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Abstract

One of the most important issue to address when design-
ing an object-oriented language for distributed program-
ming is related to object mobility. We present a new mo-
bile state protocol for ensuring mutually exclusive access
to mobile objects and cells in Distributed Oz. The proto-
col greatly improves the locality and scalability properties.
It also allows potentially to overcome the problem of fault
tolerance.

1 Introduction and Motivations

There are two conflicting goals in designing a lan-
guage for distributed programming. First, the lan-
guage should be network transparent, i.e., computa-
tions behave correctly independently of how they are
partitioned among sites. Second, the language should
give simple and predictable control over network com-
munication patterns. The Distributed Oz language
[14] satisfies these two goals. Its basic design princi-
ple is to distinguish clearly between the language se-
mantics and the distributed semantics. Indeed, on one
hand, it defines the language in terms of a language
semantics, then a distributed semantics that refines it
to take network behavior into account. On the other
hand, it incorporates mobility in a fundamental way in
the distributed semantics. This later extends the lan-
guage semantics with mobility control. Namely, the
ability for stateful entities to migrate between sites
or to remain stationary at one site, according to the
programmer’s intention [14]. By stateful entities, we
mean entities that change over time, i.e., they are
defined by a sequence of states. Making mobility a
primitive concept; i.e., at the language level, makes it
possible to define efficient networked objects, whose
mobility can be precisely controlled by the program-
mer. As it is well established [3, 9] that such concept
is essential in distributed programming. Indeed many
distributed systems support some concept of mobility,
and the problem of designing efficient schemes for sup-
porting access to shared object over a distributed sys-
tem has been challenging. Stateful entities are mainly

cells. Objects are defined in a straightforward way in
terms of cells. Thus, in the reminder, we focus mainly
on cells. Cells semantics is given in the next section.
The system contains a mobile state protocol [14] that
implements the distributed semantics of cells, while
allowing the cell state to efficiently migrate between
sites.

To emulate a shared memory on a distributed sys-
tem, the mobile state protocol uses a home-based
scheme [14]. Each cell is associated with a fixed site,
termed as its home site and manages the cell access.
Home-based schemes are simple and easy to imple-
ment. They have been observed to work well for small-
to-medium scale systems [3]. Nevertheless, they suffer
from problems of scalability and locality. As the num-
ber of sites grows, or if a cell is a “hot spot”, that cell
home site is likely to become a synchronization bot-
tleneck, since it must mediate all access to the cell.
Moreover, if a requesting client is far from the cell
home, then it must incur the cost of communicating
with the home, even if the site currently holding the
state in nearby. Another problem arising with such
schemes, is the crash of the home site. This situation
induce the loss of the possibility to migrate the state
between clients, even if the site holding it is alive.

One way to alleviate these problems is to introduce
some concept of redundancy and locality on the set of
sites which may potentially have access to the shared
cell. In this paper, we propose, an original scheme
which extends the mobile state protocol and allows to
efficiently share cells between different nodes [4]. The
main advantages of our protocol is that, first the com-
munications necessary to migrate a cell state between
sites, are minimized to a lower bound. Second, a nice
locality/scalability property is integrated, and third,
the proposed scheme allows to potentially overcome
the problem of fault tolerance, by means of a redun-
dancy concept, also introduced. The basic idea consist
in organizing the network into nested domains.

In section 2, we give basic concepts and the mobile
state protocol. In section 3, we present the new proto-
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col, and give an useful improvement in section 4. We
analyze the protocol in section 5. In section 6, we give
related works, and conclude in section 7.

2 Basics

Distributed Oz is defined by transforming all its
statements into statements of a small kernel language,
called OPM (Oz Programming Model) [13]. OPM is
a concurrent programming model with an interleaving
semantics. Then, the semantics of Distributed Oz is
obtained by given each basic entity of OPM a well
defined distributed behavior. There are three network
behaviors of OPM entities. We summarize below these
distributed semantics:

1. Stateless entities: we mean entities that do not
change over time. These entities are replicated, and the
incidence of both the locality /scalability and fault tol-
erance properties on them is minor.

2. Single assignment entities: these are logic variables.
The binding process is done by a distributed unification
protocol [5], that implements their distributed seman-
tics. The incidence of the locality /scalability and fault
tolerance properties on them is of medium importance.
3. Statefull entities: these are cells, objects and
threads. Threads reduction statements are done at
the thread home site.

A cell is a mutable pointer that consists of two val-
ues : its name and content-edge. A cell is mobile and
may be accessible from many sites. Its distributed se-
mantics is detailed in the next section. An object is
mobile, and its distribution semantics obeys its OPM
definition. When a method is called remotely, it is
replicated to the calling site, and executed over there.
Subsequent method calls are local. When the object
state is updated, the content-edge of the cell holding
the state will migrate to the site; i.e., this is the dis-
tributed semantics of cells.

Cells are the unique entities which may held a

state. Improving the locality/scalability property is
most crucial for these entities. The operations on cells
are creation, exchange, and access. We give the two
semantics of the exchange. The semantics of the other
operations can be found in [14], and are relatively more
simpler.
Language semantics of Exchange. The exchange
operation combines a read and a write operations. The
part of the store that is not relevant to the rule is
denoted by o. This rule is reducible when its first
argument refers to a cell name. It reduces to the new
statement X=7, which gives access to the old content
Z through X. The content-edge is updated to refer to
the new content Y.

{Exchange C X Y} X=Z
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Figure 1: Language graph and distribution graph.

Distributed semantics of Exchange. We intro-
duce the notion of a representative on a site. The rep-
resentative of X on site i is denoted by X;. Assuming
that a cell with name n exists on sites 1,...,k, and that
the content-edge is on site p with content Z, then the
distributed reduction rule of the Exchange is:

{Exchange C X Y}, (X=2),
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The language graph. OPM programs execution
are modeled using a graph transformation framework.
This graph is the language graph and all its transfor-
mations respect the language semantics. Each entity
corresponds to one node in this graph, and arrows cor-
respond to references from (towards) an entity.

The distribution graph. The language graph is
extended with the notion of site. We introduce a fi-
nite set of sites, and annotate each node of the lan-
guage graph with a site. If a node IV is referenced by
a node on another site, then map it to a set of nodes.
One node per site and one specific node responsible
for all the others (see Figure 1). The resulting graph
is called the access structure of IV, and the opera-
tion that maps it into its access structure is called the
globalisation of N. The graph resulting after all nodes
have been globalised is the distribution graph. OPM
distributed execution is also a sequence of this graph
transformations.

The access structure notion. An access structure
is the framework through which the distributed se-
mantics of each entity is implemented. It has a single
manager root node and a set of proxy nodes. The prox-
ies are all on different sites. Each proxy points to its
manager. The manager node has a unique global ad-
dress. All access structures are constructed according
to the same principle. Given a node N of the lan-
guage graph, if a reference of this node leaves its site
to a destination site d, then two scenarios are possible:
1. N’s access structure exists yet: The reference of the
manager node is transmitted to the destination site d.
Thus, when the operation import(N) is applied in d,
the created proxy node gets a reference to its manager.
2. N is alocal node : The globalisation operation cre-
ates an access structure for N. A manager node is

Ci=n.ANCr=nAn:Y)A
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Figure 2: Distributed reduction of the Exchange.
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Figure 3: The new access structure

created in N'’s site, and its reference is transmitted to
site d so as to retrieve similar conditions to case 1.

The mobile state protocol. This protocol [14] man-
ages the movements of the cell’s state. Each site has a
proxy node. The manager node is located in the cre-
ation site of the cell and it has a pointer over the proxy
holding the state (or will eventually hold it). When a
proxy P needs the state to do an exchange, it sends
the message get(P.Adr) to the manager (P.Adr being
the address of P). The manager receiving this mes-
sage, sends the message forward(P.Adr) to the proxy
P' currently holding the state. The manager there-
fore serializes multiples requests, guaranteeing that
there is no starvation. Proxy P’ receiving the for-
ward message sends then the message put(value) to
the proxy P, if it already has the state. Otherwise, it
stores the address of P, waits to receive the state and
then sends it (see figure 2).

3 Extending the access structure

The new protocol consists in partitioning the net-
work into a tree of leveled domains. Each domain is
associated with a manager node, that handles the pro-
tocol implementing the distributed semantics of an en-
tity, regarding the part d of the network. Indeed, a
managers tree is constructed such that:

1. the root manager M,,,:, of level 1, handles the
protocol over the network,

2. each manager M of level | and domain d(M) ad-
mits n. children M;,i = 1...n., of level [ + 1 and sub-
domain d(M;) of d(M). The union of all the domains
d(M;),i = 1...n. covers the domain d (see figure 3).

3.1 The new mobile state protocol

The managers tree is constructed. Now we spe-
cialize the discussion to cells. As a first step, assume
that for a cell C' a tree of managers has been created,
where the leaf managers are of level ¢l. Suppose that
a proxy P sited at site s executes an exchange (we as-
sume the state not in s). P belongs to d(M;) domains,
i = 1...t1 (M; being the root), and it has a reference
to its father manager M. To migrate the state to s,
the following recursive scheme is observed:

P sends the message get(P.Adr) to its father
My (P.Adr being P’s address). My receives the mes-
sage and checks wether the state is in its domain:

(a). If a proxy in d(My) holds the state: My sends
the message forward(P.Adr) to that proxy. Receiv-
ing this message, this later send then the message
put(value) to P. My updates its state pointer to be
P.Adr.

(b). If the state is not in d(My;): My sends the message
get(My.Adr, P.Adr) to its father My _1, while updat-
ing its state pointer to be P.Adr. My receiving the
message, observes exactly the same treatment previ-
ously observed by My;_1. This illustrate the recursive-
ness of the scheme. As the state pointer of M, is a
non NULL address, P’s request is eventually satisfied.
Constructing the tree. We propose a lazy method
for the tree construction. For a domain d(M), M is
created, if and only if there are active proziesin d(M);
i.e., proxies that have explicitly requested the state.
Once M is created, the same process is refined for
subdomains of d(M), to create M’s children. Let C
be a cell created on site s;. The first exportation over
a site sy will create M,,,; on s; and its address is
transmitted to so (s1’s proxy stores M,.,.; as being its
father manager). As long as an exportation from s
to s’ is executed, the reference of M,,,; is transmit-
ted to s’. Now, let M;,i = 1...m be the yet created
children of a manager M. We assume that the union
of d(M;),i = 1...m does not necessarily cover d(M).
When M receives a get(P.Adr) message from P, it
first looks for, in its Sons table, a son of the proxy’s
location subdomain, then:

1. If there is no son: M satisfies P’s request regard-
ing the state. It initiate the construction of a son (if
I < tl): it sends the message create_manager(l + 1)
to P. It enters a suspended state, waiting for the ad-
dress of its son to be created. P receives the message,
creates a manager, say M', of level I + 1 in its site
and sets its father to be M’, and send the message
update_sons(M'.Addr) to M. M receives this mes-
sage, suspends its suspended state, adds M'.Adr to its
Son_managers table, and updates its state pointer.
2. If there exists a son M': M sends the message



manager(M'.Adr) to P. The latter receives the mes-
sage, updates its father to be M’ (P is thus attached
to a nearest manager). M also sends the message
get(P.Adr, P.Adr) to M'. M' receives the message,
and just satisfies P’s request regarding the state.

3.2 Formal specification of the protocol

The protocol is defined as a set of nondeterminis-
tic reduction rules. We consider a set of manager and
proxy nodes linked by a network IV, that is a multiset
containing messages of the form d : m where d iden-
tifies a destination node, and m is a message. The
initial configuration consists in the unique manager
M0t With a set of proxies having a reference to it.
We assume the state is at proxy P;. Each node has
state represented by a set of attributes. We denote
attribute Attribute of node N by N.Attribute. Re-

Condition

Action

Execution follows an interleaving model. At each
step, a rule with valid conditions is selected, then re-
duced atomically. A rule condition consists of boolean
conditions on the node state and one optional receive
condition, Receive(d,m), meaning that d : m has ar-
rived at d. Executing a rule with such a condition
removes d : m from the network and performs the
action part of the rule. The action Send(d,m) asyn-
chronously sends message m to node d, i.e., it adds the
message d : m to N. The network and the nodes are
fair: Messages to any node take arbitrary finite time
and arrive in arbitrary order. Any rule with valid con-
ditions is eventually reduced. The table below lists the
attributes of proxy and manager nodes.

duction rules are of the form:

Manager node

Adr: manager’s address

Cc: pointer over the node containing the state
Fm: father manager’s address

l: manager’s level

Sons: the manager’s existing set of son managers

Proxy node

State: initialized to CHAIN only for P;

Thread: requesting thread

Addr: the address of the proxy

Forward: initialized to NULL for all proxies
Root_manager: initialized to M,,.: for all proxies

Fm: proxy’s manager, initialized to M,,.¢ for all proxies
Content: initialized to N for P; and NULL otherwise
Newcontent: initialized to NULL for all proxies

Given a manager M receiving a get(Addr) request,
the decision function telling M wether a son manager
is to be created, is obtained using, M’s level and Sons
table and the address Addr. This function is defined
as follows:

locality(M, Addr) =

negative if M.1 < tl AV M'.Addre M.Sons Addr ¢ d(M’)

{ leaf if M.1=tl

M’.Addr if 3 M’ | M".Addr € M.Sons A Addr € d(M’)

The managers tree is constructed. As for the in-
formal description, we first assume the managers tree
constructed and that each proxy is attached to a man-
ager of level tI. We call PR1 the corresponding pro-
tocol. The rules below ensure the state migration:
Managers rules.
Receive(M,get(Addr)) A M.Ce# NULL
R1: ¢ A locality(M,Addr)=leaf
Send(M.Cc,forward(Addr)) ; M.Cc := Addr

Receive(M,get(Addr)) A M.Cc=NULL
R2:{ A locality(M,Addr)=leaf
Send(M.Fm,get(M.Adr,Addr)) ; M.Cc := Addr

Receive(M,get(Addrm,Addr)) A M.Cc=NULL

R3:

Send(M.Fm,get(M.Adr,Addr)) ; M.Cc := Addrm

Receive(M,get(Addrm,Addr)) A M.Cc # NULL
Send(M.Cc,forward(Addr)) ; M.Cc := Addrm
Receive(M,forward(Addr)) A M.Cc # NULL

Send(M.Cc,forward(Addr)) M.Cc := NULL
xy rules.

j=s]
g

Rb5:
P

R1 Send(P.Fm,get(P.Adr)) ; P.State:=CHAIN ;

P.Thread:=T ; P.Newcontent:=N,

Receive(Prequest(T,Ny)) A P.Content# NULL
Send(T,proceed(P.Content)) ; P.Content:=N, ;

Receive(P,put(NV,))

P.Thread:=NULL ; P.Content:=P.Newcontent

Receive(P forward(Addr))
P.Forward:=Addr

P.Forward# NULL A P.Content# NULL

R2:

R3
R4

ro
{ Receive(P,request(T,N,)) A P.State=NULL

P.Content:=N. ; Send(P.Thread,proceed(P.Content))

R5: ¢ Send(P.Forward,put(P.Content)); P.State := NULL

P.Content:=NULL ; P.Forward:=NULL:

Outline of the proof. We give the proofs of the
safety and liveness properties of PR1, using an in-
variant. For the simplicity sake, a proxy P is consid-
ered as a manager of level ¢/ + 1 (we assume (P.Adr €
(P.Fm).Sons)). Let n, be the number of all the tree
nodes. The property 77 representing the tree struc-
ture is defined as:

Tl (Mroot) A

M;.Addr € M;.Sons
Ti(M;) =3 M; I{ A M; Fm = ]\J/[j.Addr

We define the operation father as: Mj=father(Mi).
The Tree set is: Tree = {M, T1(M)}. We introduce
the notion of a path. Intuitively, a path is a sequence
of manager nodes such that, the first one is a proxy,
and each node M;,; points over M; (and implicitly



the last node has, in N, a get message sent).

P = (M, ... My, | M, .State = CHAIN A

The root path is: Proot = [M1,., Myroot]. On paths,
we define the followings: e first(Pix) = M; e
last(Py) = My o set(P1.x) = {M1,., My}. For a se-
quence of paths [Py, ., Py], we define properties GW,
GW' as:

W([P1,.,Pn]) =

last(P;).Adr : forward(first(Pit1).Adr) € N

viell, ,n[{ @ last(P;).Forward = first(Pit1).Adr
A

last(P,).Fm { get(first(PL).Adr) e N &

GW’([Pla ) Pn]) =

. last(P;).Adr
vie [, ,n[{ & lEzst)(Pi).Forward = first(Piy1).Adr
A Pn = Proot
Intuitively, GW ([Py,.,P,]) means that manager
last(P,) has sent a get request to its father, asking
for the state requested by the proxy first(P;) (this is
the path P,,), and there is a forward message toward
each manager last(P;), asking for the state requested
by the proxy first(P;y1). GW' differs from GW only
by the fact that the path P, is the root path P,,e¢.
By extension the operation set([P1, ., Py]) is defined
as: |JiZ)' set(P;). Then, let SP be the set of all paths
in the managers tree in some configuration C;. The
invariant I of protocol PR1 is defined as:
Il = Itl A Isp1 A Igw1 A Irestl A Iput A Iu, where,
It1 = Tl(Mi),i =1..n, ;Ispl =SSP = SP ¥ 62;2 SP,
Iy, = Ny GW(SP;) A GW’(SP1)
SP1 = [P1,., Proot] A
[ first(P1).Content = NULL A
put = { first(P1).Adr . put(VALUE) € N
@ first(P1).Content = VALUE
Liesty, =V M € (Tree L U set(SP;))
{ MCc=NULL © M.State = NULL }
I, = { all messages in N are unique
and explicitly mentionned in I}
Intuitively, I;, means that the nodes form a tree.
I, means that SP is partitioned in configuration C;
into, one SP; set of paths satisfying property GW’,
and all the other set of paths satisfy property GW.
Ipy: means that the put message will traverse the chain
[first(Py), ..., first(Proot)]. Irest; means that all the
nodes that are not in a path, are in a NULL state.
Then, the following theorems give the safety and live-
ness properties of protocol PR1.

Theorem 1 Formula I is an invariant of PR1.

Theorem 2 Assuming fairness assumptions, request-
ing the state by a proxy node will cause it eventually
to arrive once.

Miy1.Cc = M;. Addr,i =1k L1

get(last(Pr).Adr, first(P1).Adr) € N

: forward(first(Pit1).Adr) € N | M.Cc:=

Constructing the managers tree. To construct

the managers tree, we add the following rules:
Managers rules added.
Receive(M,get(Addr)) A
locality(M,Addr)=Addrl
Send(Addr, manager(Addrl))
Send(Addrl, get(Addr, Addr))

( Receive(M,get(Addr)) A M.Cc=NULL
A locality(M,Addr)=negative

R7: ¢ Send(M.Fm,get(M.Addr,Addr))
Send(Addr,create_manager(M.1+1))

| M.Cc := suspended
Receive(M,get(Addr)) A M.Cc# NULL A
locality (M,Addr)=negative

R8: ¢ Send(M.Cc,forward(Addr))

Send(Addr,create_manager(M.1+1))

suspended

Receive(M,update_sons(Addr))
R9: ¢ Add-son_managers(Addr)
M.Cc := Addr
proxy rules added.
RG'{ Receive(P,manager(Addr))
P.Fm:=Addr
Receive(P,create_manager(l))
Addr:=Create_manager(1,P.Fm)
Send(P.Fm,update_sons(Addr))
P.Fm:=Addr
Outline of the proof. We first consider adding rule
6 of the proxies and managers, and show that these
rules allow to attach each proxy with the manager of
level ¢l of its domain. We call PR2 the corresponding
new protocol. We redefine property GW as follows:
GW2([Py,.,Pn]) =
((Vie [1,.,n]
last(P;).Addr : forward(first(Pi+1).Addr) € N
{ ® last(P;).Forward = first(Piy1).Addr

R6:

R7:

A
( (father(last(Py))).Addr :
get(first(P1).Addr) € N
@
{ get(last(Py).Addr, first(P1).Addr) € N
A
first(Pn).Addr : manager(M.Addr) ¢ N
L vV (first(Pn).Fm # M.Addr)

@
I M | M.Addr € (last(Prn).Sons A
M.Addr : get(last(Py,).Addr, first(P1).Addr)
A
L first(Pn).Addr : manager(M.Addr) € N
The new invariant is: Iy = Iy, Alp, Al guwy Arest; A
Iy N1y, where, Iy, = A ,GW2(SP)AGW'(SP).
Then we have the followings:

Theorem 3 Formula Iy is an invariant of PR2.

Theorem 4 Let My be a prozy attached to a manager
My of level | < tl in configuration C;. Assuming, the

eN
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Figure 4: Assurhption regarding managers rule 6

conditions of figure 4 and fairness assumptions, then
reducing rule 1 by My allows: (1) to attach My to a
manager My € Sons(My), of level | + 1, and domain
d(Ms) containing address M. Adr, and

(2.) the state to be forwarded to proxy My.

Finally, we add all the rules. Let PR3 be the pro-
tocol thus obtained. We show that the managers tree
is constructed and that each time a proxy requests
the state, it will eventually receive it. We first clar-
ify the procedure Create_manager(level, Fathadr).
Executing this procedure by a proxy M, creates a
manager M- in the proxy’s site. The level level
and the proxy’s site allow to infer an address ADR
for M> and the following updates are done atomi-
cally: Mg.Ad'r‘ = ADR,MQ.CC = Ml.AdT‘,MQ.Fm =
Mi.Fm,M>l = level, Ms.Sons = NULL,M;.Fm =
ADR. For the last invariant, we redefine prop-
erty Ty as follows:

TQ(Mroot) A
TQ(M,) =3 Mj ‘
{ M;.Adr € (Mj).Sons &
M; . Adr : update_sons(M;.Adr) € N
A M;. Fm = M;.Adr
The new Tree set is: Tree = {M| To(M)}. As there
are node creation messages, we redefine a path as:

P21k = Py + [Ms, ., My], |
( M;.State = CHAIN

\ Mij1.Cc= M;. Addr,i=2..k L1

The last invariant is defined as:
Ig = Itz A Ispz A Igw3 A Irestl A Iput A Iu, where It2 =
Ty(M;),i = 1..ny,, and Igp,, (resp. Igy,) are defined
as Ip, (resp. Igy,). The following theorems give the
safety and liveness properties of protocol PR3.

Theorem 5 Formula I3 is an invariant of PR3.

r Ms.Cc = M. Addr A P12 = [Ml, MQ]
5>
M>.Cc = suspended A
M, : create_manager(Ms.l + 1, M>.Addr) € N
A A Pia = [Ml, M2]
57
M, : update_sons(Addr) € NA
{ Py = [Ml,M{, MQ] A M{CC = M;.Addr
L A Mj. Addr = Addr

Theorem 6 Let a prorzy M, attached to a man-
ager My such that My.Addr ¢ d(Ms3),YMs3.Addr €
Msy.Sons, in configuration C;. If Myl <
and fairness assumptions are ensured, then reduc-
ing rule 1 by My allows:

1. To create a son manager Mz of Ms whose domain
d(Ms3) C d(Ms) contains the address M. Adr with the
right updates, and,

2. The cell content to be forwarded to M.

4 An useful improvement

In this section, we improve the new mobile state
protocol regarding the suspension state of the man-
ager nodes, when there are creation of their children.
Indeed, we would allow a manager M to treat the re-
quests it receives between the duration issued, since it
assigns the value “suspended”’ to its attribute C'c and
until it receives the updtate_sons(Address) message.
When M is in such a state, we consider the possible
treatment of solely the messages get(Adrman, Adress)
or forward(Adress) sent respectively by one of its
children managers or father manager. For this pur-
pose, we add a new attribute “Forward”, initialized to
NULL, to manager nodes and the following two rules:
Receive(M,get(Addrman,Address)) A
M.Cc=suspended

R10: M.Forward := Address

M.Cc := Addrman

Receive(M, forward(Address)) A
RIL: M.Cc=suspended

M.Forward := Address
M.Cc = NULL

Namely, when M receives one of the above mes-
sages, the attribute “Forward” is then used to store
the address Address of the requesting proxy, and the
protocol simply continues to operate as usual. When
manager M receives the update_sons(Address) mes-
sage, the request of the proxy whose address is con-
tained in the “Forward” attribute is then satisfied. In-
deed, rule 9 is changed in the following two rules that
handle this situation:

Receive(M,update_sons(Address)) A
M.Forward=NULL
Add_son_managers(Address)
M.Cc = Address
Receive(M,update_sons(Address)) A
M.Forward # NULL

R9b: ¢ Add_son_managers(Address)
Send(Address, forward(M.Forward))
M.Forward = NULL

Then, to avoid coherence problems that may arise
because of concurrent creations of children managers
of a manager M, rules 7 and 8 are also respectively
changed as follows:

R9a:
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Figure 5: An illustration of the protocol
Receive(M,get(Address)) A M.Forward=NULL

A (locality (M,Address)=negative) A M.Cc=NULL

R7: ¢ Send(M.Fm,get(M.addr,Address))
Send(Address,create_manager((M.l +1),M.addr))
| M.Cc := suspended

Receive(M,get(Address)) A M.Forward=NULL A
M.Cc=Addr A locality(M,Address)=negative

R8: ¢ Send(M.Cc,forward(Address))
Send(Address,create_manager((M.l +1),M.addr))
| M.Cc = suspended

In summary, we just use the attribute “Forward”
as a buffer variable that allows to avoid the strong
synchronization between a manager and its children
being created. The safety and liveness properties of
the protocol, with the newly added rules, continue to
hold.

5 Analysis of the protocol

We give some characteristics of the new protocol.
We consider a network interconnected as in figure 5(b),
and a hierarchical subdivision of it into: two WANs
(Wide Area Network), tree MANs (Medium Area Net-
work) and 7 LANs (Local Area Network). We assume
01 (resp. da, 03 and d4) is uniformly the transmis-
sion delay within a LAN (resp. MAN, WAN and be-
tween two WANSs). Let C be a cell created at site
11, whose access structure is as in figure 5(a). We
compare the delay necessary to migrate the state, in
the old and new protocols. We measure the ratio:

_ Migration delay in the new protocol
p = Migration delay in the old protocol ' The table below

gives some values of p for some migration scenarios.
"Within LAN;” (resp. "MAN,”) means that the state

is migrated between two sites of LAN; (resp. MAN;).
As it brings out, migration delays are shorter in the
new protocol.

P
Within LAN; % <<1
Within LAN, 833 -1
Within LAN; Oh <<
Within LANs % <1
Within MAN; % << 1
Within MAN, % ~1
Within MAN; % <<1

The new protocol improves the locality property in
that sense that migrating the state within a domain
is managed locally by the corresponding manager. As
it improves the scalability property. In fact, the prox-
ies are not attached to a single manager which may
be overloaded when treating their several requests.
Rather, the charge of these requests is spread over
several managers; each responsible for a subset of the
whole set. The managers tree act indeed as a hierar-
chy of cache memories that enables to make remote
references only if the state is not “within the cache”:
within the domain of the manager. When constructing
the tree, an improvement may be to create a manager
for a domain d only if there is a persistent request from
d; i.e., only if a constant ¢ get requests are made from
d. This is handled simply. It just suffices to add a
control variable. For example, a new manager’s rule 7
is:

Receive(M,get(Address)) A M.Cc=NULL
A locality (M,Address)=negative)

Send(M.Fm,get(M.Addr,address))
R7: counter=counter+1
IF counter(d) = ¢ THEN

L M.Cc = suspended

To allow to attach a proxy directly to its greatest
level manager, when a globalisation operation is per-
formed from site s to s’, the proxy of s may transmit
the reference of its father manager M to the created
proxy of &', if s’ is in d(M).

The new protocol allows potentially to overcome
efficiently the problem of fault tolerance. Namely, the
redundancy concept introduced can be used as a basic
mechanism to tolerate sites failures.

6 Related works

Many systems, that we know of, except Emerald [7]
and Obliq [2] do distributed execution by adding a dis-
tribution layer on top of a centralized language, i.e.,
CORBA [11], Erlang [15], Java [9]. This has the disad-
vantage that distribution is not a seamless extension
to the language. In Emerald, objects are stationary

Send(Address, create_manager((M.l + 1), M.Addr))



by default and explicit primitive operations exist to
move them. Moving a mutable object is an atomic op-
eration that clones the object on the destination site
and aliases the original object to it. The result is that
messages to the original object are passed to the new
object through an aliasing indirection. This induce
aliasing chains. Obliq has taken a first step toward
the goal of conservatively extending language entities
to a distributed setting. Obliq objects are stationary.
Object migration in Obliq can be implemented in two
phases by cloning the object on another site and by
aliasing the original object to the clone. The migra-
tion procedure must be executed internally. The result
is an aliasing chain too.

Small-scale systems typically uses a broadcast-
based protocol to locate objects in a distributed sys-
tem of caches (proxies). Existing large-scale systems
are either home-based, or use a combination of home-
based and aliasing pointers [1, 6, 10, 8]. A closely
related protocol is the Arrow Distributed Directory
Protocol described in [3]. According to the authors,
this protocol allows a scalable and local mechanism
for ensuring mutually exclusive access to mobile ob-
jects. This protocol is given by a minimum spanning
tree T' over the network, where each node having po-
tentially access to the object, stores a link in T, arising
on the shortest path to get the object. This protocol
ensures a locality property; however, it is not at all
clear, how it is scalable. When a node is added to
the set of nodes having access to the object, how this
node is integrated in 7" 7. If a new spanning tree is
re-computed, this is very costly. Plaxton et al. give
in [12] a randomized directory scheme for read-only
object.

7 Conclusion

We have presented a new design for constructing ac-
cess structures for Distributed Oz entities. This design
aims to improve the locality and scalability properties.

As we have presented a new mobile state protocol
for mutually exclusive access to cells and objects in
Distributed Oz. As an extension of the old protocol
and in the philosophy of Distributed Oz design, the
new protocol is integrated at the semantical level; the
proxy and manager rules implement the distributed
semantics of cells. The new protocol greatly improves
the locality /scalability properties, allowing efficient
state migration delays and spreading uniformly the
charge of the proxies requests.

In a more general context, the protocol described
in this paper can be used in client-server architectures
in order to improve the locality /scalability properties.
One can imagine a tree of servers spread among a dis-

tributed network that serve client requests for some
services. Each client sending its request to a “nearest”
server. Some cooperative work between the servers
may then be necessary to maintain some coherent state
between them.
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