule 7is:R7:8>>>>>>><>>>>>>>:
Receive(M,get(Address)) ^ M.Cc=NULL^ locality(M,Address)=negative)Send(M.Fm,get(M.Addr,address))counter=counter+1IF counter(d) = c THENSend(Address; create manager((M:l+ 1);M:Addr))M:Cc = suspendedTo allow to attach a proxy directly to its greatestlevel manager, when a globalisation operation is per-formed from site s to s0, the proxy of s may transmitthe reference of its father manager M to the createdproxy of s0, if s0 is in d(M).The new protocol allows potentially to overcomee�ciently the problem of fault tolerance. Namely, theredundancy concept introduced can be used as a basicmechanism to tolerate sites failures.6 Related worksMany systems, that we know of, except Emerald [7]and Obliq [2] do distributed execution by adding a dis-tribution layer on top of a centralized language, i.e.,CORBA [11], Erlang [15], Java [9]. This has the disad-vantage that distribution is not a seamless extensionto the language. In Emerald, objects are stationary



by default and explicit primitive operations exist tomove them. Moving a mutable object is an atomic op-eration that clones the object on the destination siteand aliases the original object to it. The result is thatmessages to the original object are passed to the newobject through an aliasing indirection. This inducealiasing chains. Obliq has taken a �rst step towardthe goal of conservatively extending language entitiesto a distributed setting. Obliq objects are stationary.Object migration in Obliq can be implemented in twophases by cloning the object on another site and byaliasing the original object to the clone. The migra-tion procedure must be executed internally. The resultis an aliasing chain too.Small-scale systems typically uses a broadcast-based protocol to locate objects in a distributed sys-tem of caches (proxies). Existing large-scale systemsare either home-based, or use a combination of home-based and aliasing pointers [1, 6, 10, 8]. A closelyrelated protocol is the Arrow Distributed DirectoryProtocol described in [3]. According to the authors,this protocol allows a scalable and local mechanismfor ensuring mutually exclusive access to mobile ob-jects. This protocol is given by a minimum spanningtree T over the network, where each node having po-tentially access to the object, stores a link in T , arisingon the shortest path to get the object. This protocolensures a locality property; however, it is not at allclear, how it is scalable. When a node is added tothe set of nodes having access to the object, how thisnode is integrated in T ?. If a new spanning tree isre-computed, this is very costly. Plaxton et al. givein [12] a randomized directory scheme for read-onlyobject.7 ConclusionWe have presented a new design for constructing ac-cess structures for Distributed Oz entities. This designaims to improve the locality and scalability properties.As we have presented a new mobile state protocolfor mutually exclusive access to cells and objects inDistributed Oz. As an extension of the old protocoland in the philosophy of Distributed Oz design, thenew protocol is integrated at the semantical level; theproxy and manager rules implement the distributedsemantics of cells. The new protocol greatly improvesthe locality/scalability properties, allowing e�cientstate migration delays and spreading uniformly thecharge of the proxies requests.In a more general context, the protocol describedin this paper can be used in client-server architecturesin order to improve the locality/scalability properties.One can imagine a tree of servers spread among a dis-
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