
Extensible Dependency Grammar:
A Modular Grammar Formalism Based On

Multigraph Description

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

eingereicht von Ralph Debusmann
Saarbrücken, den 28. April 2006

Verfasser: Ralph Debusmann
Kaiserstraße 197
66133 Saarbrücken
rade@ps.uni-sb.de

Dekan: Prof. Dr. Thorsten Herfet

Prüfungsausschuss: Prof. Dr. Jörg Siekmann
Prof. Dr. Gert Smolka
Prof. Dr. Manfred Pinkal
Dr. Dominik Heckmann

Tag des Kolloquiums: 3.11.2006

Abstract

This thesis develops Extensible Dependency Grammar (XDG),a new grammar formal-
ism combining dependency grammar, model-theoretic syntax, and Jackendoff’s parallel gram-
mar architecture. The design of XDG is strongly geared towards modularity: grammars can
be modularly extended by any linguistic aspect such as grammatical functions, word order,
predicate-argument structure, scope, information structure and prosody, where each aspect
is modeled largely independently on a separate dimension. The intersective demands of the
dimensions make many complex linguistic phenomena such as extraction in syntax, scope
ambiguities in the semantics, and control and raising in thesyntax-semantics interface simply
fall out as by-products without further stipulation.

This thesis makes three main contributions:

1. The first formalization of XDG as a multigraph descriptionlanguage in higher order
logic, and investigations of its expressivity and computational complexity.

2. The first implementation of XDG, the XDG Development Kit (XDK), an extensive
grammar development environment built around a constraintparser for XDG.

3. The first application of XDG to natural language, modularly modeling a fragment of
English.

Kurzzusammenfassung

Diese Dissertation entwickelt Extensible Dependency Grammar (XDG), einen neuen Gram-
matikformalismus, der Dependenzgrammatik, modelltheoretische Syntax und die Parallele
Grammatik-Architektur von Jackendoff miteinander kombiniert. Das Design von XDG ist
vollständig auf Modularität ausgerichtet: Grammatiken können modular durch jeden beliebi-
gen linguistischen Aspekt erweitert werden, z.B. grammatische Funktionen, Wortstellung,
Prädikat-Argument Struktur, Skopus, Informationsstruktur und Prosodie, wobei jeder Aspekt
größtenteils unabhängig auf einer separaten Dimension modelliert wird. Durch das Zusam-
menspiel der einzelnen Dimensionen fallen viele complex linguistische Phänomene wie Ex-
traktion in der Syntax, Skopusambiguitäten in der Semantik, und Kontrolle und Anhebung in
der Syntax-Semantik-Schnittstelle einfach als Nebenprodukte heraus, ohne dass sie explizit
beschrieben werden müssten.

Die Dissertation enthält drei Hauptbeiträge:

1. Die erste Formalisierung von XDG, realisiert als Multigraph-Beschreibungssprache in
höherstufiger Logik, und Untersuchungen ihrer Ausdrucksstärke und ihrer computa-
tionalen Komplexität.

2. Die erste Implementierung von XDG, das XDG Development Kit (XDK), eine umfan-
greiche Grammatik-Entwicklungsumgebung, die um einen Constraintparser für XDG
herum gebaut ist.

3. Die erste Anwendung von XDG auf natürliche Sprache, die ein Fragments des Englis-
chen auf modulare Art und Weise beschreibt.

Ausführliche Zusammenfassung

In dieser Arbeit entwickeln wir den Grammatikformalismus Extensible Dependency Gram-
mar (XDG) als Kombination von Dependenzgrammatik, modelltheoretischer Syntax and Jack-
endoffs Paralleler Grammatik-Architektur. Die Kombination ergibt ein neuartiges, radikal
modulares Design, das es erlaubt, beliebige linguistischeAspekte zwar innerhalb dessel-
ben Formalismus, jedoch weitestgehend unabhängig voneinander auf sogenannten Dimen-
sionen beschreiben zu können. Das erleichtert die Modellierung von linguistischen Phänome-
nen, da immer nur einzelne Aspekte wie z.B. die grammatischen Funktionen, Wortstellung
oder Prädikat-Argument-Struktur, und nicht alle Aspekte gleichzeitig berücksichtigt werden
müssen. Zum Beispiel ist Wortstellung im Gegensatz zu den grammatischen Funktionen für
die Modellierung der Prädikat-Argument-Struktur meist unerheblich, musste jedoch in bish-
erigen Ansätzen oft trotzdem bei der Modellierung der Syntax-Semantik-Schnittstelle mitein-
bezogen werden. In XDG lassen sich beide Aspekte hingegen komplett voneinander abkop-
peln. Bei dieser modularen Herangehensweise fallen viele sonst problematische linguistische
Phänomene wie Extraktion, Skopusambiguitäten und Kontrolle und Raising dann einfach als
Nebenprodukte heraus, ohne dass sie explizit beschrieben werden müssten.

Diese Dissertation leistet drei Beiträge, um zu zeigen, dass XDG nicht nur eine abstrakte
Idee ist, sondern auch konkret realisiert werden kann: die erste Formalisierung von XDG
als Beschreibungssprache für Multigraphen in höherstufiger Logik, die erste Implementierung
von XDG innerhalb eines umfangreichen Grammatikentwicklungssystems, und die erste An-
wendung dieses Systems auf natürliche Sprache.

Die Formalisierung von XDG entwickeln wir in Teil I, und zeigen dort, wie sich die Kern-
konzepte der Dependenzgrammatik, z.B. Lexikalisierung, Valenz und Ordnung, in XDG real-
isieren lassen. Das ermöglicht uns dann, erste Untersuchungen der Ausdrucksstärke und der
computationalen Komplexität von XDG anzustellen. Wir beweisen, dass XDG mindestens
so ausdrucksstark ist wie kontextfreie Grammatik, und zeigen darüber hinaus, dass nicht-
kontextfreie Sprachen wieanbncn oder linguistische Benchmarks wie überkreuzende Depen-
denzen und Scrambling ebenfalls elegant modelliert werdenkönnen. Der Preis für diese Aus-
drucksstärke wird im Folgenden sichtbar, wenn wir beweisen, dass das XDG-Erkennungs-
problem NP-hart ist.

Trotz dieser hohen Komplexität erzielt der in Teil II dieserArbeit entwickelte XDG-Con-
straintparser für kleinere, handgeschriebene Grammatiken erstaunlich gute Ergebnisse. Um
den XDG-Parser herum bauen wir die komfortable Grammatikentwicklungsumgebung XDG
Development Kit (XDK), die es erlaubt, bequem Grammatiken von Hand oder automatisch zu
erstellen und zu testen. Das XDK ist eine unabdingbare Voraussetzung für die Entwicklung
der XDG-Grammatiktheorie, und wurde schon mehrfach erfolgreich in der Lehre eingesetzt.

In Teil III entwickeln wir schrittweise eine Grammatik für ein Fragment des Englischen,
die sowohl Syntax, Semantik und Phonologie modelliert. Wirzeigen hier konkret, wie kom-
plizierte Phänomene wie Extraktion (u.a. Pied Piping) in der Syntax, Skopus-Ambiguitäten
in der Semantik, und Kontrolle und Raising in der Syntax-Semantik-Schnittstelle als Neben-
produkte aus der modularen Beschreibung herausfallen, ohne direkt beschrieben werden zu
müssen.

Acknowledgments

First of all, I would like to thank my supervisor Gert Smolka for adopting me as his PhD
student in the first place, and for all his suggestions and hispatience. I would also like to
thank my second supervisor Manfred Pinkal for his suggestions, and for bringing me up as a
researcher in the very first place at the department of computational linguistics.

From April 2002 until April 2005, the work on this thesis was funded by the Interna-
tional Post-Graduate College Language Technology and Cognitive Systems, a program of
the Deutsche Forschungsgemeinschaft (DFG). I’d like to saythank you to the organizers
Matthew Crocker, Sabine Schulte im Walde, Claudia Verburg,my supervisor in Edinburgh,
Mark Steedman, and to my colleagues in the IGK and in Edinburgh, including (in alphabet-
ical order) Colin Bannard, Markus Becker, Bettina Braun, Peter Dienes, Amit Dubey, Malte
Gabsdil, Ciprian Gerstenberger, Kerstin Hadelich, Dominik Heckmann, Nikiforos Karamanis,
Pia Knöferle, Michael Kruppa, Jochen Leidner, Dominika Oliver, Olga Ourioupina, Sebastian
and Ulrike Pado, Oana Postolache, Andrew Smith, Tim Smith, Kristina Striegnitz, Maarika
Traat and Victor Tron.

From April 2005 until April 2006, this thesis was funded by the DFG as part of CHORUS
project Sonderforschungsbereich 378 (SFB 378). In the CHORUS project, I had the opportu-
nity to work together with Alexander Koller, Marco Kuhlmannand Stefan Thater, and earlier
with Manuel Bodirsky, Katrin Erk and Markus Egg.

During all these years, except for five months at the department of Informatics at the Uni-
versity of Edinburgh in 2003, my workplace was the Programming Systems Lab (PS-Lab)
in Saarbrücken. Two former members of the PS-Lab, Denys Duchier and Joachim Niehren,
were, before they left, the main advisers of my work. Denys was the one who laid the founda-
tions for XDG in the late nineties. Joachim was always a fervent supporter of the project, and
has supported me in all areas of scientific life. I would also like to thank the other members
of the PS-Lab: Mathias Möhl, Andreas Rossberg, Jan Schwinghammer and Guido Tack, the
former members Thorsten Brunklaus, Leif Kornstaedt, Didier Le Botlan, Tim Priesnitz, Lutz
Straßburger and Gabor Szokoli, and our secretary Ann Van de Veire.

I have also profited from the collaboration with members fromthe Computational Linguis-
tics Department, including (in alphabetical order) Gerd Fliedner, Valia Kordoni, Christian
Korthals, Andrea Kowalski, Christopher-John Rupp and Magdalena Wolska. And Geert-Jan
Kruijff, who was always a helpful adviser with all his expertise in dependency grammar.

I had the pleasure to visit Charles University in Prague, where I was invited to by Martin
Platek and Vladislav Kubon. Ondrej Bojar then spent half a year in Saarbrücken in return and
was a fantastic colleague.

Thanks also for interesting conversations to Cem Bozsahin,Charles Fillmore, Mark Ped-
ersen and Gerold Schneider. And to Jorge Pelizzoni, Ray Jackendoff and Jerry Sadock for
illuminating email exchanges about XDG and the parallel grammar architecture.

Finally, meine liebste Simone, without your love, patienceand support, without all the
nights that you stayed up while I sat writing and re-writing,writing and re-writing again, and
without your encouragement as I lost belief in my abilities,I would have never made it. I
promise I will never ever write a thesis again.

Contents

1. Introduction 15
1.1. Background . 15

1.1.1. Dependency Grammar . 15
1.1.2. Model-Theoretic Syntax .18
1.1.3. Parallel Grammar Architecture 19
1.1.4. Constraint Parsing . 21

1.2. Contributions and Structure of the Thesis 22
1.3. Publications .24

2. XDG in a Nutshell 26
2.1. XDG Models . 26

2.1.1. Dependency Graphs . 26
2.1.2. Multigraphs . 28

2.2. XDG Grammars . 30
2.2.1. Dimensions . 30
2.2.2. Principles . 30
2.2.3. Lexicon . 31
2.2.4. Example Grammar . 31

2.3. Implementing XDG Grammars .. 33
2.3.1. Metagrammar . 33
2.3.2. Parser . 36

2.4. Comparison with Other Grammar Formalisms 36
2.4.1. Dimensions . 37
2.4.2. Principles . 40
2.4.3. Lexicon . 41
2.4.4. Grammar Theory . 42
2.4.5. Implementation . 43

2.5. Summary . 43

I. Formalization 44

3. A Description Language for Multigraphs 45
3.1. Multigraphs . 45
3.2. A Description Language for Multigraphs 47

3.2.1. Types . 48

9

Contents

3.2.2. Multigraph Type . 49
3.2.3. Terms . 50
3.2.4. Signature . 51
3.2.5. Grammar . 53
3.2.6. Models . 53
3.2.7. String Language . 53

3.3. Summary . 53

4. DG as Multigraph Description 54
4.1. Graph Shape . 54

4.1.1. DAG Principle . 54
4.1.2. Tree Principle . 54
4.1.3. Edgeless Principle . 54

4.2. Projectivity .55
4.2.1. Projectivity Principle .. . 55

4.3. Lexicalization .. 55
4.3.1. Lexical Entries . 55
4.3.2. Lexical Attributes .56
4.3.3. Lexicalization Principle .. . 56

4.4. Valency . 56
4.4.1. Fragments . 57
4.4.2. Configuration . 57
4.4.3. Valency Predicates . 58
4.4.4. Valency Principle . 58

4.5. Order . 59
4.5.1. Ordered Fragments . 59
4.5.2. Ordered Configuration . 60
4.5.3. Projectivity . 60
4.5.4. Order Principle . 61

4.6. Agreement . 61
4.6.1. Agr Principle . 62
4.6.2. Agreement Principle . 62

4.7. Linking . 63
4.7.1. LinkingEnd Principle .63
4.7.2. LinkingMother Principle .. 63

4.8. Summary . 64

5. Expressivity 65
5.1. XDG and Context-Free Grammar .. 65

5.1.1. Context-Free Grammar . 65
5.1.2. Derivations and Derivation Trees 65
5.1.3. Lexicalized Context-Free Grammar 66
5.1.4. Constructing an XDG from an LCFG 66

5.2. Going Beyond Context-Freeness 70

10

Contents

5.2.1. anbncn . 70
5.2.2. Cross-Serial Dependencies .. . 72
5.2.3. Scrambling . 76

5.3. Summary . 78

6. Computational Complexity 79
6.1. Recognition Problems .. . 79
6.2. Fixed Recognition Problem 79

6.2.1. Satisfiability Problem .. 79
6.2.2. Input Preparation . 79
6.2.3. Models . 80
6.2.4. Ordered Fragments . 81
6.2.5. Attributes . 82
6.2.6. Coreference . 83
6.2.7. PL Principle . 83
6.2.8. Proof . 84

6.3. Universal Recognition Problem 84
6.4. Summary . 84

II. Implementation 85

7. A Development Kit for XDG 86
7.1. Architecture .86

7.1.1. Metagrammar Compiler . 86
7.1.2. Constraint Parser . 87
7.1.3. Visualizer . 87
7.1.4. Lattice Functors . 88

7.2. The XDK Description Language .. . 88
7.2.1. Types . 90
7.2.2. Terms . 92

7.3. Summary . 98

8. Constraint Parser 99
8.1. Modeling Multigraphs .. 99

8.1.1. Modeling Dependency Graphs .100
8.1.2. Modeling Attributes . 102
8.1.3. Multigraphs . 103

8.2. Constraint Parsing .. . 103
8.2.1. Creating Node Records . 105
8.2.2. Lexicalization . 105
8.2.3. Posting Principles . 106

8.3. Modeling Principles .. . 106
8.3.1. Principle Definitions .106

11

Contents

8.3.2. Node Constraint Functors .108
8.3.3. Edge Constraint Functors .. 110
8.3.4. Distribution . 113

8.4. Example Principles .. 114
8.4.1. LinkingEnd . 114
8.4.2. Order . 115
8.4.3. Projectivity . 116

8.5. Generation . 116
8.5.1. Reversible Order Principle .. . 117
8.5.2. Reversible Projectivity Principle 118
8.5.3. Reversible Constraint Parser 118

8.6. Runtime . 119
8.6.1. Handcrafted Grammars . 119
8.6.2. Automatically Induced Grammars 120

8.7. Summary . 121

III. Application 122

9. Syntax 123
9.1. Immediate Dominance Dimension 123

9.1.1. Types . 125
9.1.2. Principles and Lexical Classes 127

9.2. Linear Precedence Dimension 130
9.2.1. Types . 131
9.2.2. Principles and Lexical Classes 132

9.3. ID/LP Dimension . 136
9.3.1. Types . 136
9.3.2. Principles and Lexical Classes 137

9.4. Emerging Phenomena .140
9.4.1. Topicalization . 140
9.4.2. Wh questions . 140
9.4.3. Pied Piping . 141

9.5. Summary . 142

10. Semantics 143
10.1. Predicate-Argument Dimension 144

10.1.1. Types . 146
10.1.2. Principles and Lexical Classes 146

10.2. Scope Dimension .150
10.2.1. Types . 153
10.2.2. Principles and Lexical Classes 153

10.3. PA/SC Dimension .154
10.3.1. Types . 156

12

Contents

10.3.2. Principles and Lexical Classes 156
10.4. Information Structure Dimension 158

10.4.1. Types . 159
10.4.2. Principles and Lexical Classes 160

10.5. Emerging Phenomena .. 161
10.5.1. Scope Underspecification .. . 161

10.6. Summary . 162

11. Phonology 163
11.1. Prosodic Structure Dimension 163

11.1.1. Types . 164
11.1.2. Principles and Lexical Classes 165

11.2. Summary . 167

12. Interfaces 168
12.1. Syntax-Semantics Interface 168

12.1.1. Types . 169
12.1.2. Principles and Lexical Classes 169

12.2. Phonology-Semantics Interface 179
12.2.1. Principles and Lexical Classes 179

12.3. Emerging Phenomena .. 183
12.3.1. Control, Raising and Auxiliary Constructions 183
12.3.2. PP-Attachment Underspecification 184

12.4. Summary . 184

13. Conclusion 185
13.1. Summary . 185
13.2. Future Work . 186

A. Lattice Functors 188
A.1. Encode . 189

A.1.1. Interpretation . 189
A.1.2. Compilation . 192

A.2. Top, Bot and Glb . 194
A.2.1. Flat Lattices . 194
A.2.2. Accumulative Lattices .195
A.2.3. Intersective Lattices .. 196
A.2.4. Cardinality Lattices .. 196
A.2.5. Tuple Lattices . 197
A.2.6. Record Lattices . 198

A.3. Constraint Variable Creation, Lexical Selection 198
A.3.1. MakeVar . 198
A.3.2. Select . 199

A.4. Decode and Pretty .200

13

Contents

A.5. Summary . 200

B. Metagrammar Compiler 201
B.1. Parsers and Converters .. . 202
B.2. Type Checker . 202
B.3. Encoder . 205
B.4. Pickler . 205
B.5. Runtime . 205
B.6. Summary . 206

C. Visualizer 207
C.1. Output Preparer .207

C.1.1. Decoding . 208
C.1.2. Edge Record Creation . 208

C.2. Output Library . 211
C.3. Summary . 212

D. Programs 213
D.1. Metagrammar Converter .. 213
D.2. Metagrammar Compiler .. 213
D.3. Constraint Solver .. 213
D.4. Graphical User Interface 215
D.5. Example Grammars, Scripts and Documentation 215
D.6. Summary . 216

E. Interface to CLLS 217
E.1. CLLS . 217

E.1.1. Constraints . 217
E.1.2. Example . 218

E.2. CLLS Dimension . 220
E.2.1. Types . 222
E.2.2. Lexical Classes . 222

E.3. CLLS Output Functor .223
E.3.1. Preprocessing the Fragments .. . 224
E.3.2. Concatenating the Fragments .. . 225
E.3.3. Adding Dominance Constraints 225
E.3.4. Adding Binding Constraints .. 227

E.4. Summary . 229

Bibliography 230

Index 240

14

1. Introduction

We begin with introducing the background of this thesis, comprising dependency grammar,
model-theoretic syntax, the parallel grammar architecture and constraint parsing. Against this
background, we set our contributions, before we round off this chapter by a summary of the
publications yielded by the thesis, and an overview of its structure.

1.1. Background

1.1.1. Dependency Grammar

According to the structures that they talk about, grammar formalisms for natural language can
be divided into two basic classes:

1. Phrase Structure Grammar(PSG)

2. Dependency Grammar(DG)

PSG is the approach originally taken by Noam Chomsky (Chomsky 1957, Chomsky 1965),
and has also been adopted by the popular grammar formalisms of Government and Bind-
ing (GB) (Chomsky 1981),Lexical Functional Grammar(LFG) (Bresnan & Kaplan 1982,
Bresnan 2001),Generalized Phrase Structure Grammar(GPSG) (Gazdar, Klein, Pullum &
Sag 1985),Head-driven Phrase Structure Grammar(HPSG) (Pollard & Sag 1987, Pollard &
Sag 1994), andTree Adjoining Grammar(TAG) (Joshi, Levy & Takahashi 1975, Joshi 1987).
A PSG analysis divides a sentence into continuous substrings calledphrasesor constituents,
which are labeled bysyntactic categorieslike S (sentence), NP (noun phrase) and VP (verb
phrase). These constituents are then arranged hierarchically in a phrase structure tree. Fig-
ure 1.1 shows an example phrase structure tree for the sentenceMary wants to eat spaghetti
today. The root has category S, i.e., is a sentence, which consistsof the NPMary, the V (verb)
wants, the VPto eat spaghettiand the Adv (adverb)today. The VP in turn consists of the Part
(particle)to, the Veatand the NPspaghetti.

DG stands for a different way of analyzing natural language.Its roots can be traced back
as far as to Panini’s grammar for Hindi (600 BC), the Arabic grammarians of Basra and Kufa
in Iraq (800 AD) (Owens 1988), and Latin grammarians (1200 AD). Modern DG is attributed
to Tesnière (1959). A DG analysis does not hierarchically arrange substrings but just words,
based on the syntactic relations between them calleddependency relationsor grammatical
functions. A DG analysis is calleddependency graphor dependency tree, in which mothers
are calledheadsand daughtersdependents. Figure 1.2 shows an example dependency tree of
Mary wants to eat spaghetti today. Here, each node (circle) is identified with a word in the

15

1. Introduction

S

NP V VP Adv

Mary wants Part V NP today

spaghettieatto

Figure 1.1.: Example phrase-structure analysis

sentence (as indicated by the dotted vertical lines calledprojection edges), and the tree edges
are drawn as solid lines interrupted by edge labels which reflect the grammatical functions:
Mary is the subject (edge labelsubj), eat is the infinitival complement (vinf), andtoday the
adverbial modifier (adv) of wants. In turn,to is a particle (part), andspaghettithe object (obj)
of eat.

Mary wants to eat spaghetti today

subj vinf

part obj

adv

Figure 1.2.: Example dependency tree

In a phrase structure tree, only continuous substrings can be arranged. This restriction
poses problems for the analysis of word order variation, even for rigid word order languages
(Steele 1978) such as English, which exhibits e.g. the discontinuous syntactic phenomena of
wh-questions and topicalization. An example for the latteris the sentenceSpaghetti, Mary
wants to eat today, where the objectspaghettiof eathas been dislocated to the very left. The
result is the discontinuous VP constituentspaghetti to eat, which has a gap betweenspaghetti
andto, comprising the wordsMaryandwants. This is shown in the impossible phrase structure
of Figure 1.3. Such sentences can only be analyzed in PSG by either changing the analysis,
by which the connection between the verbeatand its objectspaghettiis lost, or by extending
the grammar formalism with additional mechanisms like traces (GB) or feature percolation
(GPSG, HPSG).

spaghetti

Mary wants

to eat

today

S

NP V VP Adv

VPartNP

Figure 1.3.: (Impossible) discontinuous phrase structureanalysis

16

1. Introduction

For DG, discontinuous constructions can be represented straightforwardly: as we have al-
ready emphasized, the analyses are based on words and not substrings. In fact, Figure 1.4
shows a perfectly acceptable dependency tree forSpaghetti, Mary wants to eat today.

Spaghetti Mary wants to eat today

subj vinf

partobj

adv

Figure 1.4.: Example discontinuous (non-projective) dependency tree

For some applications however, it is desirable to define a restriction analogous to that of
the continuity of substrings in PSG also for DG. Here, the idea is to forbid that any edge
crosses a projection edge of a node higher up or to the side in the tree, such as the edge from
eat to spaghettiin Figure 1.4, which crosses the projection edges of the nodes corresponding
to Mary andwants. Analyses without crossing edges are then calledprojective, and those
which include themnon-projective. The crucial advantage of DG is now that the projectivity
restriction is optional, whereas the continuity restriction of PSG is obligatory. This crucial
difference was overseen in early formalizations of DG (Gross 1964, Hays 1964, Gaifman
1965), where it was proven to be equivalent toContext-Free Grammar(CFG) in general, even
though this is only true given the projectivity restriction.

Theoretically, a DG analysis need not be ordered at all. Thisgrants DG the flexibility of
not being confined to model the syntax of natural language alone—dependency analyses can
also be used to model e.g. the semantics, where order is irrelevant. This is used for example
in the traditional DG frameworks ofFunctional Generative Description(FGD) (Sgall, Haji-
cova & Panevova 1986) andMeaning Text Theory(MTT) (Mel’ čuk 1988) to modelpredicate-
argument structure. Figure 1.5 shows an example. Here, the edge labels arethematic roles
(Panenová 1974), (Dowty 1989) instead of grammatical functions. The wordwants is the
theme (edge labelth) of today, and has itself the agent (ag) Mary and the themeeat. The word
eathas the agentMary and the patient (pat) spaghetti.

Mary wants to eat spaghetti today

th

ag
th

ag pat

Figure 1.5.: Example semantic dependency graph

How do PSG and DGgrammarslook like? In PSG, a grammar is traditionally made up
of production rules (rewriting rules) such as the one below,which rewrites category S into an
NP, a V, a VP and an Adv:

S → NP V VP Adv (1.1)

In DG, grammars are traditionally expressed in terms ofvalency. The term is taken from
chemistry, where valency specifies for each atom the number of electrons which it will give,

17

1. Introduction

take, or share to form a chemical compound. In DG, valency specifies for each node the
required incoming edges (in valency) and outgoing edges (out valency).1 For instance, the
verbeat is an infinitive, and requires a particle and an object. This is reflected in its in and out
valencies: its in valency licenses at most one incoming edgelabeledvinf, and its out valency
requires precisely one outgoing edge labeledpart, and one labeledobj. No other incoming
and outgoing edges are licensed. As DG is word-based, valencies are typically expressed
in a lexiconof lexical entries. For example, the lexical entry below specifies the in and out
valencies of the wordeat, where the question mark represents optionality, and the exclamation
mark obligation:

word = eat
in = {vinf?}

out = {part!,obj!}

(1.2)

Even though most ideas of DG (heads/dependents, valency, lexicalization) have been grad-
ually adopted by most grammar formalisms, including GB, LFG, GPSG, HPSG, TAG and
alsoCombinatory Categorial Grammar(CCG) (Steedman 2000b), none of the frameworks
directly based on DG have really got into the mainstream, be it FGD, MTT, Abhängigkeits-
grammatik(Kunze 1975),Word Grammar(WG), (Hudson 1990), or the more recent frame-
works of Constraint Dependency Grammar(CDG) (Menzel & Schröder 1998),Free Order
Dependency Grammar(FODG) (Holan, Kubon, Oliva & Platek 2000), Bröker’s (1999) ap-
proach,Topological Dependency Grammar(TDG) (Duchier & Debusmann 2001), and Gerdes
& Kahane’s (2001) approach also called Topological Dependency Grammar. The reasons for
this are manifold:

• None of the frameworks is completely logically formalized, although there are partial
formalizations of e.g. MTT (Kahane 2001).

• Although word order variation can be perfectly represented in DG, the frameworks have
for a long time lacked a declarative and workable account of word order. This defect
has only recently been addressed, cf. (Bröker 1999), (Duchier & Debusmann 2001) and
(Gerdes & Kahane 2001), but only in frameworks that are confined to syntax.

• They lack a syntax-semantics interface to a deep semantics, i.e., a semantics beyond
predicate-argument structure, including the handling of quantifier scope.

1.1.2. Model-Theoretic Syntax

Grammar formalisms cannot only be distinguished as to the structures that they talk about, but
also with respect to the perspective they take on them. Following (Pullum & Scholz 2001), we
distinguish two perspectives:

1. Generate-Enumerative Syntax(GES)

2. Model-Theoretic Syntax(MTS)

1Traditionally (Peirce 1898), valency only refers to the outgoing edges. Following e.g. (Duchier & Debusmann
2001), we generalize it to encompass also incoming edges.

18

1. Introduction

GES originates in Chomsky’s original approach (Chomsky 1957) andCategorial Grammar
(Ajdukiewicz 1935, Bar-Hillel 1953). In GES, a grammar of languageL is a device for re-
cursively enumerating sets of expressions, based on production rules or inference rules. An
expressionE is grammatical according to a grammarG if and only if E is derivable inG. That
is, GES takes asyntacticor proof-theoreticperspective on grammar by asking the question
how expressions can be derived from other expressions. A production rule such as (1.1) above
is interpreted as “from category S, we can derive the concatenation of the categories NP, V,
VP and Adv”.

McCawley (1968) had the insight to instead take asemanticor model-theoreticperspective,
and interpret the rule with respect to the models, i.e., the phrase structure trees that it licenses.
From this perspective, (1.1) is the description of a local tree rooted in S, having the daughters
NP, V, VP and Adv, in this order. Using a term coined by Rogers (1996), we call this perspec-
tive Model-Theoretic Syntax(MTS). In MTS, a grammar of languageL is a logical description
of the well-formed models ofL, and an expressionE is grammatical according to a grammar
G if and only if E is a model ofG.

Of the grammar formalisms mentioned above, the pure GES perspective is only taken by
TAG, CCG, and the dependency-based FGD and MTT. The other frameworks (GB, LFG,
GPSG and HPSG) can be regarded as hybrids: they all have a generative backbone based on
PSG which generates a large set of structures, from which theill-formed structures are then
filtered out by constraints.

Compared to GES, MTS is clearly more declarative: it fully abstracts away from any un-
derlying mechanisms, and can thus offer a clarifying perspective. This allows for better com-
parisons between grammar formalisms. Combined with a syntax-semantics interface, MTS
also has the potential for reversibility, i.e, the same MTS grammar can be used for parsing and
generation. These advantages have yielded a considerable body of work devoted to the refor-
mulation of GES and hybrid GES/MTS frameworks into pure MTS frameworks (Blackburn
& Gardent 1995, Rogers 1996, Rogers 1998).

1.1.3. Parallel Grammar Architecture

Traditionally, grammar formalisms have not only adopted the perspective of GES, but also,
consequently, asyntacto-centric architecture: only the well-formedness conditions of syntax
are independently specified, and all other linguistic structures such as semantics are derived
from it via functional, directed interfaces. We depict thisarchitecture in Figure 1.6, where the
slanted arrow entering theSyntax bubble represents the well-formedness conditions of syntax,
and the curved directed arrows fromSyntax to Phonology and toSemantics represent the
corresponding functional interfaces. Typical instances of this architecture are GB, TAG and
CCG, and also FGD and MTT.

With the advent of the perspective of MTS, and inspired byAutosegmental Phonology
(Goldsmith 1979, Goldsmith 1990), the syntacto-centric architecture has recently been chal-
lenged by Sadock’s (1991)Autolexical Syntax, Valin & LaPolla’s (1997)Role and Reference
Grammar(RRG) and Jackendoff’s (2002) approach, all of which propose aparallel gram-
mar architecture. Here, all linguistic structures, not only syntax, are promoted to the status
of autonomous modules, which are determined independentlyby their own well-formedness

19

1. Introduction

Semantics

Syntax

Phonology

interface

interface

sy
nt

ac
tic

 w
ell

−f
or

m
ed

ne
ss

Figure 1.6.: Syntacto-centric grammar architecture

conditions. The modules co-constrain each other through relational, bi-directional, instead of
functional, directed interfaces. Figure 1.7 depicts this architecture. Here, the three slanted
arrows entering thePhonology, Syntax and Semantics bubbles represent the independent
well-formedness conditions of these modules, and the curved bi-directional arrows between
them the relational interfaces.

Semantics

Syntax

Phonology

interface

interface

interface

ph
on

olo
gic

al
well

−f
or

m
ed

ne
ss

sy
nt

ac
tic

 w
ell

−f
or

m
ed

ne
ss

se
m

an
tic

 w
ell

−f
or

m
ed

ne
ss

Figure 1.7.: Parallel grammar architecture

The parallel grammar architecture is clearly more modular than the syntacto-centric one:
the linguistic modules can be developed separately, and be reused more easily. For instance,
the same semantic module could be reused for a number of languages which differ only in their
syntax. In addition, the parallel grammar architecture gives rise to what we callemergence:
many complex phenomena simplyemergefrom the interaction of the individually simple mod-
ules, without further stipulation. This is because the burden of analysis is not carried by syntax
alone, but is instead shared with the other linguistic modules.

However, the parallel grammar architecture has not yet beenput into practice, except for
a tiny fragment described in (Higgins 1998). As Jackendoff (2002) notes, the parallel gram-
mar architecture presupposes a model-theoretic approach and could thus in principle be im-
plemented in LFG and HPSG. In their practical realizations,however, both LFG and HPSG
are applied in syntacto-centrically: the semantics, e.g.Glue Semantics(Dalrymple, Lamp-

20

1. Introduction

ing, Pereira & Saraswat 1995) in LFG andMinimal Recursion Semantics(MRS) (Copestake,
Flickinger, Pollard & Sag 2004) in HPSG, are still derived from syntax, and not granted the
status of independent modules.

1.1.4. Constraint Parsing

In computational linguistics, parsing is usually done using context-freechart parsing(Earley
1970, Kay 1980) or extensions thereof, e.g. for TAG (Sarkar 2000). Chart parsing is an ap-
plication of dynamic programming and uses a data structure called chart to memorize already
parsed subtrees. This removes the need for backtracking andprevents combinatorial explo-
sion.

An alternative approach isconstraint parsing(Maruyama 1990, Duchier 1999), where
parsing is viewed as finding the solutions of aConstraint Satisfaction Problem(CSP) us-
ing Constraint Programming(CP) (Jaffar & Lassez 1988, Jaffar & Maher 1994, Hentenryck
& Saraswat 1996, Schulte 2002, Apt 2003). Constraint programming is the study of com-
putational systems based on constraints, where constraints are precisely specifiable relations
among several unknowns calledconstraint variables. Work in this area can be traced back to
research in artificial intelligence and computer graphics in the 1960s and 1970s (Sutherland
1963, Montanari 1970, Waltz 1975); Wallace (1996) gives an overview of the practical appli-
cations of constraint programming, e.g. in artificial intelligence (reasoning, abduction, plan-
ning, scheduling, resource allocation and configuration),in the context of databases, user
interfaces, operations research, robotics and control theory. In CP, the search for solutions is
determined by two processes:propagationanddistribution. Propagation is the application of
deterministic inference rules to narrow down the search space, and distribution corresponds
to non-deterministic choice. Both processes are interleaved: distribution ensues whenever
the information accumulated by propagation is not sufficient for further disambiguation, and
propagation ensues again after each distribution step. This paradigm is calledpropagate and
distribute, and contrasts with the naivegenerate and testparadigm, where every candidate
solution must be generated before it can be tested, rapidly leading into a combinatorial explo-
sion.

As ambiguity is prevalent in parsing, parsers based on CP cangreatly benefit from con-
straint propagation in order to narrow down the search space. Maruyama (1990) was the first
to propose a treatment of dependency grammar using CP, and described parsing as a process
of incremental disambiguation. Harper, Hockema & White (1999) continued this line of re-
search by proposing several algorithmic improvements, andMenzel (1998), Heinecke, Kunze,
Menzel & Schröder (1998) and Menzel & Schröder (1998) proposed the use of soft, graded
constraints for robustness. Duchier (1999) developed an account of dependency parsing us-
ing concurrent constraint programming (Saraswat 1993) inMozart/Oz(Smolka 1995, Mozart
Consortium 2006), where computation is viewed as arising from the activities of concurrently
operating agents that communicate via a shared set of constraint variables. Duchier’s approach
made use of the unique combination of finite set constraints and encapsulated speculative com-
putations in the form ofdeep guards(Schulte 2002) only found in Mozart/Oz.

Constraint parsing has a number of advantages. Firstly, it is not tied to word order and con-
tinuity of constituents: it is indeed perfectly possible todo constraint parsing without taking

21

1. Introduction

word order into account at all. This makes it ideal for the implementation of parsers for de-
pendency grammar. Secondly, constraint parsing is perfectly suited for the implementation of
grammar formalisms based on MTS and the parallel grammar architecture, as they guarantee
both the reversibility of MTS approaches, and concurrency,i.e., the ability to simultaneously
process multiple levels of representation. However, compared to chart parsing, constraint
parsing is less efficient.

1.2. Contributions and Structure of the Thesis

In this thesis, we make three main contributions. The first isa combination of the paradigms of
dependency grammar, MTS and the parallel architecture, resulting in the grammar formalism
of Extensible Dependency Grammar(XDG), which we formalize as a multigraph descrip-
tion language in higher order logic. The second is an implementation of a constraint parser
for XDG within an extensive grammar development environment, theXDG Development Kit
(XDK) (Debusmann & Duchier 2006). The third is an application of XDG to natural language,
modeling a fragment of English syntax, semantics and phonology. The presentation of these
contributions is preceded by a first overview of XDG and the XDK in chapter 2, and followed
by a summary and an outlook in chapter 13.

Part I develops the first formalization of XDG as a multigraphdescription language in higher
order logic (chapter 3). This brings us the position to recast the key concepts of dependency
grammar, including lexicalization, valency and order, as principles on multigraphs (chapter 4).
We then investigate the expressivity of XDG in chapter 5, andits computational complexity
in chapter 6.

Part II develops the XDG Development Kit (XDK) (chapter 7), which is centered around a
constraint parser based on the dependency parser introduced in (Duchier 1999, Duchier 2003),
(chapter 8). The XDK includes the statically typedXDK description language, which serves
mainly as ametagrammar(Duchier, Le Roux & Parmentier 2004, Crabbé & Duchier 2004)
for convenient grammar development, a comprehensive Graphical User Interface (GUI) (cf.
Figure 1.8), and extensive documentation (more than 200 pages). The XDK spans 35000 lines
of Mozart/Oz code, and comes with example handcrafted grammars for Arabic, Czech, Dutch,
English, French and German, which span an additional 24000 lines.

Part III applies XDG to model a fragment of the syntax, semantics and phonology of En-
glish. The grammar subdivides the linguistic modules of phonology, syntax and semantics:
within syntax (chapter 9), we make use of the declarative account of word order introduced
by Topological Dependency Grammar(TDG) (Duchier & Debusmann 2001): we distinguish
the two dimensions ofImmediate Dominance(ID) andLinear Precedence(LP), where theID

dimension models grammatical functions, and theLP dimension word order. Within semantics
(chapter 10), we distinguish thePredicate-Argument structure(PA) to model predicate logical
functor-argument relationships, theSCope structure(SC) to model quantifier scope, andInfor-
mation Structure(IS) to model the theme/rheme and focus/background relationships.2 Phonol-
ogy (chapter 11) contains only theProsodic Structure(PS).3 The syntax-semantics interface

2We follow (Jackendoff 2002) in associating information structure with semantics and not with pragmatics.
3This thesis does not include a thorough treatment of phonology. For this, we would need many more structures,

22

1. Introduction

Figure 1.8.: The XDK GUI (xdk)

(chapter 12) is relational, supports underspecification, and has an interface to theConstraint
Language for Lambda Structures(CLLS) (Egg, Koller & Niehren 2001). Thephonology-
semantics interface(also chapter 12) is a modular adaptation of Steedman’s (2000a) prosodic
account of information structure. We depict the complete architecture in Figure 1.9.

Phonology

Syntax

Immediate Dominance

Semantics

Linear Precedence

Information Structure

Scope StructurePredicate−Argument
Structure

Prosodic Structure

Figure 1.9.: The XDG grammar architecture in this thesis

cf. the tiers in Autosegmental Phonology (Goldsmith 1979, Goldsmith 1990). We include the prosodic di-
mension for two reasons: 1) to support the realization of Steedman’s (2000a) prosodic account of information
structure, and 2) to be able to more clearly illustrate the benefits of the parallel grammar architecture.

23

1. Introduction

1.3. Publications

This section lists the publications resulting from the research for this thesis. The first papers
are centered around the XDG grammar formalism and its formalization:

• Ralph Debusmann (2003),Dependency Grammar as Graph Description, Workshop:
Prospects and Advances in the Syntax-Semantics Interface,Nancy/FR

• Ralph Debusmann, Denys Duchier, Marco Kuhlmann and StefanThater (2004),TAG
Parsing as Model Enumeration, 7th International Workshop on Tree Adjoining Gram-
mar and Related Formalisms, TAG+7, Vancouver/CN

• Ralph Debusmann, Denys Duchier and Geert-Jan Kruijff (2004), Extensible Depen-
dency Grammar: A New Methodology, The 20th International Conference on Com-
putational Linguistics, COLING 2004, Workshop: Recent Advances in Dependency
Grammar, Geneva/CH

• Ralph Debusmann, Denys Duchier and Marco Kuhlmann (2004),Multi-dimensional
Graph Configuration for Natural Language Processing, International Workshop on
Constraint Solving and Language Processing, Roskilde/DK

• Ralph Debusmann, Denys Duchier and Andreas Rossberg (2005), Modular Grammar
Design with Typed Parametric Principles, The 10th Conference on Formal Grammar
and The 9th Meeting on Mathematics of Language, FG-MOL 2005,Edinburgh/UK

• Ralph Debusmann and Gert Smolka (2006),Multi-dimensional Dependency Grammar
as Multigraph Description, The 19th International FLAIRS Conference, FLAIRS 2006,
Melbourne Beach/US

The XDG Development Kit is published in:

• Ralph Debusmann (2003),A Parser System for Extensible Dependency Grammar,
Workshop: Prospects and Advances in the Syntax-Semantics Interface, Nancy/FR

• Ralph Debusmann, Denys Duchier and Joachim Niehren (2004), The XDG Grammar
Development Kit, Second International Mozart/Oz Conference, MOZ 2004, Charleroi/
BE

The following papers describe the modeling of natural language, including the interfaces
from syntax to semantics and from phonology to semantics:

• Christian Korthals and Ralph Debusmann (2002),Linking syntactic and semantic argu-
ments in a dependency-based formalism, The 19th International Conference on Compu-
tational Linguistics, COLING 2002, Taipei/TW

• Alexander Koller, Ralph Debusmann, Malte Gabsdil and Kristina Striegnitz (2004),Put
my galakmid coin into the dispenser and kick it: Computational Linguistics and Theo-
rem Proving in a Computer Game, Journal of Logic, Language And Information

24

1. Introduction

• Ralph Debusmann, Denys Duchier, Alexander Koller, Marco Kuhlmann, Gert Smolka
and Stefan Thater (2004),A Relational Syntax-Semantics Interface Based on Depen-
dency Grammar, The 20th International Conference on Computational Linguistics,
COLING 2004, Geneva/CH

• Ralph Debusmann (2004),Multiword expressions as dependency subgraphs, 42nd An-
nual Meeting of the Association for Computational Linguistics, ACL 2004, Workshop:
Multiword Expressions: Integrating Processing, Barcelona/ES

• Ralph Debusmann, Oana Postolache and Maarika Traat 2005,A Modular Account of In-
formation Structure in Extensible Dependency Grammar, 6th International Conference
on Intelligent Text Processing and Computational Linguistics, CICLING 2005, Mexico
City/MX

25

2. XDG in a Nutshell

This chapter gives a walkthrough of the main concepts of Extensible Dependency Grammar
XDG: we introduce the models of XDG, explain how to write grammars and how to implement
them using the XDG Development Kit (XDK). Then, we compare XDG with a number of
existing grammar formalisms.

2.1. XDG Models

We first introduce the specific form of dependency graphs usedin XDG. Then, we define the
models of XDG, which are tuples of dependency graphs sharingthe same set of nodes called
multigraphs.

2.1.1. Dependency Graphs

Dependency graphs in XDG (cf. the example in Figure 2.1) are aspecific form of dependency
graphs having the following properties:

1. Each node (round circle) is associated with an index (1, 2,3 etc.) indicating its position.
The connection is made explicit by the dotted vertical linescalled projection edges.

2. Each node is associated with a word (Mary, wants, to etc.), which we write below its
index.1

3. Each node is associated withattributesarranged in attribute-value-matrices which we
call records. Attributes incorporate lexical information (in thelex subrecord) and non-
lexical information (outside thelex subrecord). We draw the attributes of the nodes
below their associated words. In Figure 2.1, we have drawn the attributes schematically
because of lack of space, and have highlighted only those of nodes 1 and 2 by magnifi-
cation. The attributes include thelexical attributes inandoutdescribing the in valencies
and out valencies of the node (cf. section 1.1.1). For example, the in valency of node 2 is
{root?}, where thecardinality? stands for “at most one”, i.e., there must be at most one
incoming edge labeledroot, and no other incoming edges are licensed. The out valency
of node 2 is{subj!,vinf!,adv∗}, where the cardinality ! stands for “precisely one” and
the ∗ for “arbitrary many”. order is a set of pairs describing a strict partial order on
the dependents and the head (signified by the specialanchor label↑) with respect to its

1In this and the subsequent analyses of natural language sentences, we assume that end-of-sentence markers
such as the full stop (node 7) form the root of the dependency graph to ease the modeling of non-syntactic
linguistic aspects, e.g. predicate-argument structure and information structure.

26

2. XDG in a Nutshell

dependents. For example, for node 2, the subject of the head must precede it and also its
infinitival complement.agrsdescribes a set of possibleagreement tuplesconsisting of
person and number, andagreethe set of edge labels of dependents with which the node
must agree. In the example, the finite verbwantscan only have third person singular
agreement (agrs= {(3,sg)}), and must agree with its subjectMary (agree= {subj}).
agr is a non-lexical attributerepresenting the agreement tuple assigned to the node,
picked out from theagrsset.

4. The nodes are connected to each other by labeled and directed edges. In the example,
there is an edge from node 7 to node 2 labeledroot to express thatwants, the finite verb,
is the root of the analysis. There are also edges from node 2 tonode 1 (labeledsubj),
from 2 to 4 (labeledvinf), and from 2 to 6 (labeledadv), which express thatMary is the
subject,eat the infinitival complement, andtodaythe adverbial modifier ofwants. The
edges from node 4 to nodes 3 and 5 labeledpart andobj express thatto is a particle of
eatandspaghettiits object.

1

Mary

lex =

in = {subj?,obj?}
out = {}

order = {}

agrs= {(3,sg)}
agree= {}

agr = (3,sg)

2

wants

lex =

in = {root?}
out = {subj!,vinf !,adv∗}

order = {(subj,↑),(subj,vinf),(subj,adv),
(↑,vinf),(↑,adv),(vinf,adv)}

agrs= {(3,sg)}
agree= {subj}

agr = (3,sg)

3

to

lex =

in = {part?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

4

eat

lex =

in = {vinf?}
out = {part!,obj!,adv∗}

order = {(part,Anc),(part,obj),(part,adv),
(↑,obj),(↑,adv),(obj,adv)}

agrs= Agr
agree= {}

agr = (1,sg)

5

spaghetti

lex =

in = {subj?,obj?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

6

today

lex =

in = {adv?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

7

.

lex =

in = {}
out = {root!}

order = {(root,↑)}

agrs= Agr
agree= {}

agr = (1,sg)

root

subj vinf

part obj

adv

lex=

in = {subj?,obj?}
out= {}

order= {}
agrs= {(3,sg)}

agree= {}

agr = (3,sg)

lex=

in = {root?}
out= {subj!,vinf!,adv∗}

order= {(subj,↑),(subj,vinf),(subj,adv),
(↑,vinf),(↑,adv),(vinf,adv)}

agrs= {(3,sg)}
agree= {subj}

agr = (3,sg)

Figure 2.1.: Dependency Graph (syntactic analysis)

As we have already mentioned in section 1.1.1, dependency graphs are not restricted to
describing syntactic structures. In fact, in XDG, they do not even have to be trees but can be
any kind of directed graph. Figure 2.2, for example, shows aDirected Acyclic Graph(DAG)
describing the predicate-argument structure of the example sentence, where the edge labels are
thematic roles.2 Here, the additional root node corresponding to the end-of-sentence marker
helps us to distinguish nodes which correspond to semantic predicates, which we take to be
the “roots” of the analysis, and nodes without semantic content, which take to be “deleted”.
Roots are connected to the end-of-sentence marker by edges labeledroot, and deleted nodes

2This structure does not provide us with all the information required for a complete semantic representation, but
only with the relations between predicates (e.g. verbs likeeat) and their arguments (e.g. nouns likeMary and
spaghetti). What is missing to build e.g. a representation of the semantics in predicate logic is the modeling
of quantification, which we omit in this chapter for simplicity. We will pick up this issue again in chapter 10,
where we also provide a means of modeling quantification using an additional dependency graph.

27

2. XDG in a Nutshell

by edges labeleddel. In the example,wants, eat and todayare semantic predicates.wants
is additionally the theme (th) of the adverbtoday, and has in turn the agent (ag) Mary and
the themeeat. eathasMary as its agent, too, and the patient (pat) spaghetti. The particleto
(node 3) has no semantic content and can thus be “deleted” from the semantic analysis. The
attributes of the nodes are the lexical attributesin andout, standing for the in and out valency
of the nodes (cf. section 1.1.1), respectively.

1

Mary

{

lex =

{

in = {ag∗,pat∗}
out = {}

} }

2

wants

{

lex =

{

in = {root!,th∗}
out = {ag!,th!}

} }

3

to

{

lex =

{

in = {del!}
out = {}

} }

4

eat

{

lex =

{

in = {root!,th∗}
out = {ag!,pat!}

} }

5

spaghetti

{

lex =

{

in = {ag∗,pat∗}
out = {}

} }

6

today

{

lex =

{

in = {root!}
out = {th!}

} }

7

.

{

lex =

{

in = {}
out = {root∗,del∗}

} }

root

root

rootdel

ag
th

ag pat

th

{

lex=

{

in = {ag∗,pat∗}
out= {}

} } {

lex=

{

in = {root!,th∗}
out= {ag!,th!}

} }

Figure 2.2.: Dependency Graph (semantic analysis)

XDG also supports dependency graphs without edges. The purpose of such graphs is to
carry attributes which do not fit properly on any of the other dependency graphs. These are
typically attributes which specify the interface between dimensions. For example, in Fig-
ure 2.3 the attributes describe the realization of semanticarguments like agent and theme by
grammatical functions like subject and infinitival complement (ag = {subj} andth = {vinf}).

1

Mary

{

lex =

{

arg = {}
mod= {}

} }

2

wants

lex =

arg =

{

ag = {subj}
th = {vinf}

}

mod= {}

3

to

{

lex =

{

arg = {}
mod= {}

} }

4

eat

lex =

arg =

{

ag = {subj}
pat = {obj}

}

mod= {}

5

spaghetti

{

lex =

{

arg = {}
mod= {}

} }

6

today

{

lex =

{

arg = {}
mod= {th}

} }

7

.

{

lex =

{

arg = {}
mod= {}

} }

{

lex=

{

arg= {}
mod= {}

} }

lex=

arg=

{

ag = {subj}
th = {vinf}

}

mod= {}

Figure 2.3.: Dependency Graph (syntax-semantics analysis)

2.1.2. Multigraphs

The models of XDG are tuples of dependency graphs. The component dependency graphs are
calleddimensions, which must all share the same set of nodes. Because of that, the tuples can
be regarded asmultigraphs, i.e., graphs with multiple edges between the nodes from graph
theory (Harary 1994). In fact, this is how we will call the models of XDG for the remainder
of the thesis.

We show an example multigraph in Figure 2.4. It consists of three dimensions which we
call SYN (syntax),SEM (semantics) andSYNSEM (syntax-semantics interface). For clarity, we

28

2. XDG in a Nutshell

draw the three dimensions as individual dependency graphs (cf. Figure 2.1, Figure 2.2 and
Figure 2.3), and indicate the node sharing by arranging shared nodes in the same columns.
The multigraph describes at the same time the syntactic and semantic analysis of the sentence,
and expresses e.g. thatMary (node 1), the subject ofwantson SYN, is the realization of the
agent of bothwantsandeat on SEM. The SYNSEM dimension carries the attributes needed
for the syntax-semantics interface, e.g. specifying how semantic arguments are realized by
grammatical functions.

SYN

1

Mary

lex =

in = {subj?,obj?}
out = {}

order = {}

agrs= {(3,sg)}
agree= {}

agr = (3,sg)

2

wants

lex =

in = {root?}
out = {subj!,vinf !,adv∗}

order = {(subj,↑),(subj,vinf),(subj,adv)
(↑,vinf),(↑,adv),(vinf,adv)}

agrs= {(3,sg)}
agree= {subj}

agr = (3,sg)

3

to

lex =

in = {part?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

4

eat

lex =

in = {vinf?}
out = {part!,obj!,adv∗}

order = {(part,Anc),(part,obj),(part,adv),
(↑,obj),(↑,adv),(obj,adv)}

agrs= Agr
agree= {}

agr = (1,sg)

5

spaghetti

lex =

in = {subj?,obj?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

6

today

lex =

in = {adv?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

7

.

lex =

in = {}
out = {root!}

order = {(root,↑)}

agrs= Agr
agree= {}

agr = (1,sg)

root

subj vinf

part obj

adv

SEM

1

Mary

{

lex =

{

in = {ag∗,pat∗}
out = {}

} }

2

wants

{

lex =

{

in = {root!,th∗}
out = {ag!,th!}

} }

3

to

{

lex =

{

in = {del!}
out = {}

} }

4

eat

{

lex =

{

in = {root!,th∗}
out = {ag!,pat!}

} }

5

spaghetti

{

lex =

{

in = {ag∗,pat∗}
out = {}

} }

6

today

{

lex =

{

in = {root!}
out = {th!}

} }

7

.

{

lex =

{

in = {}
out = {root∗,del∗}

} }

root

root

rootdel

ag
th

ag pat

th

SYNSEM

1

Mary

{

lex =

{

arg = {}
mod= {}

} }

2

wants

lex =

arg =

{

ag = {subj}
th = {vinf}

}

mod= {}

3

to

{

lex =

{

arg = {}
mod= {}

} }

4

eat

lex =

arg =

{

ag = {subj}
pat = {obj}

}

mod= {}

5

spaghetti

{

lex =

{

arg = {}
mod= {}

} }

6

today

{

lex =

{

arg = {}
mod= {th}

} }

7

.

{

lex =

{

arg = {}
mod= {}

} }

Figure 2.4.: Multigraph (simultaneous syntactic and semantic analysis)

For clarity, we will in the following abbreviate multigraphs adopting the following conven-
tions:

• we omit all dimensions without edges

• we omit the attributes of the nodes

• we “ghost” the node corresponding to the end-of-sentence marker (i.e., we draw it in
gray instead of black) and all deleted nodes (i.e., whose incoming edge labels include
del)

• we “ghost” all edges labeledroot or del

We display an example in Figure 2.5, which is a “ghosted” version of Figure 2.4.

29

2. XDG in a Nutshell

SYN

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

7

.

root

advsubj vinf

objpart

SEM

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

7

.

del
root

root

root

ag
th

ag pat

th

Figure 2.5.: Abbreviated Multigraph

2.2. XDG Grammars

The models of XDG, multigraphs, are described by grammars. An XDG grammar is defined
by:

1. defining the dimensions

2. defining the principles

3. defining the lexicon

2.2.1. Dimensions

Eachdimensionis associated with a unique name (e.g.SYN), a set of edge labels and a set of
attributes. The latter will in this thesis always be characterized by a record type.

2.2.2. Principles

The principles state the well-formedness conditions of the XDG models. Newprinciples
can be freely written, but usually, the grammar writer will only need to pick out a subset of
the predefined principles such as theTree principle(to state that the models of a dimension
must be trees) and theValency principle(to constrain the in and out valencies of the nodes).
The set of predefined principles is already sufficient to model an interesting fragment of the
syntax, semantics and even phonology of English, as we will demonstrate in part III. The
principles have also been successfully employed for modeling fragments of Arabic (Odeh
2004), Czech, Dutch (Debusmann & Duchier 2002), French, andGerman (Debusmann 2001,
Bader, Foeldesi, Pfeiffer & Steigner 2004).

30

2. XDG in a Nutshell

2.2.3. Lexicon

The lexiconis a set of records calledlexical entries. Each lexical entry is indexed by a word
called itsanchor, and simultaneously specifies the attributes of all dimensions and thereby
synchronizes them. For example, the lexical entry below hasthe anchorwantsand specifies
the in andout attributes of the dimensionsSYN andSEM:

word = wants

SYN =

{

in = {root?}
out = {subj!,vinf!,adv∗}

}

SEM =

{

in = {root!, th∗}
out = {ag!, th!}

}

(2.1)

2.2.4. Example Grammar

We present a first example grammar formulated over the three dimensionsSYN, SEM and
SYNSEM.

Dimensions. We begin the definition of the grammar with the definition of the SYN di-
mension. We defineSYN given a typeAgr = tuple({1,2,3},{sg,pl}) of agreement tuples
consisting of a person (1, 2 or 3) and a number (sg for “singular” andpl for “plural”).

• The edge labelsLSYN of SYN are:

{root, subj,part,obj,vinf,adv} (2.2)

whereroot stands for the root of the analysis,subj for subject,part for particle,obj for
object,vinf for infinitival complement, andadv for adverb.

• The attributes onSYN are defined by the following record type:

lex :

in : valency(LSYN)
out : valency(LSYN)

order : set(tuple(LSYN |{↑},LSYN |{↑}))
agrs : set(Agr)

agree: set(LSYN)

agr : Agr

(2.3)

where the attributes in thelex subrecord are calledlexical attributessince they will be
determined by the lexicon. The lexical attributesin andout are valencies specifying
the licensed incoming and outgoing edges, i.e., mappings from edge labels onSYN to
cardinalities (!, ? or∗). orderspecifies a strict partial order on the dependents and on the
anchor↑ with respect to its dependents.3 agrsspecifies the licensed agreement tuples
for the node, andagreethe set of dependents with which it must agree. The non-lexical
attributeagr stands for the one agreement tuple out of the licensed agreement tuples
which is picked out by the node in each analysis.

3Here, for two domainsT andT ′, we writeT |T ′ for the union ofT andT ′.

31

2. XDG in a Nutshell

On theSEM dimension, the set of edge labels and the attributes are:

• edge labels:
{root,del,ag,pat, th} (2.4)

whereroot, standing for the roots of the analysis, anddel for deleted nodes are used to
connect roots and deleted nodes to the additional root of theanalysis, andag, pat andth

are thematic roles.

• attributes:
{

lex :

{

in : valency(LSEM)
out : valency(LSEM)

} }

(2.5)

Finally, on theSYNSEM dimension, the set of edge labels is empty since its models are
graphs without edges. The attributes onSYNSEM are:

{

lex :

{

arg : vec(LSEM,set(LSYN))
mod : set(LSEM)

} }

(2.6)

arg is avectorused to mapSEM edge labels to sets ofSYN edge labels to constrain the real-
ization of the semantic arguments of verbs, such as agents, by grammatical functions such as
subjects.modis a set ofSEM edge labels to constrain the realization of the semantic arguments
of adverbs by their syntactic mothers.

Principles. Our grammar makes use of the following principles on theSYN dimension:

• Tree principle: the graph onSYN must be a tree.

• Projectivity principle: SYN must be projective.

• Valency principle: the nodes onSYN must satisfy their in and out valencies (lexical
attributesin andout).

• Order principle: the dependents of each node and the node itself must be ordered ac-
cording to the lexicalized strict partial order given by theorder attribute.

• Agr principle: each node must pick out one agreement tuple (agr) from the lexicalized
set of licensed agreement tuples (agrs).4

• Agreement principle: the agreement tupleagr of each node must agree with the agree-
ment tuple of all dependents in the lexicalized setagree.

On theSEM dimension, the grammar makes use of the following principles:

• DAG principle: the graph onSEM must be a DAG.

• Valency principle: the nodes onSEM must satisfy their lexicalized in and out valencies
(lexical attributesin andout).

4For nodes associated with words not having agreement linguistically, e.g. adverbs, we license all possible
agreement tuples.

32

2. XDG in a Nutshell

On theSYNSEM dimension, we make use of the following principles:

• Edgeless principle: the graph onSYNSEM must be edgeless.

• LinkingEnd principle: theSYN andSEM dimensions must satisfy the lexicalarg speci-
fications for realization of the semantic arguments of verbs.

• LinkingMother principle: the SYN and SEM dimensions must satisfy the lexicalmod
specifications for realization of the semantic arguments ofadverbs. This principle en-
sures e.g. that only verbs that are modified by adverbs onSYN (e.g.wantsby todayin
Figure 2.4) can be their arguments onSEM.

Finally, theLexicalization principleensures that each node is assigned a suitable lexical
entry from the lexicon, i.e., one associated with the same word as the node.

Lexicon. The lexicon at the same time specifies the lexical attributesof SYN, SEM and
SYNSEM. For example, here is the lexical entry forwants:

word = wants

SYN =

in = {root?}
out = {subj!,vinf!,adv∗}

order = {(subj,↑),(subj,vinf),(subj,adv),
(↑,vinf),(↑,adv),(vinf,adv)}

agrs = {(3,sg)}
agree= {subj}

SEM =

{

in = {root!, th∗}
out = {ag!, th!}

}

SYNSEM =

arg =

{

ag = {subj}
th = {vinf}

}

mod= {}

(2.7)

2.3. Implementing XDG Grammars

In this thesis, we not only develop XDG theoretically, but also implement a parser and an
extensive grammar development kit: the XDK. In the XDK, grammars are written in the
XDK description language, a metagrammarwith a number of concrete syntaxes (including
one based on XML). The metagrammar is statically typed, which makes it very easy to spot
errors.

2.3.1. Metagrammar

Using the XDK description language, XDG grammars can be written down just as described
above: by first defining the dimensions, then choosing the principles from the set of prede-
fined ones from theprinciple library, and then defining the lexicon. The set of principles is
extensible, and each of the existing ones can be freely replaced.

33

2. XDG in a Nutshell

Dimensions. As an example, we show how the types of edge labels (deflabeltype), lex-
ical attributes (defentrytype) and non-lexical attributes (defattrstype) are defined for the
SYN dimension of our example metagrammar:

deftype "syn.label" {root subj part obj vinf adv}
deftype "syn.label1" "syn.label" | {"^"}
deftype "syn.person" {"1" "2" "3"}
deftype "syn.number" {sg pl}
deftype "syn.agr" tuple("syn.person" "syn.number")

deflabeltype "syn.label"
defentrytype {in: valency("syn.label")

out: valency("syn.label")
order: set(tuple("syn.label1" "syn.label1"))
agrs: iset("syn.agr")
agree: set("syn.label")}

defattrstype {agr: "syn.agr"}

(2.8)

Principles. The principles of theSEM dimension are instantiated as follows:5

useprinciple "principle.graph" { dims {D: sem} }
useprinciple "principle.dag" { dims {D: sem} }
useprinciple "principle.valency" { dims {D: sem} }

(2.9)

Lexicon. The lexical entries can be written down as before, with the slight difference that
the word attribute is encapsulated in an additional dimension called lex. For example, the
lexical entry (2.7) is then written as:

defentry {
dim lex {word: "wants"}
dim syn {in: {root?}

out: {subj! vinf! adv*}
order: {[subj "^"] [subj vinf] [subj adv]

["^" vinf] ["^" adv] [vinf adv]}
agrs: {["3" sg]}
agree: {subj}}

dim sem {in: {root! th*}
out: {ag! th!}}

dim synsem {arg: {ag: {subj}
th: {vinf}}

mod: {}}}

(2.10)

However, simply spelling out the lexical entries quickly becomes infeasible. Therefore,
the metagrammar provides means for factorization and combination of partial lexical entries
calledlexical classes, and for the easy statement of alternations. Lexical classes are basically
lexical types with complete inheritance. Here are some example lexical classes:

5In addition to the DAG (”principle.dag”) and Valency (”principle.valency”) principles of our exam-
ple grammar, in the XDK we also need to instantiate a principle to establish that the models are graphs
(”principle.graph”).

34

2. XDG in a Nutshell

• finite verbs:
defclass "fin" Word Agrs {
dim lex {word: Word}
dim syn {in: {root?}

out: {subj!}
order: <subj "^" obj vinf adv>
agrs: Agrs
agree: {subj}}}

(2.11)

fin has the two argumentsWord andAgrs for the word of the lexical entry and its set of
licensed agreement tuples. OnSYN, it licenses at most one incoming edge labeledroot,
and requires precisely one outgoing edge labeledsubj, reflecting that finite verbs always
require a subject. The subject must be ordered to the left of the head, and the head must
be ordered to the left of the infinitival complement and that to the left of the adverb.6

The word must agree with its subject.

• verbs in general:
defclass "verb" {
dim syn {out: {adv*}}
dim sem {in: {root! th*}}}

(2.12)

On SYN, verb licenses arbitrary many outgoing edges labeledadv to reflect that verbs
can always be modified by adverbs. OnSEM, it requires precisely one incoming edge
labeledroot and licenses arbitrary many labeledth, i.e., it can be the theme of arbitrary
many adverbs.

• intransitive verbs:
defclass "intrans" {
dim sem {out: {ag!}}
dim synsem {arg: {ag: {subj}}}}

(2.13)

On SYN, intrans requires one outgoing edge labeledag for its agent. This agent must
be realized by a subject (SYNSEM).

• transitive verbs:
defclass "trans" {
"intrans"
dim syn {out: {obj!}}
dim sem {out: {pat!}}
dim synsem {arg: {pat: {obj}}}}

(2.14)

Transitive verbs inherit the specifications of the classintrans. In addition, they syntac-
tically require precisely one object and semantically precisely one patient. The patient
is realized by the object.

• verbs requiring an infinitival complement:

defclass "vinfc" {
dim syn {out: {vinf!}}
dim sem {out: {th!}}
dim synsem {arg: {th: {vinf}}}}

(2.15)

Such verbs syntactically require an infinitival complementand semantically a theme.
The theme is realized by the infinitival complement.

6The metagrammar allows to abbreviate the specification of strict partial orders with a notation using angle
brackets.

35

2. XDG in a Nutshell

We can then use the classes to generate the lexical entries e.g. for both the intransitive and
the transitive alternations ofwantsas follows:

defentry {
"verb"
("intrans" | "trans")
"vinfc"
"fin" {Word: "wants"

Agrs: {["3" sg]}}}

(2.16)

where the bar between”intrans” and”trans” represents a disjunction.

2.3.2. Parser

The constraint parser of the XDK is based on constraint programming in Mozart/Oz, and
implements the complete XDG grammar formalism as presentedin this thesis, including all
principles. All dimensions are processed concurrently. Sentences can be parsed either using
the GUI or the commandline version of the solver. If the GUI (Figure 2.6) is used, theOz
Explorer (Schulte 1997) displays the solutions of a parse as in Figure2.7. The solutions can
be visualized using several output functors e.g. for LATEX-output (as in e.g. Figure 2.1) or
output in a window, as shown in Figure 2.8.

Figure 2.6.: GUI of the XDK

2.4. Comparison with Other Grammar Formalisms

In this section, we compare the main notions of XDG, i.e., dimensions, principles and the
lexicon, to their embodiments in the the popular grammar formalisms of CCG, TAG, GB,
HPSG, LFG and MTT, before we compare their grammar theories and implementations.

36

2. XDG in a Nutshell

Figure 2.7.: Oz Explorer displaying a parse solution

Figure 2.8.: Output functor

2.4.1. Dimensions

By dimensions, we mean linguistic aspects such as syntax, semantics and phonology. Dimen-
sions can also be defined in a finer-grained fashion, e.g. by distinguishing within syntax the
aspects of grammatical functions and word order, or, withinsemantics, predicate-argument
structure and quantifier scope. In XDG, each dimension is modeled by a different dependency
graph. As XDG adopts theparallel grammar architecture(see Figure 1.7), all dimensions are
autonomous modules, which can be processed concurrently.

Combinatory Categorial Grammar. In CCG, an analysis is a type-logical proof carrying
out a syntactic analysis. Prosodic structure is encoded in the syntactic categories, and se-
mantics and information structure are derived from syntax.That is, CCG distinguishes the
dimensions of prosody, semantics and information structure, but contrary to XDG, they are no
autonomous modules, but encoded in or derived from syntax. CCG has thus a prototypically
syntacto-centric architecture (see Figure 1.6). The same holds for the generalization of struc-
tures other than syntax proposed by Kruijff & Baldridge (2004), because crucially, they are
still derived in lockstep with syntax.

37

2. XDG in a Nutshell

Tree Adjoining Grammar. In TAG, an analysis corresponds to a series of substitutions
and adjunctions of lexicalized phrase structure trees called elementary trees. The result of an
analysis are two structures: thederived treeitself and the “history” of the derivation called
derivation tree. The derivation tree, which is unordered, more closely corresponds with the
dimension of syntactic relations, and the derived tree, which is ordered, with the dimension of
word order. Thus, many proposals for a TAG syntax-semanticsinterface (Candito & Kahane
1998), (Joshi & Shanker 1999), (Kallmeyer & Joshi 2003) use the derivation tree as a starting
point, although there are other proposals that use the derived tree (Frank & van Genabith
2001), (Gardent & Kallmeyer 2003). In any case, the resulting architecture is syntacto-centric,
as dimensions other than syntactic dimensions, e.g. semantics, are not granted the status of
autonomous modules. A proposal for TAG more akin to the parallel grammar architecture is
Synchronous TAG(STAG) (Shieber & Schabes 1990), where sets of trees are synchronously
derived, e.g. one tree for syntax, and one for semantics.

Government and Binding. GB has the dimensions of D-Structure (formerly Deep Struc-
ture in (Chomsky 1965)), from which it derives the S-Structure (Surface Structure) via ap-
plication of the generic rule move-α. From the S-Structure, GB derives the dimensions of
phonology (Phonetic Form) and semantics (Logical Form). Wedepict the architecture in Fig-
ure 2.9. The architecture is syntacto-centric, like that ofCCG and TAG.

Phonology

Phonetic Form

Semantics

Logical Form

Syntax

D−Structure S−Structure

Figure 2.9.: The architecture of Government and Binding

Head-driven Phrase Structure Grammar. In HPSG, linguistic analyses are described in
terms of feature structures using a feature logic defined in (Carpenter 1992). In theory, HPSG
is able to formulate any kind of architecture, i.e., also theparallel grammar architecture. In
practice, however, the HPSG grammar theory founded in (Pollard & Sag 1987, Pollard &
Sag 1994) is syntacto-centric just like CCG, TAG and GB: the dimensions of syntax and
semantics are both constructed in lockstep according to thefeature structure-encoded syntax
tree.

38

2. XDG in a Nutshell

Lexical Functional Grammar. LFG defines a clean separation between the syntactic di-
mensions of constituent structure (c-structure) and functional structure (f-structure): the c-
structure is a phrase structure tree, whereas the f-structure is a feature structure capturing
syntactic relations, which can also be viewed as a dependency graph. Both c- and f-structure
have their own well-formedness conditions. The so-calledφ mapping provides a bi-directional
interface between the two. The interfaces from syntax to phonology and to semantics are not
part of the standard LFG theory, but there are proposals for abi-directional syntax-phonology
interface (Butt & King 1998), and for a bi-directional syntax-semantics interface (Frank &
Erk 2004). The resulting architecture, depicted in Figure 2.10, is parallel. However, the
standard syntax-semantics interface of LFG toGlue Semantics(Dalrymple et al. 1995) is not
bi-directional but functional (from syntax to semantics),rendering the architecture syntacto-
centric again.

Semantics

Phonology

Syntax

Constituent Structure

Functional Structure

Figure 2.10.: The architecture of Lexical Functional Grammar

Meaning-Text-Theory. MTT (Mel’ čuk 1988) makes use of seven dimensions which are
calledstrata:

1. Semantic Representation (SemR) (meaning)

2. Deep Syntactic Representation (DSyntR)

3. Surface Syntactic Representation (SSyntR)

4. Deep Morphological Representation (DMorphR)

5. Surface Morphological Representation (SMorphR)

6. Deep Phonological Representation (DPhonR)

7. Surface Phonological Representation (SPhonR) (text)

where the endpoints of this architecture are meaning (SemR)and text (SPhonR). Each stratum
has its own well-formedness conditions called well-formedness rules in (Mel’̌cuk & Polguère
1987) and later criteria in (Iordanskaja & Mel’čuk 2005). The relation between meaning and

39

2. XDG in a Nutshell

text is mediated via bi-directional interfaces. Contrary to the parallel grammar architecture of
XDG, however, interfaces exist only for adjacent strata, but not for non-adjacent ones such as
SMorphR and SemR. This leads to the architecture outlined inFigure 2.11.

SPhonR DPhonR

DSyntR

DMorphR

SSyntR

SMorphR

SemR

Phonology

Syntax

Semantics

Figure 2.11.: The architecture of Meaning Text Theory

2.4.2. Principles

What are the concepts related to the XDG principles in the other grammar formalisms?

Combinatory Categorial Grammar. The principles in XDG roughly correspond to the
combinatory rules of CCG: functional application, functional composition and type raising,
which exist in various flavors (forward, backward, crossing), where e.g. functional application
can be likened to the notion of valency in XDG. CCG constrainsthe number of these rules by
meta rules called principles: the principle of adjacency, the principle of consistency, and the
principle of inheritance, which have no counterpart in XDG.The main difference of the CCG
rules to the XDG principles is that they are formulated from aproof-theoretic perspective,
whereas XDG principles take a model-theoretic stance.

Tree Adjoining Grammar. Compared to TAG, the principles of XDG correspond to the
two simple modes of tree composition, i.e., substitution and adjunction. The two can be
likened to valency in XDG, where substitution is used for complementation, and adjunction
for modification. TAG has no other principles or rules; everything else (e.g. order) is encoded
in the elementary trees in the lexicon. However, this minimal approach needs to be extended
in practice (XTAG Research Group 2001), leading e.g. to the feature extensions ofFeature-
Based Tree Adjoining Grammar(FB-TAG).

40

2. XDG in a Nutshell

Government and Binding. The principles of GB comprise e.g. the move-α rule schema,
theθ -criterion, the projection principle and the case filter. GBprinciples are similar to XDG
principles, but there are two main differences: GB principles are not formulated in a logic but
in natural language, and they are mutually dependent and thus less modular than in XDG: for
instance, to account fully for the notion of valency, GB relies on interactions of theθ -criterion
with the projection principle and the case filter.

Head-driven Phrase Structure Grammar. HPSG proposes two kinds of well-formedness
conditions: HPSG principles such as the Head Feature Principle and the Subcategorization
Principle, and HPSG rules such as the Head Complement Rule and the Head Modifier Rule.
HPSG principles are more general and language-independent, whereas HPSG rules are gen-
eralizations of context-free rules and language-dependent. XDG principles are more similar
to HPSG principles than HPSG rules. For example, the Subcategorization Principle (replaced
by the Valence Principle in later versions of HPSG) is analogous to the Valency principle of
XDG.

Lexical Functional Grammar. The principles of LFG are very general: c-structure is con-
strained by X-bar theory (Jackendoff 1977), and f-structure by functional uniqueness, func-
tional completeness and functional coherence. Functionalcompleteness and coherence form
the counterpart of the Valency principle in XDG. Other XDG principles, e.g. agreement, are
not formulated as LFG principles, but as path equations in the lexicon.

Meaning-Text-Theory. In MTT, the counterparts of the XDG principles are called well-
formedness rules of the individual strata, which were latercalled criteria.

2.4.3. Lexicon

We now compare the lexicon of XDG with that of the other grammar formalisms.

Combinatory Categorial Grammar. In CCG, the lexicon pairs each word with a pair con-
sisting of a syntactic category and a semantic representation (aλ -term). The syntactic cate-
gory encodes simultaneously the syntactic valency requirements and word order, whereas the
semantic representation encodes the meaning of the word.

Tree Adjoining Grammar. In TAG, the lexicon consists of elementary trees. In the spe-
cialization of TAG most often used for modeling natural language,Lexicalized Tree Adjoining
Grammar(LTAG), each of these trees must have at least one anchor, i.e., it must be associated
with a word. All alternations, e.g. of verbs, must be compiled out into different elementary
trees, which leads to very large lexicons. To reduce their size, many extensions such asmeta-
grammar(Candito 1996), andeXtensible MetaGrammar(XMG) (Crabbé & Duchier 2004)
(Crabbé 2005) have been proposed.7

7XMG, was actually the major source of inspiration for the metagrammar of the XDK.

41

2. XDG in a Nutshell

Government and Binding. In the GB lexicon, words are basically paired with a valency
frame specifying the semantic valency requirements in terms of θ -roles. That is, the lexi-
con of GB includes less information than that of XDG, lackingspecifications of agreement,
government, and also linking.

Head-driven Phrase Structure Grammar. The HPSG lexicon pairs words with feature
structures. These structures are more complex than XDG lexical entries: they are often deeply
nested, make use of structure sharing, and allow even arbitrary relations (e.g. append) to be ex-
pressed. HPSG lexical entries can be easily extended with new features, and lexical economy
is ensured by the HPSG type hierarchy and lexical rules.

Lexical Functional Grammar. In the LFG lexicon, words are paired with valency frames
and f-structure path equations. The latter have no direct counterpart in XDG. In the imple-
mentations of LFG, the mechanisms of template and lexical rules ensure lexical economy.

Meaning-Text-Theory. The MTT lexicon is called Explanatory Combinatorial Dictionary
(ECD). In ECD, lexical entries are split into three zones:

1. semantic zone

2. syntactic zone

3. lexical combinatorics zone

In the semantic zone, the semantics of the lexical entry are described using a semantic network.
The syntactic zone defines syntactic valency and the government pattern, which establishes a
linking between the syntactic and semantic arguments called actants. The lexical combina-
torics zone describes relations between lexemes, e.g.multiword expressionsmultiword expres-
sion. The MTT lexicon is by far the most complex of the presented grammar formalisms, and
is also far more complex than the XDG lexicon. Interestingly, similar to XDG, the specifi-
cations for syntax and semantics are largely independent, and the lexical entries also contain
linking specifications. MTT is the only one of the presented grammar formalisms to han-
dle multiword expressions. For XDG, ideas to handle multiword expressions using a notion
calledgroupsare presented in (Debusmann 2004b) and extended in (Pelizzoni & das Gracas
Volpe Nunes 2005).

2.4.4. Grammar Theory

So far, the emphasis of our research was on the modeling of complex, hand selected phenom-
ena. Thus, so far, there are no large-scale grammars comparable to those for the established
grammar formalisms, e.g.XTAG(XTAG Research Group 2001) for TAG, or theEnglish Re-
source Grammar(ERG) (Copestake & Flickinger 2000) for HPSG, available for XDG.

However, with respect to syntax, we have developed grammarsfor German (Debusmann
2001, Bader et al. 2004), Dutch (Debusmann & Duchier 2002), and English (this thesis),

42

2. XDG in a Nutshell

covering e.g. the phenomena of topicalization, pied piping, scrambling and cross-serial de-
pendencies. With respect to semantics and the syntax-semantics interface, we have devel-
oped accounts of control and raising (e.g. Debusmann, Duchier & Kruijff 2004), scope am-
biguities and underspecification (Debusmann, Duchier, Koller, Kuhlmann, Smolka & Thater
2004), and a modular version of Steedman’s (2000a) prosodic account of information structure
(Debusmann, Postolache & Traat 2005). These hand selected phenomena serve as a proof-of-
concept of XDG grammar theory, and combined with the modulardesign of XDG, they are
a strong indication for its scalability: that given enough resources, large-scale grammars can
indeed be constructed.

2.4.5. Implementation

From the beginning, XDG was geared towards an extensible concurrent implementation using
constraint programming, which was in fact developed in parallel with the grammar formalism.
The resulting constraint parser is reasonably fast on the existing handwritten grammars, and
the extensive grammar development kit, the XDK, is comfortable and instructive, e.g. for ex-
perimenting with grammar formalisms based on dependency grammar and for teaching. As a
result, the XDK has already been successfully employed for teaching, e.g. in a course at ESS-
LLI 2004 (Debusmann & Duchier 2004), and a Fortgeschrittenenpraktikum at the Universität
des Saarlandes, also in 2004 (Debusmann 2004a).

As there are no large-scale grammars for XDG available yet, we could not prove that the
parser is scalable. Negative evidence comes from grammar induction studies (Korthals 2003,
Möhl 2004, Bojar 2004, Narendranath 2004), indicating thatthe current XDG parser is not
usable for large-scale parsing, which would not be a reason to wonder: the parser is almost
unoptimized, not yet profiled, and does not use global constraints, which are usually indis-
pensable for efficient constraint programming. In addition, the parser does not use any of the
statistical techniques used to boost the efficiency of the parsers for other grammar formalisms,
such as supertagging inOpenCCG(White 2004).

2.5. Summary

In this chapter, we have given a walkthrough of the main concepts of XDG. The models of
XDG are multi-dimensional dependency graphs called multigraphs. These models are de-
scribed by XDG grammars, which are defined in three steps: defining the dimensions, then
the principles, and then the lexicon. The implementation ofXDG, the XDK, provides a con-
straint parser and a metagrammar for convenient grammar development. The metagrammar
facilitates grammar writing by providing means for factorization and alternation using lexi-
cal classes. We compared the main concepts of XDG in relationto their counterparts in a
number of existing grammar formalisms, and compared compared their grammar theory and
implementation.

43

Part I.

Formalization

44

3. XDG—A Description Language for
Multigraphs

After the informal introduction to the main concepts of XDG in the previous chapter, we now
proceed with presenting a formalization of XDG as a description language for multigraphs,
which will serve as the basis for the formalization of the keyconcepts of dependency gram-
mar in chapter 4, and for our investigations of the expressivity (chapter 5) and computational
complexity (chapter 6) of XDG.

3.1. Multigraphs

We begin in this section with formalizing multigraphs and the relations induced by them. We
definemultigraphsas follows.

Definition 1 (Multigraph). A multigraph is a tuple(V,D,W,w,L,E,A,a) consisting of:

1. a finite interval V of the natural numbers starting from1 called nodes

2. a finite set D of dimensions

3. a finite set W of words

4. thenode-word mappingw∈V →W

5. a finite set of L of edge labels

6. a finite set E⊆V ×V ×D×L of edges

7. a finite set A of attributes

8. thenode-attributes mappinga∈V → D → A

Figure 3.1 shows an example multigraph, repeating Figure 2.4.1 As explained in sec-
tion 2.1.1, we assume an additional root node correspondingto the end-of-sentence marker:

1. the set of nodesV is {1,2,3,4,5,6,7}

2. the set of dimensionsD is {SYN,SEM,SYNSEM}

1Only the attributes of the nodes 1 and 2 onSYN are highlighted, as the attributes of the other nodes are irrelevant
here.

45

3. A Description Language for Multigraphs

3. the set of wordsW is {Mary,wants, to,eat,spaghetti, today, .}

4. the node-word mappingw is {1 7→ Mary, 2 7→ wants, 3 7→ to, 4 7→ eat. . .}

5. the setL of edge labels is defined as the union of the edge labels of theSYN andSEM

dimensions and the additional anchor label↑:

LSYN = {root, subj,part,obj,vinf,adv}
LSEM = {root,del,ag,pat, th}

L = LSYN∪LSEM∪{↑}
(3.1)

6. the setE of edges is:

{(2,1,SYN, subj),(2,4,SYN,vinf), . . . ,(2,1,SEM,ag),(2,4,SEM, th), . . .} (3.2)

7. the setA of attributes is characterized by the following three record types (cf. sec-
tion 2.2.4):

a) record type forSYN:

lex :

in : valency(LSYN)
out : valency(LSYN)

order : set(tuple(LSYN |{↑},LSYN |{↑}))
agrs : set(Agr)

agree: set(LSYN)

agr : Agr

(3.3)

b) record type forSEM:
{

lex :

{

in : valency(LSEM)
out : valency(LSEM)

} }

(3.4)

c) record type forSYNSEM:
{

lex :

{

arg : vec(LSEM,set(LSYN))
mod : set(LSEM)

} }

(3.5)

8. the node-attributes mapping is:

1 7→ SYN 7→

lex =

in = {subj?,obj?}
out = {}

order = {}
agrs = {(3,sg)}

agree= {}

agr = (3,sg)

,

2 7→ SYN 7→

lex =

in = {root?}
out = {subj!,vinf!,adv∗}

order = {(subj,↑),(subj,vinf),(subj,adv),
(↑,vinf),(↑,adv),(vinf,adv)}

agrs = {(3,sg)}
agree= {subj}

agr = (3,sg)

,

. . .

(3.6)

46

3. A Description Language for Multigraphs

SYN

1

Mary

lex =

in = {subj?,obj?}
out = {}

order = {}

agrs= {(3,sg)}
agree= {}

agr = (3,sg)

2

wants

lex =

in = {root?}
out = {subj!,vinf !,adv∗}

order = {(subj,↑),(subj,vinf),(subj,adv),
(↑,vinf),(↑,adv),(vinf,adv)}

agrs= {(3,sg)}
agree= {subj}

agr = (3,sg)

3

to

lex =

in = {part?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

4

eat

lex =

in = {vinf?}
out = {part!,obj!,adv∗}

order = {(part,Anc),(part,obj),(part,adv),
(↑,obj),(↑,adv),(obj,adv)}

agrs= Agr
agree= {}

agr = (1,sg)

5

spaghetti

lex =

in = {subj?,obj?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

6

today

lex =

in = {adv?}
out = {}

order = {}

agrs= Agr
agree= {}

agr = (1,sg)

7

.

lex =

in = {}
out = {root!}

order = {(root,↑)}

agrs= Agr
agree= {}

agr = (1,sg)

root

subj vinf

part obj

adv

lex=

in = {subj?,obj?}
out= {}

order= {}
agrs= {(3,sg)}

agree= {}

agr = (3,sg)

lex=

in = {root?}
out= {subj!,vinf!,adv∗}

order= {(subj,↑),(subj,vinf),(subj,adv),
(↑,vinf),(↑,adv),(vinf,adv)}

agrs= {(3,sg)}
agree= {subj}

agr = (3,sg)

SEM

1

Mary

{

lex =

{

in = {ag∗,pat∗}
out = {}

} }

2

wants

{

lex =

{

in = {root!,th∗}
out = {ag!,th!}

} }

3

to

{

lex =

{

in = {del!}
out = {}

} }

4

eat

{

lex =

{

in = {root!,th∗}
out = {ag!,pat!}

} }

5

spaghetti

{

lex =

{

in = {ag∗,pat∗}
out = {}

} }

6

today

{

lex =

{

in = {root!}
out = {th!}

} }

7

.

{

lex =

{

in = {}
out = {root∗,del∗}

} }

root

root

rootdel

ag
th

ag pat

th

SYNSEM

1

Mary

{

lex =

{

arg = {}
mod= {}

} }

2

wants

lex =

arg =

{

ag = {subj}
th = {vinf}

}

mod= {}

3

to

{

lex =

{

arg = {}
mod= {}

} }

4

eat

lex =

arg =

{

ag = {subj}
pat = {obj}

}

mod= {}

5

spaghetti

{

lex =

{

arg = {}
mod= {}

} }

6

today

{

lex =

{

arg = {}
mod= {th}

} }

7

.

{

lex =

{

arg = {}
mod= {}

} }

Figure 3.1.: Multigraph (simultaneous syntactic and semantic analysis)

Each dimensiond ∈ D of a multigraph induces two relations: thelabeled edge relation
(

·
−→d) and theprecedence relation(<).

Definition 2 (Labeled Edge Relation). Given two nodes v and v′ and a label l, the labeled

edge relation v
l

−→d v′ holds if and only if there is an edge from v to v′ labeled l on dimension
d:

·
−→d = {(v,v′, l) | (v,v′,d, l) ∈ E} (3.7)

where the dot· is a placeholder for the edge label.

Definition 3 (Precedence Relation). Given two nodes v and v′, the total order on the natural
numbers induces the precedence relation: v< v′ holds if and only if v is smaller than v′.

3.2. A Description Language for Multigraphs

Having introduced multigraphs formally, we can define XDG asa description language for
them. We formulate XDG in higher order logic (Church 1940, Andrews 2002), which we

47

3. A Description Language for Multigraphs

use as a tool to illustrate the semantics of XDG. Thereby, we deliberately neglect that in
practice, XDG does not seem to require the full expressivityof higher order logic. In fact, in
the grammars which we will present throughout this thesis, we will only make use of its first
order fragment.

We define XDG by first defining the types of the language, then its terms, and then its
signature. Since each multigraph has different dimensions, words, edge labels and attributes,
the types in the signature vary. We capture this by parametrizing the signature with a tuple
characterizing the type of the dimensions, words, edge labels and attributes of a multigraph
calledmultigraph type. Figure 3.2 illustrates this idea: the signature relates the types and terms
of XDG. The multigraph type, made up from types, determines the types in the signature.

multigraph type

signature

types terms

Figure 3.2.: Structure of XDG

3.2.1. Types

We begin with defining the types of the logic and their interpretation.

Definition 4 (Types). We define the types Ty of XDG given a set At of atoms (arbitrary sym-
bols) in simply typed lambda calculus with records:

a∈ At
T ∈ Ty ::= B boolean

| V node
| T1 → T2 function
| {a1, . . . ,an} finite domain(n≥ 1)
| {a1 : T1, . . . ,an : Tn} record

(3.8)

where for finite domains and records, a1, . . . ,an are pairwise distinct, and we forbid empty
finite domains.

Definition 5 (Interpretation of Types). We interpret the types as follows:

• B as{0,1}

• V as a finite interval of the natural numbers starting with1

• T1 → T2 as the set of all functions from the interpretation of T1 to the interpretation of
T2

48

3. A Description Language for Multigraphs

• {a1, . . . ,an} as the set{a1, . . . ,an}

• {a1 : T1, . . . ,an : Tn} as the set of all functions f with

1. Dom f= {a1, . . . ,an}

2. for all 1≤ i ≤ n, f ai is an element of the interpretation of Ti

Definition 6 (Notational Conveniences for Types). We introduce notational conveniences for:

• unions:{a1, . . . ,ak}|{ak+1, . . . ,an}
def
= {a1, . . . ,an}

• sets: set(T)
def
= T → B, i.e, we model sets by their characteristic functions

• tuples: tuple(T1, . . . ,Tn)
def
= {1 : T1, . . . ,n : Tn}

• vectors: vec({a1, . . . ,an},T)
def
= {a1 : T, . . . ,an : T}, i.e., vectors are simply abbrevia-

tions of records where each attribute has the same type

• valencies: valency({a1, . . . ,an})
def
= vec({a1, . . . ,an}, !,?,∗,0)

As examples, consider the record types defined in (3.3)–(3.5) above.

3.2.2. Multigraph Type

Definition 7 (Multigraph Type). A multigraph type is a tuple MT= (Dim,Word, lab,attr),
where

1. Dim∈ Ty is a finite domain of dimensions

2. Word∈ Ty is a finite domain of words

3. lab∈ Dim → Ty is a function from dimensions to label types, i.e., the type of the edge
labels on that dimension. Label types must be finite domains.

4. attr∈ Dim → Ty is a function from dimensions to attributes types, i.e., the type of the
attributes on that dimension. Attributes types can be any type.

As an example, we depict the multigraph typeMT = (Dim,Word, lab,attr) for the grammar

49

3. A Description Language for Multigraphs

presented in section 2.2.4:2

Dim = {SYN,SEM,SYNSEM}
Word = {Mary,wants, to,eat,spaghetti, today, ., . . .}

lab =

SYN 7→ {root, subj,part,obj,vinf,adv, . . .}
SEM 7→ {root,del,ag,pat, th, . . .}

SYNSEM 7→ {o}

attr =

SYN 7→

lex :

in : valency(LSYN)
out : valency(LSYN)

order : set(tuple(LSYN |{↑},LSYN |{↑}))
agrs : set(Agr)

agree: set(LSYN)

agr : Agr

SEM 7→

{

lex :

{

in : valency(LSEM)
out : valency(LSEM)

} }

SYNSEM 7→

{

lex :

{

arg : vec(LSEM,set(LSYN))
mod : set(LSEM)

} }

(3.9)

To bring multigraphs and multigraph types together, we mustdefine what it means for a
multigraphM to have multigraph typeMT, or in other words, what it means forM to be
compatible withMT. We definecompatibilitywriting M(T) for the interpretation of typeT
overM.

Definition 8 (Compatibility of Multigraphs and Multigraph Types). A multigraph
M = (V,D,W,w,L,E,A,a) has multigraph type MT= (Dim,Word, lab,attr) if and only if:

1. The dimensions are the same:
D = M(Dim) (3.10)

2. The words of the multigraph are a subset of the words of the multigraph type:

W ⊆ M(Word) (3.11)

3. The edges in E have the right edge labels for their dimension:

∀(v,v′,d, l) ∈ E : l ∈ M(lab d) (3.12)

4. The nodes have the right attributes for their dimension:

∀v∈V : ∀d ∈ D : (a v d) ∈ M(attr d) (3.13)

3.2.3. Terms

The terms of XDG augment simply typed lambda calculus with atoms, records and record
selection.

2As we forbid empty finite domains, the edge labels of theSYNSEM dimension must include a “dummy” label
(here:o).

50

3. A Description Language for Multigraphs

Definition 9 (Terms). Given a set of atoms At and constants Con, we define the set of terms
Te as:

a∈ At
c∈ Con

t ∈ Te ::= x variable
| c constant
| a atom
| λx : T. t abstraction
| t1 t2 application
| a atom
| {a1 = t1, . . . ,an = tn} record
| t.a record selection

(3.14)

where for records, a1, . . . ,an are pairwise distinct.

Definition 10 (Notational Conveniences for Terms). We introduce notational conveniences
for:

• sets over type T:
{t1, . . . , tn}

def
= λx : T. x

.
= t1∨ . . .∨x

.
= tn (3.15)

where
.
= stands for equality.

• tuples:
(t1, . . . , tn)

def
= {1 = t1, . . . ,n = tn} (3.16)

3.2.4. Signature

The signature of XDG defines two kinds of constants: thelogical constantsand themultigraph
constants, where the latter are determined by a multigraph typeMT = (Dim,Word, lab,attr).

Definition 11 (Logical Constants). The logical constants include the type constantB and the
following term constants:

0 : B false
⇒ : B → B → B implication
.
=T : T → T → B equality (for each type T)
∃T : (T → B) → B existential quantification (for each type T)

(3.17)

which are interpreted as usual.

Definition 12 (Multigraph Constants). The multigraph constants include the type constantV

and the following term constants:

·
−→d : V → V → lab d→ B labeled edge(d ∈ Dim)

< : V → V → B precedence
(W ·) : V → Word word
(d ·) : V → attr d attributes(d ∈ Dim)

(3.18)

where we interpret

51

3. A Description Language for Multigraphs

•
·

−→d as the labeled edge relation on dimension d.

• < as the precedence relation

• (W ·) as the word, e.g.(W v) represents the word of node v

• (d ·) as the attributes on d, e.g.(d v) represents the attributes of node v on dimension d

Definition 13 (Notational Conveniences for Logical Constants). We introduce notational con-
veniences for:

• 1 (true)

• ¬ (negation)

• ∨ (disjunction)

• ∧ (conjunction)

• ⇔ (equivalence)

• ˙6=T (inequality)

• ∃1
T (unique existential quantification)

• ∀T (universal quantification)

using the usual logical equivalences.

Definition 14 (Notational Conveniences for Sets). We introduce notational conveniences for

sets, building on the definition x∈T y
def
= y x, and using the usual equivalences:

• /0 (empty set)

• /∈T (exclusion)

• ∩T (intersection)

• ∪T (union)

• ⊆T (subset)

Definition 15 (Notational Conveniences for Multigraph Constants). We introduce notational
conveniences for

• edges where the edge label is irrelevant:

v→d v′
def
= ∃lab dl : v

l
−→d v′ (3.19)

• strict dominance:

v→+
d v′

def
= v→d v′∨ (∃Vv′′ : v→d v′′∧v′′→+

d v′) (3.20)

• non-strict dominance:
v→∗

d v′
def
= v

.
= v′∨v→+

d v′ (3.21)

52

3. A Description Language for Multigraphs

3.2.5. Grammar

The definition of an XDG grammar is now easy.

Definition 16 (Grammar). An XDG grammar G= (MT,P) is defined by a multigraph type
MT and a set P of formulas calledprinciples. Each principle must be formulated according
to the signature determined by MT.

3.2.6. Models

Next, we define the models of an XDG grammar and its string language.

Definition 17 (Models). The models of a grammar G= (MT,P) are all multigraphs M which:

1. have multigraph type MT

2. satisfy all principles P

where M satisfies a principle if and only if it is true for M.

3.2.7. String Language

Definition 18 (String Language). Given a grammar G, L(G) is the set of all strings s=
w1 . . .wn such that:

1. there are as many nodes as words: V= {1, . . . ,n}

2. concatenating the words of the nodes yields s:(W 1) . . .(W n) = s

3.3. Summary

In this chapter, we first presented a formal definition of multigraphs, before we developed a
formalization of XDG as a description language for multigraphs based in higher order logic.
Here, the crucial step was the introduction of multigraph types to parametrize the signature of
the logic. Multigraph types also played a role in the subsequent definitions of XDG grammars
and XDG models, preceding that of the string language of a grammar.

53

4. Dependency Grammar as Multigraph
Description

In this chapter, we apply XDG as a grammar formalism for dependency grammar. In particu-
lar, we show how the key concepts of DG can be reformulated as principles on multigraphs.

4.1. Graph Shape

Most grammar formalisms based on DG only license graphs thathave the shape of DAGs or
trees, even though there are exceptions like WG (Hudson 1990), which allows unrestricted
graphs. An XDG dimension can be any kind of graph. We constrain its shape using principles
such as the DAG principle (cf. theSEM dimension in the grammar in section 2.2.4), the Tree
principle (SYN) and the Edgeless principle (SYNSEM).

4.1.1. DAG Principle

TheDAG principlestates a dimension must have no cycles.

Principle 1 (DAG). Given a dimension d, the DAG principle is defined as:

dagd = ∀v : ¬(v→+
d v) (4.1)

4.1.2. Tree Principle

TheTree principlestates, given a dimensiond, thatd is a tree, i.e., there must be no cycles,
there must be precisely one root and each node must have at most one incoming edge.

Principle 2 (Tree). Given a dimension d, the Tree principle is defined as:

treed = ∀v : ¬(v→+
d v) ∧ ∃1v : ¬∃v′ : v′→d v ∧ ∀v : (¬∃v′ : v′→d v)∨ (∃1v′ : v′→d v) (4.2)

4.1.3. Edgeless Principle

TheEdgeless principlestates, given a dimensiond, thatd must be without edges.

Principle 3 (Edgeless). Given a dimension d, the Edgeless principle is defined as:

edgelessd = ∀v : ¬∃v′ : v→d v′ (4.3)

54

4. DG as Multigraph Description

4.2. Projectivity

Projectivity is a central concept in DG. The idea is to forbidcrossing edges, i.e., edges that
cross any of the projection edges of the nodes higher up or to the side in the graph. A projective
dependency tree, without crossing edges, was given in Figure 1.2, and a non-projective one in
Figure 1.4. As already noted in section 1.1.1, projectivityis optional for DG. Consequently,
in XDG, we can freely decide for each dimension whether it should be projective by or not.

4.2.1. Projectivity Principle

We express projectivity with theProjectivity principle, defined given a dimensiond, and re-
quiring that for all edges fromv to v′, all nodesv′′ betweenv andv′ must be belowv.

Principle 4 (Projectivity). Given a dimension d, the Projectivity principle is defined as:

projectivityd = ∀v,v′ :
v→d v′ ∧ v < v′ ⇒ ∀v′′ : v < v′′∧v′′ < v′ ⇒ v→+

d v′′ ∧
v→d v′ ∧ v′ < v ⇒ ∀v′′ : v′ < v′′∧v′′ < v ⇒ v→+

d v′′
(4.4)

4.3. Lexicalization

As explained in chapter 2, XDG grammars are typically lexicalized, consisting of:

1. a small set of principles

2. a large set of lexical entries which instantiate the principles

We express lexicalization using a principle. Thus, whereasin most other grammar formalisms,
e.g. those presented in section 2.4, lexicalization is integral, it is optional in XDG.

4.3.1. Lexical Entries

We begin by defining the type of a lexical entry.

Definition 19 (Lexical Entry). Given the word type Word, n dimensions d1, . . . ,dn and corre-
sponding record types T1, . . . ,Tn, the type of a lexical entry is defined as:

E =

word : Word
d1 : T1

. . .
dn : Tn

(4.5)

where Ti (1≤ i ≤ n) is thelexical attributes typeof dimension di.

55

4. DG as Multigraph Description

4.3.2. Lexical Attributes

The attributes of XDG connect the lexical entries with the nodes of the actual analysis.

Definition 20 (Lexical and Non-lexical Attributes). Given n dimensions d1, . . . ,dn, corre-
sponding lexical attributes types T1, . . . ,Tn, and atoms a1, . . . ,am (m≥ 0), the attributes on
dimension di (1≤ i ≤ n) are defined as:

attr di =

lex : Ti

a1 : . . .
. . .
am : . . .

(4.6)

where we call the attributes inside the lex subrecordlexical attributesof di , and the attributes
outside, i.e., a1, . . . ,am, non-lexical attributes.

4.3.3. Lexicalization Principle

Lexicalization is put to work by theLexicalization principle, which requires the following:

1. A lexical entrye must be selected for each node.

2. The lexical entrye must be associated with the same word as the node.

3. Givenn dimensionsd1, . . . ,dn, the lexical attributes for each dimensiondi (1 ≤ i ≤ n)
must be equal to the corresponding attributes fordi in e.

As a result, whenever a lexical entry is selected on one of thedimensions, it immediately
determines the lexical attributes of all the other dimensions as well, and thereby synchronizes
them.

Principle 5 (Lexicalization). Given n dimensions d1, . . . ,dn and a lexical entry type E, the
Lexicalization principle must be instantiated with a lexicon lex, which is a set of lexical entries
of type E, and is defined as:

lexicalizationd1,...,dn = λ lex. ∀v :
∃e : e∈ lex ∧
e.word

.
= (W v) ∧

(d1 v).lex
.
= e.d1 ∧ . . . ∧ (dn v).lex

.
= e.dn

(4.7)

4.4. Valency

The next key concept of DG that we reformulate in XDG is valency. Its application to linguis-
tics reaches back to (Peirce 1898), where valency describesthe set of dependents of a lexical
head, i.e., its argument structure. For XDG, we adopt a broader notion of valency, in which it
lexically specifies the incoming and outgoing edges of the nodes.

56

4. DG as Multigraph Description

4.4.1. Fragments

We explain XDG valency using the intuitive metaphor offragments. An XDG fragment is
simply a lexical specification of the incoming and outgoing edges of a node. We show a
picture of an example fragment below:

a

d

a?

b!
a? (4.8)

The fragment is defined for dimensiond. The anchor of the fragment is the worda, and
it licenses at most one incoming edge labeleda, at most one outgoing edge labeleda, and
precisely one outgoing edge labeledb. It licenses no other incoming and outgoing edges.
Here is a second example:

d

b

b!

(4.9)

This fragment with anchorb requires precisely one incoming edge labeledb, and licenses no
other incoming and outgoing edges.

4.4.2. Configuration

We call the arrangement of fragments into graphsconfiguration. For instance, we can arrange
the two fragments (4.8) and (4.9) into the graph below:

a

1

b

2

b

(4.10)

However, there is no way to arrange the fragments into the following graph:

a

1

b

2

a

3

b a

(4.11)

This graph is not well-formed according to fragment (4.8), since node 3 does not have the
obligatory outgoing edge labeledb.

The string language of the grammar resulting from the two fragments is the set of words
with equally manyas andbs, which we call EQAB:

57

4. DG as Multigraph Description

Language 1(EQAB).
EQAB = {w∈ (a∪b)+ | |w|a = |w|b} (4.12)

Why is this so?

1. Theas are arranged in a chain: eacha must have at most one incoming edge labeleda,
and at most one outgoing edge labeleda to the nexta.

2. The number ofas andbs is always the same: the fragment fora (4.8) requires precisely
one outgoing edge labeledb to ab, and the fragment forb (4.9) ensures thatb cannot
become the root (which excludes the string containing onlyb).

4.4.3. Valency Predicates

We capture fragments in XDG using a set of predicates called valency predicates, which we
define given a dimensiond, a nodev and an edge labell :

• License no incoming edge labeledl for v:

in0d = λv.λ l . ¬∃v′ : v′
l

−→d v (4.13)

• Requiring precisely one incoming edge labeledl for v:

in1d = λv.λ l . ∃1v′ : v′
l

−→d v (4.14)

• License at most one incoming edge labeledl for v:

in0or1d = λv.λ l . (in0d v l)∨ (in1d v l) (4.15)

For the outgoing edges, the three predicatesout0, out1andout0or1are defined analogously.

4.4.4. Valency Principle

The Valency principlecombines the valency predicates with lexicalization. The idea is to
model fragments using the two lexical attributesin for the licensed incoming edges, andout
for the licensed outgoing edges. Given a type of edge labelsL, the type ofin and out is
valency(L) = vec(L, !,?,∗,0), i.e., a vector used to map edge labels tocardinalities, which
restrict the number of edges with this label. The cardinalities are interpreted as follows:

• !: precisely one edge

• ?: at most one edge

• ∗: arbitrary many edges

• 0: no edges

58

4. DG as Multigraph Description

For example, the following lexical description representsfragment (4.8):

word = a

ID =

{

in = {a =?,b = 0}
out = {a =?,b =!}

}

(4.16)

And the following fragment (4.9):

word = b

ID =

{

in = {a = 0,b =!}
out = {a = 0,b = 0}

}

(4.17)

As for convenience, we allow to omit the= signs between labels and cardinalities and pairs
with 0 cardinality, we can abbreviate e.g. (4.16) as:

word = a

ID =

{

in = {a?}
out = {a?,b!}

}

(4.18)

We can now turn to the definition of the Valency principle. Note that we do not need to
stipulate any constraint for cardinality∗, as it stands for arbitrary many edges.

Principle 6 (Valency). Given a dimension d, the Valency principle is defined as:

valencyd = ∀v : ∀l :
(d v).lex.in.l

.
= 0 ⇒ in0d v l ∧

(d v).lex.in.l
.
= ! ⇒ in1d v l ∧

(d v).lex.in.l
.
= ? ⇒ in0or1d v l ∧

(d v).lex.in.l
.
= 0 ⇒ out0d v l ∧

(d v).lex.in.l
.
= ! ⇒ out1d v l ∧

(d v).lex.in.l
.
= ? ⇒ out0or1d v l

(4.19)

4.5. Order

The next key concept of DG is order.

4.5.1. Ordered Fragments

We begin with extending the fragments of the previous section with a local order on the daugh-
ters of the node. We impose this order indirectly by a strict partial order1 on the set of edge
labels of the daughters, and call the extended fragmentsordered fragments.

Here is an example ordered fragment:

a

< a < b

↓

d

a?

b!
a?

(4.20)

1Strict partial orders are binary relations which are 1) irreflexive, 2) asymmetric and 3) transitive.

59

4. DG as Multigraph Description

The fragment is defined for dimensiond. It extends fragment (4.8) with the order↑ < a < b

on the set of edge labels, where↑ is a special additional label representing the anchor of
the fragment, which we draw directly below the anchor by convention. The meaning of the
fragment is that the anchor must always precede the daughters with edge labela, and those
must in turn precede the daughters with edge labelb. Here is a second example:

↓

d

b

b!

(4.21)

where nothing is ordered since the fragment does not licenseany outgoing edges.

4.5.2. Ordered Configuration

Ordered fragments allow us to extend the notion of configuration: now, a well-formed config-
uration must not only satisfy the constraints on the incoming and outgoing edges, but also the
order on the set of edge labels. We call this extended notion of configurationordered configu-
ration. For example, we can arrange the two fragments (4.20) and (4.21) into the well-formed
graph below:

a

1

b

2

b

(4.22)

However, the following ordered configuration is not well-formed since it violates the order of
fragment (4.20), requiring that the anchor must precede itsb-daughter, not follow it:

b

1

a

2

b

(4.23)

4.5.3. Projectivity

If we require that the fragments (4.20) and (4.21) can only beconfigured into trees, the string
language seems to be that ofn as followed byn bs, which we call ANBN:

Language 2(ANBN).
ANBN = {w∈ anbn | n≥ 1} (4.24)

But this is not the case. Figure 4.1 shows a counter-example:for all nodes, the anchors do
precede thea-daughters, which in turn do precede theb-daughters, yet not allas precede all
bs.

60

4. DG as Multigraph Description

a

1

a

2

b

3

a

4

b

5

b

6

a b

ba

b

Figure 4.1.: Non-projective analysis

The problem is that we have to rule out non-projective analyses: when we order the daugh-
ters of a node, we need to ensure that the yields of the daughters must be continuous, such that
it becomes impossible e.g. for the leftmostb (node 3) in Figure 4.1 to interrupt the sequence
of as. We can do this by applying theProjectivity principle(principle 4).

4.5.4. Order Principle

Given a domain of edge labelsL, we lexicalize the strict partial order on the edge labels and the
anchor of the ordered fragment by the lexical attributeorder, a set of pairs of edge labels and
theanchor label, i.e., having the typeset(tuple(L |{↑},L |{↑})). For example, the following
lexical description represents the ordered fragment (4.20):

word = a

LP =

in = {a?}
out = {a?,b!}

order = {(↑,a),(↑,b),(a,b)}

(4.25)

TheOrder principleis then stated for each nodev and all pairs(l , l ′) in the lexicalized strict
partial order ofv:

1. If l is the anchor label andl ′ an edge label, thenv must precede itsl ′ daughter.

2. If l ′ is the anchor label andl an edge label, thenv must follow itsl daughter.

3. If l andl ′ are edge labels, then thel daughter ofv must precede thel ′ daughter.

Principle 7 (Order). We define the Order principle given a dimension d as:

orderd =
∀v : ∀(l , l ′) ∈ (d v).lex.order :

∀v′ : l
.
= ↑ ∧ v

l ′
−→d v′ ⇒ v < v′ ∧

∀v′ : l ′
.
= ↑ ∧ v

l
−→d v′ ⇒ v′ < v ∧

∀v′,v′′ : v
l

−→d v′ ∧ v
l ′

−→d v′′ ⇒ v′ < v′′

(4.26)

4.6. Agreement

The idea behind agreement is to ensure for certain nodes thatthey “agree” with certain de-
pendents, e.g. for finite verbs to agree with their subjects.To this end, we assign to each
node:

61

4. DG as Multigraph Description

• a set ofagreement tuples(e.g. consisting of person and number) by the lexical attribute
agrs

• a set of edge labels by the lexical attributeagree

• an agreement tuple fromagrsby the non-lexical attributeagr

Then, we model agreement using two principles: the Agr principle and the Agreement princi-
ple.

4.6.1. Agr Principle

The Agr principle expresses the constraint that for each node on a given dimension d, the
value ofagr must be an element ofagrs.

Principle 8 (Agr).
agrd = ∀v : (d v).agr∈ (d v).lex.agrs (4.27)

4.6.2. Agreement Principle

TheAgreement principleconstrains each edge fromv to v′ labeledl on d such that ifl is in
the lexically specified setagreefor v, then the values ofagr of v and ofv′ must be equal.

Principle 9 (Agreement).

agreementd = ∀v,v′ : ∀l :

v
l

−→d v′ ∧ l ∈ (d v).lex.agree⇒ (d v).agr
.
= (d v′).agr

(4.28)

As an example, the analysis in Figure 4.2 is well-formed according to the Agr principle and
the Agreement principle:

1. For nodes 1 and 2, the value ofagr, is an element ofagrs.

2. As required byagree, node 2 agrees with its subject, i.e., itsagr value equals theagr
value of node 1,

people

1

lex =

in = {subj?,obj?}
out = {}

agrs= {(3,pl)}
agree= {}

agr = (3,pl)

laugh

1

lex =

in = {}
out = {subj!}

agrs= {(1,sg),(2,sg),(1,pl),(2,pl),(3,pl)}
agree= {subj}

agr = (3,pl)

subj

Figure 4.2.: Agr and Agreement principle: well-formed analysis

The example analysis in Figure 4.3 is not well-formed. The Agr principle is satisfied: for
nodes 1 and 2, the value ofagr is an element ofagrs. The Agreement principle is however
violated: node 2 does not agree with its subject: itsagr value(3,pl) does not equal theagr
value(3,sg) of node 1, as required byagree.

62

4. DG as Multigraph Description

Mary

1

lex =

in = {subj?,obj?}
out = {}

agrs= {(3,sg)}
agree= {}

agr = (3,sg)

laugh

1

lex =

in = {}
out = {subj!}

agrs= {(1,sg),(2,sg),(1,pl),(2,pl),(3,pl)}
agree= {subj}

agr = (3,pl)

subj

Figure 4.3.: Agr and Agreement principle: ill-formed analysis

4.7. Linking

The example grammar in section 2.2.4 made use of the LinkingEnd principle and the Linking-
Mother principle to constrain the syntactic realization ofsemantic arguments. These principles
are instances of an entire family of principles calledlinking principles, whose purpose is to
“link” together pairs of dimensions. The idea behind the linking principles is, given an edge
from a nodev to a nodev′ labeledl ond1, to constrain the path tov′ on another dimensiond2.
Linking principles are lexicalized by attributes on a thirdinterface dimensiond3, which acts
as an interface.

4.7.1. LinkingEnd Principle

The LinkingEnd principleconstrains the incoming edge label ofv′ on d2, which we call the
endpoint of the path tov′ ond2 (hence the name LinkingEnd). It is lexicalized by the attribute
linkEnd, whose type is a vector used to map edge labels ond1 to sets of edge labels ond2. The
principle is stated as follows. If for an edge fromv to v′ labeledl on d1, the value oflinkEnd
for v andl on d3 is non-empty, then for at least one edge labell ′ in this set, there must be an
edge from any nodev′′ to v′ on d2 labeledl ′. Figure 4.4 shows an illustration.

Principle 10 (LinkingEnd). Given three dimensions d1, d2 and d3, the LinkingEnd principle
is defined as:

linkingEndd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ (d3 v).lex.linkEnd.l 6= /0⇒

∃l ′ : l ′ ∈ (d3 v).lex.linkEnd.l ∧ ∃v′′ : v′′
l ′

−→d2
v′

(4.29)

4.7.2. LinkingMother Principle

The LinkingMother principleconstrainsv′ to be the mother ofv on d2. It is lexicalized by
the attributelinkMother, whose type is a set of edge labels ond1. The principle is stated as
follows. If for an edge fromv to v′ labeledl ond1, l is in the setlinkMotherof v ond3, thenv′

must be the mother ofv ond2. Figure 4.5 shows an illustration.

Principle 11 (LinkingMother). Given three dimensions d1, d2 and d3, we define the Linking-
Mother principle as:

linkingMotherd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ l ∈ (d3 v).lex.linkMother⇒ v′−→d2

v
(4.30)

63

4. DG as Multigraph Description

d2

d3

d1

lex=

linkEnd =

{

l = {l ′, . . .}
. . .

}

. . .

v’

v’

v’

l

l’

v

v

v

Figure 4.4.: LinkingEnd illustration

d3

d2

d1

{

lex=

{

linkMother = {l , . . .}
. . .

} }

l

v’

v’

v’v

v

v

Figure 4.5.: LinkingMother illustration

4.8. Summary

In this chapter, we have shown how to reformulate the key concepts of dependency grammar
as XDG principles. These principles, and their use on multiple dimensions, will form the basis
of our investigation of the expressivity and computationalcomplexity of XDG in the following
chapters, and then of our modeling of natural language in part III.

64

5. Expressivity

In this chapter, we investigate the expressivity of XDG. We begin with the relation between
XDG and Context-Free Grammar (CFG). We prove that it is possible to transform every CFG,
given that it does not generate the empty string, into an equivalent XDG. In the next step, we
show that by using multiple dimensions, XDG can also describe languages that fall outside
context-freeness, including languages which are benchmarks for coping with natural language
syntax.

5.1. XDG and Context-Free Grammar

We begin this chapter by looking at the relation XDG and CFG. At the end of this section
stands a proof showing that for every CFG, we can construct anXDG which licenses the same
string language, i.e., which is weakly equivalent. In principle, this is nothing new: the first
proofs showing that restricted versions of dependency grammar are weakly equivalent to CFG
date back to (Hays 1964), (Gaifman 1965) and (Gross 1964). Nevertheless, the proof is new
for XDG, and shall show that XDG is at least as expressive as CFG.

5.1.1. Context-Free Grammar

Definition 21 (Context-Free Grammar). A CFG G is defined by a set V of non-terminal sym-
bols, a setΣ of terminal symbols, a set R⊆V×(V∪Σ)∗ of production rules and a start symbol
S∈V:

G = (V,Σ,R,S) (5.1)

We write single uppercase Roman letters for non-terminal symbols, single lowercase Roman
letters for terminal symbols, and lowercase Greek letters for sequences of terminal and non-
terminal symbols. We writeA → α for (A,α) ∈ R, and call the left component of a rule
Left Hand Side (LHS), and the right Right Hand Side (RHS). Here is an example grammar
describing language ANBN (section 4.5.3) ofn as followed byn bs.

G = ({S,B},{a,b},{S→ aSB, S→ aB, B→ b},S) (5.2)

5.1.2. Derivations and Derivation Trees

The string languageL(G) of a CFGG is the set of all strings derivable from the start symbol.
In each derivation step, writtenα ⇒ β , a non-terminalA is replaced by the RHS of a rule with

65

5. Expressivity

A on its LHS. We show an example derivation of the stringaabbunder the example grammar
(5.2) below:

S⇒ aSB⇒ aaBB⇒ aabB⇒ aabb (5.3)

Derivations impose a tree structure on the derived string called syntax tree or derivation
tree. Figure 5.1 shows an example derivation tree, which represents the derivation in (5.3).

S

BSa

a B b

b

Figure 5.1.: Derivation tree for derivation (5.3)

5.1.3. Lexicalized Context-Free Grammar

In our transformation of CFGs into XDGs, we restrict ourselves toLexicalized Context-Free
Grammar(LCFG).

Definition 22 (Lexicalized Context-Free Grammar). In an LCFG, the RHS of each rule con-
tains precisely one terminal symbol (1≤ k≤ n):

A → B1 . . .BkaBk+1 . . .Bn (5.4)

Every CFGG which does not generate the empty string can be brought into aweakly equiv-
alent LCFGG′, i.e., L(G) = L(G′). One method is to convertG to G′ in Greibach Normal
Form (GNF)1. However, the method of conversion is not our concern here.

5.1.4. Constructing an XDG from an LCFG

Using e.g. GNF, we can transform CFGs into weakly equivalentLCFGs. In this subsection, we
proceed by showing that for every LCFG, we can construct a weakly equivalent XDG. We can
then combine the two transformations to construct a weakly equivalent XDG from any CFG
which does not generate the empty string. We first present theideas behind the construction
and an example, before we prove its correctness.

We construct the XDG from the LCFG using a grammar with one dimension calledderiva-
tion dimension(abbreviatedDERI). The derivation trees of the LCFG stand in the following
correspondence to the models onDERI:

1GNF requires that the RHS of each rule starts with a terminal symbol, and is followed by a sequence of
non-terminal symbols (n≥ 0):

A → aB1 . . .Bn (5.5)

66

5. Expressivity

• the non-terminal nodes in the derivation tree correspond to the nodes onDERI

• the labels of the non-terminal nodes in the derivation treeare represented by the incom-
ing edge labels of the corresponding nodes onDERI2

• the terminal nodes in the derivation tree correspond to thewords onDERI

Figure 5.2 shows an exampleDERI model, corresponding to the derivation tree displayed in
Figure 5.1. For example, the non-rootSnode in the derivation tree corresponds to node 2 on
DERI. The symbolS of the node in the derivation tree is represented by the incoming edge
label onDERI, and the righta in the derivation tree corresponds to the word associated with
node 2 onDERI.

1

a

2

a

3

b

4

b

S

B

B

Figure 5.2.:DERI tree

The constructed XDG grammar uses the Tree, Projectivity, Valency and Order principles.
We describe the lexical entries specifying the valency and order requirements by ordered frag-
ments. Each ruleA→ B1 . . .BkaBk+1 . . .Bn (1≤ k≤ n), given thatA is the start symbol of the
LCFG, corresponds to the following ordered fragment:

B1! Bn!

Bk! Bk+1!

B1<...<Bk< <Bk+1<...<Bn

DERI
...

a

↓

A?

(5.6)

The anchor of the fragment is the terminal symbola of the RHS of the LCFG rule. The
fragment licenses at most one incoming edge labeled by the LHS of the rule, i.e.,A. It requires
precisely one outgoing edge for each non-terminal on the RHSof the rule, i.e.,B1, . . . ,Bn, and
preserves the order of the non-terminals and the anchor on the RHS of the rule (B1 < .. . <
Bk < a < Bk+1 < .. . < Bn).

If A is not the start symbol of the LCFG, then it can never be the root of the derivation tree,
and hence it must have an incoming edge. This is expressed in the following ordered fragment:

B1! Bn!

Bk! Bk+1!

B1<...<Bk< <Bk+1<...<Bn

DERI
...

a

A!

↓

(5.7)

2Except for the root.

67

5. Expressivity

(5.7) is equivalent to (5.6), except that it requires precisely one incoming edge labeledA (A!)
instead of licensing at most one (A?).

However, there is a caveat to the construction presented so far: it only works for grammars
where the RHSs of the rules do not contain multiple occurrences of the same non-terminal.
A counter-example isA→ BaB, whereB occurs twice on the RHS. At this point, we are left
with two choices:

1. Change the construction of the XDG, e.g. augmenting the edge labels with the positions
of the non-terminals.

2. Change the LCFG to get an LCFG where for each rule, the RHS contains only at most
one occurrence of the same non-terminal.

We take the second choice: before we construct an XDG from theLCFG, we change the
LCFG to contain at most one occurrence of each non-terminal on the RHSs of its rules. This
is easy:

1. We replace each rule where the RHS contains multiple occurrences of the same non-
terminals by a rule in which we replace the repeated non-terminals by fresh ones. For
example,A→ aBBCCCbecomesA→ aBB′CC′C′′.

2. For each rule with one of the repeated non-terminals on itsLHS, we introduce a new
rule for each fresh non-terminal, where the fresh non-terminal replaces the repeated one.
In our example, we introduce a new ruleB′ → β for each ruleB→ β , and two new rules
C′ → γ andC′′ → γ for each ruleC→ γ.

As an example, we construct an XDG corresponding to the LCFGG in (5.2) above. The
grammar contains no rule with more than one occurrence of thesame non-terminal. Thus,
we can directly proceed to construct the XDG. The set of wordsof the corresponding XDG
grammar is{a,b}. The set of edge labels onDERI corresponds to the set of non-terminals:

{S,B} (5.8)

The three rules correspond to the following ordered fragments:

1. S→ aSB:

DERI

a

↓

S?

B!

S!

<S<B

(5.9)

2. S→ aB:

DERI

↓

a

S?

B!

<B

(5.10)

68

5. Expressivity

3. B→ b:

DERI

↓

b

B!

(5.11)

For proving the correctness of the construction, we make useof McCawley’s (1968) idea
to view CFG as a description language for ordered, labeled trees.3 McCawley describes the
well-formedness conditions for derivation trees using so-callednode admissibility conditions.

Definition 23 (Node Admissibility Conditions). Given an LCFG G= (V,Σ,R,S), a node v
satisfies G if either:4

1. v is a leaf node and is labeled with a terminal symbol.

2. v is an inner node with successors v1, . . . ,vk,v′,vk+1, . . . ,vn (in that order), and:

a) v is labeled with A

b) R contains rule A→ B1 . . .BkaBk+1 . . .Bn (1≤ k≤ n)

c) v′ is labeled with a

d) each other successor vi (1≤ i ≤ n) is labeled with Bi

An ordered tree satisfies G if its root node is labeled with S and all of its nodes satisfy G.

McCawley’s conditions carry over almost directly to our XDGconstruction. The differences
between the CFG derivation trees and the XDGDERI trees are:

• DERI trees do not contain the terminal nodes of the derivation trees. Instead, each node
is associated with the corresponding word by the node-word mapping.

• The edges of theDERI trees are labeled, not the nodes, as in the derivation trees.The
node labels of the nodes in the derivation tree are modeled bythe incoming edge label
on DERI.

Proof. Considering these differences, we can adapt McCawley’s node admissibility condi-
tions for proving that our construction of XDGs from LCFGs iscorrect. Given an XDGG′

constructed from an LCFGG, a nodev on DERI satisfiesG′ if:

1. v is a terminal node associated to a word by the node-word mapping.

2. v is a node with successorsv1, . . . ,vn (in that order):

a) if v is the root, it has no incoming edge, if it is not the root, its incoming edge isA

3This is also used as the starting point for the introduction of Lexicalised Configuration Grammars(LCGs) in
(Grabowski, Kuhlmann & Möhl 2005).

4We have slightly adapted McCawley’s conditions for CFG for LCFG.

69

5. Expressivity

b) if A is the start symbol of the underlying LCFG, the lexicon ofG′ contains the
ordered fragment (5.6), otherwise ifA is not the start symbol, the lexicon contains
the ordered fragment (5.7)

c) v is associated with the anchora of the fragment by the node-word mapping

d) the successorsvi (1≤ i ≤ n) have incoming edge labelBi (1≤ i ≤ n)

A DERI analysis is always an ordered tree by the Tree principle and the Projectivity principle.
A DERI analysis satisfiesG′ if all its nodes satisfyG′.

5.2. Going Beyond Context-Freeness

Now that we know that XDG is at least context-free, we show that it is also perfectly able to
handle languages which go beyond context-freeness. We begin with modeling the artificial
languageanbncn, and proceed with two classical non-context-free benchmarks for grammar
formalisms from natural language:cross-serial dependenciesandscrambling.

5.2.1. anbncn

The language of words formed by subsequent blocks ofas, bs andcs, is the prototypical
example of a non-context-free language. We call it ANBNCN.

Language 3(ANBNCN).

ANBNCN = {w∈ anbncn | n≥ 1} (5.12)

We model ANBNCN using two dimensions: Immediate Dominance (ID) and Linear Prece-
dence (LP). The purpose of theID dimension is to ensure that for eacha, there is precisely
oneb and precisely onec. The models onID are unordered trees, and the set of edge labels
is {a,b,c}. We relegate the ordering of the nodes to theLP dimension, whose models are or-
dered trees. More specifically,LP trees always have depth 1: the leftmosta is the root, which
orders all the remaining nodes to its right. The set of edge labels onLP is {1,2,3}, where1

corresponds toa, 2 to b and3 to c. We show an example analysis in Figure 5.3.
The grammar uses the Tree and Valency principles on bothID andLP. TheLP dimension in

addition makes use of the Order principle. Thus, the lexiconof the grammar can be described
using pairs of unordered and ordered fragments, where the unordered fragment specifies the
lexical attributes of the Valency principle onID, and the ordered fragment the lexical attributes
of the Valency principle and the Order principle onLP. We call the pairsfragment pairs.

We start with the fragment pairs for nodes associated with word a. We make such nodes
lexically ambiguous, behaving differently as a root and as adependent. As a root, they are

70

5. Expressivity

ID
1

a

2

a

3

b

4

b

5

c

6

c

a

b

b c

c

LP
1

a

2

a

3

b

4

b

5

c

6

c

1 2 2 3 3

Figure 5.3.:ID/LP analysis

constrained by the following fragment pair:

LP

ID

a↓

a

c!

b!
a?

3*

2*
1*

<1<2<3

(5.13)

This pair requires the node to be a root on bothID andLP as it does not license any incoming
edges. As for the outgoing edges, onID, it licenses at most one labeleda to the nexta, and
requires precisely one labeledb and one labeledc to ensure that there are equally manyas,bs
andcs. OnLP, it licenses arbitrary many outgoing edges labeled1 (for theas), 2 (for thebs)
and3 (for thecs). The root precedes all remainingas, which in turn precede allbs which in
turn precede allcs.

As a dependent, nodes with worda are constrained by the following fragment pair:

ID

a

a↓

LP

a!
c!

b!
a?

1! (5.14)

Here, onID andLP, a must have precisely one incoming edge labeleda and1, respectively.
That is, the node cannot be the root. OnID, the outgoing edges are constrained as in the root

71

5. Expressivity

fragment pair (5.13) above to ensure an equal number ofas, bs andcs. OnLP, it does not
license any outgoing edges. As a result, all nodes whose mother is not the root node onID
must find a new mother onLP, and this new mother can only be the roota, since it is the only
node onLP which licenses any outgoing edges.

For completeness, the fragment pairs forb andc are the following:

ID

LP

↓b

b

b!

2! (5.15)

↓

ID

LP

c

c

c!

3! (5.16)

On both ID and LP, they require precisely one incoming edge labeledb and2 (c and3 for
c). They do not license any outgoing edges, i.e., they must always be dependents of nodes
associated with worda.

Notice that this grammar could easily be extended to languages with any finite number of
letter blocks, e.g.anbncndnen etc., whereas interestingly, languages with more than fourblocks
cannot be modeled anymore using themildly context-sensitivegrammar formalisms of TAG
and CCG (Shanker & Weir 1994).

5.2.2. Cross-Serial Dependencies

Cross-serial dependencies occur e.g. in Dutch (Bresnan, Kaplan, Peters & Zaenen 1983) and
in Swiss German (Shieber 1985) subordinate sentences. The typical examples are so-called
hippo sentencessuch as the following Dutch example:

(omdat) ik Cecilia de nijlpaarden zag voeren
(that) I Cecilia the hippos saw feed

“(that) I saw Cecilia feed the hippos”
(5.17)

72

5. Expressivity

We show a dependency analysis of (5.17) in Figure 5.4. Here, the edge labeldet stands
for “determiner” andvbse for “infinitival complement in base form”. As can be seen, hippo
sentences are split into two parts:

1. The verbs on the right (here:zagandvoeren) make up the so-calledverb cluster. Here,
each verbal head must precede its verbal dependents, hence in the example,zagmust
precedevoeren.

2. The nominal dependents on the left make up the so-calledMittelfeld5. Here, each nom-
inal head must follow the nominal dependents of the verbs higher up, so e.g.nijlparden,
the object ofvoeren, must followik andCecilia, the subject and object ofzag, which is
the mother ofvoerenand thus situated higher up.

1

ik

2

Cecilia

3

de

4

nijlpaarden

5

zag

6

voeren

subj obj vbse

obj

det

Figure 5.4.: Dependency analysis for(omdat) ik Cecilia de nijlpaarden zag voeren

To show how this phenomenon scales up, we give another example:

(omdat) ik Cecilia Henk de nijlpaarden zag helpen voeren
(that) I Cecilia Henk the hippos saw help feed

“(that) I saw Cecilia help Henk feed the hippos”
(5.18)

of which we show a dependency analysis in Figure 5.5.

1

ik

2

Cecilia

3

Henk

3

de

4

nijlpaarden

5

zag

6

helpen

6

voeren

subj obj vbse

obj vbse

obj

det

Figure 5.5.: Dependency analysis for(omdat) ik Cecilia Henk de nijlpaarden zag helpen vo-
eren

The phenomenon gets its name from the series of crossing dependencies which it gives rise
to, e.g. in Figure 5.5, the edge fromhelpento Henk(crossing the projection edge ofzag) and
the edge fromvoerento de nijlpaarden(crossing that ofzagandhelpen).

Now for simplicity, we assume that each verb has exactly one nominal argument and model
cross-serial dependencies by the indexed language CSD.6

5The term is borrowed from German descriptive linguistics (Herling 1821), (Erdmann 1886).
6The indices are not part of the terminal alphabet, which is simply {n,v}.

73

5. Expressivity

Language 4(CSD).
CSD = {n[1] . . .n[k]v[1]...v[k] | k≥ 1} (5.19)

The string language of CSD is{nkvk | k ≥ 1}, i.e., k nouns followed byk verbs. Each
index (in superscript) pairs exactly onen and onev, reflecting that then is an argument of
thev. CSD is not context-free (Shieber 1985), but can be handled by mildly context-sensitive
grammar formalisms like TAG and CCG. In fact, cross-serial dependencies are one of the
primary reasons for the introduction of such grammar formalisms with a higher expressivity
than CFG.

In XDG, we model CSD using two dimensions,ID andLP, similarly as for ANBNCN: the
models ofID are unordered trees, whereas the models ofLP are ordered and projective trees.
On ID, we ensure that for each verb, there is a corresponding noun.On LP, we order the
nouns and verbs. For the verbs, we require that they follow the nouns and that verbal heads
precede their verbal dependents. For the nouns, we require the additional constraint that each
n-dependent of a verb nodev must follow then-dependents of the verbs abovev. We realize
this constraint by theCSD principle, where we instantiated with ID, and show an example
ID/LP analysis ofnnnvvvin Figure 5.6.

Principle 12 (CSD). Given a dimension d, the CSD principle is defined as:

csdd = ∀v,v′ :
v

n
−→d v′ ⇒∀v′′,v′′′ : v′′→+

d v∧v′′
n

−→d v′′′ ⇒ v′′′ < v′
(5.20)

ID
1

n

2

n

3

n

4

v

5

v

6

v

n v

n v

n

LP
1

n

2

n

3

n

4

v

5

v

6

v

1 1 1 2

2

Figure 5.6.:ID/LP analysis for stringnnnvvv(CSD grammar)

Contrary to ANBNCN, we need an additional constraint to synchronize the two dimensions.
Otherwise, the dominance relations of the verbs in the verb cluster onID are not preserved on
LP, giving rise to ill-formed analyses. An example is shown in Figure 5.7, where onID, the
second noun (node 2) is a dependent of the third verb (node 6),and not, as it should, of the
second verb (node 5). To rule out such analyses, we introducea new principle calledClimbing
principle, which postulates that the dominance relation onLP must be a subset of that onID.
In our grammar, we instantiated1 with LP andd2 with ID.

74

5. Expressivity

ID
1

n

2

n

3

n

4

v

5

v

6

v

n v

n

n v

LP
1

n

2

n

3

n

4

v

5

v

6

v

1 1 1 2

2

Figure 5.7.: Ill-formedID/LP analysis for stringnnnvvv(CSD grammar)

Principle 13 (Climbing). Given two dimensions d1 and d2, the Climbing principle is defined
as:

climbingd1,d2
= ∀v,v′ : v→+

d1
v′ ⇒ v→+

d2
v′ (5.21)

The principle gets its name from the metaphor that nodes, in this case the nouns, are allowed
to “climb up” from their position on dimensiond2 (here: ID) to a higher position ond1 (LP).
For example, in Figure 5.6, the third noun (node 3) climbs up as follows: it is a dependent of
the third verb (node 6) onID, and climbs up to become a dependent of the first verb (node 4)
on LP. Figure 5.7 is ruled out by the Climbing principle since the third verb (node 6) does not
climb up fromLP to ID, but migrates down to become a dependent of the second verb (node
5).

To sum up, the XDG for CSD makes use of the following principles:

• ID: Tree, Valency and CSD

• LP: Tree, Valency, Order

• ID andLP: Climbing

As for ANBNCN, we describe the lexical entries for the lexicalized Valency (onID andLP)
and Order principles (onLP only) by fragment pairs of an unordered fragment and an ordered
fragment. Verbs (wordv) are ambiguous between the following two lexical entries:

1. As a root, a verbv requires precisely one noun and at most one other verbal dependent
on ID. On LP, v licenses arbitrary many nominal dependents (edge label1) and at most
one verbal dependent (2), wherev must be positioned between the nominal dependents

75

5. Expressivity

on the left and the verbal dependent on the right:

v

v

ID

LP

↓

n! v?

2?1*

1< <2

(5.22)

2. As a dependent (with incoming edge labelv), a verb licenses the same outgoing edges
as a root onID. OnLP (incoming edge label2), it does not take any nominal dependents
but only at most one verbal dependent, which must follow the verb:

v

v

↓

ID

LP

v!

n! v?

2!

2?

<2

(5.23)

Nouns must be dependents with incoming edge labeln on ID and1 onLP, and do not license
any outgoing edges:

n

n

↓

LP

ID

n!

1!
(5.24)

5.2.3. Scrambling

Subordinate sentences in standard German have a similar structure as in Dutch, but there are
two differences:

76

5. Expressivity

1. The order of the verbs in the verb cluster is reversed: dependents precede their heads
instead of following them.

2. The nominal dependents can occur in any permutation.

Here is an example:

(dass) ein Mann Cecilia die Nilpferde füttern sah
(that) ein Mann Cecilia the hippos feed saw

“(that) a man saw Cecilia feed the hippos”
(5.25)

where interestingly, the other possible permutations of the nominal arguments in the Mittelfeld
are also grammatical (although some are marginal). We show adependency analysis of (5.25)
in Figure 5.8, and of one of its permutations in Figure 5.9.

1

ein

2

Mann

3

Cecilia

4

die

5

Nilpferde

6

füttern

7

sah

subj

det

obj vbse

obj

det

Figure 5.8.: Dependency analysis for(dass) ein Mann Cecilia die Nilpferde füttern sah

1

ein

2

Mann

4

die

5

Nilpferde

3

Cecilia

6

füttern

7

sah

subj

det

obj vbse

obj

det

Figure 5.9.: Dependency analysis for(dass) ein Mann die Nilpferde Cecilia füttern sah

If we ignore the different ordering of the verbs for simplicity and leave it as in the cross-
serial case (verbal dependents follow their heads), and assume that each verb has exactly one
overt nominal argument, we can model scrambling with the indexed language SCR taken from
(Becker, Rambow & Niv 1992).

Language 5(SCR).

SCR = {σ(n[1], . . . ,n[k])v[1]...v[k] | k≥ 1 andσ a permutation} (5.26)

The string language of SCR is the same as of CSD:{nkvk | k≥ 1}, and each index in SCR
again pairs exactly onen and onev, reflecting the fact thatn is an argument of thev.

For modeling SCR, we can reuse the same grammar as for CSD above, with the only ex-
ception that we leave out the CSD principle to free the order of the nominal arguments in the
Mittelfeld. Becker et al. (1992) prove that no formalism in the class ofLinear Context-Free
Rewriting Systems(LCFRS) (Weir 1988) can model SCR, where LCFRS includes TAG, CCG
and localMulti-Component TAG(MC-TAG) also introduced in (Weir 1988). So interestingly,
what we did was to remove a constraint from the grammar for CSD, which is included in the
LCFRS class, to get a grammar for SCR which is not included in LCFRS.

77

5. Expressivity

5.3. Summary

In this chapter, we have investigated the expressivity of XDG. We have proven that XDG is
more expressive than context-free grammar by first translating CFGs into equivalent XDGs,
and then showing that we can use XDG to model languages which go beyond context-freeness
(ANBNCN, CSD and SCR). The XDG grammars for the benchmarks languages CSD and
SCR demonstrated that XDG can handle complicated word orderphenomena in natural lan-
guage in an elegant way, which is substantiated by the elegant account of German word order
in (Duchier & Debusmann 2001) and (Debusmann 2001), extended in (Bader et al. 2004).
We have not found an upper bound to XDG’s expressivity, but conjecture that it is at least
mildly context-sensitive, i.e., that it at least includes TAG and CCG. Evidence for this is the
encoding of TAG into XDG proposed (but not proven) in (Debusmann, Duchier, Kuhlmann &
Thater 2004). We must leave a proof of this conjecture to future work.

78

6. Computational Complexity

After investigating the expressivity of XDG, we are interested in the price we have pay for
it in terms of computational complexity. Therefore, in thischapter, we will prove the lower
bound of the complexity of two kinds of recognition problems.

6.1. Recognition Problems

Following (Trautwein 1995), we distinguish two kinds of recognition problems: theuniversal
recognition problemand thefixed recognition problem.

Definition 24 (Universal Recognition Problem). Given a pair(G,s) where G is a grammar
and s a string, is s in L(G)?

Definition 25 (Fixed Recognition Problem). Let G be afixed grammar. Given a string s, is s
in L(G)?

6.2. Fixed Recognition Problem

We prove that the fixed membership problem is NP-hard by reduction of the NP-completeSAT

problem.

6.2.1. Satisfiability Problem

SAT is the problem of deciding whether a formula in propositional logic has an assignment
under which it evaluates to true.

Definition 26 (Propositional Formula).

f ::= X,Y,Z, . . . variable
| 0 false
| f1 ⇒ f2 implication

(6.1)

The reduction ofSAT proceeds as follows.

6.2.2. Input Preparation

In three steps, we transform the propositional formulaf into a strings which is suitable as an
input to the fixed recognition problem. We call the function performing these stepsprep. For
example, given the formula

(X ⇒ 0) ⇒Y (6.2)

79

6. Computational Complexity

the transformation is defined as:

1. We transform the formula into prefix notation:

⇒ ⇒ X 0Y (6.3)

2. A propositional formula can contain an arbitrary number of variables, yet the domain
of words of an XDG grammar must be finite. To overcome this limitation, we adopt
a unary encoding for the variables: we encode the first variable from the left of the
formula (here:X) asvar I, the second (here:Y) var I I etc. (6.3) then becomes:

⇒⇒ var I 0 var I I (6.4)

3. To clearly distinguish the input string from the originalpropositional formula, we re-
place all implication symbols with the wordimpl:

impl impl var I 0 var I I (6.5)

All three steps are polynomial.

6.2.3. Models

We model the structure of the propositional formula using a dimension calledPropositional
Logic (abbreviation:PL). The models onPL are ordered trees, which we enforce by the Tree
and Projectivity principles. For example, Figure 6.1 showsa PL analysis of (6.5). Here,
the edge labels arearg1 andarg2 for the antecedent and the consequent of an implication,
respectively, andbar for connecting the bars (wordI) of the unary variable encoding. Below
the words of the nodes, we display their attributes, which have the following type:

{

truth : B

bars : V

}

(6.6)

wheretruth represents the truth value of the node andbars the number of bars (nodes with
word I) below the node plus 1. For example, in Figure 6.1, thebarsvalue of node 3, which
has one bar (node 4) below it, is 2. Thebarsvalue of node 6, which has two bars (nodes 7
and 8) below it, is 3. The purpose of thebarsattribute will be to aid establishing coreferences
between variables. Its type isV for two reasons:

1. There are always less (or equally many) variables in a formula than nodes, since every
encoded formula contains less (or equally many) variables than words, and hence,V
always suffices to distinguish them.

2. We require the precedence predicate, which is only definedon the typeV, to implement
incrementation.

80

6. Computational Complexity

PL

1

impl
{

truth=1
bars=1

}

2

impl
{

truth=0
bars=1

}

3

var
{

truth=1
bars=2

}

4

I
{

truth=0
bars=1

}

5

0
{

truth=0
bars=1

}

6

var
{

truth=1
bars=3

}

7

I
{

truth=0
bars=2

}

8

I
{

truth=0
bars=1

}

arg1

arg1

bar

arg2

arg2

bar

bar

Figure 6.1.:PL analysis of the propositional formula(X ⇒ 0) ⇒Y

6.2.4. Ordered Fragments

PL is additionally constrained by the Valency principle and the Order principle. We describe
their lexical specifications with the following ordered fragments.

Implications. Implications, i.e., nodes with wordimpl, correspond to the following ordered
fragment:

↓

impl

PL

arg1?, arg2?

arg2!
arg1!

< arg1 < arg2

(6.7)

That is, an implication can have at most one incoming edge labeledarg1 or arg2. As for the
outgoing edges, an implication requires precisely one labeledarg1 and one labeledarg2 for its
own antecedent and consequent. The implication precedes its antecedent, and the antecedent
in turn precedes the consequent.

Zeros. Zeros are nodes with word0. They correspond to the following ordered fragment:

0

↓

PL

arg1?, arg2?

(6.8)

That is, a zero can either be the antecedent or the consequentof an implication, and must not
have any outgoing edges.

81

6. Computational Complexity

Variables. The following ordered fragment corresponds to variables, i.e., nodes with word
var:

var

↓

PL

< bar

bar!

arg1?, arg2?

(6.9)

That is, a variable can either be the antecedent or the consequent of an implication, and re-
quires precisely one outgoing edge labeledbar for the first bar below it. The variable must
precede itsbar-daughter.

Bars. Bars (nodes with wordI) correspond to the following ordered fragment:

PL

I

↓

bar?

bar!

< bar

(6.10)

That is, a bar must have an incoming edge labeledbar, and can have at most one outgoing
edge labeledbar. It must precede this potentialbar-daughter.

6.2.5. Attributes

In this section, we constrain the attributes onPL, i.e., truth andbars. We capture these con-
straints using XDG predicates.

Roots. The truth value of the root of aPL analysis corresponds to the truth value of the
analyzed formula. Thus, to model an assignment that evaluates to true, we must ensure that
the truth attribute of the root node has value 1. We express this constraint in XDG with the
following predicate:

plRoots= ∀v :
¬∃v′ : v′→PL v ⇒ (PL v).truth

.
= 1

(6.11)

Implications. The truth value of implications equals the implication of the truth value of
its arg1-daughter (the antecedent) and itsarg2-daughter (the consequent). Thebarsvalue is
irrelevant and hence we can pick an arbitrary value and set itto 1:

plImpls= ∀v,v′,v′′ :

(v
arg1
−→PL v′∧v

arg2
−→PL v′′ ⇒

(PL v).truth
.
= ((PL v′).truth⇒ (PL v′′).truth)) ∧

(PL v).bars
.
= 1

(6.12)

82

6. Computational Complexity

Zeros. The truth value of a zero is 0. Theirbarsvalue is irrelevant, i.e., we can arbitrarily
set it to 1:

plZeros= ∀v :
(W v)

.
= 0⇒

(PL v).truth
.
= 0 ∧

(PL v).bars
.
= 1

(6.13)

Variables. The truth value of variables cannot be constrained a priori. Theirbarsvalue is
the same as that of theirbar daughter.

plVars= ∀v,v′ :
(W v)

.
= var⇒

v
bar
−→PL v′ ⇒ (PL v).bars

.
= (PL v′).bars

(6.14)

Bars. The truth value of bars (wordI) is irrelevant, and hence we can safely set it to an
arbitrary value, here: 0. Theirbars value is either 1 for the leaf bars (which do not have a
daughter), or else thebarsvalue of its daughter plus one:

plBars= ∀v :
(W v)

.
= I ⇒

(PL v).truth
.
= 0 ∧

¬∃v′ : v→PL v′ ⇒ (PL v).bars
.
= 1 ∧

(∀v′ : v
bar
−→PL v′ ⇒ (PL v′).bars< (PL v).bars∧

¬∃v′′ : (PL v′).bars< v′′∧v′′ < (PL v).bars)

(6.15)

Notice that the latter constraint actually increments the bar value, even though XDG does not
provide us with any direct means to do that. The trick is to emulate incrementing using the
precedence predicate.

6.2.6. Coreference

We can now establish coreferences between the variable occurrences. To this end, we stipulate
that for each pair of variables (i.e., nodesv andv′, both with wordvar) that if they have the
samebarsvalues, then their truth values must also be the same:

plCoref = ∀v,v′ :
(W v)

.
= var∧ (W v′)

.
= var⇒

(PL v).bars
.
= (PL v′).bars⇒ (PL v).truth

.
= (PL v′).truth

(6.16)

6.2.7. PL Principle

ThePL principleties the predicates defined in section 6.2.5 and section 6.2.6 together.

Principle 14 (PL).

pl = plRoots∧plImpls∧plZeros∧plVariables∧plBars∧plCoref (6.17)

83

6. Computational Complexity

6.2.8. Proof

Now we have gathered all the necessary ingredients for our NP-hardness proof.

Proof. Given a formulaf according to definition 26 and the XDG grammarG defined in
sections 6.2.3–6.2.7,f is satisfiable if and only ifprep f ∈ L(G). That is,SAT is reducible to
the fixed recognition problem for XDG. As the reduction is polynomial, the fixed recognition
problem for XDG is NP-hard.

6.3. Universal Recognition Problem

The proof that the universal recognition problem is NP-hardas well falls out of the previous
result.

Proof. The fixed recognition problem is an instance of the universalrecognition problem
where the grammarG is fixed. Hence, the universal recognition problem is at least as dif-
ficult as the fixed recognition problem, and as the latter is NP-hard, the universal recognition
problem must also be NP-hard.

A similar result has been obtained in (Koller & Striegnitz 2002), where they prove that the
universal recognition problem for TDG, an instance of XDG, is NP-complete.

6.4. Summary

We have proven a lower bound for the complexity of the two kinds of recognition problems
(fixed and universal) for XDG. Both are NP-hard. If we restrict the principles to the first order
fragment of XDG, as is the case for all principles used in thisthesis, the upper bound of model
checking and thus of XDG recognition is in PSPACE. If we restrict ourselves to principles
which can be tested in polynomial time, the overall complexity of the XDG recognition prob-
lems is NP-complete. For the principles used in this thesis,this is certainly the case, as we
have implemented all of them as polynomially testable constraints in Mozart/Oz. We cannot
see applications of XDG to natural language where this wouldnot be the case. With even
stronger restrictions, we hope that we can bring down the complexity to be polynomial, as
e.g. for the grammar formalisms of TAG and CCG. We must leave finding these restrictions to
future research.

84

Part II.

Implementation

85

7. The XDK—A Development Kit for
XDG

We turn to the implementation of XDG, the XDG Development Kit(XDK) (Debusmann &
Duchier 2006). In this chapter, we introduce its architecture and the XDK description lan-
guage, which serves as a metagrammar for the description of grammars.

7.1. Architecture

The XDK consists of three main modules: themetagrammar compiler, theconstraint parser
and thevisualizer, which are held together by the XDK description language andthe lattice
functors. This is illustrated in Figure 7.1.

(SL −> File)

Pickler

Encoder

(IL −> SL)Type Checker

(IL)

Converters

(UL <− IL −> XML)

Parsers

(UL −> IL <− XML)

encode
top

bot
glb

Model Creator

(SL)

Principle Library Search Engines
select

makeVar

pretty

decode

Output LibraryOutput Preparer

(IL <− SL −> OL)

Visualizer

Metagrammar Compiler

Constraint Parser Lattice Functors

Figure 7.1.: Architecture of the XDK

7.1.1. Metagrammar Compiler

The purpose of the metagrammar compiler is to transform grammars in one of three supported
concrete input syntaxes of the XDK description language into theSolver Language(SL) for

86

7. A Development Kit for XDG

further processing in the constraint parser. The three syntaxes are:

• theUser Language(UL), a custom syntax for handcrafted grammar development

• the XML Language(XML), based on XML, for automated grammar development in
general

• the Intermediate Language(IL), based on Mozart/Oz syntax, for automated grammar
development in Mozart/Oz, and for internal use in the XDK

For example, we show the definition of the lexical class"fin", repeated from (2.11), in
UL syntax in Figure 7.2, in XML syntax in Figure 7.3, and in IL syntax in Figure 7.4. The
examples clearly show that contrary to the UL, due to their verbosity, the XML and IL syntaxes
are not usable for writing grammars by hand—they are insteadgeared towards automated
grammar development.

defclass "fin" Word Agrs {
dim lex {word: Word}
dim syn {in: {root?}

out: {subj!}
order: <subj "^" obj vinf adv>
agrs: Agrs
agree: {subj}}}

Figure 7.2.: Lexical class"fin" in UL syntax

The XDK implements parsers for UL and XML grammars into IL syntax for further internal
use in the XDK, and converters to transform grammars from IL into either UL or XML syntax.
The type checker performs static type checking on IL grammars for precise and early error
detection, and the encoder encodes type checked IL grammarsinto the SL. Using the pickler,
compiled SL grammars can be written into files. A detailed presentation of the metagrammar
compiler can be found in appendix B.

7.1.2. Constraint Parser

Given a compiled SL grammar and an input string, themodel creatorof the constraint parser
sets up a CSP, and augments it with the principles used in the grammar, which are taken
from the extensibleprinciple library of predefined principles. Constraint parsing amounts to
searching for solutions of the CSP using one of thesearch enginesof Mozart/Oz, e.g. the
Oz Explorer(Schulte 1997), displayed in Figure 2.7, orIOzSeF(Tack 2002). The constraint
parser will be explained in detail in chapter 8.

7.1.3. Visualizer

The visualizer transforms solutions (also partial ones) from the constraint parser into IL or
Output Language(OL) syntax using theoutput preparer. The extensibleoutput librarypro-
vides functionality for actually visualizing the solutions, e.g. by displaying them as IL or OL
terms, graphically using Tcl/Tk (as displayed in Figure 2.8), or by generating LATEX code for
them. We present the visualizer in detail in appendix C.

87

7. A Development Kit for XDG

<classDef id="fin">
<variable data="Word"/>
<variable data="Agrs"/>
<classConj>

<classDimension idref="lex">
<record>

<feature data="word">
<variable data="Word"/>

</feature>
</record>

</classDimension>
<classDimension idref="syn">

<record>
<feature data="in">

<set>
<constantCard data="root" card="opt"/>

</set>
</feature>
<feature data="out">

<set>
<constantCard data="subj" card="one"/>

</set>
</feature>
<feature data="order">

<order>
<constant data="subj"/>
<constant data="^"/>
<constant data="obj"/>
<constant data="vinf"/>
<constant data="adv"/>

</order>
</feature>
<feature data="agrs">

<variable data="Agrs"/>
</feature>
<feature data="agree">

<set>
<constant data="subj"/>

</set>
</feature>

</record>
</classDimension>

</classConj>
</classDef>

Figure 7.3.: Lexical class"fin" in XML syntax

7.1.4. Lattice Functors

Lattice functors are Abstract Data Types (ADTs) corresponding to the types of the XDK de-
scription language. They include methods to obtain latticetop (top), lattice bottom (bot) and
greatest lower bound (glb) of a type, methods to encode IL into SL syntax (encode), and
to convert SL into IL (decode) or OL syntax (pretty). The lattice operations and the en-
code method are used in the metagrammar compiler, and the decode and pretty methods in the
visualizer. The constraint parser makes use of the additional methods for the creation of con-
straint variables (makeVar) and for the efficient selection of values from a set of alternatives
(select). The lattice functors are explained in detail in appendix A.

7.2. The XDK Description Language

The XDK is controlled by the XDK description language used for:

1. writing metagrammars:

88

7. A Development Kit for XDG

elem(tag:classdef
id:elem(tag:constant

data:’fin’)
vars:[elem(tag:variable

data:’Word’)
elem(tag:variable

data:’Agrs’)]
body:elem(tag:conj

args:[elem(tag:’class.dimension’
idref:elem(tag:constant

data:’lex’)
arg:elem(tag:record

args:[elem(tag:constant
data:’word’)#

elem(tag:variable
data:’Word’)]))

elem(tag:’class.dimension’
idref:elem(tag:constant

data:’syn’)
arg:elem(tag:record

args:[elem(tag:constant
data:’in’)#

elem(tag:set
args:[elem(tag:constant

data:’root’)#
elem(tag:’card.wild’

arg:’?’)])
elem(tag:constant

data:’out’)#
elem(tag:set

args:[elem(tag:constant
data:’subj’)#

elem(tag:’card.wild’
arg:’!’)])

elem(tag:constant
data:’order’)#

elem(tag:order
args:[elem(tag:constant

data:’subj’)
elem(tag:constant

data:’^’)
elem(tag:constant

data:’obj’)
elem(tag:constant

data:’vinf’)
elem(tag:constant

data:’adv’)])
elem(tag:constant

data:’agrs’)#
elem(tag:variable

data:’Agrs’)
elem(tag:constant

data:’agree’)#
elem(tag:set

args:[elem(tag:constant
data:’subj’)])]))]))

Figure 7.4.: Lexical class"fin" in IL syntax

• metagrammar type definitions

• lexicon description

• principle instantiations

2. writing principles: principle type definitions

3. modeling multigraphs

We will develop the XDK description language using the UL concrete syntax for clarity.

89

7. A Development Kit for XDG

7.2.1. Types

We begin by defining the types of the XDK description language, and showing how they are
applied in the type definitions of metagrammars and principle definitions.

Definition 27 (Types). Given a setA of atoms,DV of dimension variables, andTV of type
variables, we define the typesTy of the XDK description language as follows:

a ∈ A

D ∈ DV

X ∈ TV

T ∈ Ty ::= {a1 . . .an} finite domain(n≥ 0)
| string string
| int integer
| list(T) list
| tuple(T1 . . .Tn) tuple(n≥ 0)
| {a1 : T1 . . .an : Tn} record(n≥ 0)
| set(T) set(accumulative lattice)
| iset(T) set(intersective lattice)
| card cardinality
| label(D) edge labels
| tv(X) type variable

(7.1)

Contrary to the types of XDG defined in section 3.2.1, the types of the XDK description lan-
guage do not include functions, nor do they include types forbooleans and nodes. In addition
to the types of XDG, they include types for strings, integers, lists, tuples, three types of sets
(set(T), iset(T), card)1, edge labels and type variables. That is, the XDK description lan-
guage is only equipped for the description of data. Functions, and hence also principles cannot
be expressed. This is a deliberate design decision: we thinkthat a grammar writer should not
be bothered with the non-trivial issues surrounding the development of new principles using
Mozart/Oz constraint programming, but should instead justpick them out from a library of
predefined ones. Thus, the XDK is designed as a “toolkit” for grammar development, where
the predefined principles act as “building blocks”. Since the library is extensible, it can still
be augmented by new principles if this is really needed.

Definition 28 (Notational Conveniences for Types). We introduce notational conveniences
for:

• unions:
{a1 . . .ak}|{ak+1 . . .an}

def
= {a1 . . .an} (7.2)

for 0≤ k≤ n

• vectors:
vec({a1 . . .an} T)

def
= {a1 : T . . .an : T} (7.3)

for n≥ 0

1As shown in appendix A, each type corresponds to a lattice. The three types do not differ on the level of types,
but only in the lattices that correspond to them.

90

7. A Development Kit for XDG

• valencies:
valency(T)

def
= map(T card) (7.4)

Definition 29 (Interpretation of Types). Given a setA of atoms andD of dimensions, we inter-
pret the types as follows:

• {a1 . . .an} as the set{a1, . . . ,an}⊎{⊤,⊥}, where⊤ and⊥ are added to act as top and
bottom of the lattice corresponding to the type

• string as the set of all atoms plus⊤ and ⊥: A⊎ {⊤,⊥}, i.e., the interpretation of
strings can be infinite (ifA is infinite), contrary to the interpretation of finite domains

• int as the set of all integers plus⊤ and⊥

• list(T) for all n > 0 as the set of all n-tuples whose projections are elements of the
interpretation ofT, plus⊤ and⊥

• set(T) andiset(T) as the power set of the interpretation ofT

• card as the power set of the set of integers

• tuple(T1 . . .Tn) as the set of alln-tuples whoseith projection is an element of the
interpretation ofTi (for 1≤ i≤ n)

• {a1 : T1 . . .an : Tn} as the set of all functions f with:

1. Dom f= {a1, . . . ,an}

2. for all 1≤ i≤ n, f ai is an element of the interpretation ofTi

• label(D) as, given a binding of dimension variableD to dimension d, the type of edge
labels on d.

• tv(X) as, given a binding of type variableX to typeT, the interpretation ofT.

where thelabel(D) andtv(X) can only be used in principle type definitions, not in metagram-
mar type definitions.

Metagrammar Type Definitions. In the metagrammar type definitions, we use the types
to specify for each dimension the types of edge labels (deflabeltype), lexical attributes
(defentrytype) and non-lexical attributes (defattrstype). For convenience, in the meta-
grammar type definitions, a typeT can be nameda by writing:

deftype a T (7.5)

91

7. A Development Kit for XDG

The type can be referenced by just writinga. An example metagrammar type definition is
shown below, repeated from (2.8):

deftype "syn.label" {root subj part obj vinf adv}
deftype "syn.label1" "syn.label" | {"^"}
deftype "syn.person" {"1" "2" "3"}
deftype "syn.number" {sg pl}
deftype "syn.agr" tuple("syn.person" "syn.number")

deflabeltype "syn.label"
defentrytype {in: valency("syn.label")

out: valency("syn.label")
order: set(tuple("syn.label1" "syn.label1"))
agrs: iset("syn.agr")
agree: set("syn.label")}

defattrstype {agr: "syn.agr"}

(7.6)

Principle Type Definitions. Each principle in the XDK principle library is accompanied
with aprinciple definition. As principles are parametrized, principle definitions specify among
other things described in chapter 8 below, the dimensions, the arguments and the types of the
arguments that the principle abstracts over (principle type definition). For example, consider
the following definition of the Valency principle (cf. principle 6 in chapter 4):

defprinciple "principle.valency" {
dims {D}
...
args {In: valency(label(D))

Out: valency(label(D))}
...}

(7.7)

The principle abstracts over one dimension with thedimension variableD. It has two argu-
ments, represented by theargument variablesIn andOut. The type of the two arguments is
given by the expressionvalency(label(D)), which denotes a valency over the edge labels on
the dimension denoted by dimension variableD.

As another example, consider the following definition of theAgreement principle (cf. prin-
ciple 9 in chapter 4):

defprinciple "principle.agreement" {
dims {D}
args {Agr1: tv(X)

Agr2: tv(X)
Agree: set(label(D))}

...}

(7.8)

It abstracts over dimensionD and has the three argumentsAgr1, Agr2 andAgree. The type of
Agr1 is not known beforehand—the only known fact is that it has thesame type asAgr2. This
is expressed using the same type variabletv(X) for bothAgr1 andAgr2.

7.2.2. Terms

In this section, we define the terms of the XDK description language and show how to apply
them for the description of the lexicon and for the instantiation of principles.

92

7. A Development Kit for XDG

Definition 30 (Terms). Given a setA of atoms, a setN of integers and a setV of variables, the
termsTe of the XDK description language are defined as follows:

a ∈ A

i ∈ N

v ∈ V

t ∈ Te ::= a atom
| i positive integer
| {t1 . . .tn} set
| {i1 . . .in . . .} infinite set of integers
| [t1 . . .tn] list or tuple
| v variable
| {a1 : t1 . . .an : tn} record specification
| {:} empty record
| c cardinality
| {a1 c1 . . .an cn} valency
| top lattice top
| bot lattice bottom
| t1& t2 lattice greatest lower bound
| t1 |t2 alternation
| $ g set generator
| 〈t1 . . .tn〉 order
| t1@t2 concatenation
| p feature path
| t :: T type annotation
| (t) brackets

(7.9)

Cardinalities are a special syntax to describe sets of integers:

c ::= ! precisely one({1})
| ? zero or one({0 1})
| ∗ zero or more({0 1 2 . . .})
| + one or more({1 2 . . .})
| #{i1 . . .in} set({i1 . . . in})
| #[i1 i2] interval ({i1 . . . i2})

(7.10)

Set generatorsdescribe sets of tuples whose projections are finite domain types:

g ::= a atom
| g1& g2 conjunction
| g1 |g2 disjunction
| (g) brackets

(7.11)

Feature pathsdenote paths to the lexical or non-lexical attributes of a node:

p ::= _.D.entry.a1.an lexical feature path (daughters)
| ∧.D.entry.a1.an lexical feature path (mothers)
| _.D.attrs.a1.an non-lexical feature path (daughters)
| ∧.D.attrs.a1.an non-lexical feature path (mothers)

(7.12)

In addition to the usual expressions (atoms, integers, setsetc.), the terms of the XDK de-
scription language include a number of extensions:

93

7. A Development Kit for XDG

• variables, which will be used for abstraction in the lexicon description

• record specifications, which allow to specify records partially by omitting any number
of attributes. Upon interpreting the terms, the omitted attributes are set to the default
value of the respective type, defined by the top value of its corresponding lattice (see
appendix A). For example, given the following record type:

{ in: set({subj obj})
out: set({subj obj}) } (7.13)

The record specification{out : {subj}} represents the following record:

{ in: top
out: {subj} } (7.14)

wheretop of the typeset({subj obj}) stands for the empty set, and thus (7.14) for:

{ in: {}
out: {subj} } (7.15)

• cardinalities and valencies, which are notational conveniences for sets of integers and
for records whose values are cardinalities, allowing to abbreviate for instance:

{ subj: {1} obj: {1} adv: {0 1 2 ...} } (7.16)

as:
{ subj! obj! adv* } (7.17)

• lattice operations (top, bot, &)

• alternations:t1 |t2 stands for the non-deterministic choice “eithert1 or t2”

• set generators for economically describing sets of agreement tuples (cf. section 4.6). For
example, the set generator $sg, whose type must be any set of tuples of domains where
one of the projections includessg, e.g.:

set(tuple({"1" "2" "3"} {sg pl})) (7.18)

denotes the set of tuples withsg at their second projection, i.e.:

{ ["1" sg] ["2" sg] ["3" sg] } (7.19)

and the set generator $("1" |"3")& sg denotes the set of tuples with either"1" or"3"
at their first projection andsg at their second:

{ ["1" sg] ["3" sg] } (7.20)

94

7. A Development Kit for XDG

• orders to abbreviate sets of tuples which represent strictpartial orders, e.g.:

<subj "^" obj vinf adv> (7.21)

abbreviates the following set:

{ [subj "^"] [subj obj] [subj vinf] [subj adv]
["^" obj] ["^" vinf] ["^" adv]
[obj vinf] [obj adv] [vinf adv] }

(7.22)

• concatenations of atoms of typestring

• lexical and non-lexical feature paths to access the lexical and non-lexical attributes of
a node. As feature paths must be dynamically resolved duringparsing, they can only
be used in principle instantiations but not in the lexicon description, which must be
completely static. We will give examples for feature paths below.

• type annotations to annotate terms with types

For the constraint parser, we will transform most of these extensions intocore termsin the
interpretation step of the encoder of the lattice functors (appendix A).

Definition 31 (Core Terms). Given a setA of atoms and a setN of integers, the termsCTe of
the XDK description language are defined as follows:

a ∈ A

i ∈ N

t ∈ Te ::= a atom
| i positive integer
| {t1 . . .tn} set
| {i1 . . .in . . .} infinite set of integers
| [t1 . . .tn] list or tuple
| {a1 : t1 . . .an : tn} totally specified record
| p feature path

(7.23)

wherep is defined as above in (7.12).

Lexicon Description. The terms of the XDK description language are mainly used forthe
lexicon description of metagrammars, where the lexicon is described usinglexical classes. A
lexical class is a representation of a set of lexical entries, and can additionally abstract over
any number of variables, making them similar to templates inother grammar formalisms such
as PATR-II (Shieber 1984) and LFG.

In the lexicon description, we distinguish betweenlexical class definitions, where a lexical
class is named and the variables it abstracts over are defined, and lexical classes per se.

Definition 32 (Lexical Class Definitions). Given a set of atomsA and a set of variablesV,
a lexical classl nameda ∈ A and abstracting over variablesv1 . . .vn ∈ V in l is defined as
follows:

defclass a v1 . . .vn {l} (7.24)

95

7. A Development Kit for XDG

Definition 33 (Lexical Classes). Given a setA of atoms andV of variables, a lexical class is
defined as follows:

a ∈ A

v ∈ V

l ::= dim a t dimension specification
| a {v1 : t1 . . .vn : tn} class reference
| l1& l2 greatest lower bound
| l1 |l2 alternation

(7.25)

where the ampersand for greatest lower bound can be omitted for convenience.

A dimension specificationdim a t stands for the record specification{a : t}, which de-
scribes the lexical attributes for dimensiona. A class referencea {v1 : t1 . . .vn : tn} refers
to the lexical class definitiondefclass a v1 . . .vn {l} with the same namea, and represents
lt1/v1...tn/vn, i.e., the result of substituting each variablevi in l by the termti for 0≤ i≤ n.
Greatest lower bound and alternation are lattice operations as for terms.

After defining the lexical classes describing the lexicon, lexical entries must be explicitly
generated by writing, given a lexical classl:

defentry {l} (7.26)

This generates all lexical entries described byl.
Here is an example. We first define the lexical classes"verb", "intrans", "trans" and

"fin", repeated from (2.12), (2.13), (2.14) and (2.11):

defclass "verb" {
dim syn {out: {adv*}}
dim sem {in: {root! th*}}}

(7.27)

defclass "intrans" {
dim sem {out: {ag!}}
dim synsem {arg: {ag: {subj}}}}

(7.28)

defclass "trans" {
"intrans"
dim syn {out: {obj!}}
dim sem {out: {pat!}}
dim synsem {arg: {pat: {obj}}}}

(7.29)

defclass "fin" Word Agrs {
dim lex {word: Word}
dim syn {in: {root?}

out: {subj!}
order: <subj "^" obj vinf adv>
agrs: Agrs
agree: {subj}}}

(7.30)

where the possibility of partially specifying records is heavily used, e.g., only theout attribute
of thesyn dimension is specified in (7.27). Then, we explicitly generate the lexical entries for
the wordeatby making use of the classes:

defentry {
"verb"
("intrans" | "trans")
"fin" {Word: "eat"

Agrs: $ (("1"|"2") | ("3" & sg))}}

(7.31)

96

7. A Development Kit for XDG

This results in the two lexical entries shown below, one intransitive (using the lexical class
"intrans") and one transitive ("trans"):

dim lex {word: "eat"}
dim syn {in: {root?}

out: {subj! adv*}
order: <subj "^" obj vinf adv>
agrs: $ (("1"|"2") | ("3" & sg))
agree: {subj}}

dim sem {in: {root! th*}
out: {ag!}}

dim synsem {arg: {ag: {subj}}}

(7.32)

dim lex {word: "eat"}
dim syn {in: {root?}

out: {subj! obj! adv*}
order: <subj "^" obj vinf adv>
agrs: $ (("1"|"2") | ("3" & sg))
agree: {subj}}

dim sem {in: {root! th*}
out: {ag! pat!}}

dim synsem {arg: {ag: {subj}
pat: {obj}}}

(7.33)

where (7.33), for example, represents the following core term, where the valencies and cardi-
nalities (in andout attributes), orders (order) and set generators (agrs) are compiled out:

{lex: {word: "eat"}
syn: {in: {root: {0 1}}

out: {subj: {1} obj: {1} adv: {0 1 2 ...}}
order: {[subj "^"] [subj obj] [subj vinf] [subj adv]

["^" obj] ["^" vinf] ["^" adv]
[obj vinf] [obj adv] [vinf adv]}

agrs: {["1" sg] ["2" sg] ["1" pl] ["2" pl] ["3" pl]}
agree: {subj}}

sem: {in: {root: {1} th: {0 1 2 ...}}
out: {ag: {1} pat: {1}}}

synsem: {arg: {ag: {subj}
pat: {obj}}}}

(7.34)

Principle Instantiations. The second use of the terms of the XDK description language is
in principle instantiations. Upon instantiation, a principle binds the dimension variables of its
principle definitions to actual dimensions, and the argument variables to terms. For example,
here is an instantiation of the Valency principle, which wasdefined in (7.7):

useprinciple "principle.valency" {
dims {D: syn}
args {In: {root?}

Out: {subj! adv*}}
...}

(7.35)

where the dimension variableD is bound to dimensionsyn, and the argument variablesIn and
Out to valencies. As theIn andOut arguments are interpreted for all nodes, this principle
instantiation stipulates that all nodes have the same licensed incoming and outgoing edges.

Clearly, this is not what we generally want. Instead, what wewant is a lexicalized instanti-
ation of the Valency principle, where the licensed incomingand outgoing edges are specified

97

7. A Development Kit for XDG

by the lexical entry of each node. This is precisely the purpose of the lexical feature paths in
the following principle instantiation:

useprinciple "principle.valency" {
dims {D: syn}
args {In: _.D.entry.in

Out: _.D.entry.out}
...}

(7.36)

where the feature path _.D.entry.in represents lexical attributein, and _.D.entry.out the
lexical attributeout on the dimension represented by dimension variableD, i.e.,syn.

For principles which quantify over edges instead of nodes, the feature paths need to distin-
guish the mother of the edge from the daughter. For example, here is the instantiation of the
Agreement principle, where for each edge, the value ofAgr1 is determined by the non-lexical
attributeagr of the mother (∧), andAgr2 by the value ofagr of the daughter (_).Agree is not
lexicalized and set to{subj}:

useprinciple "principle.agreement" {
dims {D: syn}
args {Agr1: ^.D.attrs.agr

Agr2: _.D.attrs.agr
Agree: {subj}}

...}

(7.37)

7.3. Summary

In this chapter, we have presented the overall architectureof the XDK and then turned our
attention to the XDK description language. We put its types to use in the type definitions of
metagrammars and principle definitions, and then its terms in the lexicon description and the
instantiation of principles.

98

8. Constraint Parser

This chapter describes the constraint parser, which is at the heart of the XDK, as can be seen
in Figure 8.1. We show how multigraphs can be modeled in termsof finite sets of integers,
and how this idea is implemented in the actual constraint parser and the principles of the XDK
principle library. After a short excursion to generation, we close by discussing the runtime of
the parser.

Converters

(UL <− IL −> XML) Type Checker

(IL)

Encoder

(IL −> SL)

(SL −> File)

Pickler

Output Preparer

Model Creator

(SL)

Principle Library Search Engines
select

makeVar

Parsers

(UL −> IL <− XML)

(IL <− SL −> OL)

Output Library

decode

pretty

bot
top

encode

glb

Metagrammar Compiler

Constraint Parser

Visualizer

Lattice Functors

Figure 8.1.: The constraint parser in the XDK architecture

8.1. Modeling Multigraphs

The XDK constraint parser is based on the idea of modeling multigraphs in terms offinite sets
of integers, and making use of the support forfinite set constraint programmingimplemented
in Mozart/Oz (Schulte 2002). We begin by showing how to modelindividual dependency
graphs, how to add attributes, and how to extend the modelingto multigraphs.

99

8. Constraint Parser

8.1.1. Modeling Dependency Graphs

A dependency graph is a labeled directed graph whose nodes are identified by indices and
words, as in the example dependency graph for the sentencePeter eats todaybelow:

1

Peter

2

eats

3

today

4

.

root

subj adv
(8.1)

The graph consists of four nodes, including the additional fourth node for the full stop, which
is connected to the actual root of the analysis (the finite verb eats) by an edge labeledroot. eat
has two daughters: the subjectPeterand the adverbtoday.

We model graphs using sets of records, one for each node. Eachnode contains a represen-
tation of its outgoing edges indaughter sets. For example, the second node (eats) corresponds
to the record below:

index= 2
word = eats

nodeSet= {1,2,3,4}

model=

daughtersL=

adv = {3}
root = {}
subj = {1}

(8.2)

where the attributeindexrepresents the index of the node, andword the word. nodeSetrep-
resents the entire set of nodes of the graph. Given an edge label, the daughter sets (attribute
daughtersLin themodelsubrecord) denote the sets of indices of the daughters with that edge
label. In the example, the set ofadv daughters of node 2 contains node 3, the set ofroot

daughters is empty, and the set ofsubj daughters contains node 1. Using Mozart/Oz syntax in
form of theSolver Language(SL), we can represent (8.2) as the following record callednode
record:

o(index: 2
word: eats
nodeSet: {1 2 3 4}#4
model: o(daughtersL: o(adv: {3}#1

root: {}#0
subj: {1}#1)))

(8.3)

where theos are dummy record labels required because each record in Oz must be labeled,
and sets are represented together with their cardinality: e.g.{3}#1 stands for the set{3} with
cardinality 1.

In practice, the XDK constraint parser makes use of many moresets, mainly to ease the
statement of constraints and to improve constraint propagation. The sets are determined by
the freely extensible and also replaceableGraph principlefrom the XDK principle library.1

The current version of the Graph principle makes use of the following sets, given a nodev:

1The existence of the Graph principle in the principle library is one of the few divergences of the XDK from
the formalization of XDG in part I: in XDG, graphs were hardwired into the formalization. In the XDK, they
are modularized into a principle, such that its implementation can easily be replaced, e.g. by a more efficient
one.

100

8. Constraint Parser

• mothers: the set of mothers ofv

• daughters: the set of daughters ofv

• up: the set of nodes abovev

• down: the set of nodes belowv

• eq: the set of nodes including onlyv itself

• equp: the set of nodes equal or abovev

• eqdown: the set of nodes equal or belowv

• labels: the set of edge labels of the incoming edges ofv

• mothersL: the set of mothers ofv sorted according to their edge label

• daughtersL: the set of daughters ofv sorted according to their edge label

• upL: the set of nodes abovev sorted according to their edge label when enteringv

• downL the set of nodes belowv sorted according to their edge label when emanatingv

For node 2 in (8.1), these sets are instantiated as follows:

o(index: 2
word: eats
nodeSet: {1 2 3 4}#4
model: o(mothers: {4}#1

daughters: {1 3}#2
up: {4}#1
down: {1 3}#2
index: 2
eq: {2}#1
equp: {2 4}#2
eqdown: {1 2 3}#3
labels: {5}#1
mothersL: o(adv: {}#0

root: {4}#1
subj: {}#0)

daughtersL: o(adv: {3}#1
root: {}#0
subj: {1}#1)

upL: o(adv: {}#0
root: {4}#1
subj: {}#0)

downL: o(adv: {3}#1
root: {}#0
subj: {1}#1)))

(8.4)

where the labels in the setlabels are encoded as described in section A.1. Here, the edge
labelroot is represented by the integer5.

101

8. Constraint Parser

1

Mary

lex =

in = {subj?,obj?}
out = {}

order = {}
agrs= {(3,sg)}

agree= {}

agr = (3,sg)

2

eats

lex =

in = {root?}
out = {subj!,adv∗}

order = {(subj,↑),(subj,adv),(↑,adv)}
agrs= {(3,sg)}

agree= {subj}

agr = (3,sg)

3

today

lex =

in = {adv?}
out = {}

order = {}
agrs= Agr

agree= {}

agr = (1,sg)

4

.

lex =

in = {}
out = {root!}

order = {(root,Anc)}
agrs= Agr

agree= {}

agr = (1,sg)

root

subj adv

lex=

in = {root?}
out= {subj!,adv∗}

order= {(subj,↑),(subj,adv),(↑,adv)}
agrs= {(3,sg)}

agree= {subj}

agr = (3,sg)

Figure 8.2.: Dependency graph with attributes

8.1.2. Modeling Attributes

In the next step, we extend our modeling of dependency graphswith attributes, as in Figure 8.2,
where we display the graph (8.1) with attributes and highlight the attributes of node 2.

We model attributes using theattrs subrecord representing the non-lexical attributes, and
theentry subrecord representing the lexical attributes. For example, the record corresponding
to node 2 then becomes:2

o(index: 2
word: eats
nodeSet: {1 2 3 4}#4
entryIndex: 1
model: o(daughtersL: o(adv: {3}#1

root: {}#0
subj: {1}#1))

attrs: o(agr: 6)
entry: o(’in’: o(adv: {0}#1

root: {0 1}#2
subj: {0}#1)

out: o(adv: {0 1 2 3}#4
root: {0}#1
subj: {1}#1)

order: {2 36 37}#3
agrs: {6}#1
agree: {6}#1))

(8.5)

where:

• the value of the non-lexicalagr attribute encodes the tuple(3,sg) as the integer6, cf.
section A.1

• the value of the lexicalorder attribute encodes the set of tuples

{(subj,↑),(subj,adv),(↑,adv)} (8.6)

where2 represents the tuple(↑,adv), 36 the tuple(subj,↑) and37 the tuple(subj,adv)

2The attribute’in’ is a Mozart/Oz keyword and is thus has to be enclosed in singlequotes.

102

8. Constraint Parser

• the value of the lexicalagrs attribute encodes the set of agreement tuples{(3,sg)}

• the value of the lexicalagree attribute encodes the set of edge labels{subj}, wheresubj

is encoded as the integer6

In addition, the attributeentryIndex represents the selected lexical entry for the node. In the
example, the first lexical entry is selected.

8.1.3. Multigraphs

We now lift our encoding of dependency graphs to multigraphs. To this end, we package the
components of the multigraph into subrecords. For example,here is how we model node 2 of
the multigraph displayed in Figure 8.3:

o(index: 2
word: eats
entryIndex: 3
syn: o(model: o(daughtersL: o(adv: {3}#1

root: {}#0
subj: {1}#1)

attrs: o(agr: 6)
entry: o(’in’: o(adv: {0}#1

root: {0 1}#2
subj: {0}#1)

out: o(adv: {0 1 2 3}#4
root: {0}#1
subj: {1}#1)

order: {2 36 37}#3
agrs: {6}#1
agree: {6}#1))

sem: o(model: o(daughtersL: o(ag: {1}#1
root: {}#0
th: {}#0))

attrs: o
entry: o(’in’: o(ag: {0}#1

root: {1}#1
th: {0 1 2 3}#4)

out: o(ag: {1}#1
root: {0}#1
th: {0}#1)))

synsem: o(attrs: o
entry: o(arg: o(ag: {3}#1

root: {}#0
th: {}#0)

’mod’: {}#0)))

(8.7)

As we assume that the models on thesynsem dimension are graphs without edges, as in the
example grammar in section 2.2.4, we can omit the representation of edges using daughter
sets for simplicity and efficiency. In fact, we can also omit an implementation of theEdgeless
principle: it suffices for all dimensions without edges tonot use the Graph principle.

8.2. Constraint Parsing

The constraint parser itself is realized as anOz script. Oz scripts are programs that can com-
pute one or all solutions of a Constraint Satisfaction Problem (CSP), and are run onsearch

103

8. Constraint Parser

SYN

1

Mary

lex =

in = {subj?,obj?}
out = {}

order = {}
agrs= {(3,sg)}

agree= {}

agr = (3,sg)

2

eats

lex =

in = {root?}
out = {subj!,adv∗}

order = {(subj,↑),(subj,adv),(↑,adv)}
agrs= {(3,sg)}

agree= {subj}

agr = (3,sg)

3

today

lex =

in = {adv?}
out = {}

order = {}
agrs= Agr

agree= {}

agr = (1,sg)

4

.

lex =

in = {}
out = {root!}

order = {(root,Anc)}
agrs= Agr

agree= {}

agr = (1,sg)

root

subj adv

lex=

in = {root?}
out= {subj!,adv∗}

order= {(subj,↑),(subj,adv),(↑,adv)}
agrs= {(3,sg)}

agree= {subj}

agr = (3,sg)

SEM

1

Mary

{

lex =

{

in = {ag∗,pat∗}
out = {}

} }

2

eats

{

lex =

{

in = {root!,th∗}
out = {ag!}

} }

3

today

{

lex =

{

in = {root!}
out = {th!}

} }

4

.

{

lex =

{

in = {}
out = {root∗,del∗}

} }

root

root

th

ag

{

lex=

{

in = {root!,th∗}
out= {ag!}

} }

SYNSEM

1

Mary

{

lex =

{

arg = {}
mod= {}

} }

2

eats

{

lex =

{

arg = { ag = {subj} }
mod= {}

} }

3

today

{

lex =

{

arg = {}
mod= {th}

} }

4

.

{

lex =

{

arg = {}
mod= {}

} }

{

lex=

{

arg=
{

ag = {subj}
}

mod= {}

} }

Figure 8.3.: Multigraph

enginesimplementing the propagate and distribute method. The XDK supports the search
enginesSearch, theOz Explorer(Schulte 1997) andIOzSeF(Tack 2002).

The constraint parser Oz script is generated by the functionMake displayed in Figure 8.4.
Given a list of wordsWordAs3 and a compiled grammarG, it proceeds in three steps which we
elucidate in the following subsections:

1. create node records (lines 7–14)

2. do lexicalization4 (lines 16–23)

3We make use of a convention to suffix Oz variables with type information, similar to e.g. the Hungarian
notation for C++, which is explained in the XDK manual (Debusmann & Duchier 2006). For example,A
stands for an atom,As for a list of atoms,I for an integer andM for a set.

4Note that contrary to the formalization XDG in part I, where lexicalization was realized as a principle (cf.

104

8. Constraint Parser

3. post principles (line 28)

(1) fun {Make WordAs G}
(2) proc {$ Nodes}
(3) NodeSetM = {FS.value.make 1#{Length WordAs}}
(4) !Nodes =
(5) {List.mapInd WordAs
(6) fun {$ IndexI WordA}
(7) Node = {G.nodeLat.makeVar}
(8)
(9) Node.index = IndexI
(10) Node.word = WordA
(11) Node.nodeSet = NodeSetM
(12)
(13) Entries = G.lexicon.WordA
(14) Node.entryIndex = {FD.int 1#{Length Entries}}
(15)
(16) for DIDA in G.dIDAs do
(17) EntryLat = {G.dIDA2EntryLat DIDA}
(18) DIDAEntries = {Map Entries
(19) fun {$ Entry} Entry.DIDA end}
(20) in
(21) Node.DIDA.entry =
(22) {EntryLat.select DIDAEntries Node.entryIndex}
(23) end
(24) in
(25) Node
(26) end}
(27) in
(28) {G.principles.post Nodes G}
(29) end
(30) end

Figure 8.4.: The script generator realizing the constraintparser

8.2.1. Creating Node Records

For each word in the list of wordsWordAs, the script creates the node recordNode in line 7 of
the script, using themakeVar method of the lattice functors (explained in detail in section A.3).
Essentially, for the attributes in the node record,makeVar creates correspondingconstraint
variables.

In lines 9–11, the constraint variables of theindex, word andnodeSet attributes are in-
stantiated:index is set to the indexIndexI of the word in the list of words,word to the word
WordA, andnodeSet to the entire set of indices required for the list of words.

8.2.2. Lexicalization

The lexicon of a compiled grammar is a record which maps each word to a list of lexical
entries for it. In line 13 of the script, we obtain the list of entriesEntries for word WordA

section 4.3), it is hardwired in the constraint parser of theXDK. This is the result of a design decision, taken
because the existence of a lexicon is a central assumption ofthe XDK.

105

8. Constraint Parser

from the lexicon. Then, we instantiate the attributeentryIndex with a finite domain variable
ranging from 1 to the number of lexical entries forWordA (line 14). entryIndex represents
the selected lexical entry for the node, which is shared by all dimensions and thus synchronizes
their lexical selection.

Lexical entry selection itself is then implemented in lines16–23. For each dimension iden-
tifier DIDA in the list of all dimensions of the grammarG.dIDAs, first the appropriate lattice
for the record of lexical attributesEntryLat is obtained (line 17), and second the list of en-
tries DIDAEntries (lines 18–19). Then, in lines 21–22, the lexical attributeson dimension
DIDA in theentry record are instantiated with the lexical attributes of the entry selected from
the lexicon using the entry index. It is here that we make use of the select method of the
lattice functors (explained in detail in section A.3). The method utilizes theselection con-
straint (Duchier 1999, Duchier 2003), which significantly improvesconstraint propagation
and therefore also the treatment of lexical ambiguity. The genius behind the constraint is that
it makes the commonalities of the lexical entries of a word available for propagation as soon
as possible, long before the lexical entry is eventually selected.

8.2.3. Posting Principles

The final step consists of posting the principles of the grammar for nodesNodes and grammar
G in line 28. The modeling of these principles is the topic of the next section.

8.3. Modeling Principles

Most of the actual functionality of the constraint parser isfactored out into the principles. A
principle consists of:

• aprinciple definition

• a set ofnode constraint functors

• a set ofedge constraint functors

The principles are arranged in the extensibleprinciple library of the XDK.

8.3.1. Principle Definitions

A principle definition is an XDK term defining the following:

• the identifier of the principle

• a set ofdimension variables, one for each dimension referred to by the principle

• the types of the arguments of the principle

• default values for the arguments

106

8. Constraint Parser

• the type of themodel recordintroduced by the principle

• the set ofnode constraint functorsimplementing the principle, coupled with a priority
6= 100, which determines when the constraint functor is posted (the higher the earlier)

• the set ofedge constraint functorsimplementing the principle, coupled with the dimen-
sion, which determines which dimensions’ edges shall be constrained. Edge constraint
functors always have priority100, i.e., they are posted after the node constraints with
priority > 100 and before those< 100.

where the purpose of the constraint priorities is to enable optimization of the constraint solver
by determining the order in which they are posted. As an example, we show the principle
definition of theGraph principlebelow:

defprinciple "principle.graph" {
dims {D}
args {:}
defaults {:}
model {mothers: set(int)

daughters: set(int)
up: set(int)
down: set(int)
index: int
eq: set(int)
equp: set(int)
eqdown: set(int)
labels: set(label(D))
mothersL: vec(label(D) set(int))
daughtersL: vec(label(D) set(int))
upL: vec(label(D) set(int))
downL: vec(label(D) set(int))}

constraints {"GraphMakeNodes": 130
"GraphConditions": 120
"GraphDist": 90}

edgeconstraints {"GraphMakeEdges": D}}

(8.8)

The identifier of the principle is"principle.graph". It constrains only one dimension rep-
resented by the dimension variableD (dims). The principle neither has arguments (args)
nor defaults (defaults). The model record (model) defines the types of the attributes in-
troduced in section 8.1.1. The principle is implemented by the node constraint functors
"GraphMakeNodes" (priority 130), "GraphConditions" (120), and"GraphDist" (90)5

(constraints), and the edge constraint functor"GraphMakeNodes" (for edges on dimen-
sionD) (edgeconstraints).

5As we will see soon, this constraint functor does not implement constraints but controls distribution in the
Mozart/Oz search engine running the constraint parser script.

107

8. Constraint Parser

As a second example, we present the principle definition of the Valency principle(cf. prin-
ciple 6 in chapter 4):

defprinciple "principle.valency" {
dims {D}
args {In: valency(label(D))

Out: valency(label(D))}
defaults {In: _.D.entry.in

Out: _.D.entry.out}
model {:}
constraints {"In": 130

"Out" 130}
edgeconstraints {:}}

(8.9)

The Valency principle has two arguments, whereIn stands for the valency specification for
the incoming edges, andOut for the outgoing edges. The default forIn is the feature path
_.D.entry.in representing the lexical attributein on dimensionD, and the feature path for
Out represents the lexical attributeout on dimensionD.

As a third example, here is the principle definition of theAgreement principle(cf. principle 9
in chapter 4), which was already partially given in (7.8):

defprinciple "principle.agreement" {
dims {D}
args {Agr1: tv(X)

Agr2: tv(X)
Agree: set(label(D))}

defaults {Agr1: ^.D.attrs.agr
Agr2: _.D.attrs.agr
Agree: ^.D.entry.agree}

model {:}
constraints {:}
edgeconstraints {"Agreement": D}}

(8.10)

The principle abstracts over dimension variableD and has three arguments:Agr1, Agr2 and
Agree. Given an edge, the default forAgr1 is the feature path denoting the non-lexical at-
tribute agr of the mother, forAgr2 the non-lexical attributeagr of the daughter, and for
Agree the lexical attributeagree of the mother. It is implemented by the edge constraint
functor"Agreement" on dimensionD.

8.3.2. Node Constraint Functors

Node constraint functors have the purpose of constraining the nodes of the analysis. They
directly implement Oz procedures (functions with no returnvalue) calledConstraint, and
have four arguments:

1. Nodes: the list of node records of the analysis

2. G: the grammar

3. GetDim: a function mapping dimension variables to dimensions

4. GetArg2: a function mapping two arguments (hence the2), namely, an argument vari-
able and a node record, to an argument

108

8. Constraint Parser

where the purpose ofGetDim is to obtain the dimensions, and ofGetArg2 to obtain the argu-
ments of the principle, given a node record. Because the arguments can also be feature paths,
they have to be resolved, dynamically at runtime.

As a first example, Figure 8.5 shows the node constraint functor "GraphMakeNodes",
which is a part of the Graph principle. In line 2, it obtains the dimension represented by
dimension variable’D’, and in line 3 the set of all nodes of the analysisNodeSetM. Then, in
lines 5–24, it posts the following constraints on all nodesNode: the setsmothers, daughters,
up anddown of the model record of the node are all subsets of the set of allnodes (lines 8–
11), theindex equals theindex of the node (line 13), andeq is the singleton set containing
only the index (line 14). The setequp is the set of nodes equal or above the node (line 16),
andeqdown equal or below (line 17). The setmothers is the disjoint union of the sets in the
mothersL record (line 19), i.e., is a partition of this set, and analogously fordaughters (line
20). Finally,up is the union of the sets in theupL record (line 22), and analogously fordownL
(line 23).

(1) proc {Constraint Nodes G DVA2DIDA}
(2) DIDA = {DVA2DIDA ’D’}
(3) NodeSetM = Nodes.1.nodeSet
(4) in
(5) for Node in Nodes do
(6) Model = Node.DIDA.model
(7) in
(8) {FS.subset Model.mothers NodeSetM}
(9) {FS.subset Model.daughters NodeSetM}
(10) {FS.subset Model.up NodeSetM}
(11) {FS.subset Model.down NodeSetM}
(12)
(13) Model.index = Node.index
(14) Model.eq = {FS.value.make Model.index}
(15)
(16) Model.equp = {FS.union Model.eq Model.up}
(17) Model.eqdown = {FS.union Model.eq Model.down}
(18)
(19) Model.mothers = {FS.partition Model.mothersL}
(20) Model.daughters = {FS.partition Model.daughtersL}
(21)
(22) Model.up = {FS.unionN Model.upL}
(23) Model.down = {FS.unionN Model.downL}
(24) end
(25) end

Figure 8.5.:"GraphMakeNodes" node constraint functor

Figure 8.5 shows the node constraint functor"GraphConditions", also a part of the Graph
principle. It obtains the dimension represented by dimension variable’D’ in line 2, and the
list LAs of edge labels on that dimension in lines 3–5. In lines 7–9, itcreates lists of the
model records, theeqdown sets, and theequp sets of the nodes, before it quantifies over the
model records in lines 11–22, where it makes repeated use of theselection union constraint
Select.union introduced in (Duchier 2003), whose declarative semanticsis the following for
1≤ i≤ n:

{Select.union [M1 . . . Mn] M} =
⋃

i∈M
Mi (8.11)

109

8. Constraint Parser

For all nodes, the set of nodes below the node equals the unionof the eqdown sets of the
daughters (line 12), and the set of nodes above the node equals the union of theequp sets of
the mothers (line 13). Similarly, for all edge labelsLA in LAs, theLA downL set is the union of
theeqdown sets of theLA daughters (lines 15–17), and theLA upL set is the union of theequp
sets of theLA mothers (lines 18–20).

(1) proc {Constraint Nodes G DVA2DIDA}
(2) DIDA = {DVA2DIDA ’D’}
(3) DIDA2LabelLat = G.dIDA2LabelLat
(4) LabelLat = {DIDA2LabelLat DIDA}
(5) LAs = LabelLat.constants
(6)
(7) Models = {Map Nodes fun {$ Node} Node.DIDA.model end}
(8) EqdownMs = {Map Models fun {$ Model} Model.eqdown end}
(9) EqupMs = {Map Models fun {$ Model} Model.equp end}
(10) in
(11) for Model in Models do
(12) Model.down = {Select.union EqdownMs Model.daughters}
(13) Model.up = {Select.union EqupMs Model.mothers}
(14)
(15) for LA in LAs do
(16) Model.downL.LA = {Select.union EqdownMs Model.daughtersL.LA}
(17) end
(18) for LA in LAs do
(19) Model.upL.LA = {Select.union EqupMs Model.mothersL.LA}
(20) end
(21) end
(22) end

Figure 8.6.:"GraphConditions" node constraint functor

As another example, Figure 8.7 shows the node constraint functor "In", which imple-
ments the first half of the Valency principle, dealing with the incoming edges of each node.
In lines 7–13, the constraint functor quantifies over all nodesNode and all edge labelsLA
to constrain the set of mothers ofNode according to the valency specification denoted by
the argument variable’In’, which is obtained usingGetArg2 (line 11). If ’In’ denoted
the feature path _.D.entry.in, as in the defaults of the Valency principle in (8.9), the func-
tion call {GetArg2 ’In’ Node} in line 11 would dynamically resolve it to the value of
Node.DIDA.entry.in, i.e., the lexical attributein on dimensionDIDA of nodeNode.

8.3.3. Edge Constraint Functors

Edge constraint functors have the purpose to constrain edges of the analysis. They have four
arguments, similar to node constraint functors:

1. Nodes: the list of node records of the analysis

2. G: the grammar

3. GetDim: a function mapping dimension variables to dimensions

4. GetArg3: a function mapping three arguments (hence the3), namely, an argument vari-
able and two node records to arguments

110

8. Constraint Parser

(1) proc {Constraint Nodes G GetDim GetArg2}
(2) DIDA = {GetDim ’D’}
(3) DIDA2LabelLat = G.dIDA2LabelLat
(4) LabelLat = {DIDA2LabelLat DIDA}
(5) LAs = LabelLat.constants
(6) in
(7) for Node in Nodes do
(8) for LA in LAs do
(9) {FS.include
(10) {FS.card Node.DIDA.model.mothersL.LA}
(11) {GetArg2 ’In’ Node}}
(12) end
(13) end
(14) end

Figure 8.7.:"In" node constraint functor

where the purpose ofGetArg3 is to obtain the arguments of the principle, given two node
records (one for the mother and one for the daughter of the edge).

Contrary to node constraint functors, which directly implement constraints on the multi-
graph, edge constraint functors return procedures implementing constraints on labeled edges,
which still need to be executed to actually post the constraints. As an example, we show the
edge constraint functor"GraphMakeEdges" in Figure 8.8. The functor returns a procedure
with the argumentsNode1, Node2 andLA, which does nothing (skip).

(1) fun {Constraint Nodes G GetDim GetArg3}
(2) Proc = proc {$ Node1 Node2 LA} skip end
(3) in
(4) Proc
(5) end

Figure 8.8.:"GraphMakeEdges" edge constraint functor

As another example, we show the edge constraint functor implementing the Agreement
principle in Figure 8.9. It implements the constraint (lines 10–12) that if the integerLI encod-
ing the edge labelLA is in the set denoted by the’Agree’ argument variable of the principle,
then the value denoted by the’Agr1’ argument variable must equal that of’Agr2’. Assum-
ing the defaults of the Agreement principle defined in (8.10)above,

{GetArg3 ’Agree’ Node1 Node2} (8.12)

in line 10 corresponds toNode1.DIDA.entry.agree,

{GetArg3 ’Agr1’ Node1 Node2} (8.13)

in line 12 toNode1.DIDA.attrs.agr, and

{GetArg3 ’Agr2’ Node1 Node2} (8.14)

also in line 12 toNode2.DIDA.attrs.agr.
Where in the XDK constraint parser are the procedures returned by the edge constraint

functors executed? Edge constraints are executed by a special functor callededge functor,
displayed in Figure 8.10. The edge functor has the followingarguments:

111

8. Constraint Parser

(1) fun {Constraint Nodes G GetDim GetArg3}
(2) DIDA = {GetDim ’D’}
(3) DIDA2LabelLat = G.dIDA2LabelLat
(4) LabelLat = {DIDA2LabelLat DIDA}
(5)
(6) Proc =
(7) proc {$ Node1 Node2 LA}
(8) LI = {LabelLat.a2I LA}
(9) in
(10) {FS.reified.include LI {GetArg3 ’Agree’ Node1 Node2}}
(11) =<:
(12) ({GetArg3 ’Agr1’ Node1 Node2}=:{GetArg3 ’Agr2’ Node1 Node2})
(13) end
(14) in
(15) Proc
(16) end

Figure 8.9.:"Agreement" edge constraint functor

1. Nodes: the list of node records

2. G: the grammar

3. DIDA: the dimension whose edges shall be constrained

4. Procs: the procedures of all edge constraint functors for dimensionDIDA

For each edge from motherNode1 to daughterNode2 labeledLA, lines 23–28 launch a thread
containing adeep guard, which implements the following: either the edge is contained in the
graph, or it is not. If it is, then:

• the index of the daughter must be an element of the set of daughters of the mother
labeledLA (line 24)

• the labelLA encoded as an integer (LI) must be an element of the set of incoming edge
labels of the daughter (line 25)

• the procedures of all edge constraint functors for dimensionDIDA are posted (line 26)

If the edge is not contained in the graph, then the index of thedaughter must not be an element
of the set of daughters of the mother labeledLA (line 27). The idea of using deep guards
for edge constraints was introduced in (Duchier 1999). The key advantage is that if any of
the constraints of the edge constraint functors inProcs is inconsistent for an edge, constraint
propagation can immediately infer that the edge is not contained in the graph.

The purpose of returning a function instead of directly implementing the edge constraint
is to enable us to collect all edge constraints, and then embed them in one piece in the deep
guards launched by the edge functor. That means that we can post all edge constraint functors
using only one thread per possible edge, instead of having tolaunch one thread for each edge
constraint functor.

112

8. Constraint Parser

(1) proc {Edge Nodes G DIDA Procs}
(2) DIDA2LabelLat = G.dIDA2LabelLat
(3) LabelLat = {DIDA2LabelLat DIDA}
(4) in
(5) for Node1 in Nodes do
(6) Model1 = Node1.DIDA.model
(7) in
(8) for Node2 in Nodes do
(9) Model2 = Node2.DIDA.model
(10) in
(11) {FS.reified.include Model2.index Model1.down}=:
(12) {FS.reified.include Model1.index Model2.up}
(13)
(14) {FS.reified.include Model2.index Model1.daughters}=:
(15) {FS.reified.include Model1.index Model2.mothers}
(16)
(17) for LA in LabelLat.constants do
(18) LI = {LabelLat.a2I LA}
(19) in
(20) {FS.reified.include Model2.index Model1.daughtersL.LA}=:
(21) {FS.reified.include Model1.index Model2.mothersL.LA}
(22)
(23) thread
(24) or {FS.include Model2.index Model1.daughtersL.LA}
(25) {FS.include LI Model2.labels}
(26) for Proc in Procs do {Proc Node1 Node2 LA} end
(27) [] {FS.exclude Model2.index Model1.daughtersL.LA}
(28) end
(29) end
(30) end
(31) end
(32) end
(33) end

Figure 8.10.: Edge functor

8.3.4. Distribution

Distribution, i.e., non-deterministic choice, is necessary to ensure completeness of constraint
parsing, as constraint propagation alone is not complete. In the XDK, distribution is not
realized by the constraint solver script but by the node constraint functors of the principle
which requires distribution. The reason for this is that only the principles themselves (but
not the script) know what attributes they are using and whichof these attributes must be
distributed.

In practice, distribution is almost solely necessary to ensure completeness of the Graph
principle, whose principle definition was displayed in (8.8) above. Here, distribution is real-
ized by the node constraint functor’GraphDist’ displayed in Figure 8.11 with priority90.6

’GraphDist’ distributes over the sets of mothers of each node (lines 4–6)and the sets of
daughters sorted by their edge label (lines 8–11).

Factoring out distribution from the constraint solver script into node constraint functors en-
ables us to easily obtain a second Graph principle"principle.graphConstraints" without

6The priority of distribution node constraint functors should be less than the lowest priority of the other node
constraint functors: this way, constraint propagation is granted some time before distribution ensues.

113

8. Constraint Parser

(1) proc {Constraint Nodes G GetDim GetArg}
(2) DIDA = {GetDim ’D’}
(3)
(4) MothersMs = {Map Nodes
(5) fun {$ Node} Node.DIDA.model.mothers end}
(6) {Distributor.distributeMs MothersMs}
(7)
(8) DaughtersLMRecs = {Map Nodes
(9) fun {$ Node} Node.DIDA.model.daughtersL end}
(10) in
(11) {Distributor.distributeMRecs DaughtersLMRecs}
(12) end

Figure 8.11.:"GraphDist" node constraint functor

distribution by simply adapting the principle definition:

defprinciple "principle.graphConstraints" {
...
constraints {"GraphMakeNodes": 130

"GraphConditions": 120}
edgeconstraints {"GraphMakeEdges": D}}

(8.15)

The effect is that the graph models the dimension on which theprinciple is used are not
enumerated. The genius of this is that it gives usunderspecification(e.g. of PP-attachment,
scope etc.) for free without further stipulation: even onlypartial analyses already contain
information about dominance, encoded directly in the attributesdown anddownL, for example.
We will make use of this in chapter 10 below for modeling scopeunderspecification, and for
the interface to CLLS in appendix E.

8.4. Example Principles

In this section, we present three additional example principles for further illustration: the
LinkingEnd principle demonstrates a constraint on multiple dimensions, and the Order princi-
ple and the Projectivity principle show how constraints on the order of nodes are expressed.

8.4.1. LinkingEnd

The LinkingEnd principledemonstrates how multiple dimensions can be constrained. It ab-
stracts over three dimensions (D1, D2 andD3) and the argumentLinkEnd, whose type is a
vector used to map edge labels onD1 to sets of edge labels onD2. The principle, whose
declarative semantics are given in principle 10 in chapter 4, is implemented by the edge con-
straint functor"LinkingEnd" over edges on dimensionD1:

defprinciple "principle.linkingEnd" {
dims {D1 D2 D3}
args {LinkEnd: vec(label(D1) set(label(D2)))}
defaults {LinkEnd: ^.D3.entry.linkEnd}
model {:}
constraints {:}
edgeconstraints {"LinkingEnd": D1}}

(8.16)

114

8. Constraint Parser

The edge constraint functor"LinkingEnd" is displayed in Figure 8.12. By the principle
definition in (8.16), it constrains the edges on dimensionD1. It first obtains the value of
the argument’LinkEnd’ in line 6 asLinkEndM, and then stipulates that ifLinkEndM is non-
empty (line 8), then there exists an edge label in the set of incoming edge labels of the daughter
Node2 on dimensionD2 which is an element ofLinkEndM (lines 9–10).

(1) fun {Constraint Nodes G GetDim GetArg3}
(2) D2DIDA = {GetDim ’D2’}
(3)
(4) Proc =
(5) proc {$ Node1 Node2 LA}
(6) LinkEndM = {GetArg3 ’LinkEnd’ Node1 Node2}
(7)
(8) ({FS.reified.equal LinkEndM FS.value.empty}=:0)=<:
(9) {FS.reified.include
(10) {FS.include $ Node2.D2DIDA.model.labels} LinkEndM}
(11) end
(12) in
(13) Proc
(14) end

Figure 8.12.:"LinkingEnd" edge constraint functor

8.4.2. Order

The XDK provides two implementations of theOrder principle, one reflecting precisely the
declarative semantics of the Order principle given in principle 7 in chapter 4, and a non-
lexicalized and optimized implementation based on (Duchier 2003). Since it is more straight-
forward to explain and more consistent with the declarativesemantics, we explain the former.

The Order principle abstracts over a dimension (D) and has one argument (Order): a set
of pairs of edge labels onD plus the special anchor label"∧". The set represents a strict
partial order on the edge labels ofD and the anchor label"∧" standing for the node itself. The
principle is implemented by the node constraint functor"Order" with priority 120.

defprinciple "principle.order" {
dims {D}
args {Order: set(tuple((label(D)|{"^"}) (label(D)|{"^"})))
defaults {Order: _.D.entry.order}
model {:}
constraints {"Order": 120}
edgeconstraints {:}}

(8.17)

We show the node constraint functor"Order" in Figure 8.13. What does it do? After
obtaining the list of edge labelsLAs on dimension’D’ (lines 2–5), lines 7–8 create a lattice
for the domain of edge labels plus the anchor label’∧’, and line 9 creates a lattice for pairs
of this domain. Line 11 obtains the set of all nodesNodeSetM. Then, the node constraint
functor loops over all node recordsNode (line 13), obtains the value of the argument variable
’Order’ for Node (line 14), and the model recordModel (line 15). Then, for all labelsLA1
andLA2, encoded as an integer in line 19, the functor creates the list Ms as follows:

115

8. Constraint Parser

• if both LA1 andLA2 equal the anchor label’∧’, thenMs is empty—in this case, nothing
needs to be ordered (lines 22–23)

• if LA1 equals the anchor label, then the list orders the nodeNode itself (i.e., itseq set)
before the daughters of the node with edge labelLA2 (lines 24–25)

• if LA2 equals the anchor label, then the list orders the daughters with edge labelLA1
before the node itself (lines 26–27)

• else the daughters with edge labelLA1 are ordered before the daughters with edge label
LA2 (lines 28–29)

Ms is then transformed into the listMs1 in lines 32–42.7 For each set inMs, if the integerI
encoding the tuple[LA1 LA2] is in the setOrderM, thenM is contained inMs1, otherwise, it
is replaced by the empty set (lines 36–40). Then, the crucialfinal constraint is in line 44,
stipulating that for all elementsM1 andM2 in the listMs1, if M1 precedesM2 in Ms1, then all
elements ofM1 must precede all elements ofM2.

8.4.3. Projectivity

TheProjectivity principle(cf. principle 4 in chapter 4) abstracts over a dimension (D) and is
implemented by the node constraint functor"Projectivity" with priority 130:

defprinciple "principle.projectivity" {
dims {D}
args {:}
defaults {:}
model {:}
constraints {"Projectivity": 130}
edgeconstraints {:}}

(8.18)

The node constraint functor"Projectivity" is displayed in Figure 8.14. For all nodes
Node, it stipulates that the set of nodes below or equal the node must be convex, i.e., a set
without holes (line 5).

8.5. Generation

The constraint solver was so far only geared towards parsing. It is however easy to make it
reversible and use it also for generation. To this end, we only need to:

1. introduce the new model record attributepos representing the eventual position of the
node

2. state all constraints on the order of nodes on the positions instead of the indices

We realize this idea by creating reversible versions of the Order principle and the Projectivity
principle.

7The code in lines 32–44 could be less awkward if Mozart/Oz supported a reified version of the constraint
FS.int.seq.

116

8. Constraint Parser

(1) proc {Constraint Nodes G GetDim GetArg2}
(2) DIDA = {GetDim ’D’}
(3) DIDA2LabelLat = G.dIDA2LabelLat
(4) LabelLat = {DIDA2LabelLat DIDA}
(5) LAs = LabelLat.constants
(6)
(7) LAs1 = ’^’|LAs
(8) Label1Lat = {Domain.make LAs1}
(9) Label1PairLat = {Tuple1.make [Label1Lat Label1Lat]}
(10)
(11) NodeSetM = Nodes.1.nodeSet
(12) in
(13) for Node in Nodes do
(14) OrderM = {GetArg2 ’Order’ Node}
(15) Model = Node.DIDA.model
(16) in
(17) for LA1 in LAs1 do
(18) for LA2 in LAs1 do
(19) I = {Label1PairLat.as2I [LA1 LA2]}
(20)
(21) Ms =
(22) if LA1==’^’ andthen LA2==’^’ then
(23) nil
(24) elseif LA1==’^’ then
(25) [Model.eq Model.daughtersL.LA2]
(26) elseif LA2==’^’ then
(27) [Model.daughtersL.LA1 Model.eq]
(28) else
(29) [Model.daughtersL.LA1 Model.daughtersL.LA2]
(30) end
(31)
(32) Ms1 = {Map Ms
(33) fun {$ M}
(34) M1 = {FS.subset $ NodeSetM}
(35) in
(36) {FS.reified.include I OrderM}=<:
(37) {FS.reified.equal M M1}
(38)
(39) ({FS.reified.include I OrderM}=:0)=<:
(40) {FS.reified.equal M1 FS.value.empty}
(41) M1
(42) end}
(43) in
(44) {FS.int.seq Ms1}
(45) end
(46) end
(47) end
(48) end

Figure 8.13.:"Order" node constraint functor

8.5.1. Reversible Order Principle

To the principle definition (8.17) of the Order principle, weadd the model record attributepos
whose type isint, and the additional node constraint functorROrderDist for distributing on

117

8. Constraint Parser

(1) proc {Constraint Nodes G GetDim GetArg2}
(2) DIDA = {GetDim ’D’}
(3) in
(4) for Node in Nodes do
(5) {FS.int.convex Node.DIDA.model.eqdown}
(6) end
(7) end

Figure 8.14.:"Projectivity" node constraint functor

it. ROrder is the reversible version of the node constraint functorOrder:
defprinciple "principle.rOrder" {
dims {D}
args {Order: set(tuple((label(D)|{"^"}) (label(D)|{"^"})))
defaults {Order: _.D.entry.order}
model {pos: int}
constraints {"ROrder": 120

"ROrderDist": 90}
edgeconstraints {:}}

(8.19)

Figure 8.15 shows the distribution functor"ROrderDist", and Figure 8.16 the modifications
of the node constraint functor"Order" of Figure 8.13, which yield the reversible"ROrder"
node constraint functor.

(1) proc {Constraint Nodes G GetDim GetArg}
(2) DIDA = {GetDim ’D’}
(3)
(4) PosDs = {Map Nodes
(5) fun {$ Node} Node.DIDA.model.pos end}
(6) in
(7) {Distributor.distributeDs PosDs}
(8) end

Figure 8.15.:"ROrderDist" node constraint functor

The reversible node constraint functor defines the functionIndexM2PosM mapping sets of
indices to sets of positions (lines 6). The function is defined using the listPosMs created in
lines 2–5, which encodes a mapping from indices to sets of positions: the ith list element
denotes the set containing only the position of the node withindex i. Given a set of indices
IndexM, IndexM2PosM uses the selection union constraint to efficiently obtain the union of all
positions corresponding toM.

8.5.2. Reversible Projectivity Principle

Making the Projectivity principle now works analogously, i.e., it also makes use of the function
IndexM2PosM.

8.5.3. Reversible Constraint Parser

When we leave the positions the nodes underspecified before solving, the constraint solver
does all the work for us, and finds the right positions of the words automatically. By equating
the position of each node with its index, we can easily get theold parsing behavior back.

118

8. Constraint Parser

(1) proc {Constraint Nodes G GetDim GetArg2}
(2) PosMs = {Map Nodes
(3) fun {$ Node}
(4) {FS.value.make Node.DIDA.model.pos}
(5) end}
(6) fun {IndexM2PosM IndexM} {Select.union PosMs IndexM} end
(7)
(8) DIDA = {GetDim ’D’}
(9) ...
(10) for LA1 in LAs1 do
(11) for LA2 in LAs1 do
(12) I = {Label1PairLat.as2I [LA1 LA2]}
(13)
(14) Ms =
(15) if LA1==’^’ andthen LA2==’^’ then
(16) nil
(17) elseif LA1==’^’ then
(18) [{IndexM2PosM Model.eq}
(19) {IndexM2PosM Model.daughtersL.LA2}]
(20) elseif LA2==’^’ then
(21) [{IndexM2PosM Model.daughtersL.LA1}
(22) {IndexM2PosM Model.eq}]
(23) else
(24) [{IndexM2PosM Model.daughtersL.LA1}
(25) {IndexM2PosM Model.daughtersL.LA2}]
(26) end
(27) ...
(28) end

Figure 8.16.:"ROrder" node constraint functor

The reversed constraint parser can be used e.g. for debugging: by generating all possible
linearizations for a multiset of words, the grammar writer can quickly spot overgeneration. It
can also be applied for generation from a set of semantic literals, but here, it is not at all clear
how many words are required to realize the literals before constraint solving. First attempts to
cope with this can be found in (Debusmann 2004b) and (Pelizzoni & das Gracas Volpe Nunes
2005). Another smart approach based on TAG is described in (Koller & Striegnitz 2002).

8.6. Runtime

In chapter 6, we have shown that XDG is NP-hard. However, in practice, the implementation
of XDG as the XDK constraint parser fares better than expected, at least for handcrafted
grammars.

8.6.1. Handcrafted Grammars

Handcrafted grammars can already be parsed reasonably fast. For example, using a test set
of 60 sentences ranging from 4-44 words, we have profiled the grammardiss.ul from the
XDK distribution, which implements the grammar of part III of the thesis, with all its ten
dimensions (ID, LP, ID /LP, PA, SC, PA/SC, PS, IS, ID /PA and PS/IS). In the table below, we
show the minima, maxima and averages of the number of words, the time required for solving

119

8. Constraint Parser

(“Time (s)”), the number of solutions, failures and the search tree depth (“Sol/Fail/Depth”),
the number of lexical entries per word, i.e., their lexical ambiguity (“Amb”), and the number
of constraint variables (“Vars”) and propagators (“Props”) introduced by the XDK constraint
parser on an AMD Athlon with 1.2 GHz and 512 MBytes of RAM:

Words Time (s) Sol/Fail/Depth Amb Vars Props

min 4 0.480 1/0/1 1 13547 63950
max 44 32.880 2/2/3 36 1342027 3501430
average 9.22 2.440 1.05/0.2/1.25 3.00 78899.7 279879.0

(8.20)

TDG grammars, using only two dimensions (ID/LP), can be parsed more efficiently. For
example, the grammar developed in (Debusmann 2001), which is calledDiplom.ul in the
XDK distribution, has the following profile:

Words Time (s) Sol/Fail/Depth Amb Vars Props

min 3 0.020 0/0/1 1 603 2318
max 64 8.360 6/2/6 9 12803 338184
average 7.89 0.184 1.14/0.36/1.48 2.12 1582.71 14436.9

(8.21)

Optimizing the XDK constraint parser was not in the focus of the research for thesis. Hence,
the parser is almost unoptimized, and there is ample room foroptimization, which we see
as our next steps. Our ideas include extensive profiling of the parser, the advent of global
constraints, and the use of the new and more efficientGecodeconstraint library (Schulte &
Stuckey 2004).

8.6.2. Automatically Induced Grammars

We have also applied the XDK constraint parser to grammars induced from treebanks. Bojar
(2004) describes a series of experiments of inducing a large-scale grammar fromPrague De-
pendency Treebank(PDT) (Böhmová, Hajǐc, Hajičová & Hladká 2001) for Czech. His gram-
mars heavily overgenerated, which lead, in combination with exhaustive search of the XDK
parser, to a combinatorial explosion. Möhl (2004) induced grammars from theTIGER tree-
bank(Brants 1999) for German, using an induction technique developed in (Korthals 2003),
but the resulting grammars could also only be parsed inefficiently by the XDK parser, and
suffered from undergeneration.

A major problem of the approaches of Bojar and Möhl was the lack of any statistical sup-
port, e.g. byguided search. To find out whether guided search can improve the efficiency
of XDK large-scale parsing, Narendranath (2004) experimented with grammars induced from
the Penn Treebank(PTB) (Marcus, Santorini & Marcinkiewicz 1993) for English, employ-
ing for the first time the ideas for guided search developed for XDG in (Dienes, Koller &
Kuhlmann 2003). Her grammars heavily overgenerated, like Bojar’s, but she could success-
fully show that guided search can considerably prune the search space in comparison to ex-
haustive search: for unseen sentences, the time for enumerating the solutions could be reduced
by factor 5, the number of failures by factor 50, and the number of solutions by factor 1000.
For already seen sentences, the effect was even more positive: 15 times less solutions, 100
times less failures, and 1000 times less solutions. We conjecture that the addition of other

120

8. Constraint Parser

statistical techniques such assupertagging(Joshi & Bangalore 1994, Clark & Curran 2004)
could further boost the efficiency of XDK large-scale parsing.

8.7. Summary

This chapter introduced the constraint parser of the XDK. Weillustrated how to model multi-
graphs using finite sets of integers, and how the CSP for the constraint parser is set up by an
Oz script making use of both the functionality of the latticefunctors and the principles from
the extensible principle library of the XDK. The principlesare realized using node and edge
constraint functors. The constraint parser can be adapted to act in a reversible way, i.e., also
for generation. The parser is already reasonably fast on smaller, handcrafted grammars, but
could not be shown to scale up to large-scale parsing. This isnot surprising given that the
parser is yet almost unoptimized, and lacks statistical support. The multitude of possibili-
ties for optimization makes us optimistic that large-scaleparsing is possible with XDG, and
attempting this will be one of our next steps.

121

Part III.

Application

122

9. Syntax

In this part of the thesis, we finally apply XDG to natural language. We present an example
XDK metagrammar for a fragment of English, which covers the linguistic aspects of syntax,
semantics and phonology. This grammar clearly demonstrates the modularity of XDG with re-
spect to grammar development, allowing us to develop the dimensions of syntax (this chapter),
semantics (chapter 10) and phonology (chapter 11) as independent modules, whose relation we
establish subsequently through the syntax-semantics interface and the phonology-semantics
interface (chapter 12). We will show that by this modularity, the phenomena covered by the
grammar need not be explicitly specified, but rather emerge from the intersective demands of
its dimensions. The grammar covers control and raising constructions, auxiliaries, passives,
questions, topicalization, subordinate sentences and relative clauses. We have deliberately left
out coordination for simplicity. An account of coordination without ellipsis in XDG can be
found in (Bader et al. 2004). We must leave an account for coordination including ellipsis to
future work.

This chapter introduces the dimensions of syntax, whose position in the overall architecture
of the grammar is displayed in Figure 9.1. Following the account of German syntax in TDG
described in (Duchier & Debusmann 2001, Debusmann 2001), wemodel syntax using the
following three dimensions:

1. Immediate Dominance(ID)

2. Linear Precedence(LP)

3. ID /LP

where theID dimension models the hierarchical syntactic structure by an unordered tree la-
beled bygrammatical functions, and theLP dimension models word order by ordered projec-
tive trees labeled by topological fields. TheID /LP dimension acts as the interface of theID and
LP dimensions.1

9.1. Immediate Dominance Dimension

The models of the Immediate Dominance (ID) dimension are unordered trees whose edge
labels represent grammatical functions like subject and object. We call anID analysisID tree,

1In the original TDG account, the relation between theID andLP dimensions is constrained without the defini-
tion of an additionalID /LP dimension, which we introduce here for modularity.

123

9. Syntax

Phonology

Syntax

Immediate Dominance

Semantics

Linear Precedence

Information Structure

Scope StructurePredicate−Argument
Structure

Prosodic Structure

Figure 9.1.: Syntax in the overall architecture of the example grammar

and show an exampleID tree of the sentence below in Figure 9.2:2

Peter admires the woman who smiles. (9.1)

1

Peter

2

admires

3

the

4

woman

5

who

6

smiles

7

.

root

objsubj

det rel

subj

Figure 9.2.:ID tree ofPeter admires the woman who smiles.

As in chapter 2, theID tree is equipped with an additional root node correspondingto
the end-of-sentence marker (here: the full stop), which is connected to the finite verb (here:
admires) by an edge labeledroot. Peter is the subject ofadmires, andwomanthe object.the
is the determiner ofwoman, andwomanis modified by the relative clause (edge labelrel) who
smiles. In the relative clause,smilesis the head and the subject iswho.

Figure 9.3 shows another exampleID tree, this time of the question

Who does he say Mary thinks smiles? (9.2)

where the finite verbdoeshas the subjectheand the base form infinitival complement (edge
labelvbse) say. sayin turn is the head of the subordinate clause headed bythinks, which is the

2For visualization, we have to fix an order on the nodes. For clarity, we choose the order of the corresponding
words in the sentence.

124

9. Syntax

head of another subordinate clause headed bysmiles. The subject ofthinksis Mary and that of
smilesis the wh-pronounwho. This example demonstrates that sinceID trees are unordered,
no compromises have to be made to bring word order in line withthe intuitive analysis of the
sentence in terms of grammatical functions.Unbounded dependenciessuch as the dependency
betweensmilesand its subjectwhoare not considered “unbounded” at all, since order and thus
the distance between the words is simply irrelevant on theID dimension.

1

Who

2

does

3

he

4

say

5

Mary

6

thinks

7

smiles

8

?

root

subj vbse

sub

subsubj

subj

Figure 9.3.:ID tree ofWho does he say Mary thinks smiles?

As a third example, we show theID analysis of the sentence

Peter persuades Mary to smile. (9.3)

in Figure 9.4. This is an example of a subject-to-object control construction, where the object
Mary of the control verbpersuadesis regarded as the “deep subject” of the embedded verb
smile. As the analysis shows, control relations are not represented on theID dimension. We
think that they belong on the “deeper” dimension ofpredicate-argument structure(PA) instead
(see section 10.1), and not on the more “surface-oriented”ID dimension. Another reason is
that if we modeled control on theID dimension, we would have to give up the invariant that
ID analyses are trees, which would severely complicate the interface between theID andLP

dimensions.

1

Peter

2

persuades

3

Mary

4

to

5

smile

6

.

root

objsubj vinf

part

Figure 9.4.:ID tree ofPeter persuades Mary to smile.

9.1.1. Types

We continue the explanation of theID dimension by introducing its types of edge labels and
attributes.

125

9. Syntax

Edge Labels. We define the type of edge labels on theID dimension as follows:

deftype "id.label" {adj adv comp det iobj obj part pmod pobj1 pobj2 prepc
rel root sub subj vbse vinf vprt}

deflabeltype "id.label"
(9.4)

and show an overview of the edge labels and their corresponding grammatical functions in
Figure 9.5. They consist of:

• standard grammatical functions: adjective (adj), adverb (adv), determiner (det), indi-
rect object (iobj), direct object (obj), and subject (subj)

• comp, the complementizer of a subordinate clause (e.g.that in Peter says that Mary
laughs.)

• edge labels concerned with prepositions. We distinguish prepositional objects (edge la-
belspobj1 or pobj2) and prepositional modifiers (pmod). The complement of a prepo-
sition has labelprepc (e.g.Peter in to Peter). We distinguishpobj1 andpobj2 for
examples likeA book is given to Peter by Mary, where two prepositional objects must
be distinguished (to Peterandby Mary).

• rel andsub, the incoming edge labels of finite verbs heading a relative clause and a
subordinate clause, respectively

• vbse, vinf andvprt, the labels of non-finite verbs (vbse: base form infinitive,vinf
full infinitive with particle to, vprt: past participle), andpart, the label of particles

• root, the incoming edge label of the finite verb heading the sentence

Attributes. We define the attributes of theID dimension with respect to the type ofagree-
ment tuples"id.agr" consisting of person (first, second or third), number (singular or plural),
gender (masculine, feminine, neuter) and case (nominativeor accusative):

deftype "id.person" {first second third}
deftype "id.number" {sg pl}
deftype "id.gender" {masc fem neut}
deftype "id.case" {nom acc}
deftype "id.agr" tuple("id.person" "id.number" "id.gender" "id.case")

(9.5)

Furthermore, we define the type"id.pagr" of preposition types, which consists of the prepo-
sitions covered by the grammar:

deftype "id.pagr" {at by in of on to with} (9.6)

The non-lexical attributes consist of the two attributesagr (of type"id.agr") andpagr (of
type"id.pagr"). agr denotes the agreement tuple andpagr the preposition type selected for
the node:

defattrstype {agr: "id.agr"
pagr: "id.pagr"} (9.7)

126

9. Syntax

edge label grammatical function

adj adjective
adv adverb
comp complementizer
det determiner
iobj indirect object
obj object
part particle
pmod prepositional modifier
pobj1 prepositional object 1
pobj2 prepositional object 2
prepc complement of a preposition
rel relative clause
root root
sub subordinate clause
subj subject
vbse base form infinitive
vinf full infinitive
vprt past participle

Figure 9.5.:ID edge labels and corresponding grammatical functions

The lexical attributes include the attributesin andout (representing the in and out valen-
cies of the word),agrs (the set of licensed agreement tuples),pagrs (the set of licensed
preposition types), andpobj1 andpobj2 (the preposition types licensed forpobj1 andpobj2
dependents), respectively:

defentrytype {in: valency("id.label")
out: valency("id.label")
agrs: iset("id.agr")
pagrs: iset("id.pagr")
pobj1: iset("id.pagr")
pobj2: iset("id.pagr")}

(9.8)

9.1.2. Principles and Lexical Classes

The ID dimension is further characterized by a set of principles and lexical classes.

Models. We start by constraining the models on theID dimension to be trees using the
Graph principleand theTree principle:

useprinciple "principle.graph" { dims {D: id} }
useprinciple "principle.tree" { dims {D: id} } (9.9)

Subcategorization, Modification and Categorization. With the Valency principle, we
modelcategorization, subcategorizationandmodification. We apply the principle as follows,
using by the lexical attributesin andout:

useprinciple "principle.valency" {
dims {D: id}
args {In: _.D.entry.in

Out: _.D.entry.out}}

(9.10)

127

9. Syntax

Subcategorization determines the number of syntactic dependents of a node using the lexical
attributeout. For example, the lexical class"id_fin" states that finite verbs always require
a subject:

defclass "id_fin" {
dim id {out: {subj!}}} (9.11)

Modification is also modeled using the Valency principle. For example, the following lexi-
cal classes state that main verbs ("id_main") can be modified by arbitrary many adverbs and
prepositional modifiers, and that auxiliary verbs ("id_aux") cannot be modified:

defclass "id_main" {
dim id {out: {adv* pmod*}}}

defclass "id_aux" {
dim id {out: {}}}

(9.12)

Categorization states constraints on the incoming edge labels of the nodes using the lexical
attributein. For example, a finite verb can either be the root of a sentence, the head of a
subordinate clause or the head of a relative clause, which wecapture in the following lexical
classes:

defclass "id_fin_root" {
"id_fin"
dim id {in: {root?}}}

defclass "id_fin_sub" {
"id_fin"
dim id {in: {sub?}

out: {comp?}}}

defclass "id_fin_rel" {
"id_fin"
dim id {in: {rel?}}}

(9.13)

where as the root of a sentence, the finite verb must have incoming edge labelroot, as the
head of a subordinate clausesub3, and as the head of a relative clauserel.

Agreement. We realize the morphologicalagreementof heads and dependents in terms of
person, number, gender and case using theAgr principleand theAgreement principle(princi-
ples 8 and 9 in chapter 4):

useprinciple "principle.agr" {
dims {D: id}
args {Agr: _.D.attrs.agr

Agrs: _.D.entry.agrs}}
useprinciple "principle.agreement" {

dims {D: id}
args {Agr1: ^.D.attrs.agr

Agr2: _.D.attrs.agr
Agree: {det subj}}}

(9.14)

By the Agr principle, the value of the non-lexical attributeagr must be an element of the
lexical attributeagrs. By the Agreement principle, for all edges labeleddet andsubj, the
head must agree with its dependent, i.e., the values of the non-lexical attributeagr of the head
and its dependent must be the same to exclude e.g.a researchersor most researcher. Similarly,
subjects must agree with their verbal heads to exclude e.g.He sleepor They sleeps.

3As the head of a subordinate clause, it can also have an optional complementizer.

128

9. Syntax

Government. Governmentis also concerned with agreement. In XDG, we define govern-
ment as describing the fact that some heads “govern” the agreement of their dependents.4 For
instance, finite verbs govern the case of their subject to be nominative. We model government
using theGovernment principle, which has the declarative semantics that for each edge fromv
to v′ labeledl , the agreement tuple of the dependentv′ (given by the non-lexical attributeagr)
must be an element of the set of agreement tuples licensed by the headv for label l (given by
the lexical attributegovern).

Principle 15 (Government).

governmentd = ∀v,v′ : ∀l : (d v′).agr∈ (d v).lex.govern.l (9.15)

In the XDK, we can specify the value ofgovernnon-lexically to minimize the lexical de-
scription, stating that all subjects are governed to have nominative agreement, and all objects
and complements of a preposition to have accusative agreement. No other dependents are
constrained.

useprinciple "principle.government" {
dims {D: id}
args {Agr2: _.D.attrs.agr

Govern: {subj: ($ nom)
obj: ($ acc)
prepc: ($ acc)}}}

(9.16)

Our grammar reuses the idea of government to make verbs govern the preposition of their
prepositional objects. For example, the ditransitive verbgive only licenses the prepositional
objectto for its pobj1 dependent, as indicated below:

Peter gives a book to Mary .
*Peter gives a book at Mary .

(9.17)

We model this using the Government principle a second time, in addition to a second use of
the Agr principle to select for each node a preposition type from the set of licensed preposition
types:

useprinciple "principle.agr" {
dims {D: id}
args {Agr: _.D.attrs.pagr

Agrs: _.D.entry.pagrs}}
useprinciple "principle.government" {

dims {D: id}
args {Agr2: _.D.attrs.pagr

Govern: {pobj1: ^.D.entry.pobj1
pobj2: ^.D.entry.pobj2}}}

(9.18)

Here, the lexical attributepobj1 determines the licensed preposition types forpobj1 depen-
dents, andpobj2 for pobj2 dependents. To model the contrast (9.17) above,givewould thus
set its lexically attributepobj1 to {to} to state that it only acceptspobj1 dependents with
preposition typeto.

4Government is not uniformly defined in the literature. Otherdefinitions can be found e.g. for GB in (Chomsky
1981), or for MTT in (Mel’̌cuk 1988).

129

9. Syntax

9.2. Linear Precedence Dimension

We describe word order using the Linear Precedence (LP) dimension, whose models are
ordered and projective trees, and whose edges are labeled bytopological fields. We call
LP analysesLP trees. Topological fields stem from German descriptive linguistics (Herling
1821, Erdmann 1886), and have recently been rediscovered inframeworks such as HPSG
(Penn 1999, Kathol 2000) and MTT (Gerdes & Kahane 2001). In the theory, sentences are
subdivided into sequences of substrings, and these substrings are called topological fields. For
German, the basic topological field structure is the following:

Vorfeld left bracket Mittelfeld right bracket Nachfeld (9.19)

where theVorfeld (“pre-field”) typically contains the subject, theMittelfeld (“mid-field”) the
other nominal complements such as indirect and direct objects, and theNachfeld(“post-field”)
subordinate clauses or extraposed relative clauses. The Mittelfeld is surrounded by the finite
verb, often called theleft bracket, and its non-finite verbal dependents in theright bracket. In
the Mittelfeld, the nominal complements can be freely permuted.5

In (Duchier & Debusmann 2001) and (Debusmann 2001), topological fields theory serves
as the basis for an elegant analysis of German word order phenomena on theLP dimension of
TDG. Figure 9.6 shows an example TDGLP analysis of the following German sentence:

Maria hat dem Mann heute einen Korb gegeben, der lacht.
Mary has the man today a basket given, who laughs.

“Mary has given the man who laughs a basket today.”
(9.20)

where the finite verbhat is in the left bracket. Its subjectMaria is in the Vorfeld (edge label
vf), and the Mittelfeld (mf) is filled by the indirect objectdem Mann, the adverbheuteand the
direct objecteinen Korb. The right bracket (rbf) is filled by the past participlegegebenand the
Nachfeld (nf) by the extraposed relative clauseder lacht.

1

Maria

2

hat

3

dem

4

Mann

5

heute

6

einen

7

Korb

8

gegeben

9

der

10

lacht

11

.

root

mf mf mf nfrbfvf

detf detf rprof

Figure 9.6.: TDGLP tree ofMaria hat dem Mann heute einen Korb gegeben, der lacht.

In this thesis, we show that topological fields theory can also be transferred to English. As
an example, Figure 9.7 shows theLP analysis of the translation of (9.20), where the finite
verbhasis in the left bracket, and its subjectMary in its Vorfeld, as in the German example.
The past participlegiven is however not in the right bracket but is also positioned in the left
bracket (edge labellbf). The indirect objectthe manand the direct objecta basketare both in

5This is a simplification: generally, the elements of the Mittelfeld can be freely permuted, but there are excep-
tions, e.g. the order of pronouns, which is fixed.

130

9. Syntax

the Mittelfeld (mf1 andmf2). As relative clauses cannot be extraposed in English, the relative
clausewho laughsdirectly follows the modified nounman. The adverbtodaycannot be part
of the Mittelfeld. It is positioned at the end of the sentenceinto the field for adverbs of time
(tadvf).

1

Mary

2

has

3

given

4

the

5

man

6

who

7

laughs

8

a

9

basket

10

today

11

.

root

lbf mf1 mf2 tadvfvf

detf relf

rprof

detf

Figure 9.7.:LP tree ofMary has given the man who laughs a basket today.

9.2.1. Types

Edge Labels. The type of edge labels on theLP dimension is defined as follows:

deftype "lp.label" {adjf compf detf fadvf lbf mf1 mf2 nf padjf padvf prepcf
rbf relf root rprof tadvf vf vvf}

deflabeltype "lp.label"
(9.21)

We show an overview of the edge labels and their corresponding topological fields in Fig-
ure 9.8. They consist of:

• fields corresponding directly to the fields of topological fields theory:vf (Vorfeld), lbf
(left bracket field),mf1 andmf2 (Mittelfeld), rbf (right bracket field) andnf (Nachfeld).
Contrary to German, where the words in the Mittelfeld can be freely permuted, English
permits less word order variation: indirect objects must always precede direct objects.
We capture this by splitting the Mittelfeld into two fields:mf1 for indirect objects and
mf2 for direct objects. The left bracket field (lbf) is the landing site for base form
infinitives and past participles, the right bracket field (rbf) for full infinitives, and the
Nachfeld (nf) for subordinate clauses.

• the Vor-Vorfeld(“ pre-pre-field”) (vvf), to the left of the Vorfeld, for fronted material
such as wh-pronouns (e.g.who in Who does Mary like?) and for particles (e.g.to in
to believe), a field for complementizers in subordinate clauses (compf), and a field for
relative pronouns in relative clauses (rprof)

• three fields for adverbs and prepositional modifiers:fadvf for adverbs of frequency
(e.g.oftenin Peter often sleeps), padvf for adverbs of place or manner (e.g.carefullyin
Peter reads the book carefully.), andtadvf for adverbs of time (e.g.now in Peter reads
the book carefully now).

131

9. Syntax

• four fields for noun phrases: the determiner field (detf), the adjective field (adjf), the
field (padjf) for prepositional modifiers of nouns, which we callprepositional adjec-
tives, and the relative clause field (relf)

• a field for the complement of a preposition (prepcf)

• root, the label of the edge from the root (e.g. the full stop) to thefinite verb

edge label topological field

adjf adjective field
compf complementizer field
detf determiner field
fadvf adverbs of frequency field
lbf left bracket field
mf1 Mittelfeld 1
mf2 Mittelfeld 2
nf Nachfeld

padvf adverbs of place or manner field
padjf prepositional adjective field
prepcf complement of a preposition field
rbf right bracket field
relf relative clause field
root root
rprof relative pronoun field
tadvf adverbs of time field
vf Vorfeld
vvf Vor-Vorfeld

Figure 9.8.:LP edge labels and corresponding topological fields

Attributes. TheLP dimension defines the following lexical attributes:

deftype "lp.label1" "lp.label" | {"^"}
defentrytype {in: valency("lp.label")

out: valency("lp.label")
order: set(tuple("lp.label1" "lp.label1"))}

(9.22)

wherein andout stipulate the licensed incoming and outgoing edges andorder a strict partial
order on the outgoing edges and the special anchor label"∧".

9.2.2. Principles and Lexical Classes

Models. We constrain the models of theLP dimension to be projective trees:

useprinciple "principle.graph" { dims {D: lp} }
useprinciple "principle.tree" { dims {D: lp} }
useprinciple "principle.projectivity" { dims {D: lp} }

(9.23)

132

9. Syntax

Topological Valency and Order. We use theValency principleand theOrder principle
(principle 7 in chapter 4) to constrain the topological structure induced by the nodes. The
Valency principle is lexicalized by the lexical attributesin andout, and the Order principle
by the lexical attributeorder:

useprinciple "principle.valency" {
dims {D: lp}
args {In: _.D.entry.in

Out: _.D.entry.out}}
useprinciple "principle.order" {

dims {D: lp}
args {Order: _.D.entry.order}}

(9.24)

In the following table, we show the topological structure induced by finite verbs and full
infinitives:

Vor-Vorfeld Vorfeld left bracket Mittelfeld right bracket Nachfeld
compf | rprof | vvf vf fadvf lbf mf1 mf2 rbf padvf tadvf nf

(9.25)

where the Vor-Vorfeld contains at most one fronted node: a complementizer in thecompf of a
subordinate clause, a relative pronoun in therprof of a relative clause, a particle in thevvf of
a full infinitive, or any other fronted node in thevvf of a matrix clause. The Vorfeldvf and the
Mittelfeld (mf1 andmf2) contain subjects, indirect objects and direct objects, respectively. The
left bracket can be filled by arbitrary many adverbs of frequency in thefadvf, followed by at
most one base form infinitive or past participle in the left bracket fieldlbf. The right bracket
contains arbitrary many full infinitives or prepositional objects in the right bracket fieldrbf.
The Nachfeld contains arbitrary many adverbs of place or manner in the fieldpadvf, followed
by arbitrary many adverbs of time in thetadvf, and followed by at most one subordinate
clause in thenf.

To realize this topological structure, we first define the following lexical class:

defclass "lp_fin" {
dim lp {out: {lbf? fadvf* mf1? mf2? rbf* padvf* tadvf* nf?}}} (9.26)

where we state that finite verbs may have at most one dependentin the left bracket field (lbf),
arbitrary many dependents in the fields for adverbs (fadvf, padvf andtadvf), at most one in
mf1 and at most one inmf2, arbitrary many in the right bracket field (rbf) and at most one in
the Nachfeld (nf).

Depending on their context, we further specify the topological structure of finite verbs by
the following lexical classes, where"lp_fin_root" describes heads of matrix clauses, which
have incoming edge labelroot and license at most one dependent in the Vor-Vorfeld and
precisely one (the obligatory subject) in the Vorfeld."lp_fin_sub" describes finite verbs
heading a subordinate clause, which can be fronted into the Vor-Vorfeld or extraposed into the
Nachfeld, and which license at most one complementizer and at most one dependent in the
Vorfeld. Contrary to matrix clauses, the Vorfeld is not obligatory since it could also be ex-
tracted, as in example (9.2), where the subject ofsmilesis extracted. Finally,"lp_fin_rel"
describes finite verbs heading a relative clause. They require one dependent in the relative

133

9. Syntax

pronoun field and license at most one in the Vorfeld:

defclass "lp_fin_root" {
"lp_fin"
dim lp {in: {root?}

out: {vvf? vf!}}}

defclass "lp_fin_sub" {
"lp_fin"
dim lp {in: {vvf? nf?}

out: {compf? vf?}}}

defclass "lp_fin_rel" {
"lp_fin"
dim lp {in: {relf?}

out: {rprof! vf?}}}

(9.27)

Full infinitives (lexical class"lp_vinf") can only land in the right bracket field. Their
topological structure is very similar to that of finite verbs, except that they do not license a
Vorfeld dependent. Base form infinitives ("lp_vbse") and past participles ("lp_vprt") can
only land in the left bracket field and license at most one outgoing edge to a dependent in their
left bracket field:

defclass "lp_vinf" {
dim lp {in: {rbf?}

out: {vvf! lbf? fadvf* mf1? mf2? rbf* padvf* tadvf* nf?}}}

defclass "lp_vbse" {
dim lp {in: {lbf?}

out: {lbf?}}}

defclass "lp_vprt" {
dim lp {in: {lbf?}

out: {lbf?}}}

(9.28)

The order of the topological dependents of verbs is defined inthe following three lex-
ical classes for main verbs ("lp_main"), auxiliaries ("lp_aux") and question auxiliaries
("lp_qaux"). Their only difference is the position of the verb ("∧") with respect to its de-
pendents:

1. Main verbs must be positioned to the right of the field for adverbs of frequencyfadvf
and to the left of the Mittelfeld (Figure 9.9):

Peter often admires Mary.
*Peter admires often Mary.
*Peter Mary often admires.

(9.29)

defclass "lp_main" {
dim lp {order: <compf rprof vvf vf fadvf "^" lbf mf1 mf2 rbf

padvf tadvf nf>}}
(9.30)

2. Auxiliaries must be positioned directly to the left of thefadvf. Their complement must
end up in the left bracket field to the right of thefadvf (Figure 9.10):

Peter has often admired Mary.
*Peter has admired often Mary.

(9.31)

134

9. Syntax

1

Peter

2

often

3

admires

4

Mary

5

.

root

fadvf mf2vf

Figure 9.9.:LP tree ofPeter often admires Mary.

1

Peter

2

has

3

often

4

admired

5

Mary

6

.

root

fadvf lbf mf2vf

Figure 9.10.:LP tree ofPeter has often admired Mary.

defclass "lp_aux" {
dim lp {order: <compf rprof vvf vf "^" fadvf lbf mf1 mf2 rbf

padvf tadvf nf>}}
(9.32)

3. The position of question auxiliaries is even further to the left, between the Vor-Vorfeld
and the Vorfeld (Figure 9.11):

Whom has Peter often admired?
*Whom Peter has often admired?
*Whom Peter often has admired?

(9.33)

1

Whom

2

has

3

Peter

4

often

5

admired

6

?

root

fadvf lbfvfvvf

Figure 9.11.:LP tree ofWhom has Peter often admired?

defclass "lp_qaux" {
dim lp {order: <compf rprof vvf "^" vf fadvf lbf mf1 mf2 rbf

padvf tadvf nf>}}
(9.34)

We now turn to the topological structure induced by nouns, which is much simpler: at
most one determiner is followed by arbitrary many adjectives, by the noun itself, at most
one prepositional adjective and at most one relative clause. Here is an example, whereof
the researcheris the prepositional adjective and the relative clausewhich humsmodifies the
common nounproduct(Figure 9.12):6

a nice little product of the researcher which hums (9.35)

135

9. Syntax

1

a

2

nice

3

little

4

product

5

of

6

the

7

researcher

8

which

9

hums

adjf adjfdetf padjf relf

prepcf

detf

rprof

Figure 9.12.:LP tree ofa nice little product of the researcher which hums

We realize this topological structure with the following lexical class, which also states that
nouns can either be fronted into the Vor-Vorfeld, land in theVorfeld or in the Mittelfeld, or be
the complement of a preposition:

defclass "lp_noun" {
dim lp {in: {vvf? vf? mf1? mf2? prepcf?}

out: {detf? adjf* padjf? relf?}
order: <detf adjf "^" padjf relf>}}

(9.36)

Prepositions induce an even simpler topological structurewhere the preposition must pre-
cede its complement in theprepcf:

defclass "lp_prep" {
dim lp {out: {prepcf?}

order: <"^" prepcf>}}
(9.37)

Prepositional objects can either land in the right bracket field, or they can be fronted into the
Vor-Vorfeld or the relative pronoun field.

defclass "lp_pobj" {
"lp_prep"
dim lp {in: {rbf? vvf? rprof?}}}

(9.38)

9.3. ID/LP Dimension

The ID /LP dimension constitutes the interface between theID andLP dimensions, constraining
their relation. The models of theID /LP dimension are graphs without edges.

9.3.1. Types

Attributes. We define only one lexical attribute:blocks, whose type is a set ofID edge
labels:

defentrytype {blocks: set("id.label")} (9.39)

6We will establish the partial agreement of the relative pronoun and its modified noun, which is responsible for
ruling out the analysis wherewhich humsmodifiesresearcherinstead ofproduct, on theID /PA dimension in
chapter 12.

136

9. Syntax

9.3.2. Principles and Lexical Classes

Climbing. The relation between theID andLP dimensions is mainly one of flattening:LP

trees must be flatter thanID trees. We express this using theClimbing principle(cf. princi-
ple 13 in chapter 5) to model the idea that nodes more deeply embedded on theID dimension
can be extracted and land higher up on theLP dimension:

useprinciple "principle.climbing" {
dims {D1: lp

D2: id}}
(9.40)

Without the Climbing principle, the relation between theID andLP dimensions would be
too loose: for example, for the sentence below:

Peter likes a nice woman. (9.41)

we would license the wrongID /LP analysis shown in Figure 9.13, where the adjectivenice
modifiesPeterinstead ofwomanon theID dimension. The reason for this is thatnicedoes not
not climb up to a transitive head (here: eitherPeteror likes) on theID dimension.

ID
1

Peter

2

likes

3

a

4

nice

5

woman

6

.

root

adj

objsubj

det

LP
1

Peter

2

likes

3

a

4

nice

5

woman

6

.

root

mf2vf

adjfdetf

Figure 9.13.: WrongID /LP analysis ruled out by the Climbing principle

Barriers. Climbing alone is not sufficient to bring theID andLP dimensions together. For
example, we must to prevent adverbs from climbing out of subordinate clauses and relative
clauses, as in the analysis given in Figure 9.14 for the sentence below:

Peter always likes Mary who smiles. (9.42)

where the adverbalwayshas wrongly been extracted out of a relative clause into the field
fadvf of the matrix verblikes.

We realize restrictions like these with theBarriers principle, which has the declarative
semantics that for each nodev, no nodev′′ betweenv and its transitive headv′ on may “block”
v from migrating up. In the example, the nodes betweenalwaysand its transitive headlikes
areMary andsmiles, where the adverbalwaysis “blocked” by the finite verbsmiles.

137

9. Syntax

ID

1

Peter

2

always

3

likes

4

Mary

5

who

6

smiles

7

.

root

objsubj

rel

adv subj

LP

1

Peter

2

always

3

likes

4

Mary

5

who

6

smiles

7

.

root

fadvf mf2vf

relf

rprof

Figure 9.14.: WrongID /LP analysis ruled out by the Barriers principle

Principle 16 (Barriers).

barriersd1,d2,d3 = ∀v,v′ : v′→d1
v⇒∀v′′ : v′→+

d2
v′′∧v′′→+

d2
v⇒

∀v′′′ : ∀l : v′′′
l

−→d2
v⇒ l /∈ (d3 v′′).lex.blocks

(9.43)

In our metagrammar, we apply the Barriers principle using the lexical attributeblocks:

useprinciple "principle.barriers" {
dims {D1: lp

D2: id
D3: idlp}

args {Blocks: _.D3.entry.blocks}}

(9.44)

Using the Barriers principle, we can rule out the analysis ofFigure 9.14 with the lexical
class"idlp_fin", where we stipulate that finite verbs such assmilesin Figure 9.14 block
adverbs, complementizers, prepositional modifiers, subordinate clauses and non-finite verbs:

defclass "idlp_fin" {
dim idlp {blocks: {adv comp pmod sub vbse vinf}}} (9.45)

As another example, nouns block all their dependents, including relative clauses, to model
that their extraction is forbidden in English:

defclass "idlp_noun" { dim idlp {blocks: {det adj pmod rel}} } (9.46)

Linking. Contrary to German, where grammatical functions can often be distinguished mor-
phologically, English crucially relies on word order to do this. As a result, in German, the order
of the remaining nominal complements in the Mittelfeld is free, and any nominal complement
(i.e., a subject, an indirect or a direct object) can theoretically be positioned in the Vorfeld. In
English, on the contrary, the lack of inflection leads to the following two restrictions:

1. the order of the indirect and direct object in the Mittelfeld is fixed: the indirect must
precede the direct object

138

9. Syntax

2. the Vorfeld of a finite verb is reserved for its subject

We realize the first restriction with theLinkingEnd principle(principle 10 in chapter 4) as
follows:

useprinciple "principle.linkingEnd" {
dims {D1: lp

D2: id
D3: idlp}

args {End: {mf1: {iobj}
mf2: {obj}}}}

(9.47)

That is, anmf1 dependent on theLP dimension must be an indirect object on theID dimension,
and anmf2 dependent a direct object.

For the second restriction, that the Vorfeld of a finite verb must be reserved for its subject,
the LinkingEnd principle does not suffice: it can only be usedto state that the Vorfeld must
be filled by some subject, but this must not necessarily be itsown. For example, consider the
analysis in Figure 9.15 of the sentence below:

Who does he say smiles? (9.48)

where the Vorfeld ofdoeson theLP dimension is filled by the wrong subject: not by its own
subjectwhobut by the subjectheof smileson theID dimension.

ID

1

Who

2

does

3

he

4

say

5

smiles

6

?

root

subj vbse

sub

subj

LP
1

Who

2

does

3

he

4

say

5

smiles

6

?

root

lbf nfvfvvf

Figure 9.15.: WrongID /LP analysis ruled out by the LinkingDaughterEnd principle

We exclude such analyses using theLinkingDaughterEnd principle, which has the following
declarative semantics. If for an edge fromv to v′ labeledl ond1, the value oflinkDaughterEnd
for v andl on d3 is non-empty, then for at least one edge labell ′ in this set, there must be an
edge fromv to v′ on d2 labeledl ′.

Principle 17 (LinkingDaughterEnd).

linkingDaughterEndd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ (d3 v).lex.linkDaughterEnd.l 6= /0⇒

∃l ′ : l ′ ∈ (d3 v).lex.linkDaughterEnd.l ∧ v
l ′

−→d2
v′

(9.49)

139

9. Syntax

In our grammar, we use the LinkingDaughterEnd principle as follows:

useprinciple "principle.linkingDaughterEnd" {
dims {D1: lp

D2: id
D3: idlp}

args {End: {vf: {subj}}}}

(9.50)

As a result, any edge labeledvf from any nodev to any other nodev′ on theLP dimension
must be accompanied by a corresponding edge fromv to v′ labeledsubj on theID dimension.

9.4. Emerging Phenomena

At the beginning of this chapter, we claimed that our modularaccount of syntax would lead to
the emergence of a number of interesting syntactic phenomena without further stipulation. In
this section, we substantiate this claim by demonstrating the emergence of the phenomena of
topicalization, wh questions, andpied piping(Ross 1967).

9.4.1. Topicalization

The grammar allows nominal arguments of verbs to climb up into the Vor-Vorfeld of the matrix
verb:

1. The migration of the nominal arguments is not blocked by the Barriers principle, as can
be seen from the lexical classes in (9.45) and (9.46), where neither subjects, objects,
indirect objects, nor prepositional objects are blocked.

2. The set of licensed incoming edge labels of nouns onLP includesvvf (9.36).

This leads to the emergence of the phenomenon oftopicalization. As an example, consider
the sentence below, analyzed in Figure 9.16, where the object Mary is topicalized, i.e., climbs
up from being the object offind on theID dimension into the Vor-Vorfeld oftries on theLP

dimension:
Mary, Peter tries to find. (9.51)

9.4.2. Wh questions

Wh questions are analyzed analogously to topicalization. Below is an example, analyzed in
Figure 9.17, where the object wh pronounwhomis fronted:

Whom does Mary say a man thinks she tries to find? (9.52)

The example also shows that the grammar covers arbitrarily nested unbounded dependencies.

140

9. Syntax

ID

1

Mary

2

Peter

3

tries

4

to

5

find

6

.

root

subj vinf

obj part

LP

1

Mary

2

Peter

3

tries

4

to

5

find

6

.

root

rbfvfvvf

vvf

Figure 9.16.:ID /LP analysis ofMary, Peter tries to find.

ID

1

Whom

2

does

3

Mary

4

say

5

a

6

man

7

thinks

8

she

9

tries

10

to

11

find

12

?

root

partobj

vinfsubj

subj sub

det

sub

vbsesubj

LP

1

Whom

2

does

3

Mary

4

say

5

a

6

man

7

thinks

8

she

9

tries

10

to

11

find

12

?

root

vvf

vf rbf

vf nf

detf

vvf vf nflbf

Figure 9.17.:ID /LP analysis ofWhom does Mary say a man thinks she tries to find?

9.4.3. Pied Piping

Prepositional objects can also be fronted, leading to the emergence of the phenomenon of pied
piping. As in relative clauses, prepositional objects can also be fronted, we also obtain relative
clause pied piping. We give an example of this below and in theanalysis in Figure 9.18:

Mary by whom Peter is persuaded to sleep smiles. (9.53)

141

9. Syntax

ID

1

Mary

2

by

3

whom

4

Peter

5

is

6

persuaded

7

to

8

sleep

9

smiles

10

.

root

subj

part

vinfpobj2

vprtsubj

prepc

rel

LP

1

Mary

2

by

3

whom

4

Peter

5

is

6

persuaded

7

to

8

sleep

9

smiles

10

.

root

relf

prepcf

lbf rbfrprof vf

vvf

vf

Figure 9.18.:ID /LP analysis ofMary by whom Peter is persuaded to sleep smiles.

9.5. Summary

In this chapter, we have modeled the syntax of a fragment of English. Our approach was based
on TDG, where topological fields theory formed the basis of anelegant account of German
word order. We have demonstrated that a similar analysis is also possible for English, where
word order is less variable, but still far from trivial. As inTDG, we have modularized the
dimensions of grammatical function and word order, which greatly simplified the description
of syntax. In fact, phenomena such as topicalization and pied piping simply emerged from the
intersective demands of the individual dimensions, and didnot have to be explicitly specified.
As we will see, the modularity of the grammar design will alsoprove beneficial for the spec-
ification of the syntax-semantics interface in chapter 12, where we will be able to exclusively
concentrate on theID dimension of grammatical functions, while not having to worry about
word order at all.

142

10. Semantics

Turning to the semantics of natural language, we again adopta very modular approach:
we regard semantics not as a monolithic whole, but as modularized into three dimensions:
Predicate-Argument structure(PA), SCope structure(SC), andInformation Structure(IS). “Se-
mantics” in the narrower sense, traditionally expressed using predicate logic or higher order
logic (Montague 1974), is modeled by thePA and SC dimensions, where thePA dimension
reflects the predicate-argument relations, and theSC dimension scopal relations. The mutual
relation of thePA andSC dimensions is constrained by means of thePA/SC dimension. TheIS
dimension, represents theme/rheme and focus/background relationships, and thus corresponds
to “semantics” in a broader sense, close to pragmatics.

The position of the semantic dimensions in the overall architecture of the grammar is dis-
played in Figure 10.1. The modularity of XDG allows us to formulate the account of semantics
completely independently from syntax, which will significantly simplify the syntax-semantics
interface in chapter 12.

Phonology

Syntax

Immediate Dominance

Semantics

Information Structure

Scope StructurePredicate−Argument
Structure

Prosodic Structure

Linear Precedence

Figure 10.1.: Semantics in the overall architecture of the example grammar

143

10. Semantics

10.1. Predicate-Argument Dimension

ThePA dimension models predicate argument structure as a DAG calledPA DAG, whose edges
are labeled bythematic roles(Panenová 1974). We use a pragmatic, coarse-grained notionof
thematic roles, whose only purpose is to distinguish multiple arguments of a node, and we do
not make any claims towards their linguistic adequacy, which is problematic (Dowty 1989).
In PA DAGs, all nodes not serving a semantic purpose are “deleted”, i.e., collected by the
root node with an edge labeleddel. For example, we delete the prepositions of prepositional
objects, since we consider them only as argument markers, and not as semantic predicates as
e.g. Wechsler (1995). This is reflected in thePA DAG of the sentence below in Figure 10.2,
where the prepositionto is deleted:

Peter gives a book to Mary. (10.1)

In thePA DAG, Peteris the agent (edge labelag) of gives, bookthe patient (pat) andMary the
addressee (addr). a is the determiner (det) of book.

1

Peter

2

gives

3

a

4

book

5

to

6

Mary

7

.

delroot

addrag pat

det

Figure 10.2.:PA DAG of the sentencePeter gives a book to Mary.

From another perspective,PA DAGs can be regarded as multisets of predicates and their
arguments. For example, thePA DAG of Figure 10.2 can be regarded as the following multiset:

book(x),give(p,x,m) (10.2)

where we regard the variablex as implicitly existentially quantified. The first argument of the
predicategive is its agent, the second its patient, and the third its addressee.

As thePA dimension reflects only semantic but not syntactic considerations, contrary to the
ID dimension, passive constructions are analyzed precisely as their active counterparts. An
example is thePA analysis of the passive version (10.3) of (10.1) below in Figure 10.3, where
againPeteris the agent,bookthe patient andMary the addressee:

To Mary, a book is given by Peter. (10.3)

Contrary to the analyses of theID dimension,PA analyses are DAGs and not trees, since we
require multiple incoming edges per node e.g. for the modeling of control constructions. For
example, consider the following sentence:

Peter persuades Mary to sleep. (10.4)

which we schematically analyze as following multiset to show that the argumentm represent-
ing Mary is both an argument of the predicatepersuadeand of the predicatesleep:

persuade(p,m,sleep(m)) (10.5)

144

10. Semantics

1

To

2

Mary

3

a

4

book

5

is

6

given

7

by

8

Peter

9

.

del del delroot

det

addr agpat

Figure 10.3.:PA DAG of the passive sentenceTo Mary, a book is given by Peter.

This is reflected in thePA DAG in Figure 10.4, whereMary has two incoming edges: one
labeledpat from persuadesand one labeledag from sleep.

1

Peter

2

persuades

3

Mary

4

to

5

sleep

6

.

delroot

root

ag
pat

th

ag

Figure 10.4.:PA DAG of Peter persuades Mary to sleep.

A second difference ofPA to ID analyses is that the dependency relation between syntactic
heads and their modifiers is reversed: on thePA dimension, modifiers take their syntactic heads
as their dependents. This is reflected in thePA DAG shown in Figure 10.5 of the sentence
below:

Peter loves a woman who often hums. (10.6)

where the adverboftentakes the modified verbhumsas its theme dependent (edge labelthm

for “theme of a modifier”). ThePA DAG also shows that relative pronouns play a double role
on thePA dimension:

1. As an argument of the finite verb heading the relative clause, e.g.who is the agent of
humsin Figure 10.5.

2. As a modifier of their noun:whois connected towomanby an edge labeledagm (stand-
ing for “agent of a modifier”) in Figure 10.5.

1

Peter

2

loves

3

a

4

woman

5

who

6

often

7

hums

8

.

root root

root

ag

pat

det

agm

thm

ag

Figure 10.5.:PA DAG of Peter loves a woman who often hums

145

10. Semantics

In the following, we call prepositional modifiers of nounsprepositional adjectives, and of
verbsprepositional adverbs. They are modeled similarly: prepositional adjectives take their
modified noun as aagm dependent and prepositional adverbs take their modified verb as a
thm dependent. Both take their complement as apatm (“patient of a modifier”) dependent, as
illustrated in the analysis of the following sentence in Figure 10.6:

Every researcher of a company smiles with a woman. (10.7)

which models the following schematic multiset of predicates:

researcher(x),company(y),of(x,y),woman(z),with(smiles(x),z) (10.8)

1

Every

2

researcher

3

of

4

a

5

company

6

smiles

7

with

8

a

9

woman

10

.

root
root

root

det

agm
patm

detag

patmthm

det

Figure 10.6.:PA DAG of Every researcher of a company smiles with a woman.

10.1.1. Types

Edge Labels. The type of edge labels on thePA dimension is defined below, and we give
an overview of the edge labels and their corresponding thematic roles in Figure 10.7:

deftype "pa.label" {addr ag agm del det pat patm root th thm}
deflabeltype "pa.label" (10.9)

The edge labels include the traditional thematic roles agent, patient and addressee, which we
use to denominate nominal arguments of verbs. For verbal arguments, we use the role theme.
agm, patm andthm denote agents, patients and themes of modifiers, anddet is the edge label
of determiners.del marks nodes without a semantic contribution as to be “deleted”, androot
marks predicates.

Attributes. ThePA dimension defines the following lexical attributes:
defentrytype {in: valency("pa.label")

out: valency("pa.label")
lockDaughters: set("pa.label")}

(10.10)

wherein andout represent valencies andlockDaughters is a set ofPA edge labels.

10.1.2. Principles and Lexical Classes

Models. The models on thePA dimension are DAGs (cf. principle 1 in chapter 4):
useprinciple "principle.graph" { dims {D: pa} }
useprinciple "principle.dag" { dims {D: pa} } (10.11)

146

10. Semantics

edge label thematic role

addr addressee
ag agent of a verb
agm agent of a modifier
del deleted node
det determiner
pat patient of a verb
patm patient of a modifier
root root
th theme
thm theme of a modifier

Figure 10.7.:PA edge labels and corresponding thematic roles

Valency. The PA dimension makes use of theValency principleto constrain the incoming
and outgoing edges of the nodes.

useprinciple "principle.valency" {
dims {D: pa}
args {In: _.D.entry.in

Out: _.D.entry.out}}

(10.12)

The following four lexical classes constrain the incoming edges of nodes on thePA dimen-
sion:

1. Predicates are all main verbs, adverbs, adjectives and prepositional modifiers. They
require an incoming edge labeledroot:

defclass "pa_pred" {
dim pa {in: {root!}}} (10.13)

2. Words without a semantic contribution, i.e., auxiliary verbs1, particles, complementizers
and prepositional objects, require an incoming edge labeled del, i.e., they are “deleted”:

defclass "pa_del" {
dim pa {in: {del!}}} (10.14)

3. Nouns can be the agent, patient or addressee of arbitrary many verbs, and can be the
agent or patient of arbitrary many adjectives, prepositional adjectives or relative clauses:

defclass "pa_noun" {
dim pa {in: {ag* pat* addr* agm* patm*}}} (10.15)

4. Determiners require an incoming edge labeleddet:2

defclass "pa_det" {
dim pa {in: {det!}}} (10.16)

1We can delete auxiliary verbs since our account does not cover tense, nor aspect for simplicity.
2Alternatively, we could delete determiners on thePA dimension. We have decided to keep them to simplify the

interface to CLLS, cf. appendix E.

147

10. Semantics

Turning to the out valencies of the words, root nodes can havearbitrary many predicate
dependents (labeledroot) and can collect arbitrary many deleted dependents (del):

defclass "pa_root" {
dim pa {in: {}

out: {root* del*}}}
(10.17)

Adverbs are predicates, can be modified by arbitrary many other adverbs or prepositional
adverbs, and require a theme. Prepositional adverbs in addition require a patient:

defclass "pa_adv" {
"pa_pred"
dim pa {in: {thm*}

out: {thm!}}}

defclass "pa_padv" {
"pa_adv"
dim pa {out: {patm!}}}

(10.18)

Similarly, adjectives are predicates and require an agent,and prepositional adjectives in
addition also require a patient:

defclass "pa_adj" {
"pa_pred"
dim pa {out: {agm!}}}

defclass "pa_padj" {
"pa_adj"
dim pa {out: {patm!}}}

(10.19)

Common nouns require a determiner:

defclass "pa_cnoun" {
"pa_noun"
dim pa {out: {det!}}}

(10.20)

And finally, relative pronouns require an outgoing edge labeledagm to their modified noun:

defclass "pa_relpro" {
"pa_noun"
dim pa {out: {agm!}}}

(10.21)

Locking. In control constructions, either the agent (in case of subject control) or the patient
(object control) of the control verb is simultaneously the agent of at least one subordinate verb.
For example, in Figure 10.4 above, the patient ofpersuadeis also the agent of the subordinate
verbsleep.

However, the subordinate verb cannot knowwhich of the dependents of the control verb
it may take. As an example, consider the wrong analysis of sentence below in Figure 10.8,
where the agent ofsleepis Peter, notMary.

Peter tries to persuade Mary to sleep. (10.22)

148

10. Semantics

1

Peter

2

tries

3

to

4

persuade

5

Mary

6

to

7

sleep

8

.

del delroot
root

ro
ot

ag

th

ag
pat th

ag

Figure 10.8.: WrongPA DAG of Peter tries to persuade Mary to sleep.

To rule out such analyses, we must ensure that for object control verbs, only the patient may
simultaneously be a dependent of a subordinate verb, but notthe agent or the addressee, and
similarly for subject control. All nominal arguments (agents, patients and addressee) of the
verbs may however be a dependent of superordinate verbs reachable via an edge labeledth,
and they may be a dependent of a modifier (e.g. an adjective or arelative clause).

We realize this constraint using theLockingDaughters principle, which is defined on the
dimensionsd1, d2 andd3, and has the following declarative semantics: for all nodesv, the
dependentsv′ reachable ond1 via an edge labell in the lexically specified setlockDaughters
are “locked”, i.e., ond2, they cannot be a dependent of any node except:

1. v

2. those nodes abovev on d1 reachable via edge labeledl ′, wherel ′ is in exceptAbove

3. those mothers ofv′ ond2 which enterv via an edge labeledl ′, wherel ′ is in key

Principle 18 (LockingDaughters).

lockingDaughtersd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ l ∈ (d3 v).lex.lockDaughters⇒∀v′′ : v′′→d2

v′ ⇒
v′′

.
= v ∨

(∃l ′ ∈ (d3 v).lex.exceptAbove∧v′′→∗
d1

l ′
−→d1

v) ∨

(∃l ′ ∈ (d3 v).lex.key∧v′′
l ′

−→d2
v′)

(10.23)

We apply the principle as follows:

useprinciple "principle.lockingDaughters" {
dims {D1: pa

D2: pa
D3: pa}

args {LockDaughters: _.D3.entry.lockDaughters
ExceptAbove: {th}
Key: {agm patm}}}

(10.24)

where we use theExceptAbove argument to allow the nominal arguments to be simulta-
neously arguments of superordinate verbs reachable via an edge labeledth. With theKey
argument, we allow the nominal arguments to also be arguments of modifiers.

149

10. Semantics

We instantiate thelockDaughters attribute in the lexical classes for subject and object
control verbs below:

defclass "pa_subjcr" {
dim pa {lockDaughters: {pat addr}}}

defclass "pa_objcr" {
dim pa {lockDaughters: {ag addr}}}

(10.25)

"pa_subjcr" (for “subject control/raising”) locks all nominal complements except the agent,
i.e., patient and addressee, and"pa_objcr" (“object control/raising”) all nominal comple-
ments except the patient, i.e., agent and addressee. Now we can exclude the wrong analysis
shown in Figure 10.8: the object control verbpersuadeonly allows its patientMary to be-
come the dependent of a subordinate verb, and locks its agentPeter. As a result, onlyMary
can become the agent of the subordinate verbsleep, but notPeter.

The LockingDaughters principle is not only useful for control verbs, but also for “normal”
verbs, e.g. intransitive or transitive verbs. If the nominal arguments are not locked, they can
e.g. be “taken over” by verbs inside a relative clause, as in the wrong analysis of the sentence
below in Figure 10.9:

Mary sees a woman who tries to sleep. (10.26)

whereMary, the agent of the transitive verbloves, is incorrectly simultaneously the agent
of the verbsleep. We rule out such analyses with the lexical class"pa_nocr" (“no con-
trol/raising”), which locks all nominal arguments:

defclass "pa_nocr" {
dim pa {lockDaughters: {ag pat addr}}} (10.27)

1

Mary

2

sees

3

a

4

woman

5

who

6

tries

7

to

8

sleep

9

.

delroot root

root

ag

pat

det

agm

ag th

ag

Figure 10.9.: WrongPA DAG of Mary sees a woman who tries to sleep.

10.2. Scope Dimension

Turning to the dimension modeling scope, we begin with the example sentence below, which
is ambiguous between the reading where every man loves another woman, and the reading
where the same woman is loved by every man:

Every man loves a woman. (10.28)

150

10. Semantics

The two readings are shown in predicate logic in (10.29) and (10.30). In the former, it is the
universal quantifier which takes wide scope (weak reading),and in the latter, the existential
quantifier (strong reading):

∀x : man(x) ⇒∃y : woman(y)∧ love(x,y) (10.29)

∃y : woman(y)∧∀x : man(x) ⇒ love(x,y) (10.30)

On thePA dimension, we have modeled the predicate-argument relations of the semantic
representation, which are unambiguous and can be represented as the following multiset:

man(x),woman(y), love(x,y) (10.31)

Complementary to thePA dimension, theSCope structure(SC) dimension is not concerned
with predicate-argument structure, but solely with scopalrelations. AnSC analysis is an un-
ordered tree calledSC tree whose edges are labeled by scopal relationships. Figure 10.10
shows anSC tree of the weak reading (10.29), wheremanhas the quantifierevery(edge label
q) andwomanin its scope (edge labels), andwomanin turn has the quantifiera andlovesin its
scope. Figure 10.11 shows anSC tree of the strong reading, where the existentially quantified
womantakes wide scope.

1

Every

2

man

3

loves

4

a

5

woman

6

.

root

q s

qs

Figure 10.10.:SC tree ofEvery man loves a woman.(weak reading)

1

Every

2

man

3

loves

4

a

5

woman

6

.

root

q s

qs

Figure 10.11.:SC tree ofEvery man loves a woman.(strong reading)

For illustration, we represent the twoSC analyses schematically as follows, omitting the
predicate-argument relations of (10.29) and (10.30):

∀ : man⇒∃ : woman∧ love (10.32)

∃ : woman∧∀ : man⇒ love (10.33)

As another example, adjectives on theSC dimension always end up in the restriction (edge
label r) of the noun they modify, as in the analysis of the sentence below in Figure 10.12,
where the adjectivesniceandlittle end up in the restriction of the nounproduct:

Every nice little product hums. (10.34)

151

10. Semantics

Schematically, Figure 10.12 can be represented as follows:

∀ : nice∧ little∧product⇒ hum (10.35)

1

Every

2

nice

3

little

4

product

5

hums

6

.

root

q r r s

Figure 10.12.:SC tree ofEvery nice little product hums.

Adverbs and verbs with verbal complements take scope, i.e.,they require ans dependent.
For example, consider theSC trees in Figure 10.13 and Figure 10.14, which represent the two
readings of the following sentence:

Every man seems to laugh. (10.36)

which we schematically represent below:

∀ : man⇒ seem(laugh) (10.37)

seem(∀ : man⇒ laugh) (10.38)

1

Every

2

man

3

seems

4

to

5

laugh

6

.

delroot

q s

s

Figure 10.13.:SC tree ofEvery man seems to laugh.(reading whereevery mantakes wide
scope)

1

Every

2

man

3

seems

4

to

5

laugh

6

.

delroot

q s

s

Figure 10.14.:SC tree ofEvery man seems to laugh.(reading whereseemstakes wide scope)

152

10. Semantics

10.2.1. Types

Edge Labels. The type of edge labels on theSC dimension are defined as follows:

deftype "sc.label" {del q r root s}
deflabeltype "sc.label" (10.39)

whereq is the label for the quantifier of a common noun,r for its restriction, ands for the
scope of a node. As on thePA dimension,del marks deleted nodes.root is the incoming
edge label of the node taking the widest scope. We give an overview of the edge labels and
their corresponding scopal relations in Figure 10.15.

edge label scopal relation

del deleted node
q quantifier

root root
r restriction
s scope

Figure 10.15.:SC edge labels and corresponding scopal relations

Attributes. The lexical attributes of theSC dimension comprise the valency attributesin

andout:
defentrytype {in: valency("sc.label")

out: valency("sc.label")} (10.40)

10.2.2. Principles and Lexical Classes

Models. The models of theSC dimension must be trees:

useprinciple "principle.graph" { dims {D: sc} }
useprinciple "principle.tree" { dims {D: sc} } (10.41)

Scopal Valency. Using theValency principle, we constrain the incoming and outgoing
edges of the nodes on theSC dimension, which we call theirscopal valency:

useprinciple "principle.valency" {
dims {D: sc}
args {In: _.D.entry.in

Out: _.D.entry.out}}

(10.42)

We define three lexical classes for constraining the incoming edges of the nodes:

1. Words with semantic content (main verbs, adverbs, adjectives, prepositional modifiers
and nouns) can either end up in the restriction or scope of another node, or they take
widest scope:

defclass "sc_cont" {
dim sc {in: {r? s? root?}}} (10.43)

153

10. Semantics

2. Word without semantic content (auxiliary verbs, particles, complementizers, preposi-
tional objects) are deleted:

defclass "sc_nocont" {
dim sc {in: {del!}}} (10.44)

3. Determiners are a special case: even though they are not deleted, they do not inherit
from the class for words with semantic content"sc_cont", since they cannot end up in
the restriction/scope of another word, but only as a quantifier of a common noun with
incoming edge labelq:3

defclass "sc_det" {
dim sc {in: {q?}}} (10.45)

The next classes constrain the outgoing edges of the nodes. Root nodes require one outgoing
edge labeledroot for the node taking widest scope and can collect arbitrary many deleted
nodes:

defclass "sc_root" {
dim sc {in: {}

out: {root! del*}}}
(10.46)

The class"sc_sc" is used words taking scope: adverbs, prepositional adverbs, verbs with
verbal complements and nouns:

defclass "sc_sc" {
dim sc {out: {s!}}} (10.47)

Nouns not only have semantic content and take scope, but alsolicense arbitrary many out-
going edges labeledr into their restriction:

defclass "sc_noun" {
"sc_cont"
"sc_sc"
dim sc {out: {r*}}}

(10.48)

In addition, common nouns require an outgoing edge labeledq for their quantifier:

defclass "sc_cnoun" {
"sc_noun"
dim sc {out: {q!}}}

(10.49)

10.3. PA/SC Dimension

The interface between thePA andSC dimensions is specified by thePA/SC dimension, whose
models are graphs without edges. Basically, thePA/SC dimension states two constraints:

1. the nominal arguments of verbs onPA take scope over the verbs onSC

2. the mothers of verbs onPA take scope over the verbs onSC

154

10. Semantics

PA

1

every

2

man

3

loves

4

a

5

woman

6

.

root

det

ag pat

det

SC

1

every

2

man

3

loves

4

a

5

woman

6

.

root

q s

qs

Figure 10.16.:PA/SC analysis ofEvery man loves a woman.

As an example for the former, Figure 10.16 shows an examplePA/SC analysis of the sentence
(10.28), where correctly, both nominal argumentsmanandwomanof loveson PA take scope
over it onSC, i.e., both dominateloveson SC.

Figure 10.17 shows an analysis of the example sentence below, where the mothersseems
andtodayof laughon PA both take scope over it onSC:

Every man seems to laugh today. (10.50)

PA

1

Every

2

man

3

seems

4

to

5

laugh

6

today

7

.

delroot

root
root

thm

ag

th

det

SC

1

Every

2

man

3

seems

4

to

5

laugh

6

today

7

.

del root

s

s

sq

Figure 10.17.:PA/SC analysis ofEvery man seems to laugh today.

3As on thePA dimension, we could also choose to delete determiners on theSC dimension, but keep them to
simplify the construction of a CLLS semantics, cf. appendixE.

155

10. Semantics

10.3.1. Types

Attributes. The lexical attributes on thePA/SC dimension include the three vectors used to
mapPA edge labels to sets ofSC edge labels:

defentrytype {linkAboveEnd: vec("pa.label" set("sc.label"))
linkBelowStart: vec("pa.label" set("sc.label"))
linkDaughterEnd: vec("pa.label" set("sc.label"))}

(10.51)

10.3.2. Principles and Lexical Classes

LinkingAboveEnd. We use theLinkingAboveEnd principleto state that the nominal argu-
ments of nodes (onPA) take scope over them. The principle has the declarative semantics that
if for an edge fromv to v′ labeledl on d1, the value oflinkAboveEndfor v and l on d3 is
non-empty, then for at least one edge labell ′ in this set,v′ must be abovev ond2, and the path
from v to v′ must end with an edge labeledl ′.

Principle 19 (LinkingAboveEnd).

linkingAboveEndd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ (d3 v).lex.linkAboveEnd.l 6= /0⇒

∃l ′ : l ′ ∈ (d3 v).lex.linkAboveEnd.l ∧ v′
l ′

−→d2
→∗

d2
v

(10.52)

We apply the principle as follows:

useprinciple "principle.linkingAboveEnd" {
dims {D1: pa

D2: sc
D3: pasc}

args {End: ^.D3.entry.linkAboveEnd}}

(10.53)

where thelinkAboveEnd attribute is used in the lexical class for main verbs defined below,
where all possible nominal arguments (ag, pat andaddr) on PA are constrained tos dominate
their verbs onSC:4

defclass "pasc_main" {
dim pasc {linkAboveEnd: {ag: {s}

pat: {s}
addr: {s}}

linkBelowStart: {th: {s}}}}

(10.54)

The attributelinkAboveEnd is also used in the lexical class"pasc_modn" for “modifiers of
nouns” (relative pronouns, adjectives and prepositional adjectives), where the modified noun
is constrained tor dominate its modifiers:

defclass "pasc_modn" {
dim pasc {linkAboveEnd: {agm: {r}}}} (10.55)

As an example, consider the underspecifiedPA/SC analysis of the sentence below in Fig-
ure 10.18:

A nice woman often sleeps. (10.56)

where the noun modified by the adjectiveniceon PA, i.e.,woman, r dominatesniceon SC.

4The meaning of the attributelinkBelowStart is given shortly.

156

10. Semantics

PA

1

A

2

nice

3

woman

4

often

5

sleeps

6

.

root root

root

agm

det

thm

ag

SC
1

A

2

nice

3

woman

4

often

5

sleeps

6

.

q r

root
root

roots
s

Figure 10.18.: UnderspecifiedPA/SC analysis forA nice woman often sleeps.

Prepositional adjectives and prepositional adverbs also have a second argument in addition
to the agent of a modifier (agm) of adjectives and the theme of a modifier (thm) of adverbs: the
patient of a modifierpatm, which is also a nominal argument. Using the LinkingAboveEnd
principle, we constrain it tos dominate its preposition:

defclass "pasc_pmod" {
dim pasc {linkAboveEnd: {patm: {s}}}} (10.57)

LinkingBelowStart. To state that nodes always take scope over their verbal arguments (on
PA), we make use of theLinkingBelowStart principle. The principle is symmetric to the
LinkingAboveEnd principle: the only differences are that the daughterv′ of v on d1 must
be belowv on d2, and that the path fromv to v′ on d2 must start instead of end with an edge
labeledl ′.

Principle 20 (LinkingBelowStart).

linkingBelowStartd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ (d3 v).lex.linkBelowStart.l 6= /0⇒

∃l ′ : l ′ ∈ (d3 v).lex.linkBelowStart.l ∧ v
l ′

−→d2
→∗

d2
v′

(10.58)

We apply the principle using the lexical attributelinkBelowStart:
useprinciple "principle.linkingBelowStart" {

dims {D1: pa
D2: sc
D3: pasc}

args {Start: ^.D3.entry.linkBelowStart}}

(10.59)

We apply this attribute in the lexical class for modifiers of verbs below, which states that on
SC, each node musts dominate its theme:

defclass "pasc_modv" {
dim pasc {linkBelowStart: {thm: {s}}}} (10.60)

The class is applied for adverbs and prepositional adverbs.As an example, reconsider Fig-
ure 10.18, where the verbal modifieroftencorrectlys dominates its themesleeps.

157

10. Semantics

LinkingDaughterEnd. The third principle applied on thePA/SC dimension is theLinking-
DaughterEnd principle, used with lexical attributelinkDaughterEnd:

useprinciple "principle.linkingDaughterEnd" {
dims {D1: pa

D2: sc
D3: pasc}

args {End: ^.D3.entry.linkDaughterEnd}}

(10.61)

We use the principle only to ensure that the quantifier of a common noun onSC corresponds
to its determiner onPA:

defclass "pasc_cnoun" {
dim pasc {linkDaughterEnd: {det: {q}}}} (10.62)

10.4. Information Structure Dimension

Information structure is not concerned with the truth conditions of a sentence, but rather with
its felicity in the discourse. This is of crucial importancefor e.g.Content-To-Speech systems
(CTS), where IS improves the quality of the speech output (Prevost & Steedman 1994), and
Machine Translation(MT), where IS improves target word order, especially for free word
order languages (Stys & Zemke 1995).

We adopt the approach of Steedman (2000a), where information structure divides each
utterance into two parts:theme5 and rheme. The theme relates the utterance to the prior
discourse, and the rheme adds or modifies information about the theme. Steedman (2000a)
further differentiates themes and rhemes intofocusandbackground: the focus is theaccented
word of a theme or rheme, whereas the remaining words constitute the background.

As an example, consider the following sentence:

Peter_L+H* loves_LH% Mary_H*_LL% (10.63)

where we prosodically annotate6 the words according to (Pierrehumbert 1980) and (Steedman
2000a) by:

1. theirpitch accents

2. theboundary tonesfollowing them

In the example,Peter_L+H*has the pitch accentL+H* , loves_LH%is followed by the bound-
ary toneLH%, andMary_H*_LL%has the pitch accentH* and the directly following bound-
ary toneLL%. The pitch accentL+H* indicates the focus of a theme, andH* the focus of a
rheme. The boundary toneLH% marks the end of a theme, andLL% the end of a rheme. As a
result, the theme of the sentence isPeter lovesand the rhemeMary, and within the theme,Pe-
ter is the focus andlovesthe background. This information structure is felicitous in a context
where the question isWho does Peter love?where the themePeter lovesis already mentioned

5This “theme” is different from the thematic role called “theme” on thePA dimension.
6For our purposes, it suffices to know that here,L stands for “low” andH for “high” accent/tone.

158

10. Semantics

in the context, and the rhemeMary is not. It is however not felicitous in the contextBy whom
is Mary loved?, whereMary is already mentioned.

On theIS dimension, we model this structure using ordered projective trees whose edge la-
bels reflect the theme/rheme and focus/background distinctions. Following (Jackendoff 2002),
we position theIS dimension within the semantics in the overall architectureof our grammar
(cf. Figure 10.1). We call anIS analysisIS tree. Figure 10.19 shows an exampleIS tree of sen-
tence (10.63). Here, the additional node corresponding to the full stop has outgoing edges into
the focus of the theme (edge labelth) Peterand into the focus of the rheme (rh) Mary. Peter
in turn has an outgoing edge into its background (bg) loves. Hence,Peter lovesis the theme of
the sentence, andMary the rheme. We call the theme and rheme subtreesinformation struc-
tural constituents(IS constituents). For example,PeterandMary constitute theIS constituent
corresponding to the theme of the sentence, andMary the IS constituent corresponding to the
rheme.

1

Peter_L+H*

2

loves_LH%

3

Mary_H*_LL%

4

.

bg

rhth

Figure 10.19.:IS tree ofPeter_L+H* loves_LH% Mary_H*_LL%

Figure 10.20 shows another exampleIS tree. Here,Mary is again the rheme andPeter loves
the theme. However, contrary to the previous example, the theme is anunmarked theme, not
marked by a pitch accent, and thus not having focus. This is reflected in theIS tree by each
word in the unmarked theme having an incoming edge labeledumth.

1

Peter

2

loves

3

Mary_H*_LL%

4

.

rhumth umth

Figure 10.20.:IS tree ofPeter loves Mary_H*_LL%.

10.4.1. Types

Labels. The type of edge labels on theIS dimension containsbg for background,rh for
rheme,th for theme, andumth for unmarked theme:

deftype "is.label" {bg rh th umth} (10.64)

We give an overview of the edge labels and their corresponding information structural cate-
gories in Figure 10.21.

Attributes. The lexical attributes of theIS dimension include the valenciesin andout:
defentrytype {in: valency("is.label")

out: valency("is.label")} (10.65)

159

10. Semantics

edge label information structural category

bg background
rh rheme
th theme

umth unmarked theme

Figure 10.21.:IS edge labels and corresponding information structural categories

10.4.2. Principles and Lexical Classes

Models. The models of theIS dimension are ordered and projective trees, but with no par-
ticular order on the outgoing edges of the nodes:

useprinciple "principle.graph" { dims {D: is} }
useprinciple "principle.tree" { dims {D: is} }
useprinciple "principle.projectivity" { dims {D: is} }
useprinciple "principle.order" {

dims {D: is}
args {Order: <>}}

(10.66)

Information Structural Valency. We use theValency principleto constrain the incoming
and outgoing edges, which we callinformation structural valency:

useprinciple "principle.valency" {
dims {D: is}
args {In: _.D.entry.in

Out: _.D.entry.out}}

(10.67)

For roots, we define the lexical class"is_root":
defclass "is_root" {
dim is {in: {}

out: ({th* rh+}|{umth* rh+})}}
(10.68)

stating the following two constraints:

1. Each sentence must have at least one rheme.

2. The rheme can be accompanied by arbitrary many themes or unmarked themes, but not
by both, i.e. an analysis cannot contain themes and unmarkedthemes at the same time.

The focus of a theme can only have an incoming edge labeledth and licenses arbitrary
many dependents in its background:

defclass "is_tf" {
dim is {in: {th?}

out: {bg*}}}
(10.69)

The focus of a rheme can only have an incoming edge labeledrh and licenses arbitrary
manybg dependents:

defclass "is_rf" {
dim is {in: {rh?}

out: {bg*}}}
(10.70)

Non-foci can either become background of the focus, or part of an unmarked theme:
defclass "is_nf" {
dim is {in: {bg? umth?}}} (10.71)

160

10. Semantics

10.5. Emerging Phenomena

The separation of predicate-argument structure and scope structure allows us, in combination
with the XDK constraint parser, to selectively postpone theenumeration of readings which
differ only in their scope structure, which brings usscope underspecificationfor free, without
any further stipulation.

10.5.1. Scope Underspecification

As explained in section 8.3.4 of chapter 8, the XDK constraint parser is able to selectively
postpone the enumeration of readings on any of the the individual dimensions. If we decide
to enumerate the readings only on thePA dimension, but not on theSC dimension, we get
scope underspecificationfor free: a scopally underspecified semantic analysis is then simply
a PA/SC analysis consisting of:

• a totalPA analysis

• a partialSC analysis

where the partialSC analysis includes edges already determined by the constraint parser and
additional information, e.g. stating which nodes are already known to dominate which other
nodes.

As an example, Figure 10.22 shows an underspecifiedPA/SC analysis of (10.28). The partial
SC analysis includes the edges labeledq from manto everyand fromwomanto a which are
already determined, and the information thatmanandwomanboths dominate7 loves, which
is indicated by curved dotted edges. In appendix E, we show how to make use of partialSC

analyses in an interface to the Constraint Language for Lambda Structures (CLLS).

PA

1

every

2

man

3

loves

4

a

5

woman

6

.

root

det

ag pat

det

SC
1

every

2

man

3

loves

4

a

5

woman

6

.

q q

root

root
root

s s

Figure 10.22.: UnderspecifiedPA/SC analysis ofEvery man loves a woman.

7A nodev l dominates another nodev′ if there is a path fromv to v′ starting with an edge labeledl .

161

10. Semantics

10.6. Summary

In this chapter, we have modeled natural language semanticsusing the XDK. Inspired by the
parallel grammar architecture of Sadock (1991) and Jackendoff (2002), we took a modular
view on semantics, and distinguished the dimensions of predicate-argument structure (PA),
scope structure (SC) and information structure (IS). The PA/SC dimension constrained the
relation between thePA andSC dimensions. Our approach is one of the first to model “deep
semantics” (including not only predicate-argument structure but also scope structure) in a
dependency-based grammar formalism. In combination with the XDK constraint parser, our
approach gave us scope underspecification for free, withoutfurther stipulation.

162

11. Phonology

In this chapter, we add phonology to our example grammar, in the form of theProsodic Struc-
ture (PS) dimension. Dealing only with prosody, we cover only a very small subset of phonol-
ogy, leave out many other aspects, e.g. rhythm, stress and syllabic structure. Our account of
prosody follows (Pierrehumbert 1980) and (Steedman 2000a), and will lead, together with
our model of information structure in section 10.4 of chapter 10, to a modular version of the
prosodic account of information structure introduced in (Steedman 2000a). We display the po-
sition of thePSdimension in the overall architecture of the example grammar in Figure 11.1.

Phonology

Syntax

Immediate Dominance

Semantics

Linear Precedence

Information Structure

Scope StructurePredicate−Argument
Structure

Prosodic Structure

Figure 11.1.: Phonetics in the overall architecture of the example grammar

11.1. Prosodic Structure Dimension

We regard prosody as dividing sentences into substrings that we callprosodic constituentsor
PS constituentsfor short. PS constituents are delimited by boundary tones: as an example,
consider the following prosodically annotated example sentence:

Peter_L+H* loves_LH% Mary_H*_LL%. (11.1)

wherePeter carries the pitch accentL+H* , loves is followed by the boundary toneLH%,
andMary both carries the pitch accentH* and is followed by the boundary toneLL%. The

163

11. Phonology

boundary tone followinglovesdelimits thePS constituentPeter lovesand the boundary tone
following Mary thePSconstituentMary.

We model this structure on theProsodic Structure(PS) dimension, whose models are or-
dered and projective trees calledPS trees. In PS trees, all words followed by boundary tones
are connected to the additional root node corresponding to the end-of-sentence marker, and
the remaining words are connected to the next word followed by a boundary tone to the right.
The words followed by boundary tones and their dependents constitute thePS constituents of
the sentence.

Figure 11.2 shows an examplePStree of (11.1), whereloves, followed by the boundary tone
LH%, is connected to the additional root node by an edge labeledbt1 standing for “boundary
tone 1”, andMary, carrying pitch accentH* and followed by the boundary toneLL%, by an
edge labeledpa2bt2 (“pitch accent 2 and boundary tone 2”).Peter, carrying the pitch accent
L+H* , is connected to the next word followed by a boundary tone (loves) by an edge labeled
pa1 (“pitch accent 1”). The resultingPS constituentsPeter lovesandMary correspond to the
subtrees oflovesandMary.

1

Peter_L+H*

2

loves_LH%

3

Mary_H*_LL%

4

.

pa1

bt1 pa2bt2

Figure 11.2.:PS tree ofPeter_L+H* loves_LH% Mary_H*_LL%.

As another example, Figure 11.3 shows aPS tree for the sentence below, which contains
only one prosodic constituent, i.e.,Peter loves Mary. Mary has incoming edge labelpa2bt2

standing for “pitch accent 2 and boundary tone 2”. The other words are unaccented and
connected to the next word followed by a boundary tone,Mary, by edges labeledua.

Peter loves Mary_H*_LL%. (11.2)

1

Peter

2

loves

3

Mary_H*_LL%

4

.

ua ua

pa2bt2

Figure 11.3.:PS tree ofPeter loves Mary_H*_LL%.

11.1.1. Types

Edge Labels. The type of edge labels on thePSdimension is defined as:

deftype "ps.label" {bt1 bt2 pa1 pa1bt1 pa2 pa2bt2 ua}
deflabeltype "ps.label" (11.3)

and includes:

164

11. Phonology

1. bt1, bt2 for the two boundary tonesLH% andLL% covered by the grammar

2. pa1, pa2 for the twopitch accents L+H*andH*

3. pa1bt1, for the combination ofpa1 andbt1 andpa2bt2 for the combination ofpa2
andbt2

4. ua for unaccented

We give an overview of the edge labels and the corresponding prosodic categories in Fig-
ure 11.4.

edge label prosodic category

bt1 followed by boundary tone 1
bt2 followed by boundary tone 2
pa1 carrying pitch accent 1

pa1bt1 carrying pitch accent 1 and followed by boundary tone 1
pa2 carrying pitch accent 2

pa2bt2 carrying pitch accent 2 and followed by boundary tone 2
ua unaccented

Figure 11.4.:PSedge labels and corresponding prosodic categories

Attributes. The lexical attributes include the valenciesin andout and the setorder, rep-
resenting a strict partial order on the outgoing edges and the special anchor label"∧":

deftype "ps.label1" "ps.label" | {"^"}
defentrytype {in: valency("ps.label")

out: valency("ps.label")
order: set(tuple("ps.label1" "ps.label1"))}

(11.4)

11.1.2. Principles and Lexical Classes

Models. The models of thePSdimension are projective trees:

useprinciple "principle.graph" { dims {D: ps} }
useprinciple "principle.tree" { dims {D: ps} }
useprinciple "principle.projectivity" { dims {D: ps} }

(11.5)

Prosodic Valency and Order. We use theValency principleto constrain the incoming and
outgoing edges of the nodes, which we callprosodic valency, and we use theOrder principle
to order the dependents of boundary tones to their left:

useprinciple "principle.valency" {
dims {D: ps}
args {In: _.D.entry.in

Out: _.D.entry.out}}
useprinciple "principle.order" {

dims {D: ps}
args {Order: _.D.entry.order}}

(11.6)

165

11. Phonology

The Valency principle is applied using the lexical attributesin andout, and the Order princi-
ple using the lexical attributeorder.

The additional root node (corresponding to the end-of-sentence marker) is characterized by
the following lexical class:

defclass "ps_root" {
dim ps {in: {}

out: {bt1* bt2* pa1bt1* pa2bt2*}
order: {[bt1 "^"] [bt2 "^"] [pa1bt1 "^"] [pa2bt2 "^"]}}}

(11.7)

That is, it does not license any incoming edge, and arbitrarymany edges to nodes which
correspond to words followed by boundary tones (either labeledbt1, bt2, pa1bt1 orpa2bt2).
By theorder attribute, the root is constrained to follow its dependents. The order among its
dependents is not constrained.

Words followed by any boundary tone (variableBT) license at most one incoming edge
labeled byBT, arbitrary many outgoing edges to words carrying pitch accent PA and arbitrary
many outgoing edges to unaccented words. It must precede itsdependents:

defclass "ps_bt" BT PA {
dim ps {in: {BT?}

out: {PA* ua*}
order: {[PA "^"] [ua "^"]}}}

(11.8)

Thus, words followed by a boundary tone only license outgoing edges to either unaccented
words or to words carrying a specific pitch accent, i.e., prosodic constituents may only include
words which carry appropriate pitch accents. For example, words followed by boundary tone
1 only license outgoing edges to unaccented words or words carrying pitch accent 1, and
similarly for boundary tone 2 and for combinations of boundary tones and pitch accents:

defclass "ps_bt1" { "ps_bt" {BT: bt1 PA: pa1} }

defclass "ps_bt2" { "ps_bt" {BT: bt2 PA: pa2} }

defclass "ps_pa1bt1" { "ps_bt" {BT: pa1bt1 PA: pa1} }

defclass "ps_pa2bt2" { "ps_bt" {BT: pa2bt2 PA: pa2} }

(11.9)

These lexical classes exclude sentences such as the one below (analyzed in Figure 11.5), where
the prosodic constituent delimited byloves, followed by boundary tone 1 (L+H%), includes
Petercarrying the unappropriate pitch accent 2 (H*):

Peter_H* loves_L+H% Mary_H*_LL%. (11.10)

Words carrying any pitch accentPA only license an incoming edge labeledPA, and no out-
going edges:

defclass "ps_pa" PA {
dim ps {in: {PA?}}} (11.11)

We instantiate this lexical class as follows for the two pitch accents covered by the grammar:
defclass "ps_pa1" { "ps_pa" {PA: pa1} }

defclass "ps_pa2" { "ps_pa" {PA: pa2} }
(11.12)

Unaccented words only license an incoming edge labeledua and no outgoing edges:
defclass "ps_ua" {
dim ps {in: {ua?}}} (11.13)

166

11. Phonology

1

Peter_H*

2

loves_LH%

3

Mary_H*_LL%

4

.

pa2

bt1 pa2bt2

Figure 11.5.:PS tree of the ill-formed sentencePeter_H* loves_L+H% Mary_H*_LL%.

11.2. Summary

We have developed a simplified model of prosody following theaccount of (Pierrehumbert
1980) and (Steedman 2000a). Prosody will play an important role in the phonology-semantics
interface developed in the next chapter, which realizes theprosodic account of information
structure introduced in (Steedman 2000a).

167

12. Interfaces

This chapter introduces thesyntax-semantics interfaceof the example grammar, realized by
the ID /PA dimension, and thephonology-semantics interface, which is realized by thePS/IS
dimension. TheID /PA dimension characterizes the relation between theID dimension of
grammatical functionsand thePA dimension ofthematic rolesby constraining how seman-
tic arguments must be realized syntactically. ThePS/IS dimension completes our version of
the prosodic account of information structure introduced in (Steedman 2000a) by constraining
the relation between thePSandIS dimensions. We display the position of the interfaces in the
overall architecture of the example grammar in Figure 12.1.

Phonology

Syntax

Immediate Dominance

Semantics

Linear Precedence

Information Structure

Scope StructurePredicate−Argument
Structure

Prosodic Structure

Figure 12.1.: The interfaces in the overall architecture ofthe example grammar

12.1. Syntax-Semantics Interface

The modularity of XDG allows us to specify the syntax-semantics interface solely in terms of
the ID andPA dimensions on theID /PA dimension. In particular, we do not need to take word
order, scopal relationships, information structure or prosody into account. This is not to say
that the syntax-semantics interfacemustbe unrelated to these dimensions—only that it does
not have to, which considerably reduces the complexity of the syntax-semantics interface and
makes it less error-prone.

168

12. Interfaces

12.1.1. Types

Attributes. The lexical attributes of theID /PA dimension consist of five vectors used to map
PA edge labels to sets ofID edge labels for the linking principles, two sets ofPA edge labels
for the LinkingMother principleand thePartialAgreement principle(defined shortly), and a
set ofID labels for theLockingDaughters principle:

defentrytype {linkDaughterEnd: vec("pa.label" set("id.label"))
linkBelow1or2Start: vec("pa.label" set("id.label"))
linkBelowStart: vec("pa.label" set("id.label"))
linkAboveBelow1or2Start: vec("pa.label" set("id.label"))
lockDaughters: set("id.label")
linkMother: set("pa.label")
linkAboveEnd: vec("pa.label" set("id.label"))
agree: set("pa.label")}

(12.1)

12.1.2. Principles and Lexical Classes

The syntax-semantics interface is divided into four parts:

1. verbal arguments

2. modifiers

3. common nouns

4. relative clauses

Verbal Arguments. The largest part of the syntax-semantics interface consists of modeling
the syntactic realization of verbal arguments. Given a verbnodev on thePA dimension, its
semantic argumentv′ can be realized onID either:

1. as the dependent ofv, or as the dependent of a dependent ofv

2. as the dependent or as the dependent of a dependent of a superordinate verb ofv

3. as a node belowv

As an example for the first possibility, consider theID /PA analysis in Figure 12.2 of the
following sentence:

Peter assigns every task to a researcher. (12.2)

where the agentPeterand the patienttaskof assignson thePA dimension are syntactically
realized as dependents (subject and object) ofassigns. The addresseeresearcheris realized as
the dependent of the dependentto.

We implement the first possibility with theLinkingBelow1or2Start principle, which has
the following declarative semantics: if for an edge fromv to v′ labeledl on d1, the value of
linkBelow1or2Startfor v and l on d3 is non-empty, then for at least one edge labell ′ in this
set, there must either be an edge directly going fromv to v′ ond2 labeledl ′, or an edge labeled
l ′ going fromv to another nodev′′, and one fromv′′ to v′.

169

12. Interfaces

ID

1

Peter

2

assigns

3

every

4

task

5

to

6

a

7

researcher

8

.

root

obj pobj1subj

det prepc

det

PA

1

Peter

2

assigns

3

every

4

task

5

to

6

a

7

researcher

8

.

delroot

addrag pat

det det

Figure 12.2.:ID /PA analysis ofPeter assigns every task to a researcher.

Principle 21 (LinkingBelow1or2Start).

linkingBelow1or2Startd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ (d3 v).lex.linkBelow1or2Start.l 6= /0⇒

∃l ′ : l ′ ∈ (d3 v).lex.linkBelow1or2Start.l ∧

v
l ′

−→d2
v′∨∃v′′ : v

l ′
−→d2

v′′∧v′′→d2
v′

(12.3)

We apply this principle as follows:

useprinciple "principle.linkingBelow1or2Start" {
dims {D1: pa

D2: id
D3: idpa}

args {Start: ^.D3.entry.linkBelow1or2Start}}

(12.4)

and specify the lexical attribute in the lexical class"idpa_pat_obj" which states that the
patient is realized as an object, or"idpa_addr_iobj" which states that the addressee is
realized by the indirect object:

defclass "idpa_pat_obj" {
dim idpa {linkBelow1or2Start: {pat: {obj}}}}

defclass "idpa_addr_iobj" {
dim idpa {linkBelow1or2Start: {addr: {iobj}}}}

(12.5)

The lexical class"idpa_addr_pobj1" states that the addressee is realized by prepositional
object 1. For passives, we define the class"idpa_ag_pobj2" stating that the agent is realized
by prepositional object 2:

defclass "idpa_addr_pobj1" {
dim idpa {linkBelow1or2Start: {addr: {pobj1}}}}

defclass "idpa_ag_pobj2" {
dim idpa {linkBelow1or2Start: {ag: {pobj2}}}}

(12.6)

170

12. Interfaces

The second possibility for the realization of verbal arguments is by a superordinate verb.
An example is the sentence below, whoseID /PA analysis is displayed in Figure 12.3:

Peter seems to laugh. (12.7)

Here, the agentPeterof laugh is realized as the subject of the superordinate subject raising
verbseemson theID dimension.

ID

1

Peter

2

seems

3

to

4

laugh

5

.

root

part

vinfsubj

PA

1

Peter

2

seems

3

to

4

laugh

5

.

delroot

root

ag

th

Figure 12.3.:ID /PA analysis ofPeter seems to laugh.

The agents of subordinate verbs need not always be realized as subjects. In the example
below, analyzed in Figure 12.4, the PP control verbappealsrealizes the agent oflaughas its
prepositional object:

Peter appeals to Mary to laugh. (12.8)

ID

1

Peter

2

appeals

3

to

4

Mary

5

to

6

laugh

7

.

root

pobj1subj vinf

prepc part

PA

1

Peter

2

appeals

3

to

4

Mary

5

to

6

laugh

7

.

del delroot

root

addr

ag th

ag

Figure 12.4.:ID /PA analysis ofPeter appeals to Mary to laugh.

We implement this second possibility for the syntactic realization of verbal arguments with
the LinkingAboveBelow1or2Start principle. Its declarative semantics are analogous to the
LinkingBelow1or2Start principle, with the exception thatfor all nodes fromv to v′ on d1, v′

not necessarily has to be the dependent (or the dependent of adependent) ofv on d2, but can
also be the dependent of a superordinate nodev′′ of v ond2.

171

12. Interfaces

Principle 22 (LinkingAboveBelow1or2Start).

linkingAboveBelow1or2Startd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ (d3 v).lex.linkAboveBelow1or2Start.l 6= /0⇒

∃l ′ : l ′ ∈ (d3 v).lex.linkAboveBelow1or2Start.l ∧

∃v′′ : v′′→∗
d2

v ∧ (v′′
l ′

−→d2
v′∨∃v′′′ : v′′

l ′
−→d2

v′′′∧v′′′→d2
v′)

(12.9)

We apply the principle as follows:

useprinciple "principle.linkingAboveBelow1or2Start" {
dims {D1: pa

D2: id
D3: idpa}

args {Start: ^.D3.entry.linkAboveBelow1or2Start}}

(12.10)

and use it in the lexical class"idpa_ag_super", which states that the agent can be realized
either as a subject, an object, an indirect object or a prepositional object of the verb itself or a
superordinate verb:

defclass "idpa_ag_super" {
dim idpa {linkAboveBelow1or2Start: {ag: {subj obj iobj pobj1 pobj2}}}} (12.11)

This lexical class rules out e.g. the wrong analysis of the sentence below given in Figure 12.5,
wheretries incorrectly takesMary and notPeteras its agent:

Peter tries to persuade Mary to sleep. (12.12)

The analysis is ruled out becauseMary neither is a syntactic dependent or a syntactic depen-
dency of a syntactic dependent oftries itself, nor of any superordinate verb.

ID

1

Peter

2

tries

3

to

4

persuade

5

Mary

6

to

7

sleep

8

.

root

subj vinf

objpart vinf

part

PA

1

Peter

2

tries

3

to

4

persuade

5

Mary

6

to

7

sleep

8

.

del delroot
root

ro
ot

ag

th

ag
pat

th

ag

Figure 12.5.: WrongID /PA analysis ofPeter tries to persuade Mary to sleep.

Verbs in passive form do not realize their agent but their patient as the subject of a super-
ordinate verb, as in the example below, analyzed in Figure 12.6, where the patient ofPeterof
lovedis realized as the subject of the superordinate passive auxiliary is:

Peter is loved by Mary. (12.13)

172

12. Interfaces

We capture this in the lexical class below:

defclass "idpa_pat_super" {
dim idpa {linkAboveBelow1or2Start: {pat: {subj obj iobj pobj1 pobj2}}}} (12.14)

ID

1

Peter

2

is

3

loved

4

by

5

Mary

6

.

root

prepc

pobj2

vprtsubj

PA
1

Peter

2

is

3

loved

4

by

5

Mary

6

.

del delroot

pat ag

Figure 12.6.:ID /PA analysis ofPeter is loved by Mary.

The third possibility for the syntactic realization of verbal arguments concerns themes,
which can be realized either by infinitives or by subordinateclauses. In the examples above,
e.g. in Figure 12.4, it seems that the theme argument is always realized by the corresponding
full infinitive dependent. The analysis in Figure 12.7 of thesentence below however shows
that the theme of a verb can also be realized further below:

Peter seems to have been persuaded to sleep. (12.15)

Here, the themepersuadedof seemsis not realized as a syntactic dependent ofseemsbut
further below.

We capture this realization possibility with theLinkingBelowStart principle, which we ap-
ply as follows:

useprinciple "principle.linkingBelowStart" {
dims {D1: pa

D2: id
D3: idpa}

args {Start: ^.D3.entry.linkBelowStart}}

(12.16)

and use the lexical class"idpa_th_vinf" to state that the theme must be realized below the
full infinitive dependent on theID dimension:

defclass "idpa_th_vinf" {
dim idpa {linkBelowStart: {th: {vinf}}}} (12.17)

It seems as if the linking principles presented so far sufficeto constrain the realization of
the semantic arguments of verbs. But this is not quite true. Consider the correct analysis
in Figure 12.8 of the sentence below, where the object raising verbbelievesdoes not have a
patient on thePA dimension, but only an agent:

Peter believes Mary to laugh. (12.18)

173

12. Interfaces

ID

1

Peter

2

seems

3

to

4

have

5

been

6

persuaded

7

to

8

sleep

9

.

root

part

vinf

vprt

vprtpart

vinfsubj

PA

1

Peter

2

seems

3

to

4

have

5

been

6

persuaded

7

to

8

sleep

9

.

del del del delroot

root

ro
ot

ag

th
pat

th

Figure 12.7.:ID /PA analysis ofPeter seems to have been persuaded to sleep.

According to the lexical class"idpa_ag_super" (12.11) above, the agent can be realized by
any nominal grammatical function on theID dimension. But this means that the agent could
also be realized by the object ofbelieves, leading to the wrong analysis shown in Figure 12.9,
where in addition, the agent oflaugh is Peterand notMary.

ID

1

Peter

2

believes

3

Mary

4

to

5

laugh

6

.

root

objsubj vinf

part

PA

1

Peter

2

believes

3

Mary

4

to

5

laugh

6

.

delroot

root

ag th

ag

Figure 12.8.:ID /PA analysis ofPeter believes Mary to laugh.

How can we rule out this analysis? The idea is to reuse theLockingDaughters principle
(cf. principle 18 in chapter 10). Why can we not state this constraint on thePA dimension,
where we also applied the LockingDaughters principle? On the PA dimension alone, we could
only say that the agent ofbelievesmay not simultaneously be the agent of a subordinate
verb. But this constraint is satisfied in Figure 12.9: the agent Mary of believesis in fact not
simultaneously the agent of the subordinate verblaugh. What we need to state instead is a
constraint spanning over both thePA dimension and theID dimension that the subject can

174

12. Interfaces

ID

1

Peter

2

believes

3

Mary

4

to

5

laugh

6

.

root

objsubj vinf

part

PA

1

Peter

2

believes

3

Mary

4

to

5

laugh

6

.

delroot

root
ag th

ag

Figure 12.9.: WrongID /PA analysis ofPeter believes Mary to laugh.

realize a semantic argument of the verb itself, but not of a subordinate verb. As a result, the
subjectPeterof believescan only the agent of itself, and not of the subordinate verblaugh.

We realize this idea by applying the LockingDaughters principle, and using the lexical
attributelockDaughters. As the dependents are locked on theID dimension, which is a
tree, we can safely setExceptAbove to the empty set: there can be no nodes above on the
ID dimension which are also mothers of the locked dependents. By the argumentKey, we
stipulate that the locked dependents may still be modified:

useprinciple "principle.lockingDaughters" {
dims {D1: id

D2: pa
D3: idpa}

args {LockDaughters: _.D3.entry.lockDaughters
ExceptAbove: {}
Key: {agm patm}}}

(12.19)

The lexical class"idpa_objcr" for object raising verbs such asbelievesin the example above
locks the subject and the indirect object:

defclass "idpa_objcr" {
dim idpa {lockDaughters: {subj iobj}}} (12.20)

Modifiers. The arguments of modifiers on thePA dimension are realized by their syntactic
heads on theID dimension. As an example, consider the sentence below, analyzed in Fig-
ure 12.10:

With Peter, a pretty woman smiles today. (12.21)

where the agent of the adjectivepretty is realized by its syntactic head, the nounwomanon
the ID dimension. Similarly, the theme of the adverbtodayand the prepositional adverbwith
are both realized by their syntactic head, the verbsmiles.

We implement this idea using theLinkingMother principle:

175

12. Interfaces

ID

1

With

2

Peter

3

a

4

pretty

5

woman

6

smiles

7

today

8

.

root

subjpmod adv

det adjprepc

PA

1

With

2

Peter

3

a

4

pretty

5

woman

6

smiles

7

today

8

.

root root

root
root

thm

ag

det

agm
thmpatm

Figure 12.10.:ID /PA analysis ofWith Peter, a pretty woman smiles today.

useprinciple "principle.linkingMother" {
dims {D1: pa

D2: id
D3: idpa}

args {Which: ^.D3.entry.linkMother}}

(12.22)

and define the following lexical classes. For adjectives, the class"idpa_adj" stipulates that
the agent of the adjective is realized by its syntactic head:

defclass "idpa_adj" {
dim idpa {linkMother: {agm}}} (12.23)

The class"idpa_adv" states the analogue for adverbs:

defclass "idpa_adv" {
dim idpa {linkMother: {thm}}} (12.24)

The patient of prepositional modifiers is realized as theirprepc dependent on theID dimen-
sion. For example, in Figure 12.10, the patient of the prepositional modifierwith on PA is real-
ized by itsprepc dependentPeteron ID. This is expressed in the following two lexical classes
for prepositional adjectives ("idpa_padj") and prepositional adverbs ("idpa_padv"):

defclass "idpa_padj" {
"idpa_adj"
dim idpa {linkDaughterEnd: {patm: {prepc}}}}

defclass "idpa_padv" {
"idpa_adv"
dim idpa {linkDaughterEnd: {patm: {prepc}}}}

(12.25)

Common Nouns. The determiner of a common noun onPA is realized syntactically also
as the determiner of the noun, as can be seen e.g. in Figure 12.12 above. We state this simple

176

12. Interfaces

constraint using theLinkingDaughterEnd principle:

useprinciple "principle.linkingDaughterEnd" {
dims {D1: pa

D2: id
D3: idpa}

args {End: ^.D3.entry.linkDaughterEnd}}

(12.26)

and using the lexical class below:

defclass "idpa_cnoun" {
dim idpa {linkDaughterEnd: {det: {det}}}} (12.27)

Relative Clauses. In our example grammar, we analyze relative clauses such as the fol-
lowing as shown in Figure 12.11:

Mary sees a woman who smiles. (12.28)

That is, on theID dimension, the finite verb (here:smiles) heading the relative clause is arel
dependent of the modified noun (woman). On thePA dimension, the modified noun is anagm
dependent of the relative pronoun (here:who).

ID

1

Mary

2

sees

3

a

4

woman

5

who

6

smiles

7

.

root

objsubj

det rel

subj

PA

1

Mary

2

sees

3

a

4

woman

5

who

6

smiles

7

.

root root

ag
pat

det

agm

ag

Figure 12.11.:ID /PA analysis ofMary sees a woman who smiles.

With respect to relative clauses, the syntax-semantics interface stipulates:

1. partial agreement of the relative pronoun with itsagm dependent, i.e., the modified noun

2. the syntactic realization of the agent of the relative pronoun as a node above the relative
pronoun, where the path to the node ends with an edge labeledrel

Partial agreement of the relative pronoun with the modified noun is motivated by the follow-
ing contrast, which is caused by the relative pronoun and themodified noun having a gender
mismatch:

Mary sees a woman who smiles.
Mary sees a woman that smiles.
*Mary sees a woman which smiles.

(12.29)

177

12. Interfaces

In the light of the notion of agreement in our grammar, whereagreement tuplesinclude also
case, the agreement of relative pronouns and modified nouns is only partial. For example, the
cases of the personal pronoun and the modified noun do not haveto match: inMary sees a
woman who smiles, womanis accusative andwhonominative. To express partial agreement,
we introduce thePartialAgreement principle, which is defined analogously to theAgreement
principle (cf. principle 9 in chapter 4), but stipulates that only a subset of the projections
(lexical attributeprojs) of the agreement tuple must agree.

Principle 23 (Partial Agreement).

partialAgreementd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
v′ ∧ l ∈ (d3 v).lex.agree⇒

∀i ∈ (d3 v).lex.projs : (d2 v).agr.i
.
= (d2 v′).agr.i

(12.30)

We apply the principle as follows, where we setProjs, the set of projections of the agree-
ment tuple which must agree, to the set containing only3 (gender):

useprinciple "principle.partialAgreement" {
dims {D1: pa

D2: id
D3: idpa}

args {Agr1: ^.D2.attrs.agr
Agr2: _.D2.attrs.agr
Agree: ^.D3.entry.agree
Projs: {3}}}

(12.31)

By the lexical class"idpa_relpro_agree", we then state that theagm dependent of the
relative pronoun on thePA dimension must agree with it in gender:

defclass "idpa_relpro_agree" {
dim idpa {agree: {agm}}} (12.32)

The syntax-semantics interface is secondly concerned withthe syntactic realization of the
agent of the relative pronoun. As can be seen from the analysis in Figure 12.11 above, the
agent of the relative pronoun, i.e., the modified noun, can befound above the relative pronoun
on the ID dimension, and the last edge on the path from the relative pronoun to the modi-
fied noun is labeledrel. We express this in our grammar applying the LinkingAboveEnd
principle:

useprinciple "principle.linkingAboveEnd" {
dims {D1: pa

D2: id
D3: idpa}

args {End: ^.D3.entry.linkAboveEnd}}

(12.33)

and the accompanying lexical class"idpa_relpro_link":

defclass "idpa_relpro_link" {
dim idpa {linkAboveEnd: {agm: {rel}}}} (12.34)

This linking specification also covers more complex cases such aspied pipingconstructions.
Consider the pied piping example below, where the relative pronoun is a dependent of the
prepositional adverbwith:

Mary sees a woman with whom Peter smiles (12.35)

178

12. Interfaces

We show an analysis of the sentence in Figure 12.12. Here, themodified noun is also above
the relative pronoun on theID dimension, and the last edge on the path to it is also labeled
with rel.

ID

1

Mary

2

sees

3

a

4

woman

5

with

6

whom

7

Peter

8

smiles

9

.

root

objsubj

det rel

prepc

pmod subj

PA

1

Mary

2

sees

3

a

4

woman

5

with

6

whom

7

Peter

8

smiles

9

.

root root

root

ag
pat

det

patm thm

agm ag

Figure 12.12.:ID /PA analysis ofMary sees a woman with whom Peter smiles.

12.2. Phonology-Semantics Interface

We realize the Phonology-Semantics interface by thePS/IS dimension, which constrains the
relation of prosodic structure (PS) and information structure (IS). Its position in the overall
architecture of the grammar is displayed in Figure 12.1 above, and it purpose is twofold:

1. As pitch accents and boundary tones are characteristic for either theme or rheme, to
ensure that words carrying theme pitch accents and words followed by theme boundary
tones only occur in themes, and analogously for rhemes.

2. Ensure thatIS constituentsare always contained inPSconstituents.

The PS, IS andPS/IS dimensions constitute a modular adaptation of the prosodicaccount of
information structure of Steedman (2000a). It is not connected with the account of information
structure for TDG developed in (Kruijff & Duchier 2003), which also integrates other sources
of information in addition to prosody.

12.2.1. Principles and Lexical Classes

Pitch Accents and Boundary Tones. Our first task is to ensure that words carrying theme
pitch accents or words followed by theme boundary tones may only occur in themes. To this

179

12. Interfaces

end, we define the following lexical classes:

defclass "psis_th_pa" {
"ps_pa1"
"is_tf"}

defclass "psis_th_pabt" {
"ps_pa1bt1"
"is_tf"}

defclass "psis_th_bt" {
"ps_bt1"
"is_nf"}

(12.36)

where"psis_th_pa" states that words carrying pitch accent 1 can only be the focus of a
theme,"psis_th_pabt" that words simultaneously carrying pitch accent 1 and followed
by boundary tone 1 can also only be the focus of a theme, and"psis_th_bt" that words
followed by boundary tone 1 must be non-foci.

The following classes state the analogues for rhemes:

defclass "psis_rh_pa" {
"ps_pa2"
"is_rf"}

defclass "psis_rh_pabt" {
"ps_pa2bt2"
"is_rf"}

defclass "psis_rh_bt" {
"ps_bt2"
"is_nf"}

(12.37)

Unaccented words are covered by the lexical class"psis_ua", which stipulates that they
must be non-foci:

defclass "psis_th_ua" {
"ps_ua"
"is_nf"}

(12.38)

As an example, consider the analysis in Figure 12.13 of the sentence below, whereMarcel
carries a theme pitch accent,provesis followed by a theme boundary tone, andcompleteness
simultaneously carries a rheme pitch accent and is followedby a rheme boundary tone. Both
Marcelandprovesare correctly in the theme of theIS analysis, andcompletenessin the rheme:

Marcel_L+H* proves_LH% completeness_H*_LL%. (12.39)

IS and PS Constituents. On theIS dimension, words carrying pitch accents are the heads
of IS constituents, and on thePS dimension, words followed by boundary tones are the heads
of PS constituents. The relation betweenIS constituents andPS constituents is constrained as
follows: eachIS constituent must either correspond to aPSconstituent or be contained in one.
For example, consider the sentence below:

Marcel_LH% proves completeness_H*_LL%. (12.40)

The sentence licenses two analyses, which we show in Figure 12.14 and Figure 12.15, where:

180

12. Interfaces

PS
1

Marcel_L+H*

2

proves_LH%

3

completeness_H*_LL%

4

.

pa1

bt1 pa2bt2

IS
1

Marcel_L+H*

2

proves_LH%

3

completeness_H*_LL%

4

.

bg

rhth

Figure 12.13.:PS/IS analysis ofMarcel_L+H* proves_LH% completeness_H*_LL%.

1. In Figure 12.14, theIS andPSconstituentsMarcel andproves completenessconverge.

2. In Figure 12.15, theIS constituentMarcelconverges with thePSconstituentMarcel, and
the IS constituentsprovesandcompletenessare contained in thePS constituentproves
completeness.

PS
1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

ua

bt1 pa2bt2

IS
1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

bg

rhumth

Figure 12.14.:PS/IS analysis ofMarcel_LH% proves completeness_H*_LL%.

PS
1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

ua

bt1 pa2bt2

IS
1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

rhumth umth

Figure 12.15.:PS/IS analysis ofMarcel_LH% proves completeness_H*_LL%.

We express this relation betweenPS and IS constituents using theSubgraphs principle,
which has the following declarative semantics: given threedimensionsd1, d2 andd3, for all

181

12. Interfaces

nodesv andv′ and for all edge labelsl on d1, if v′ is below an edge labeledl emanating from
v on d1 and the lexically specified setsubgraphsStartis non-empty forl , then it must contain
at least one edge labell ′ andv′ must also be below an edge labeledl ′ on d2, also emanating
from v.

Principle 24 (Subgraphs).

subgraphsd1,d2,d3
= ∀v,v′ : ∀l :

v
l

−→d1
→∗

d1
v′ ∧ (d3 v).lex.subgraphsStart.l 6= /0⇒

∃l ′ : l ′ ∈ (d3 v).lex.subgraphsStart.l ∧ v
l ′

−→d2
→∗

d2
v′

(12.41)

We apply the principle as follows, stating that all elementsin the theme must be contained
in the correspondingPSconstituent headed by a word followed by boundary tone 1, andanal-
ogously for the rheme:

useprinciple "principle.subgraphs" {
dims {D1: is

D2: ps
D3: psis}

args {Start: {th: {bt1 pa1bt1}
rh: {bt2 pa2bt2}}}}

(12.42)

We do not need to constrain unmarked themes since the corresponding IS constituents al-
ways consist of precisely one word, which is always contained in one of the availablePS

constituents.
As an example, Figure 12.16 shows an ill-formedPS/IS analysis excluded by the Subgraphs

principle. ThePS analysis is the same as in Figure 12.13 above, defining thePS constituents
Marcel provesandcompleteness. The IS analysis has themeMarcel and rhemecompleteness,
and the latter hasprovesin its background. The resultingIS constituents areMarcel (theme)
andproves completeness(rheme). This is wrong, since theIS rheme constituentproves com-
pletenessis not contained in the correspondingPSconstituentcompleteness.

PS
1

Marcel_L+H*

2

proves_LH%

3

completeness_H*_LL%

4

.

pa1

bt1 pa2bt2

IS
1

Marcel_L+H*

2

proves_LH%

3

completeness_H*_LL%

4

.

bg

rhth

Figure 12.16.: WrongPS/IS analysis ofMarcel_L+H* proves_LH% completeness_H*_LL%

182

12. Interfaces

12.3. Emerging Phenomena

The syntax-semantics interface of our grammar covers arbitrarily complicated control, raising
and auxiliary constructions, and in combination with the XDK constraint solver, supports e.g.
attachment underspecification out of the box.

12.3.1. Control, Raising and Auxiliary Constructions

An example complicated case of control, raising, and auxiliary constructions is shown in the
analysis of the sentence below in Figure 12.17. The sentenceincludes the perfect auxiliary
(has), the subject raising verb (seemed), the passive auxiliary (to be), the object control verb
(persuaded) and the subject control verb (to try):

Peter has seemed to be persuaded to try to sleep by Mary. (12.43)

The analysis of this sentence in our grammar is shown in Figure 12.17. In fact, our grammar
correctly licenses precisely this analysis and no other. Notice the simplicity in particular of
thePA analysis of this very complicated construction: it is easy to see thatPeteris the patient
of persuaded, and the agent oftry andsleep. Mary is the agent ofpersuaded, andsleepis the
theme oftry, which is the theme ofpersuaded, which is the theme ofseemed.

ID

1

Peter

2

has

3

seemed

4

to

5

be

6

persuaded

7

to

8

try

9

to

10

sleep

11

by

12

Mary

13

.

root

prepc

part

vinfpart

vinf pobj2

vprtpart

vinf

vprtsubj

PA

1

Peter

2

has

3

seemed

4

to

5

be

6

persuaded

7

to

8

try

9

to

10

sleep

11

by

12

Mary

13

.

del del del del del delroot
root

root

root

ag

th
ag

th

pat

ag

th

Figure 12.17.: UnderspecifiedID /PA analysis ofPeter has seemed to be persuaded to try to
sleep by Mary.

183

12. Interfaces

12.3.2. PP-Attachment Underspecification

In combination with the XDK constraint parser, our grammar not only supports the under-
specification of scope as in (10.5.1), but also of any other linguistic aspect. For instance, it
is possible to postpone the enumeration of models on theID andPA dimensions, which gives
us underspecification of PP-attachment for free. As an example, consider the sentence below,
which is ambiguous between the reading where the PP (prepositional phrase)with a telescope
modifies the verbseesor the nounman:

Mary sees the man with a telescope. (12.44)

If we postpone the enumeration of models on theID andPA dimensions, we get the underspec-
ified ID /PA analysis shown in Figure 12.18, where the constraint parseralready knows that the
PP must eventually be belowsees(as indicated by the dotted edge fromseesto with). Under-
specified analyses like this could be a starting point for disambiguation, e.g. using statistically
drivenoracles.

ID

1

Mary

2

sees

3

the

4

man

5

with

6

a

7

telescope

8

.

root

det

prepcdet

subj obj

root

PA

1

Mary

2

sees

3

the

4

man

5

with

6

a

7

telescope

8

.

root root

det

patm

det

patag

Figure 12.18.: UnderspecifiedID /PA analysis ofMary sees the man with a telescope.

12.4. Summary

We have introduced the syntax-semantics interface and the phonology-semantics interface of
the example grammar. The syntax-semantics interface is simple and elegant, while covering
very complicated control, raising, and auxiliary constructions, and leading to the emergence
of PP-attachment underspecification. The simplicity of theinterface is the result of the modu-
larity of XDG, which allows us to concentrate entirely on thesyntactic realization of semantic
arguments, and to factor out all other issues such as word order, scope, information structure
and prosody. It is of course possible to bring these factors back in and e.g. add constraints to
reduce the number of scopal readings for certain word orders, but the basic interface would
remain the same.

184

13. Conclusion

This chapter sums up the thesis and points out ideas for future work.

13.1. Summary

We have developed the grammar formalism of Extensible Dependency Grammar (XDG), com-
bining dependency grammar, model-theoretic syntax and Jackendoff’s (2002) parallel gram-
mar architecture. This combination yields a novel, radically modular design allowing to de-
scribe arbitrary many linguistic aspects within the same formalism, but at the same time largely
independently from each other. This significantly simplifies the modeling of linguistic phe-
nomena, since individual aspects such as grammatical functions, word order or predicate-
argument structure can also be modeled individually. For example, although word order
variation is irrelevant for the interface from syntax to predicate-argument structure, previous
approaches still have to take it into account, which unnecessarily complicates their syntax-
semantics interface. In XDG, both aspects can be completelydissociated. This approach
makes many otherwise problematic linguistic phenomena such as extraction, scope ambigui-
ties and control and raising simply fall out as by-products,without any further stipulation.

This thesis contained three contributions in order to show that XDG is not only an abstract
idea, but that it can also be concretely realized: the first formalization of XDG as a multigraph
description language in higher order logic, the first implementation of XDG within an exten-
sive grammar development system, and the first application of this system to natural language.

The first formalization of XDG was developed in part I, where we also showed how the
core concepts of dependency grammar, including lexicalization, valency and order, can be
realized in XDG. This prepared the ground for first investigations of the expressivity and the
computational complexity of XDG. XDG is at least as expressive as context-free grammar,
and that also non-context-free languages such asanbncn and linguistic benchmarks such as
cross-serial dependencies and scrambling can be elegantlymodeled. The price for this degree
of expressivity is that the XDG recognition problem is NP-hard.

Despite this high complexity, the XDG constraint parser developed in part II of the thesis
is reasonably fast on smaller, handwritten grammars. Around the parser, we built an exten-
sive grammar development environment, the XDG DevelopmentKit (XDK), which allows
to comfortably create grammars by hand or automatically andthen to test them. The XDK
is important not only for the development of the XDG grammar theory, but it has also been
successfully used for teaching.

In part III, we developed a grammar for a fragment of English,which modeled syntax,
semantics and also phonology. We demonstrated how complicated phenomena such as ex-
traction (including pied piping) in syntax, scope ambiguities in the semantics, and control

185

13. Conclusion

and raising in the syntax-semantics interface simply fall out as by-products of the modular
grammar description, and do not have to be explicitly stipulated.

13.2. Future Work

In this thesis, we have shown that XDG is perfectly able to model and process smaller frag-
ments of e.g. English, and due to its modularity, very elegantly so. Whether it is possible to
model and process realistic grammars in XDG remains an open question. Finding an answer
to this question must be the next step. There are two reasons to be optimistic: firstly, the com-
plexity of established grammar formalisms like GPSG and LFGis at least as high (Barton,
Berwick & Ristad 1987), while theycanbe efficiently processed in practice, and secondly, the
basic design principle of XDG, modularity, clearly speaks in favor of scalability.

We plan to answer the question from two directions. In the first, the algorithmic direction,
we want to deepen our understanding of the expressivity and the computational complexity
of XDG, and its relation to other multi-dimensional grammarformalisms such as LFG, STAG
andGeneralized Multitext Grammars(GMTG) (Melamed, Satta & Wellington 2004). Our
goal is to find restrictions of XDG which on the one hand leave as much of the expressivity
intact, but on the other hand significantly reduce the complexity of XDG parsing. For instance,
it would be interesting to see how much of XDG could be carriedover to GMTG, which is
also multi-dimensional, but contrary to XDG parsable in polynomial time.

In the second direction, that of constraint programming, weplan to profile the constraint
parser of the XDK to find out what has gone wrong previously when it was used for large-
scale parsing (Möhl 2004, Bojar 2004), to rewrite the parserusing the new and more efficient
Gecodeconstraint library (Schulte & Stuckey 2004), and to find global constraints for XDG
parsing—so far, the constraint parser does not use a single one. Global constraints are usu-
ally indispensable for efficient constraint programming (Beldiceanu & Contjean 1994, Henz,
Müller & Thiel 2004), hence this line of future work could prove very fruitful.

Further future work includes the continuation of work on thedistribution strategyof the
constraint parser to optimize the shape of the search tree, as has been shown by a prototype
of the NEGRAproject (Smolka & Uszkoreit 1996–2001) by Denys Duchier andThorsten
Brants (p.c.). This could be complemented by continuing theline of work onguided search
(Dienes et al. 2003, Narendranath 2004), where the authors use A∗ search to find the optimal
solution first. We also consider optimizing the parser usingthe technique ofsupertagging
(Joshi & Bangalore 1994, Clark & Curran 2004) to reduce lexical ambiguity, and by using the
technique ofsegmentationproposed in (Kubon 2001).

XDG grammar theory is also far from complete—interesting future work includes finding an
account ofcoordination and ellipsis. Also, it is not at all clear how to best do XDGgrammar
inductionfrom treebanks (Korthals 2003, Bojar 2004). Finally, the reversibility of XDG has
already been exploited forgenerationin combination with TAG in (Koller & Striegnitz 2002),
but pure XDG generation, first discussed in (Debusmann 2004b) and (Pelizzoni & das Gra-
cas Volpe Nunes 2005), would have the advantage that the samegrammar could be used for
parsing and for generation.

186

Appendix

187

A. Lattice Functors

In this appendix, we describe thelattice functorsof the XDK, which provide functionality for
the metagrammar compiler, the constraint parser and the visualizer of the XDK, as displayed
in Figure A.1.

Converters

(UL <− IL −> XML) Type Checker

(IL)

Encoder

(IL −> SL)

(SL −> File)

Pickler

Output Preparer

select
makeVar

Parsers

(UL −> IL <− XML)

(IL <− SL −> OL)

Output Library

decode

pretty

bot
top

encode

glb

Metagrammar Compiler

Constraint Parser

Visualizer

Lattice Functors

Model Creator

(SL)

Principle Library Search Engines

Figure A.1.: The lattice functors in the XDK architecture

Each type of the XDK description language corresponds to such a lattice functor, which is
an ADT implementing the following methods:

• encode: encode IL terms into sets of SL core terms

• top, bot, glb: top, bottom and greatest lower bound of SL core terms

• makeVar: create an SL constraint variable

• select: efficiently select one SL core term from a list of SL core terms

• decode: convert SL core terms into IL core terms

• pretty: convert SL core terms into OL terms (for pretty printing)

In the following, we will write lf T for the lattice functor of typeT. In our explanations of
the methods, we use Mozart/Oz pseudo code instead of the actual Mozart/Oz code for better
readability.

188

A. Lattice Functors

A.1. Encode

The lattice functors support the encoding of terms in IL syntax into sets1 of core terms in SL
syntax, proceeding in two steps2:

1. interpretation: terms are interpreted as sets of core terms

2. compilation: the core terms are compiled into SL syntax for further processing in the
constraint solver

Given a lattice functorLat, the encode method of the lattice functors is thus defined as:

Lat.encode t = {Lat.compile t′ | t′ ∈ Lat.interpret t} (A.1)

A.1.1. Interpretation

The interpretation functionLat.interpret is defined as follows.

• atoms and integers, givenLat = lf {a1 . . .an} or Lat = lf string or Lat = lf int:

Lat.interpret t = {t} (A.2)

That is, the interpretation of termst of these types is the singleton set containingt.

• sets, givenLat = lf set(T) or Lat = lf iset(T), Lat′ = lf T:

Lat.interpret {t1 . . .tn} =
{{t′1 . . .t′n} | t

′
1 ∈ Lat′.interpret t1, . . . ,t

′
n ∈ Lat′.interpret tn}

(A.3)

The interpretation of a set is the set of all sets described byit. For example:

Lat.interpret {(subj |obj) adv} = {{subj adv},{obj adv}} (A.4)

• infinite sets of integers, givenLat= lf set(int), Lat= lf iset(int) orLat= lf card:

Lat.interpret {i1 . . .in . . .} = {{i1 . . .in . . .}} (A.5)

The interpretation of an infinite sets of integerst is the singleton set containingt.

• lists, givenLat = lf list(T) andLat′ = lf T:

Lat.interpret [t1 . . .tn] =
{[t′1 . . .t′n] | t

′
1 ∈ Lat′.interpret t1, . . . ,t

′
n ∈ Lat′.interpret tn}

(A.6)

A list is interpreted as the set of lists which is describes.

1In the actual implementation, the sets are implemented as lists.
2Contrary to the actual implementation, which interleaves the two steps for efficiency, we present them sepa-

rately here for clarity.

189

A. Lattice Functors

• tuples, givenLat = lf tuple(T1 . . .Tn), Lat1 = lf T1, . . . ,Latn = lf Tn:

Lat.interpret [t1g . . .tn] =
{[t′1 . . .t′n] | t

′
1 ∈ Lat1.interpret t1, . . . ,t

′
n ∈ Latn.interpret tn}

(A.7)

A tuple is interpreted as the set of tuples which it describes.

• record specifications and empty records, givenLat = lf {a1 : T1 . . .an : Tn}, Lat1 =
lf T1, . . . ,Latn = lf Tn, t= {a′1 : t1 . . .a′k : tk}, and writingt.a for the value of attribute
a of t:

Lat.interpret t =
{{a1 : t1 . . .an : tn} | for 1≤ i≤ n, ti = Lat1.top if ai /∈ {a′1, . . . ,a

′
k},

otherwiseti ∈ Lati.interpret t.ai}
(A.8)

That is, any omitted attribute is set to the top value of its lattice. Otherwise, the values
of the attributes are set to those described in the record specification.

• cardinalities, givenLat = lf card:

Lat.interpret ! = {{1}}
Lat.interpret ? = {{0 1}}
Lat.interpret ∗ = {{0 1 2 . . .}}
Lat.interpret + = {{1 2 . . .}}

Lat.interpret #{i1 . . .in} = {{i1 . . .in}}
Lat.interpret #[i1 i2] = {{i′1 . . .i′2}}

(A.9)

The interpretation of a cardinalityc is the singleton set containingc.

• valencies, givenLat = lf valency(T) andLat′ = lf card:

Lat.interpret {a1 c1 . . .an cn} = Lat.interpret {a1 : c1 . . .an : cn} (A.10)

Valencies are interpreted as records.

• tops, bottoms and greatest lower bounds, givenLat = lf T:

Lat.interpret top = {Lat.top} (A.11)

Lat.interpret bot = {Lat.bot} (A.12)

Lat.interpret t1& t2 =
{Lat.glb t′1 t

′
2 | t

′
1 ∈ Lat.interpret t1,t

′
2 ∈ Lat.interpret t2}

(A.13)

That is, the greatest lower bound of two termst1 andt2 is interpreted as the set of core
terms described by it.

• alternations, givenLat = lf T:

Lat.interpret t1 |t2 = (Lat.interpret t1)∪ (Lat.interpret t2) (A.14)

An alternation betweent1 andt2 is interpreted as the set union of the interpretations of
t1 andt2.

190

A. Lattice Functors

• set generators, given Lat = lf set(tuple(T1 . . .Tn)) or Lat =
lf iset(tuple(T1 . . .Tn)), Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.interpret $ g = {Lat.gInterpret g} (A.15)

whereLat.gInterpret is defined as:

Lat.gInterpret a =
{[a1 . . .an] | for 1≤ i≤ n,ai = a if a ∈ Ti,

otherwiseai ∈ Ti}
(A.16)

That is, the interpretation of the atoma is the set of tuples witha at projectioni if a
is in the domainTi of that projection, and with any of the elements ofTi at the other
projections.

Lat.gInterpret g1& g2 = (Lat.gInterpret g1)∩ (Lat.gInterpret g2) (A.17)

Lat.gInterpret g1 |g2 = (Lat.gInterpret g1)∪ (Lat.gInterpret g2) (A.18)

It is important that the interpretation of conjunctions (&)and disjunctions (|) within a
set generator is different from that outside a set generator. Within, they are interpreted
as a single term: the set of tuples licensed by the set generator. Outside, they are inter-
preted as a set of terms: the set of core terms described by theterm to be interpreted. As
a consequence, using disjunctions outside a set generator multiplies the number of gen-
erated lexical entries, and should therefore be used with caution, whereas set generator
disjunctions do not.

• orders, givenLat = lf set(tuple(T T)) or Lat = lf iset(tuple(T T)), Lat′ = lf T:

〈t1 . . .tn〉 =
{{[t′i t′j] | 1≤ i′ < j′ ≤ n} | t′1 ∈ Lat.interpret t1, . . . ,t

′
n ∈ Lat.interpret tn}

(A.19)

That is, the interpretation of an order〈t1 . . .tn〉 is the set of all sets of pairs whose first
projection precedes the right projection in〈t′1 . . .t′n〉, wheret′i ∈ Lat.interpret ti
for all 1≤ i≤ n.

• concatenations, givenLat = lf string:

Lat.interpret t1@t2 =
{t′1t

′
2 | t′1 ∈ Lat.interpret t1,

t′2 ∈ Lat.interpret t2}
(A.20)

• feature paths:
Lat.interpret p = {p} (A.21)

• type annotations:
Lat.interpret t :: T = {t} (A.22)

i.e., we simply discard the type annotations in the interpretation step.

191

A. Lattice Functors

A.1.2. Compilation

In the second step, we compile the core terms obtained in the interpretation into Mozart/Oz SL
syntax for further processing the constraint solver. Here,feature pathsbring in a slight com-
plication, as they can only be resolved dynamically during parsing. We solve this complication
by lifting the type of a compiled core term to a function expecting twonode records.

Here is the definition of compilation, where we write\x1, . . . ,xn. e for an Oz function ab-
stracting overx1, . . . ,xn in e, ande e1 . . .en for the application of functione to the arguments
e1 . . .en:

• atoms from a finite domain, givenLat = lf {a1 . . .an}, where the atomsa1 . . .an are in
lexical order (defined by the functionValue.’< ’ of Mozart/Oz):

Lat.compile ai = \v,v′. i (A.23)

That is, we encode theith element of the sorted finite domain as the integeri.

• atoms of typestring, givenLat = lf string:

Lat.compile a = \v,v′. a (A.24)

We encode atoms of typestring simply as themselves.

• integers, givenLat = lf int:

Lat.compile i = \v,v′. i (A.25)

Likewise, integers are also encoded simply as themselves.

• sets, givenLat = lf set(T) or Lat = lf iset(T), Lat′ = lf T:

Lat.compile {t1 . . .tn} =
\v,v′. FS.value.make [(Lat′.compile t1) v v′ . . .(Lat′.compile tn) v v′]

(A.26)

whereFS.value.make is a Mozart/Oz function creating a finite set of integers constant
from a set description, in this case, a list of integers. Setsover domains which cannot be
compiled into integers are not supported.

• infinite sets of integers, givenLat= lf set(int), Lat= lf iset(int) orLat= lf card:

Lat.compile {i1 . . .in . . .} =
\v,v′. FS.value.make [i1 . . .in#FS.sup]

(A.27)

whereFS.sup denotes the greatest possible element of a set in the actual Mozart/Oz
implementation, with which we approximate infinity.

• lists, givenLat = lf list(T), Lat′ = lf T:

Lat.compile [t1 . . .tn] =
\v,v′. [(Lat′.compile t1) v v′ . . .(Lat′.compile tn) v v′]

(A.28)

192

A. Lattice Functors

• tuples (projections are exclusively finite domains), given Lat =
lf tuple(T1 . . .Tn), Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.compile [a1 . . .an] =

\v,v′. 1+
n

∑
i=1

(((Lat.compile ai) v v′)−1)∗
n

∏
j=i+1

(|Tj| ∗1) (A.29)

Hence, we encode tuples whose projections are exclusively finite domains into integers.
This is an optimization for the constraint parser, since theMozart/Oz constraint system
can only yield propagation on integers and finite sets of integers, but not e.g. on lists. As
an example, here is the encoding of the tuples in the typetuple({1 2 3} {sg pl}):

[1 sg] 7→ 1
[1 pl] 7→ 2
[2 sg] 7→ 3
[2 pl] 7→ 4
[3 sg] 7→ 5
[3 pl] 7→ 6

(A.30)

• other tuples, givenLat = lf tuple(T1 . . .Tn), Lat1 = lf T1, . . . ,Latn = lf Tn:

Lat.compile [t1 . . .tn] =
\v,v′. [(Lat1.compile t1) v v′ . . .(Latn.compile tn) v v′]

(A.31)

Tuples whose projections are not exclusively finite domain types are encoded as lists.

• records, givenLat = lf {a1 : T1 . . .an : Tn}, Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.compile {a1 : t1 . . .an : tn} =
\v,v′. o(a1 : (Lat1.compile t1) v v′ . . .an : (Latn.compile tn) v v′)

(A.32)

Records are encoded as Oz records with the dummy labelo.

• feature paths, where the functionDot takes a recorde and a list of attributesa1 . . .an,
and returns the valuee.a1.an:

Lat.compile _.D.entry.a1.an = \v,v′. Dot v′.D.entry [a1 . . .an] (A.33)

Lat.compile ∧.D.entry.a1.an = \v,v′. Dot v.D.entry [a1 . . .an] (A.34)

Lat.compile _.D.attrs.a1.an = \v,v′. Dot v′.D.attrs [a1 . . .an] (A.35)

Lat.compile ∧.D.attrs.a1.an = \v,v′. Dot v.D.attrs [a1 . . .an] (A.36)

That is, we postpone the encoding of feature paths by returning a function expecting two
node recordsv andv′ as arguments. When applied during parsing, the function returns
the actual value of lexical or non-lexical attribute ofv or v′.

193

A. Lattice Functors

A.2. Top, Bot and Glb

The lattice functors implement lattice top, bottom and greatest lower bound for each type of
the XDK.3 Given the lattice functorLat = lf T, we write:

• Lat.top for the top value (as a core term)

• Lat.bot for the bottom value (as a core term)

• Lat.glb t1 t2 for the greatest lower bound of two core termst1 andt2

The purpose of lattice top is to act as the default value for the attributes omitted in a record
specification, lattice bottom represents inconsistency, and the greatest lower bound of two
terms represents a term which is at least as restrictive, where “at least as restrictive” is defined
depending on the principle which acts on the term.

The inhabitants of finite domain, string, integer and list types are arranged in flat lattices.
Sets can either be arranged in accumulative lattices, intersective lattices or cardinality lattices.
Lattices for tuples and records are are defined inductively.

A.2.1. Flat Lattices

As already mentioned in Definition 29, the interpretation ofeach finite domain, string, int
or list type includes the additional atoms⊤ and⊥. We use⊤ and⊥ as the top and bottom
values of the lattice corresponding to the type. For example, the lattice corresponding to finite
domain{a1 . . .an} is displayed in Figure A.2.

...

⊥

⊥

1 ana

Figure A.2.: Flat lattice for finite domain{a1, . . . ,an}

The top, bottom and greatest lower bound methods of flat lattices are defined as follows:

• top:
Lat.top = ⊤ (A.37)

• bottom:
Lat.bot = ⊥ (A.38)

3We do not implement least upper bound since it is simply not used anywhere in the XDK.

194

A. Lattice Functors

• greatest lower bound:

Lat.glb t1 t2 =

t1 if t2 = ⊤
t2 if t1 = ⊤
t1 if t1 = t2
⊥ otherwise

(A.39)

As a practical example, the greatest lower bound of the atom"eat" and lattice top yields
"eat":

Lat.glb "eat" ⊤ = "eat" (A.40)

and the greatest lower bound of the atoms"eat" and"want" yields⊥, i.e., inconsistency:

Lat.glb "eat" "want" = ⊥ (A.41)

A.2.2. Accumulative Lattices

Accumulative lattices“accumulate” their elements from top to bottom: the top value of an
accumulative set lattice for typeset(T) is the empty set, and the bottom value the full set, i.e.,
the interpretation ofT. Greatest lower bound corresponds to set union. We illustrate this in
Figure A.3.

full set

∅

... ...

... ...
... ...

Figure A.3.: Accumulative lattice

For a lattice functorLat = lf set(T), the methods of flat lattices are defined as:

• top:
Lat.top = {} (A.42)

• bottom:
Lat.bot = t (A.43)

wheret is the interpretation of theT, the domain of the accumulative set.

• greatest lower bound:
Lat.glb t1 t2 = t1∪t2 (A.44)

Accumulative lattices are convenient e.g. for the attributeagree of the Agreement principle,
which represents the set of edge labels describing with which daughters the node must agree.
The more elements this set has, the more restrictive it becomes.

195

A. Lattice Functors

A.2.3. Intersective Lattices

Intersective latticesare exactly the mirror image of accumulative lattice: theirtop value is the
full set, their bottom value the empty set, and greatest lower bound corresponds to intersection.
Figure A.4 illustrates this.

full set

∅

... ...

... ...
... ...

Figure A.4.: Intersective lattice

For a lattice functorLat = lf iset(T), the methods of flat lattices are defined as:

• top:
Lat.top = t (A.45)

wheret is the interpretation of theT, the domain of the accumulative set.

• bottom:
Lat.bot = {} (A.46)

• greatest lower bound:
Lat.glb t1 t2 = t1∩t2 (A.47)

Intersective lattices are useful e.g. for theagrs attribute of the Agreement principle, which
represents the sets of agreement tuples of a node. Contrary to the sets of theagree attribute,
which became more restrictive the more elements they contained, sets of agreements become
more restrictive the less elements they contain.

A.2.4. Cardinality Lattices

The lattice operations ofcardinality latticesare illustrated in Figure A.5: top is defined as the
set{0}, bottom as the empty set, and greatest lower bound as set intersection (except when
one of the arguments is top).

GivenLat = lf card, the lattice functor methods are defined as:

• top:
Lat.top = {0} (A.48)

• bottom:
Lat.bot = {} (A.49)

196

A. Lattice Functors

... ...

... ...
... ...

{0}

∅

Figure A.5.: Cardinality lattice

• greatest lower bound:

Lat.glb t1 t2 =

t1 if t2 = {0}
t2 if t1 = {0}
t1 if t1 = t2
t1∩t2 otherwise

(A.50)

Cardinality lattices are specifically designed for theValency principleusing valency types,
i.e., vectors used to map edge labels to cardinalities. Generally, cardinalities become more
restrictive the less elements they contain, e.g. the set{1} licensing precisely one edge is more
restrictive than the set{0 1} licensing zero or one edges. That is, generally, the greatest lower
bound of two cardinalities is their intersection. But then,why can we not simply model them
using intersective lattices? The motivation for introducing a new lattice is that we want lattice
top of cardinalities not to be the set of all integers but the set {0}, because this gives us the
intuitive interpretation of valencies that if a cardinality is missing for an edge label, no edge
with that label is allowed: as valencies are interpreted as record specifications, all omitted
edge labels are automatically set to lattice top of the cardinality lattice, i.e.,{0}.

A.2.5. Tuple Lattices

We define the lattices for tuples inductively. Given a tuple lattice functorLat defined as:

Lat = lf tuple(T1 . . .Tn) (A.51)

with lattice functorsLat1 . . .Latn for its projections defined as:

Lat1 = lf T1
. . .

Latn = lf Tn

(A.52)

we define:
Lat.top = [Lat1.top . . .Latn.top] (A.53)

Lat.bot = [Lat1.bot . . .Latn.bot] (A.54)

Lat.glb [t1 . . .tn] [t′1 . . .t′n] = [Lat1.glb t1 t
′
1 . . .Latn.glb tn t

′
n] (A.55)

197

A. Lattice Functors

A.2.6. Record Lattices

Record lattices are defined analogously to tuple lattices. Given a record lattice functorLat
defined as:

Lat = lf {a1 : T1 . . .an : Tn} (A.56)

with lattice functorsLat1 . . .Latn for attributes, we define:

Lat.top = {a1 : Lat1.top . . .an : Latn.top} (A.57)

Lat.bot = {a1 : Lat1.bot . . .an : Latn.bot} (A.58)

Lat.glb {a1 : t1 . . .an : tn} {a1 : t′1 . . .an : t′n} = {a1 : Lat1.glb t1 t
′
1 . . .an : Latn.glb tn t

′
n}

(A.59)

A.3. Constraint Variable Creation, Lexical Selection

For the constraint parser, the lattice functors implement the two methodsmakeVar for the cre-
ation of constraint variables, andselect for the selection of values from a set of alternatives.

A.3.1. MakeVar

• atoms from a finite domain, givenLat = lf {a1 . . .an}:

Lat.makeVar = FD.int 1#n (A.60)

whereFD.int is a Mozart/Oz function creating afinite domain constraint variablefrom
a specification of a finite domain. Here, the finite domain ranges from1 to n.

• atoms of typestring, givenLat = lf string:

Lat.makeVar = _ (A.61)

where _ creates alogic variablein Mozart/Oz.

• integers, givenLat = lf int:

Lat.makeVar = FD.int 1#FD.sup (A.62)

whereFD.sup is the greatest natural number for integers in Mozart/Oz.

• sets, givenLat = lf set(T) or Lat = lf iset(T):

Lat.makeVar = FS.var.upperBound 1#n (A.63)

where n is the cardinality of the interpretation ofT, and where
FS.var.upperBound creates afinite set constraint variablefrom a specification of its
upper bound, i.e., the set including its potential elements(here:{1, . . . ,n}).

198

A. Lattice Functors

• infinite sets of integers, givenLat= lf set(int), Lat= lf iset(int) orLat= lf card:

Lat.makeVar = FS.var.upperBound 1#FS.sup (A.64)

• list: Lat = lf list(T), Lat′ = lf T:

Lat.makeVar = [Lat′.makeVar . . .Lat′.makeVar] (A.65)

• tuples (projections are exclusively finite domains), given Lat =
lf tuple(T1 . . .Tn), Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.makeVar = FD.int 1#(
n

∏
i=1

|Ti|) (A.66)

where
n

∏
i=1

|Ti| is the cardinality ofT.

• other tuples, givenLat = lf tuple(T1 . . .Tn), Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.makeVar = [Lat1.makeVar . . .Latn.makeVar] (A.67)

• records, givenLat = lf {a1 : T1 . . .an : Tn}, Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.makeVar = o(a1 : Lat1.makeVar . . .an : Latn.makeVar) (A.68)

A.3.2. Select

• atoms from a finite domain, givenLat = lf {a1 . . .an}:

Lat.select [i1 . . .in] i = Select.fd [i1 . . .in] i (A.69)

wherei1, . . . ,in are integers encoding the finite domain elementsa1 . . .an, and where
Select.fd is theselection constraint(Duchier 1999, Duchier 2003) for finite domain
constraint variables. Its declarative semantics is to select the ith element of a list
[i1 . . .in] of finite domain constraint variables. During constraint solving, the selectori
is often underspecified. In this case, the selection constraint significantly improves con-
straint propagation, as all commonalities of the remainingalternatives are immediately
propagated to the selected value.

• atoms of typestring, lists, givenLat = lf string or Lat = lf list(T):

Lat.select [s1 . . .sn] i = sSelect.fd [i1...in] i (A.70)

wheres1, . . . ,sn are SL strings or lists.

• integers:
Lat.select [i1 . . .in] i = Select.fd [i1 . . .in] i (A.71)

199

A. Lattice Functors

• sets, infinite sets of integers:

Lat.select [s1 . . .sn] i = Select.fs [s1 . . .sn] i (A.72)

whereSelect.fs is the selection constraint for finite set constraint variables.

• tuples (projections are exclusively finite domains): Lat =
lf tuple(T1 . . .Tn), Lat1 = lf T1, . . ., Latn = lf Tn, andT1 = { . . .}, . . ., Tn = { . . .}:

Lat.select [i1 . . .in] i = Select.fd [i1 . . .in] i (A.73)

Hence, for tuples whose projections are exclusively finite domains, we can use the se-
lection constraint for finite domain constraint variables.This yields much better propa-
gation than if we had not encoded such tuples as integers in the compilation step above.

• other tuples, givenLat = lf tuple(T1 . . .Tn), Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.select [[s11, . . . ,s
1
n] . . . [s

k
1, . . . ,s

k
n]] i =

[Lat1.select [s11 . . .sk1] i . . .Lat1.select [s1n . . .skn] i]
(A.74)

• records, givenLat = lf {a1 : T1 . . .an : Tn}, Lat1 = lf T1, . . ., Latn = lf Tn:

Lat.select [o(a1 : s11, . . . ,an : s1n) . . .o(a1 : sk1, . . . ,an : skn)] i =
o(a1 : Lat1.select [s11 . . .sk1] i . . .an : Lat1.select [s1n . . .skn] i)

(A.75)

A.4. Decode and Pretty

Thedecode method decodes SL terms back into IL syntax, whereas thepretty decodes SL
into OL syntax for pretty printing. For sets of tuples whose projections are exclusively finite
domains into OL syntax, the conversion of SL into OL involvesa function to convert sets
usingset generators.

A.5. Summary

We introduced the lattice functors of the XDK, which providefunctionality for all modules
of the XDK, i.e, the metagrammar compiler, the constraint parser and the visualizer. For
the metagrammar compiler, it provides methods for encodingmetagrammars into Mozart/Oz
syntax. For the constraint parser, it provides methods for constraint variable creation and
selection, and for the visualizer, methods for decoding andpretty printing of analyses.

200

B. Metagrammar Compiler

This appendix deals with themetagrammar compilerof the XDK. Metagrammars are de-
scriptions of grammars. The task of the metagrammar compiler of the XDK is to compile
these descriptions into actual grammars usable in the constraint solver. Figure B.1 shows the
position of the metagrammar compiler within the overall architecture of the XDK.

Output Preparer

Encoder

(IL −> SL)

(SL −> File)

Pickler

Type Checker

(IL)

Converters

(UL <− IL −> XML)

(IL <− SL −> OL)

Output Library

bot
top

encode

glb

Constraint Parser

Visualizer

Model Creator

(SL)

Principle Library Search Engines

Lattice Functors

pretty

decode

makeVar
select

Metagrammar Compiler

Parsers

(UL −> IL <− XML)

Figure B.1.: The metagrammar compiler in the XDK architecture

Metagrammar compilation starts from a metagrammar in one ofthree concrete syntaxes:
UL, XML or IL, and proceeds in four steps:

1. parsing the metagrammar if it is in UL or XML syntax

2. converting the parsed metagrammar into IL

3. type checking the IL metagrammar

4. compiling out the IL metagrammar and encoding it into the SL

Encoded grammars can then either be pickled, i.e., written into files, or used for constraint
parsing. The metagrammar compiler is assisted by theencode method and the methods im-
plementing the lattice operations (top, bot andglb) of the lattice functors.

201

B. Metagrammar Compiler

B.1. Parsers and Converters

The task of the parsers and converters is to bring grammars from UL or XML into IL syntax.
Because of the modular interface of the parsers and converters to the XDK, adding new con-
crete syntaxes is easy. The converters are bi-directional:i.e., also able to convert grammars
from IL back to UL or XML. As a result, via the IL, the XDK also supports conversion of UL
into XML and vice versa. For parsing UL metagrammars, we use an efficient LALR parser
written in Mozart/Oz by Denys Duchier. For parsing XML metagrammars, we apply the effi-
cient XML parser from the Mozart/Oz Standard Library, also written by Denys Duchier.

B.2. Type Checker

In this section, we define the type checker for the full set of terms of the XDK description
language. It is defined in terms of inference rules for type judgments (e.g. Pierce 2002). We
write

Γ ⊢ t : T (B.1)

for the type judgment stating that termt has typeT under the environmentΓ. Γ is a set
containing the following four functions:

• Γv : V→ Te maps variables to terms. The mapping is defined upon reference of lexical
classes in the lexicon description.

• Γd : DV→ D mapsdimension variablesto dimensions inD. The mapping is defined upon
principle instantiation.

• Γp : D→{entry,attrs}→ A∗ → Ty returns the type of the feature patha1, . . . ,an ∈ A∗

starting from the lexical (entry) or non-lexical (attrs) attributes of dimensiond ∈ D.
The types of the lexical and non-lexical attributes of a dimension are provided by the
type definitions of the metagrammar (defentrytype anddefattrstype.

• Γt : TV→ Ty maps type variables to types.

The type checker is used for both lexicon description and principle instantiations.
The inference rules of the type checker are defined as follows:

• atoms from a finite domain:
a ∈ {a1 . . .an}

Γ ⊢ a : {a1 . . .an}
(B.2)

• atoms of typestring, given a setA of atoms:

a ∈ A

Γ ⊢ a : string
(B.3)

202

B. Metagrammar Compiler

• integers:
i > 0

Γ ⊢ i : int
(B.4)

The XDK supports only natural numbers. This allows us to encode all numbers as finite
domain integers in Mozart/Oz, which must be greater than zero.

• variables:
Γv v = t Γ ⊢ t : T

Γ ⊢ v : T
(B.5)

Variables can only be used inside lexical classes, not in principle instantiations. They
are instantiated upon reference of the lexical classes.

• sets:
Γ ⊢ t1 : T . . . Γ ⊢ tn : T

Γ ⊢ {t1 . . .tn} : set(T)
(B.6)

The rule forisets is defined analogously.

• infinite sets of integers:
Γ ⊢ i1 : int . . . Γ ⊢ in : int

Γ ⊢ {i1 . . .in . . .} : set(int)
(B.7)

The rules foriset(int) andcard are defined analogously.

• lists:
Γ ⊢ t1 : T . . . Γ ⊢ tn : T

Γ ⊢ [t1 . . .tn] : list(T)
(B.8)

• tuples:
Γ ⊢ t1 : T1 . . . Γ ⊢ tn : Tn

Γ ⊢ [t1 . . .tn] : tuple(T1 . . .Tn)
(B.9)

• record specifications and empty records:

{a′1, . . . ,a
′
k} ⊆ {a1, . . . ,an}

Γ ⊢ tj : Ti if a′j = ai

1≤ j≤ k, 1≤ i≤ n

Γ ⊢ {a′1 : t1 . . .a′k : tk} : {a1 : T1 . . .an : Tn}

(B.10)

In record specifications, any number of attributes can be omitted. In order to be well-
typed, the attributes of a record specification must be a subset of the full set of attributes
of its record type, and the value of each given attribute musthave the appropriate type.

• cardinalities:
c ∈ {!,?,∗,+}
Γ ⊢ c : card

(B.11)

Γ ⊢ i1 : int . . . Γ ⊢ in : int
Γ ⊢ #{i1 . . .in} : card

(B.12)

Γ ⊢ i1 : int Γ ⊢ i2 : int
Γ ⊢ #[i1 i2] : card

(B.13)

203

B. Metagrammar Compiler

• valencies:
Γ ⊢ c1 : card . . . Γ ⊢ cn : card

Γ ⊢ {a1 c1 . . .an cn} : valency({a1, . . .an})
(B.14)

• lattice tops:

Γ ⊢ top : T
(B.15)

• lattice bottoms:

Γ ⊢ bot : T
(B.16)

• lattice greatest lower bounds:

Γ ⊢ t1 : T Γ ⊢ t2 : T
Γ ⊢ t1 & t2 : T

(B.17)

• alternations:
Γ ⊢ t1 : T Γ ⊢ t2 : T

Γ ⊢ t1 | t2 : T
(B.18)

• set generators:

T1 = {a1, . . . ,an} Tn = {a′1, . . . ,a
′
m} atoms g⊆ T1⊎ . . .⊎Tn

Γ ⊢ $ g : set(tuple(T1 . . .Tn))
(B.19)

whereatoms g returns the set of atoms in set generatorg. That is, the typesT1, . . . ,Tn
must all be finite domains, and the atoms occurring ing must be a subset of their atoms.
In addition,T1, . . . ,Tn must be disjoint to avoid ambiguous set generators.

The rule forisets is defined analogously.

• orders:
a1 : T . . . an : T

Γ ⊢ 〈a1 . . .an〉 : set(tuple(T T))
(B.20)

The type of an order must be a set whose domain is a pair of typeT.

The rule forisets is defined analogously.

• concatenations:
Γ ⊢ t1 : string Γ ⊢ t2 : string

Γ ⊢ t1@t2 : string
(B.21)

• feature paths:
Γp (Γd D) entry a1, . . . ,an = T

Γ ⊢ _.D.entry.a1.an : T
(B.22)

The type of a feature path can be inferred from the metagrammar type definitions.

The rules for the other feature paths are defined analogously.

• type annotations:
Γ ⊢ t : T

Γ ⊢ (t :: T) : T
(B.23)

204

B. Metagrammar Compiler

• type variables:
Γ ⊢ t : T

Γ,Γt ∪{X 7→ T} ⊢ t : tv(X)
(B.24)

i.e., when we can prove that termt has typeT, we can instantiate the type variable (X)
with typeT.

B.3. Encoder

The encoder compiles the metagrammar into SL syntax for the constraint solver. To this end, it
uses the encode method of the lattice functors (cf. section A.1). After encoding, each resulting
lexical entry is checked for integrity, i.e.:

• it must define thelex dimension

• it must define theword attribute on thelex dimension

• no finite domain, string, int or list may remain undefined (⊤) or may have become
inconsistent (⊥)

B.4. Pickler

The task of the pickler is to write compiled out SL grammars into files calledpickles. Before
pickling, all stateful values, i.e., lattice functors, dynamically linked principles from the prin-
ciple library and outputs from the output library, must be transformed into stateless values.
The largest part of a typical SL grammar, the lexicon, can then be written in two ways:

• as a Mozart/Oz record

• into a database, using the Mozart/Oz GNU GDBM interface

The former is more compatible across platforms than the latter: e.g., the GNU GDBM library
is only standardly installed on Unix-ish platforms but not on Microsoft Windows. Grammars
written as a Mozart/Oz record are also more compact than those using the GNU GDBM inter-
face. The big advantage of the latter is however the significantly more efficient treatment of
large lexicons.

B.5. Runtime

We compiled the handcrafted metagrammarsdiss.ul (part III of this thesis),Diplom.ul
(Debusmann 2001),softproj.ul (Bader et al. 2004), and a large metagrammar automati-
cally generated by the system described in (Bojar 2004) on anAMD Athlon with 1.2 GHz and
512 MBytes of RAM. The runtimes include all components of themetagrammar compiler,

205

B. Metagrammar Compiler

i.e., the parsers, converters, the type checker, encoder and the pickler. As can be seen, the
metagrammar compiler is fast:

Name Length (KB) Entries Time (s)

Diplom.ul 30414 190 2.29
diss.ul 51587 122 5.4
softproj.ul 90066 423 6.85
test.1.chunk1.xdk.xml 8561336 492 27.9

(B.25)

B.6. Summary

We described the metagrammar compiler of the XDK, comprising parsers and converters for
metagrammars, a static type checker, an encoder and a pickler. We defined the type checker
using inference rules. For the encoder, we could simply makeuse of the encode method of
the lattice functors defined in appendix A. The result of encoding is a grammar in SL syntax
suitable for the constraint parser.

206

C. Visualizer

This appendix explains thevisualizerof the XDK, whose purpose is to visualize the solu-
tions of the constraint parser. Figure C.1 displays the position of the visualizer in the overall
architecture of the XDK.

Output Preparer

(SL −> File)

Pickler

Encoder

(IL −> SL)Type Checker

(IL)

Converters

(UL <− IL −> XML)

Constraint Parser

Model Creator

(SL)

Principle Library Search Engines

Lattice Functors

makeVar
select

Visualizer

Output Library

(IL <− SL −> OL)
pretty

decode

encode
top

glb
bot

Metagrammar Compiler

(UL −> IL <− XML)

Parsers

Figure C.1.: The metagrammar compiler in the XDK architecture

C.1. Output Preparer

The purpose of theoutput prepareris to prepare (possibly partial) solutions for visualization
by theoutput functorsof the XDK output libraryby:

1. decoding the solution from SL into IL andOutput Language(OL) syntax

2. creating anedge recordrepresenting the determined edges and dominance relationships
of the (possibly partial) solution

As a result, the output preparer hides the internal representation of the nodes in the constraint
parser (see section 8.1.1) from the developers of the outputfunctors, making their task con-
siderably easier.

207

C. Visualizer

C.1.1. Decoding

Decoding is done using thedecode andpretty methods of the lattice functors described in
appendix A, where the OL syntax is a blend of UL and IL syntax: contrary to the UL, it uses
Oz syntax for better integration with the Mozart/Oz output tools, but it is at the same time
more readable than the IL in order to ease debugging. We display an example analysis in IL
syntax in Figure C.2, and in OL syntax in Figure C.3.

1#
[o(args:[elem(data:entryIndex tag:constant)#elem(data:1 tag:integer)

elem(data:index tag:constant)#elem(data:1 tag:integer)
elem(data:word tag:constant)#elem(data:every tag:constant)
elem(data:sc tag:constant)#
elem(

args:[elem(data:attrs tag:constant)#elem(args:nil tag:record)
elem(data:entry tag:constant)#
elem(

args:[elem(data:’in’ tag:constant)#
elem(

args:[elem(data:del tag:constant)#elem(args:nil tag:’card.set’)
elem(data:q tag:constant)#elem(arg:’?’ tag:’card.wild’)
elem(data:r tag:constant)#elem(args:nil tag:’card.set’)
elem(data:root tag:constant)#elem(args:nil tag:’card.set’)
elem(data:s tag:constant)#elem(args:nil tag:’card.set’)]

tag:record)
elem(data:out tag:constant)#
elem(

args:[elem(data:del tag:constant)#elem(args:nil tag:’card.set’)
elem(data:q tag:constant)#elem(args:nil tag:’card.set’)
elem(data:r tag:constant)#elem(args:nil tag:’card.set’)
elem(data:root tag:constant)#elem(args:nil tag:’card.set’)
elem(data:s tag:constant)#elem(args:nil tag:’card.set’)]

tag:record)]
tag:record)

elem(data:model tag:constant)#
elem(

args:[elem(data:daughters tag:constant)#elem(args:nil tag:set)
elem(data:daughtersL tag:constant)#
elem(

args:[elem(data:del tag:constant)#elem(args:nil tag:set)
elem(data:q tag:constant)#elem(args:nil tag:set)
elem(data:r tag:constant)#elem(args:nil tag:set)
elem(data:root tag:constant)#elem(args:nil tag:set)
elem(data:s tag:constant)#elem(args:nil tag:set)]

tag:record)
elem(data:down tag:constant)#elem(args:nil tag:set)
elem(data:downL tag:constant)#
elem(

args:[elem(data:del tag:constant)#elem(args:nil tag:set)
elem(data:q tag:constant)#elem(args:nil tag:set)
elem(data:r tag:constant)#elem(args:nil tag:set)
elem(data:root tag:constant)#elem(args:nil tag:set)
elem(data:s tag:constant)#elem(args:nil tag:set)]

tag:record)
elem(data:eq tag:constant)#
elem(args:[elem(data:1 tag:integer)] tag:set)
elem(data:eqdown tag:constant)#
elem(args:[elem(data:1 tag:integer)] tag:set)
elem(data:equp tag:constant)#
elem(args:[[1#2 6] [1#2 5#6] 3#4] tag:’_’)

Figure C.2.: Analysis in IL syntax (first node, partial)

C.1.2. Edge Record Creation

In this step, the output preparer creates a record callededge recordcontaining for all dimen-
sions of the multigraph, the edges anddominance edgesdetermined by the constraint parser
for the (possibly partial) solution.

208

C. Visualizer

1#
[o(entryIndex:1

index:1
sc:o(attrs:top

entry:o(’in’:o(q:’?’))
model:o(eq:[1]

eqdown:[1]
equp:’_’([1#2 6] [1#2 5#6] 3#4)
index:1
labels:[q]
mothers:[2]
mothersL:o(q:[2])
up:’_’([2 6] [2 5#6] 2#3)
upL:o(q:’_’([2 6] [2 5#6] 2#3))))

word:every)
o(entryIndex:1
index:2
sc:o(attrs:top

entry:o(’in’:o(r:’?’ root:’?’ s:’?’) out:o(q:’!’ r:’*’ s:’!’))
model:o(daughters:’_’([1] [1 3 5] 2)

daughtersL:o(q:[1] s:’_’(nil [3 5] 1))
down:’_’([1 3] [1 3#5] 2#4)
downL:o(q:[1] s:’_’([3] [3#5] 1#3))
eq:[2]
eqdown:’_’([1#3] [1#5] 3#5)
equp:’_’([2 6] [2 5#6] 2#3)
index:2
labels:’_’(nil [root#s] 1)
mothers:’_’(nil [5#6] 1)
mothersL:o(root:’_’(nil [6] 0#1) s:’_’(nil [5] 0#1))
up:’_’([6] [5#6] 1#2)
upL:o(root:’_’(nil [6] 0#1) s:’_’(nil [5#6] 0#2))))

word:man)
o(entryIndex:9
index:3
sc:o(attrs:top

entry:o(’in’:o(r:’?’ root:’?’ s:’?’))
model:o(eq:[3]

eqdown:[3]
equp:[2 3 5 6]
index:3
labels:[s]
mothers:’_’(nil [2 5] 1)
mothersL:o(s:’_’(nil [2 5] 1))
up:[2 5 6]
upL:o(s:[2 5 6])))

word:loves)

Figure C.3.: Analysis in OL syntax (first three nodes)

Edges. For each dimension, the edge record contains three kinds of edges, which are rep-
resented in the following lists:

1. Edges: the list of recordsedge(I1 I2) representing the determined edges from node
indexI1 to node indexI2. We obtain this information from the lower bounds of the
daughters sets of the nodes. For example, consider the underspecified analysis dis-
played in Figure C.3, where thedaughters set of the node with index2 is defined
as:

daughters:’_’([1] [1 3 5] 2) (C.1)

which indicates (by the underscore) that this set is not yet fully determined. What the
constraint solver already knows about this set is that:

a) the list of elements which the set is already known to include (its lower bound) is
[1], i.e., it includes at least the node1

b) the list of elements which the set may still include (its upper bound) includes1, 3
and5

c) the cardinality of the set is already determined to be2

209

C. Visualizer

That is, from the lower bound, we can infer the following edgeand add it to the list of
already determined edges:

edge(2 1) (C.2)

The upper bound and the cardinality are not considered.

2. LEdges: the list of recordsedge(I1 I2 LA) of the determined labeled edges fromI1
to I2 labeledLA, obtained from the lower bounds of thedaughtersL sets of the nodes.
For example, in Figure C.3, thedaughtersL sets for node2 indicate that node1 is
already known to be theq daughter and that the set of daughters with edge labels has
cardinality1, i.e., it contains precisely one node, which is either3 or 5:

daughtersL:o(q:[1] s:’_’(nil [3 5] 1)) (C.3)

Since the upper bounds and the cardinalities of the sets are not considered, this only
allows us to add the following labeled edge to the list of already determined labeled
edges:

edge(2 1 q) (C.4)

3. LUSEdges: the list of recordsedge(I1 I2) representing the determined edges fromI1
to I2 whose edge label is not yet determined.

Dominance Edges. Also for each dimension, the edge record contains three kinds of dom-
inance edges:

1. DEdges: the list of recordsdom(I1 I2) representing the determined dominance edges
from I1 to I2. We obtain this information from the lower bounds of thedown sets of the
nodes. For any node with indexI1 whosedaughters set is not yet determined, we add
dominance edges to all nodesI2 in the lower bound of thedown set ofI1 which:

a) have an underspecifiedmothers set

b) are not in any of thedown sets of the nodes in thedown set ofI1

where the latter condition excludes redundant dominance edges which are already en-
tailed by transitivity. Why? As an example, consider an underspecified graph with three
nodes with indices1, 2 and3, where thedown set of node1 contains both2 and3, and2
contains3. That is, if we would not exclude redundant dominance edges,we would add
the three dominance edgesdom(1 2), dom(1 3) anddom(2 3). We represent the “dom-
inance graph” containing these dominance edges below, where we draw the dominance
edges in a curved and dotted form:

1 2 3

(C.5)

Clearly, the dominance edge from node1 to 3 is redundant, and is thus excluded.

210

C. Visualizer

As an example for finding the dominance edges, consider thedown set of node2 in
Figure C.3:

down:’_’([1 3] [1 3#5] 2#4) (C.6)

The lower bound of the set contains the nodes1 and3, where1 is already a daughter of
node2 as we know from thedaughters set in (C.1). Thus,3 remains the only possible
endpoint for a dominance edge from2. In fact, it is an endpoint for the following
dominance edge:

dom(2 3) (C.7)

because node3 has an underspecifiedmothers set (see Figure C.3) and is not entailed
by transitivity: there is no other node in thedown set of node2 which has3 in its down
set.

2. LDEdges: the list of recordsdom(I1 I2 LA) of the determined labeled dominance edges
from I1 to I2 labeledLA. For anyI1, I2 andLA, dom(I1 I2 LA) is in LDEdges if:

a) I2 is in the lower bound of thedownL set ofI1 for edge labelLA

b) dom(I1 I2) is in the listLDEdges

For example, thedownL sets of node2 in Figure C.3 is the following:

downL:o(q:[1] s:’_’([3] [3#5] 1#3)) (C.8)

ThedownL set for edge labelq contains1, which is not added as a labeled dominance
edge sincedom(2 1) is not in DEdges. The lower bound of the set for edge labels

contains only node3, which is added as the following labeled dominance edge, since
dom(2 3) is in fact contained inDEdges:

dom(2 3 s) (C.9)

3. LUSDEdges: the list of recordsdom(I1 I2) of dominance edges fromI1 to I2 whose
edge label is underspecified.

The dominance edges will prove beneficial for our example grammar in part III of the
thesis, and in particular for its interface to CLLS, where weare interested in transforming
partial, underspecified analyses obtained by the XDK constraint parser to CLLS constraints,
i.e., underspecified semantic representations. The exclusion of redundant dominance edges,
e.g. entailed by transitivity, will help us to avoid stipulating redundant CLLS constraints.

C.2. Output Library

The extensible output library contains functors for various kinds of visualizations:

• Decode: decoded solution (IL syntax), as in Figure C.2 above

• Pretty: pretty printed solution (OL syntax), as in Figure C.3 above

211

C. Visualizer

• Dag: graphical display of multigraphs using Tcl/Tk, see Figure2.8 above

• Latex: graphical display of multigraphs as LATEX code, used for all multigraph illustra-
tions in the thesis.

• CLLS: visualizing (underspecified) solutions graphically as CLLS constraints, using
uDraw(Graph) (Bernd Krieg-Brueckner’s Group 2005). This output functoris ex-
plained in more detail in appendix E.

All textual output of the output functors can be redirected to standard I/O, into a file, into
theOz Browseror theOz Inspector(Brunklaus 2000).

C.3. Summary

This appendix introduced the visualizer of the XDK. Visualization of the solutions of the
constraint parser proceeds in two steps: output preparation followed by invoking a subset of
the output functors from the extensible output library. That is, even the visualizer of the XDK
is very modular and thus easily extensible.

212

D. Programs

This appendix deals with the programs which expose the functionality of the XDK: the meta-
grammar converterxdkconv, the metagrammar compilerxdkc, the constraint solverxdks, and
the GUIxdk. We also describe the additional features of the XDK: the example grammars, a
set of useful shell scripts, and its extensive documentation.

D.1. Metagrammar Converter

The metagrammar converterxdkconv converts metagrammars between the three metagram-
mar input syntaxes UL, XML and IL. For example, to convert thegrammarnut1.ul from UL
into XML syntax, it is called as follows:

$ xdkconv.exe -g Grammars/nut1.ul -o Grammars/nut1.xml
Converting grammar file "Grammars/nut1.ul" to "Grammars/nut1.xml"... done. (30ms)

(D.1)

D.2. Metagrammar Compiler

The metagrammar compilerxdkc compiles metagrammars, and is also able to merge a set of
grammars into a single one, given that their type definitionsare the same. Compiled grammars
can then either be saved into Mozart/Oz records or into a GNU GDBM database. For example,
to compile the grammarnut1.ul and save it into a GNU GDBM database,xdkc is called as
follows:

$ xdkc.exe -g Grammars/nut1.xml -w db
Compiling grammar "Grammars/nut1.xml" ... done. (110ms)
Saved compiled grammar as "Grammars/nut1.slp_db".

(D.2)

D.3. Constraint Solver

The constraint solverxdks is a shell-based constraint parser. Input grammars can either be
newly compiled using the metagrammar compiler or read in from precompiled pickles.xdks
parses all sentences from a list of example sentences and prints out comprehensive parsing
statistics using XML to standard I/O. To parse all sentencesin nut1.txt using the precompiled
grammarnut1.slp_db, and save the parsing statistics in the filenut1.stat.xml, the
program is called as follows:

$ xdks.exe -g Grammars/nut1.slp_db -e Grammars/nut1.txt >nut1.stat.xml (D.3)

We show parts of the filenut1_statistics.xml in Figure D.1 (grammar) and Figure D.2
(individual parses and aggregate counts). The statistics include:

213

D. Programs

• information about the grammar, including its dimensions (XML tag dimensions) and
principles (principles)

• grammar profiling information (gprofile): the number of constraint variables created
for each node, the number of entries in the lexicon etc.

• information about the individual parses (string), including the number of choices, the
depth of the search tree, the number of failed and succeeded nodes, the parsing time

• individual parses profiling information (sprofile): the number of constraint variables
and propagators used for parsing, and the number of entries per node

• aggregate counts and averages of the parses (counts)

• aggregate counts and averages of the profiling information(profilecounts)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE statistics SYSTEM "Extras/statistics.dtd">
<statistics>
<grammar data="Grammars/nut1.slp_db"/>
<examples data="Grammars/nut1.txt" count="13"/>
<date data="Feb 24, 2006 14:51:12"/>
<solutions data="9999"/>
<reco data="1"/>
<dimensions>

<dimension data="lex"/>
<dimension data="sem"/>
<dimension data="syn"/>
<dimension data="synsem"/>

</dimensions>
<principles>

<principle data="syn principle.graph (syn)"/>
<principle data="syn principle.tree (syn)"/>
<principle data="syn principle.valency (syn)"/>
<principle data="syn principle.agr (syn)"/>
<principle data="syn principle.agreement (syn)"/>
<principle data="syn principle.order3 (syn)"/>
<principle data="syn principle.parse (syn)"/>
<principle data="sem principle.graph (sem)"/>
<principle data="sem principle.dag (sem)"/>
<principle data="sem principle.valency (sem)"/>
<principle data="synsem principle.linkingEnd (sem,syn)"/>
<principle data="synsem principle.linkingMother (sem,syn)"/>

</principles>
<gprofile fd="5" fs="101" fdfs="106" entries="16">

<gpnode fd="2" fs="1" fdfs="3"/>
<gpattrs fd="1" fs="0" fdfs="1">

<gpdimension data="lex" fd="0" fs="0" fdfs="0"/>
<gpdimension data="sem" fd="0" fs="0" fdfs="0"/>
<gpdimension data="syn" fd="1" fs="0" fdfs="1"/>
<gpdimension data="synsem" fd="0" fs="0" fdfs="0"/>

</gpattrs>
<gpentry fd="0" fs="31" fdfs="31">

<gpdimension data="lex" fd="0" fs="0" fdfs="0"/>
<gpdimension data="sem" fd="0" fs="10" fdfs="10"/>
<gpdimension data="syn" fd="0" fs="15" fdfs="15"/>
<gpdimension data="synsem" fd="0" fs="6" fdfs="6"/>

</gpentry>
<gpmodel fd="2" fs="69" fdfs="71">

<gpdimension data="lex" fd="0" fs="0" fdfs="0"/>
<gpdimension data="sem" fd="1" fs="28" fdfs="29"/>
<gpdimension data="syn" fd="1" fs="41" fdfs="42"/>
<gpdimension data="synsem" fd="0" fs="0" fdfs="0"/>

</gpmodel>
<gplabel>

<gpdimension data="lex" label="0"/>
<gpdimension data="sem" label="5"/>
<gpdimension data="syn" label="6"/>
<gpdimension data="synsem" label="0"/>

</gplabel>
</gprofile>
...

Figure D.1.: XML parsing statistics and profiling (grammar)

214

D. Programs

...
<string id="string6">

<words>
Peter wants Mary to eat spaghetti today .
</words>
<outputs>
</outputs>
<choices data="3"/>
<depth data="3"/>
<failed data="0"/>
<succeeded data="4"/>
<time data="110"/>
<sprofile fd="536" fs="2171" fdfs="2707" pr="16056" entries="1.5" words="8">

<spnode index="1" word="Peter" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="2" word="wants" entries="2" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="3" word="Mary" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="4" word="to" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="5" word="eat" entries="4" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="6" word="spaghetti" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="7" word="today" entries="1" fd="5" fs="101" fdfs="106" pr="31"/>
<spnode index="8" word="." entries="1" fd="5" fs="101" fdfs="106" pr="31"/>

</sprofile>
</string>
...
<counts>

<cchoices min="0" max="3" average="0.461538"/>
<cdepth min="1" max="3" average="1.38462"/>
<cfailed min="0" max="1" average="0.384615"/>
<csucceeded min="0" max="4" average="1.07692"/>
<ctime min="0" max="150" average="60.0"/>

</counts>
<profilecounts>

<cfd min="126" max="536" average="278.615"/>
<cfs min="816" max="2171" average="1378.85"/>
<cfdfs min="942" max="2707" average="1657.46"/>
<cpr min="4646" max="16056" average="9060.0"/>
<cwords min="3" max="8" average="5.07692"/>
<centries min="1" max="4" average="1.60606"/>

</profilecounts>
</statistics>

Figure D.2.: XML parsing statistics and profiling (individual parses and aggregate counts)

D.4. Graphical User Interface

The GUIxdk offers a convenient front-end for all the main functionality of the XDK: meta-
grammar conversion, metagrammar compilation, merging andpickling, constraint solving and
the generation of parsing statistics. In addition, the GUI offers a variety of additional functions
for grammar debugging. For instance, dimensions and principles can be individually switched
off and on again, thegenerate all orderingsfunction helps to spot overgeneration, and the
graphical search engines Oz Explorer and IOzSeF give an overview of the search space of the
constraint parser.

D.5. Example Grammars, Scripts and Documentation

The XDK comes with a large number of handcrafted example grammars. This includes:

• all grammars described in this thesis

• the German grammars described in (Duchier & Debusmann 2001), (Debusmann 2001)
and (Bader et al. 2004):

• the German grammars described in the ESSLLI 2004 course

• the Dutch grammar described in (Debusmann & Duchier 2002)

• the English grammar used for the CHORUS project demonstration in April 2004, which
is partly described in (Debusmann, Duchier, Koller, Kuhlmann, Smolka & Thater 2004)

215

D. Programs

• the English grammar described in (Debusmann 2004b)

• the English grammar described in (Debusmann et al. 2005)

• the Arabic grammar described in (Odeh 2004)

Moreover, the XDK provides a number of shell scripts e.g. forthe convenient creation of
pictures displaying multigraphs or metagrammars for inclusion in papers and presentations:

• xdag2eps, xdag2jpg, xdag2pdf: generate EPS, JPG or PDF files from the LATEX code
obtained using the visualizer for solutions of the constraint parser, using the LATEX style
file xdag.sty also provided by the XDK

• code2pic, generate EPS, JPG or PDF files from the LATEX code obtained from the
scriptsozcolor (for Mozart/Oz code),ulcolor (UL), xmlcolor (XML)

• ulterse: minimize UL metagrammars

• diffnotime: compare parsing statistics

• addprinciple, mvprinciple, rmprinciple: add, rename or remove principles to, in,
or from the principle library

Many of these tools, and the additional GNU Emacs modeul.el, have already been used to
prepare this thesis.

The XDK is comprehensively documented by a manual which is over 200 pages long written
using texinfo. It is available as an online version (in either HTML or info) and as an offline
version for printing (in either PDF and Postscript). Even more in-depth documentation is
available on the XDG website in form of slides of the ESSLLI 2004 course.

D.6. Summary

This appendix presented the programs of the XDK, the provided example grammars, the set
of useful shell scripts, and its documentation. All grammars described in this thesis are imple-
mented in XDK and can be tested “live”.

216

E. Interface to CLLS

In this chapter, we build an interface from the semantics module of our grammar to theCon-
straint Language for Lambda Structures(CLLS) (Egg et al. 2001). The interface covers the
entire example grammar developed in this part of the thesis,i.e., for each analysis, it yields
a corresponding CLLS constraint. We realize this interfaceby introducing theCLLS dimen-
sion to gather the necessary data to visualize underspecified PA/SC analyses as CLLS con-
straints, and theCLLSoutput functor to implement the visualization, using the graph visualizer
uDraw(Graph)(Bernd Krieg-Brueckner’s Group 2005).

E.1. CLLS

This section gives a very brief and informal introduction toCLLS. A more detailed description
of CLLS can be found e.g. in (Egg et al. 2001). CLLS is a description language for lambda
terms based ondominance constraints(Marcus, Hindle & Fleck 1983). Compared to other for-
malisms for semantic underspecification such asQuasi Logical Form(QLF) (Alshawi 1991),
Hole Semantics(Bos 1996) andMinimal Recursion Semantics(MRS) (Copestake et al. 2004),
CLLS has a number of advantages:

• descriptions from other formalisms, e.g. Hole Semantics or MRS, can be converted into
CLLS (Koller, Niehren & Thater 2003, Fuchss, Koller, Niehren & Thater 2004)

• CLLS has by far the best algorithmic properties of the available formalisms

• CLLS has an open-source implementation:Utool (Koller, Kuhlmann & Thater 2005),
not only offering services to translate descriptions from other formalisms into CLLS,
but also to solve them very efficiently

E.1.1. Constraints

For simplicity, we restrict ourselves to a fragment of CLLS excluding parallelism constraints.
Here is its syntax:

ϕ ::= X : f (X1, . . . ,Xn) | X ⊳
∗Y | λ (X) = Y | ϕ ∧ϕ ′ (E.1)

X : f (X1, . . . ,Xn) is a labeling constraint. It constrains the node variableX to have labelf ,
and daughtersX1, . . . ,Xn (in this order). X ⊳

∗ Y is a dominance constraintrequiring thatX
dominatesY. λ (X) = Y is abinding constraintand requiring thatX is bound byY, whereX
must have labelvar for “variable”, andY must have labellam for “lambda binder”.

217

E. Interface to CLLS

E.1.2. Example

As an example, we create a CLLS description of the two readings of

Every man loves a woman (E.2)

in a step-by-step fashion. In the first step, we assign to eachword a CLLS constraint called
fragmentwhich describes its semantic contribution. To the determinerseveryanda, we assign
the following trivial labeling constraints:

X1 : every
X1 : a

(E.3)

To the nounman, we assign the fragment below, where @ stands for “application”:

X1 : @(X2,X8)∧X2 : @(X3,X4)∧X4⊳
∗ X5∧X5 : @(X6,X7)∧

X6 : man∧X7 : var∧X8 : lam(X9)∧λ (X7) = X8
(E.4)

The nounwomanis assigned the same fragment except for the labeling of nodeX8.
CLLS constraints can be represented more perspicuously as graphs. A representation of

(E.4) is shown in Figure E.1, where unlabeled nodes have label _, edges are drawn as solid
(black) lines going downward, dominance constraints as dotted (blue) lines also going down-
ward, and binding constraints by dotted (green) lines goingupward. Anchor nodes of the
fragments, labeled by the words to which they correspond, are highlighted (in yellow).

X2:@

X4:_

X6:man

X5:@

X3:_

X1:@

X7:var

X9:_

X8:lam

Figure E.1.: Graph representation of CLLS constraint (E.4)for the nounman

The CLLS fragment for the transitive verbloves, graphically represented in Figure E.2, rep-
resents the binary predicatelove(x,y), wherex corresponds to the variableX3 in the fragment
(the agent), andy to X5 (the patient):

X1 : @(X3,X2)∧X2 : @(X5,X4)∧X4 : love∧X5 : var∧X3 : var (E.5)

In the second step, we combine the constraints of the determiners and nouns by:

1. conjoining them

2. adding a dominance constraint from quantifier nodeX3 of the noun constraint to the root
nodeX1 of the determiner constraint

218

E. Interface to CLLS

X2:@

X4:love

X1:@

X5:var

X3:var

Figure E.2.: Graph representation of CLLS constraint (E.5)for the transitive verbloves

To make the nodes of the individual fragments distinct, we amalgamate the names of the node
variables with the corresponding words. For instance,X3 of the fragment ofmanbecomes
Xman

3 . The resulting constraint forevery man, represented graphically in Figure E.3, is the
following:

Xman
1 : @(Xman

2 ,Xman
8)∧Xman

2 : @(Xman
3 ,Xman

4)∧
Xman

4 ⊳
∗ Xman

5 ∧Xman
5 : @(Xman

6 ,Xman
7)∧

Xman
6 : man∧Xman

7 : var∧Xman
8 : lam(Xman

9)∧
λ (Xman

7) = Xman
8 ∧

Xevery
1 : every∧Xman

3 ⊳
∗ Xevery

1

(E.6)

X2−man:@

X1−every:every

X3−man:_

X1−man:@

X8−man:lam

X5−man:@

X7−man:varX6−man:man

X4−man:_ X9−man:_

Figure E.3.: Graph representation of CLLS constraint (E.6)for the noun phraseevery man

Intuitively, the constraint represents ageneralized quantifierwhere the restriction is already
instantiated: the constraint forevery manfor instance represents the following generalized
quantifier:

λQ.∀x.man(x) ⇒ Q (E.7)

where the restriction is already instantiated withman(x), but the scopeQ is not. The combi-
nation ofa andwomanproceeds analogously.

In the third step, we combine the constraints for the verbloveswith those forevery manand
a woman. This amounts to:

1. again conjoining them

2. adding dominance constraints from the scope nodeX9 of the noun fragments to the root
nodeX1 of the verb fragment

3. adding binding constraints from the variable nodesX3 andX5 of the verb fragment to
the lambda binder nodeX8 of the noun fragments.

219

E. Interface to CLLS

The combined CLLS constraint, displayed graphically in Figure E.4, is the following:

Xman
1 : @(Xman

2 ,Xman
8)∧Xman

2 : @(Xman
3 ,Xman

4)∧
Xman

4 ⊳
∗ Xman

5 ∧Xman
5 : @(Xman

6 ,Xman
7)∧

Xman
6 : man∧Xman

7 : var∧Xman
8 : lam(Xman

9)∧
λ (Xman

7) = Xman
8 ∧

Xevery
1 : every∧Xman

3 ⊳
∗ Xevery

1 ∧
Xwoman

1 : @(Xwoman
2 ,Xwoman

8)∧Xwoman
2 : @(Xwoman

3 ,Xwoman
4)∧

Xwoman
4 ⊳

∗ Xwoman
5 ∧Xwoman

5 : @(Xwoman
6 ,Xwoman

7)∧
Xwoman

6 : woman∧Xwoman
7 : var∧Xwoman

8 : lam(Xwoman
9)∧

λ (Xwoman
7) = Xwoman

8 ∧
Xa

1 : a∧Xwoman
3 ⊳

∗ Xa
1∧

Xloves
1 : @(Xloves

3 ,Xloves
2)∧Xloves

2 : @(Xloves
5 ,Xloves

4)∧
Xloves

4 : love∧Xloves
5 : var∧Xloves

3 : var∧
Xman

9 ⊳
∗ Xloves

1 ∧Xwoman
9 ⊳

∗ Xloves
1 ∧

λ (Xloves
3) = Xman

8 ∧λ (Xloves
5) = Xwoman

8

(E.8)

The constraint reflects the intuition that the nominal arguments of the verb both take scope
over it, that the agent-variable of the verb is bound by the subject fragment corresponding to
every man, and the patient by the object fragment corresponding toa woman.

X2−woman:@

X3−woman:_

X1−a:a

X6−woman:woman

X5−woman:@

X4−woman:_

X1−woman:@

X7−woman:var

X8−woman:lam

X1−loves:@

X9−woman:_

X4−loves:love

X2−loves:@

X3−man:_

X5−loves:var

X3−loves:var

X1−every:every

X1−man:@

X4−man:_

X2−man:@ X8−man:lam

X9−man:_

X6−man:man

X5−man:@

X7−man:var

Figure E.4.: Graph representation of CLLS constraint (E.8)for the sentenceEvery man loves
a woman.

CLLS constraints such as the one developed above describe sets of trees, which can be
enumerated by solving the CLLS constraint. We display the two solved formsof constraint
(E.8) in Figure E.5 (weak reading) and Figure E.6 (strong reading). Solved forms directly
correspond to lambda terms.

E.2. CLLS Dimension

To integrate CLLS into our example grammar, we introduce theCLLS dimension, whose pur-
pose is to provide the information required to construct a CLLS constraint from an underspec-
ified PA/SC analysis. As a result, we will always be able to visualize thesemantic part of an
analysis as a CLLS constraint, using the specialized CLLS output functor of the XDK output
library. The models of theCLLS dimension are graphs without edges.

220

E. Interface to CLLS

X2−man:@

X3−man:_

X6−man:man

X1−every:every

X1−man:@

X5−man:@

X4−man:_

X6−woman:woman

X7−man:var X2−woman:@

X1−a:a

X7−woman:var

X3−woman:_

X8−man:lam

X1−woman:@

X9−man:_

X5−woman:@

X4−loves:love

X2−loves:@

X4−woman:_

X8−woman:lam

X9−woman:_

X5−loves:var

X3−loves:var

X1−loves:@

Figure E.5.: Weak reading ofEvery man loves a woman.

X2−woman:@

X3−woman:_

X1−a:a

X6−woman:woman

X5−woman:@

X4−woman:_

X1−woman:@

X7−woman:var

X8−woman:lam

X3−man:_

X2−man:@

X1−every:every

X7−man:varX6−man:man

X4−man:_

X9−woman:_

X8−man:lam

X1−man:@

X4−loves:love

X2−loves:@

X5−man:@

X9−man:_

X5−loves:var

X3−loves:var

X1−loves:@

Figure E.6.: Strong reading ofEvery man loves a woman.

221

E. Interface to CLLS

E.2.1. Types

The lexical attributes on theCLLS dimension are defined as follows, making use of the type
"clls.var" of CLLS node variables:1

deftype "clls.var" {x1 x2 x3 x4 x5 x6 x7 x8 x9}
defentrytype {cons: string

anchor: string
roots: set("clls.var")
dom: vec("sc.label" set("clls.var"))
lam: vec("pa.label" set("clls.var"))
var: vec("pa.label" set("clls.var"))}

(E.9)

The attributes consist of:

• cons is a string which represents the fragment assigned to the node, where we write
label(f x1 . . . xn) for the labeling constraintX : f (X1, . . . ,Xn), dom(x1 x2) for the
dominance constraintX1⊳

∗ X2, lambda(x1 x2) for the binding constraintλ (X1) = X2,
and use concatenation for conjoining constraints

• anchor is a string representing the anchor of the fragment

• roots is a set of node variables denoting the roots of the fragment

• dom is a vector used to mapSC edge labels to sets of node variables. These node vari-
ables are typically leaves of the fragments, and are the startpoints of the dominance
constraints corresponding toSC edges. The endpoints of these dominance constraints
are always the roots of other fragments.

• lam andvar are vectors used to mapPA edge labels to sets of node variables.var maps
PA edge labels likeag andpat to the corresponding node variables in the CLLS con-
straint. For example, in the CLLS constraint forlovesin Figure E.2,ag corresponds
to nodeX3 andpat to X5. These node variables are the startpoints of the binding con-
straints corresponding toPA edges. Their endpoints are lambda binders, whose position
is specified by the attributelam, a vector used to mapPA edge labels to lambda binder
node variables.

E.2.2. Lexical Classes

We use lexical classes to assign CLLS constraints to nodes. In this section, we describe only
the lexical classes needed to account for the running example of this appendix. In the actual
grammar, we have defined CLLS constraints for all other wordsas well.

Words without semantic content are assigned an empty CLLS constraint without a root and
with anchorA:

defclass "clls_nocont" A {
dim clls {cons: ""

anchor: A
roots: {}}}

(E.10)

1As the fragments in the example grammar have at most 9 nodes,"clls.var" contains the 9 variablesx1, . . .,
x9 representingX1, . . ., X9.

222

E. Interface to CLLS

To determiners, we assign a fragment defining only one nodex1 labeled by the anchorA:2

defclass "clls_det" A {
dim clls {cons: "label(x1 anchor)"

anchor: A
roots: {x1}}}

(E.11)

We describe common nouns with the following lexical class:

defclass "clls_cnoun" A {
dim clls {cons: "label(x1 ’@’(x2 x8)) label(x2 ’@’(x3 x4))

dom(x4 x5) label(x5 ’@’(x6 x7)) label(x6 anchor)
label(x7 var) label(x8 lambda(x9)) lam(x7 x8)"

anchor: A
roots: {x1}
dom: {q: {x3}

r: {x4}
s: {x9}}

lam: {ag: {x8}
pat: {x8}
addr: {x8}
agm: {x8}
patm: {x8}}}}

(E.12)

The CLLS constraint of the lexical class corresponds to thatof (E.4), and graphically displayed
in Figure E.1 above, except that its anchor (node variablex6) is variable. The root of the
fragment isx1. By thedom attribute, its quantifier node isx3, its restrictionx4 and its scope
x9. By thelam attribute, the endpoint for binding constraints from verbs(ag, pat andaddr)
and modifiers of the noun (agm andpatm) is x8.

Transitive verbs are described as follows:

defclass "clls_trans" A {
dim clls {cons: "label(x1 ’@’(x2 x3)) label(x2 ’@’(x4 x5))

label(x4 anchor) label(x5 var) label(x3 var)"
anchor: A
roots: {x1}
var: {ag: {x3}

pat: {x5}}}}

(E.13)

where the CLLS constraint corresponds to that of (E.5), graphically displayed in Figure E.2.
The root of the fragment isx1. By thevar attribute, its agent corresponds to node variablex3,
and its patient tox5

E.3. CLLS Output Functor

The purpose of theCLLS output functoris to:

1. from a (possibly underspecified)PA/SC analysis, construct the corresponding CLLS con-
straint, utilizing the information provided by the lexicalattributes on theCLLS dimen-
sion

2Before visualization, the CLLS output functor replaces alloccurrences ofanchor in the constructed CLLS
constraint by the respective anchor of the node.

223

E. Interface to CLLS

2. visualize the CLLS constraint in the graph visualizeruDraw(Graph) (Bernd Krieg-
Brueckner’s Group 2005)

The construction of the CLLS constraint to be visualized proceeds in four steps:

1. preprocessing the fragments of the nodes provided by theCLLS dimension

2. concatenating them

3. adding dominance constraints corresponding to edges anddominance edges on theSC

dimension

4. adding binding constraints corresponding to the edges onthePA dimension

For the visualization itself, we apply the interface to uDraw(Graph) provided by Joachim
Niehren.

As an example, we give a walkthrough of the construction of the CLLS constraint forEvery
man loves a womanfrom the underspecifiedPA/SC analysis shown in Figure E.7.

PA

1

Every

2

man

3

loves

4

a

5

woman

6

.

root

det

ag pat

det

SC
1

Every

2

man

3

loves

4

a

5

woman

6

.

q q

root

root
root

s s

Figure E.7.: ExamplePA/SC/CLLS analysis

E.3.1. Preprocessing the Fragments

Preprocessing consists of two steps:

1. instantiating the anchor nodes of the fragments with the base form of the corresponding
word

2. making the node variables of the fragments unique by amalgamating them with the
corresponding node index

As an example, thecons value of the determinereveryon theCLLS dimension is defined as
follows by lexical classclls_det in (E.11) above:

"label(x1 anchor)" (E.14)

224

E. Interface to CLLS

After preprocessing, the anchor has been instantiated withevery, and the node variablex1
has been made unique by the suffix _f1 (wheref stands for “fragment”):

"label(x1_f1 every)" (E.15)

E.3.2. Concatenating the Fragments

In the second step, the CLLS output functor concatenates thepreprocessed fragments, yielding
the following CLLS constraint, which we display graphically in Figure E.8.

"label(x1_f1 every)

label(x1_f2 ’@’(x2_f2 x8_f2)) label(x2_f2 ’@’(x3_f2 x4_f2))
dom(x4_f2 x5_f2) label(x5_f2 ’@’(x6_f2 x7_f2)) label(x6_f2 man)
label(x7_f2 var) label(x8_f2 lambda(x9_f2)) lam(x7_f2 x8_f2)

label(x1_f3 ’@’(x2_f3 x3_f3)) label(x2_f3 ’@’(x4_f3 x5_f3))
label(x4_f3 love) label(x5_f3 var) label(x3_f3 var)

label(x1_f4 a)

label(x1_f5 ’@’(x2_f5 x8_f5)) label(x2_f5 ’@’(x3_f5 x4_f5))
dom(x4_f5 x5_f5) label(x5_f5 ’@’(x6_f5 x7_f5)) label(x6_f5 woman)
label(x7_f5 var) label(x8_f5 lambda(x9_f5)) lam(x7_f5 x8_f5)"

(E.16)

x2_f5:@

x3_f5:_

x1_f4:a

x6_f5:woman

x5_f5:@

x4_f5:_

x1_f5:@

x7_f5:var

x8_f5:lam

x1_f3:@

x9_f5:_

x4_f3:love

x2_f3:@

x3_f2:_

x5_f3:var

x3_f3:var

x1_f1:every

x1_f2:@

x4_f2:_

x2_f2:@ x8_f2:lam

x9_f2:_

x6_f2:man

x5_f2:@

x7_f2:var

Figure E.8.: Graphical representation of CLLS constraint (E.16)

E.3.3. Adding Dominance Constraints

In the third step, the output functor adds dominance constraints corresponding to the edges
and the dominance edges on the (possibly underspecified)SC dimension. For each edge or
dominance edge fromv to v′ labeledl , the startpoint of the corresponding dominance con-
straint is specified by the lexical attributedom for v and labell , and the endpoint by the lexical
attributeroots for v′.

225

E. Interface to CLLS

For example, consider the edge labeledq from manto everyin the underspecifiedSC anal-
ysis in Figure E.7. Asmanis a common noun, it is characterized by lexical classclls_cnoun
(E.12), and the set of startpoints of dominance constraintsfor manand labelq is x3. The
set of roots of the determinerevery, characterized by lexical classclls_det (E.11), contains
only x1. As a result, the dominance constraint corresponding to theedge goes fromx3 of man
(unique namex3_f2) to x1 of every(x1_f1). Similarly, the edge fromwomanto a induces
a dominance constraint fromx3_f5 to x1_f4. The two additional dominance constraints are
displayed below:

"dom(x3_f2 x1_f1) dom(x3_f5 x1_f4)" (E.17)

As another example, consider the dominance edges labeleds from manto lovesand from
womanto lovesin Figure E.7. The startpoint for dominance edges from common nouns and
labels isx9 (E.12), hence the startpoints of the dominance edges arex9_f2 for manandx9_f5
for woman. Both times, the endpoint is the rootx1 of the fragment ofloves, i.e.,x1_f3. The
result are the following two added dominance constraints:

"dom(x9_f2 x1_f3) dom(x9_f5 x1_f3)" (E.18)

Together with the four additional dominance constraints corresponding to the twoq edges
and the twos dominance edges, the CLLS constraint (E.16) is graphicallyrepresented in
Figure E.9.

x2_f5:@

x3_f5:_

x1_f4:a

x6_f5:woman

x5_f5:@

x4_f5:_

x1_f5:@

x7_f5:var

x8_f5:lam

x1_f3:@

x9_f5:_

x4_f3:love

x2_f3:@

x3_f2:_

x5_f3:var

x3_f3:var

x1_f1:every

x1_f2:@

x4_f2:_

x2_f2:@ x8_f2:lam

x9_f2:_

x6_f2:man

x5_f2:@

x7_f2:var

Figure E.9.: Graphical representation of CLLS constraint (E.16) with the additional domi-
nance constraints (E.17) and (E.18)

In the output functor, we implement this idea of adding dominance constraints as follows.
As explained in section C.1.2 of appendix C, theoutput preparerprovides, among other things:

1. the listNodeOLs of the nodes of the analysis in OL syntax

2. the listLEdges of determined labeled edgesedge(I1 I2 LA) of the analysis for each
dimension

226

E. Interface to CLLS

3. the listLDEdges of determined labeled dominance edgesdom(I1 I2 LA) of the analysis
for each dimension

where the listLDEdges of dominance edges excludes redundant dominance edges already
entailed by “proper” edges or by transitivity. This ensuresthat the CLLS output functor does
not add redundant dominance constraints.

The three lists are used in the functionAddDomCons, which returns the list of dominance
constraints to be added:

(1) fun {AddDomCons NodeOLs LEdgesSC LDEdgesSC}
(2) for Edge in {Append LEdgesSC LDEdgesSC} collect:Collect do
(3) I1 = Edge.1
(4) I2 = Edge.2
(5) LA = Edge.3
(6)
(7) NodeOL1 = {Nth NodeOLs I1}
(8) NodeOL2 = {Nth NodeOLs I2}
(9)
(10) VarAs1 = NodeOL1.clls.entry.dom.LA
(11) VarAs2 = NodeOL2.clls.entry.roots
(12) in
(13) if {Length VarAs1==1} andthen {Length VarAs2==1} then
(14) VarA1 = {Nth VarAs1 1}#’_f’#I1
(15) VarA2 = {Nth VarAs2 1}#’_f’#I2
(16) in
(17) {Collect ’dom(’#VarA1#’ ’#VarA2#’)’}
(18) end
(19) end
(20) end
(21)

(E.19)

The function iterates over all determined labeled edgesLEdgesSC and all determined la-
beled dominance edgesLDEdgesSC on theSC dimension (line 2). The starting point of the
edge/dominance edge onSC is I1, the endpointI2, and the labelLA (lines 3–5). In lines 7 and
8, we obtain the node records of the nodesI1 andI2 in OL syntax. In line 10, we access the
lexical attributedom for NodeOL1 and edge labelLA on theCLLS dimension to obtain the list
of atomsVarAs1, which is the OL representation of the set of startpoints of the dominance
constraints for labelLA. In line 11, we accessroots of NodeOL2 to obtainVarAs2, the OL
representation of the set of roots of the fragment ofNodeOL2, which serve as the endpoints of
the dominance constraints. If both lists contain preciselyone node variable, line 17 adds the
dominance constraint from the startpoint node variableVarA1 to the endpointVarA2, where
VarA1 is the first element ofVarAs1, made unique by the suffix _f 1 (line 14), and analogously
for VarA2 (line 15).

E.3.4. Adding Binding Constraints

In the fourth and last step, we turn our attention to thePA dimension and add binding con-
straints corresponding to the determined edges on the (alsopossibly underspecified)PA di-
mension. For each edge (not dominance edge) fromv to v′ labeledl , the startpoint of the
corresponding binding constraint is specified by the lexical attributevar for v and labell , and
the endpoint by the lexical attributelam for v′ andl .

227

E. Interface to CLLS

For instance, consider the edge labeledag from lovesto man in Figure E.7. Aslovesis
a transitive verb, it is characterized by the lexical classclls_trans (E.13), stating that the
startpoint of binding constraints for labelag is x3. man is characterized byclls_cnoun
(E.12), stating that the endpoint of binding constraints for labelag is its node variablex8. As
a result, the binding constraint corresponding to the edge goes fromx3 of loves(x3_f3) to x8

of man(x8_f2). Similarly, thepat edge fromlovesto womanadds a binding constraint from
x3_f3 to x8_f5:

"lambda(x3_f3 x8_f2) lambda(x5_f3 x8_f5)" (E.20)

We show the resulting CLLS constraint in Figure E.10.

x2_f5:@

x3_f5:_

x1_f4:a

x6_f5:woman

x5_f5:@

x4_f5:_

x1_f5:@

x7_f5:var

x8_f5:lam

x1_f3:@

x9_f5:_

x4_f3:love

x2_f3:@

x3_f2:_

x5_f3:var

x3_f3:var

x1_f1:every

x1_f2:@

x4_f2:_

x2_f2:@ x8_f2:lam

x9_f2:_

x6_f2:man

x5_f2:@

x7_f2:var

Figure E.10.: Graphical representation of CLLS constraint(E.16) with the additional dom-
inance constraints (E.17) and (E.18), and the additional binding constraints
(E.20)

We realize this idea as follows by the functionAddBindingCons displayed below:
(1) fun {AddBindingCons NodeOLs LEdgesPA}
(2) for edge(I1 I2 LA) in LEdgesPA collect:Collect do
(3) NodeOL1 = {Nth NodeOLs I1}
(4) NodeOL2 = {Nth NodeOLs I2}
(5)
(6) VarAs1 = NodeOL1.clls.entry.var.LA
(7) VarAs2 = NodeOL2.clls.entry.lam.LA
(8) in
(9) if {Length VarAs1==1} andthen {Length VarAs2==1} then
(10) VarA1 = {Nth VarAs1 1}#’_f’#I1
(11) VarA2 = {Nth VarAs2 1}#’_f’#I2
(12) in
(13) {Collect ’lambda(’#VarA1#’ ’#VarA2#’)’}
(14) end
(15) end
(16) end

(E.21)

The function iterates over the determined labeled edgesedge(I1 I2 LA) in LEdgesPA on the
PA dimension (line 2). It then obtains the startpoint and endpoints of the binding constraint
corresponding to the edge (lines 3–7), and, if both are given, adds the binding constraint in
line 13.

228

E. Interface to CLLS

E.4. Summary

As the XDK constraint solver can selectively postpone the enumeration of readings on the
individual dimensions, our approach supports scope underspecification out of the box, without
any further stipulation. This has opened the door for an interface to CLLS, for which we
have introduced theCLLS dimension to gather the necessary information to constructa CLLS
constraint from a (possibly underspecified)PA/SC analysis. The CLLS constraint was then
constructed by the CLLS output functor. By showing that it can be related to the state-of-
the-art in underspecified semantics, we demonstrated that our model of semantics in terms of
the two dimensions of predicate-argument structure and scope structure is not such a radical
departure from state-of-the-art semantic representations as it might first have seemed.

229

Bibliography

Ajdukiewicz, K. (1935), Die Syntaktische Konnexität,in S. McCall, ed., ‘Polish Logic 1920-
1939’, Oxford University Press, pp. 207–231. Translated from Studia Philosophica, 1,
1–27.

Alshawi, H. (1991), ‘Resolving quasi logical forms’,Computational Linguistics16(3), 133–
144.

Andrews, P. B. (2002),An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, Kluwer Academic Publishers.

Apt, K. R. (2003),Principles of Constraint Programming, Cambridge University Press.

Bader, R., Foeldesi, C., Pfeiffer, U. & Steigner, J. (2004),‘Modellierung grammatischer
Phänomene der deutschen Sprache mit Topologischer Dependenzgrammatik’. Software-
projekt, Saarland University.

Bar-Hillel, Y. (1953), ‘A quasi-arithmetical notation forsyntactic description’,Language
29, 47–58.

Barton, G. E., Berwick, R. & Ristad, E. S. (1987),Computational Complexity and Natural
Language, MIT Press.

Becker, T., Rambow, O. & Niv, M. (1992), The derivational generative power, or, scrambling
is beyond LCFRS, Technical report, University of Pennsylvania.

Beldiceanu, N. & Contjean, E. (1994), ‘Introducing global constraints in CHIP’,Mathematical
and Computer Modellingpp. 97–123.

Bernd Krieg-Brueckner’s Group (2005), ‘uDraw(Graph)’. http://www.informatik.uni-
bremen.de/uDrawGraph/en/index.html.

Blackburn, P. & Gardent, C. (1995), A specification languagefor lexical functional grammars,
in ‘Proceedings of EACL 1995’, Dublin/IE.

Böhmová, A., Hajǐc, J., Hajǐcová, E. & Hladká, B. (2001), The Prague Dependency Tree-
bank: Three-level annotation scenario,in ‘Treebanks: Building and Using Syntactically
Annotated Corpora’, Kluwer Academic Publishers.

Bojar, O. (2004), Problems of inducing large coverage constraint-based dependency gram-
mar,in ‘Proceedings of the International Workshop on Constraint Solving and Language
Processing’, Roskilde/DK.

230

Bibliography

Bos, J. (1996), Predicate logic unplugged,in ‘Proceedings of the 10th Amsterdam Collo-
quium’, pp. 133–143.

Brants, T. (1999),Tagging and Parsing with Cascaded Markov Models — Automation of Cor-
pus Annotation, Saarbrücken Dissertations in Computational Linguisticsand Language
Technology, DFKI Saarbrücken.

Bresnan, J. (2001),Lexical Functional Syntax, Blackwell.

Bresnan, J. & Kaplan, R. (1982), Lexical-Functional Grammar: A formal system for gram-
matical representation,in J. Bresnan, ed., ‘The Mental Representation of Grammatical
Relations’, The MIT Press, Cambridge/US, pp. 173–281.

Bresnan, J. W., Kaplan, R. M., Peters, S. & Zaenen, A. (1983),‘Cross-serial dependencies in
dutch’,Linguistic Inquiry 13pp. 173–281.

Bröker, N. (1999),Eine Dependenzgrammatik zur Kopplung heterogener Wissensquellen, Lin-
guistische Arbeiten 405, Max Niemeyer Verlag, Tübingen/DE.

Brunklaus, T. (2000), Der Oz Inspector — Browsen: Interaktiver, einfacher,
effizienter, Diploma thesis, Saarland University. http://www.ps.uni-
sb.de/Papers/abstracts/OzInspector.html.

Butt, M. & King, T. H. (1998), Interfacing phonology with LFG, in ‘Proceedings of the LFG98
Conference’, Brisbane/AU.

Candito, M.-H. (1996), A principle-based hierarchical representation of LTAG,in ‘Proceed-
ings of COLING 1996’, Kopenhagen/DK.

Candito, M.-H. & Kahane, S. (1998), Can the TAG derivation tree represent a semantic graph?
An answer in the light of Meaning-Text Theory,in ‘Fourth International Workshop
on Tree Adjoining Grammars and Related Frameworks’, University of Pennsylvania,
Philadelphia/US, pp. 25–28.

Carpenter, B. (1992),The Logic of Typed Feature Structures, Cambridge Tracts in Theoretical
Computer Science, 32 edn, Cambridge University Press.

Chomsky, N. (1957),Syntactic Structures, Janua linguarum, Mouton, The Hague/NL.

Chomsky, N. (1965),Aspects of the Theory of Syntax, MIT Press, Cambridge/US.

Chomsky, N. (1981),Lectures on Government and Binding: The Pisa Lectures, Foris Publi-
cations.

Church, A. (1940), ‘A formulation of the simple theory of types’, Journal of Symbolic Logic
5, 56–68.

Clark, S. & Curran, J. R. (2004), The importance of supertagging for wide-coverage CCG
parsing,in ‘Proceedings of COLING 2004’, pp. 282–288.

231

Bibliography

Copestake, A. & Flickinger, D. (2000), An open-source grammar development environment
and broad-coverage English grammar using HPSG,in ‘Conference on Language Re-
sources and Evaluation’, Athens/GR.

Copestake, A., Flickinger, D., Pollard, C. & Sag, I. (2004),‘Minimal recursion semantics. an
introduction.’,Journal of Language and Computation. To appear.

Crabbé, B. (2005), Grammatical development with XMG,in ‘Proceedings of LACL 05’, Bor-
deaux/FR.

Crabbé, B. & Duchier, D. (2004), Metagrammar redux,in ‘Proceedings of the International
Workshop on Constraint Solving and Language Processing’, Roskilde/DK.

Dalrymple, M., Lamping, J., Pereira, F. & Saraswat, V. (1995), Linear Logic for meaning as-
sembly,in ‘Proceedings of the Workshop on Computational Logic for Natural Language
Processing’, Edinburgh/UK.

Debusmann, R. (2001), A declarative grammar formalism for dependency grammar, Diploma
thesis, Saarland University. http://www.ps.uni-sb.de/Papers/abstracts/da.html.

Debusmann, R. (2004a), ‘Modeling natural language with Topological DependencyGram-
mar’. Fortgeschrittenenpraktikum/Softwareprojekt, Wintersemester 2003/2004.

Debusmann, R. (2004b), Multiword expressions as dependency subgraphs,in ‘Proceed-
ings of the ACL 2004 Workshop on Multiword Expressions: Integrating Processing’,
Barcelona/ES.

Debusmann, R. & Duchier, D. (2002), Topological dependencyanalysis of the Dutch verb
cluster, Technical report, Saarland University.

Debusmann, R. & Duchier, D. (2004), ‘A comparative introduction to extensible dependency
grammar’. Introductory course at the 16th European Summer School in Logic, Language
and Information, ESSLLI 2004, Nancy, http://www.ps.uni-sb.de/~rade/talks.html.

Debusmann, R. & Duchier, D. (2006), ‘XDG development kit’. http://www.mozart-
oz.org/mogul/info/debusmann/xdk.html.

Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G. & Thater, S. (2004), A
relational syntax-semantics interface based on dependency grammar,in ‘Proceedings of
COLING 2004’, Geneva/CH.

Debusmann, R., Duchier, D. & Kruijff, G.-J. M. (2004), Extensible Dependency Grammar: A
new methodology,in ‘Proceedings of the COLING 2004 Workshop on Recent Advances
in Dependency Grammar’, Geneva/CH.

Debusmann, R., Duchier, D., Kuhlmann, M. & Thater, S. (2004), TAG as dependency gram-
mar,in ‘Proceedings of TAG+7’, Vancouver/CA.

232

Bibliography

Debusmann, R., Postolache, O. & Traat, M. (2005), A modular account of information struc-
ture in Extensible Dependency Grammar,in ‘Proceedings of the CICLING 2005 Con-
ference’, Springer, Mexico City/MX.

Dienes, P., Koller, A. & Kuhlmann, M. (2003), Statistical A*dependency parsing,in
‘Prospects and Advances in the Syntax/Semantics Interface’, Nancy/FR.

Dowty, D. R. (1989), On the semantic content of the notion of “thematic role”,in G. Chier-
chia, B. H. Partee & R. Turner, eds, ‘Properties, Types and Meanings’, Vol. 2, Kluwer,
Dordrecht/NL, pp. 69–129.

Duchier, D. (1999), Axiomatizing dependency parsing usingset constraints,in ‘Proceedings
of MOL 6’, Orlando/US.

Duchier, D. (2003), ‘Configuration of labeled trees under lexicalized constraints and princi-
ples’,Research on Language and Computation1(3–4), 307–336.

Duchier, D. & Debusmann, R. (2001), Topological dependencytrees: A constraint-based ac-
count of linear precedence,in ‘Proceedings of ACL 2001’, Toulouse/FR.

Duchier, D., Le Roux, J. & Parmentier, Y. (2004), The Metagrammar compiler: An NLP appli-
cation with a multi-paradigm architecture,in ‘Proceedings of the MOZ04 Conference’,
Vol. 3389, Springer, Charleroi/BE.

Earley, J. (1970), ‘An efficient context-free parsing algorithm’, Communications of the ACM
13(2), 451–455.

Egg, M., Koller, A. & Niehren, J. (2001), ‘The Constraint Language for Lambda Structures’,
Journal of Logic, Language, and Information.

Erdmann, O. (1886),Grundzüge der deutschen Syntax nach ihrer geschichtlichenEntwicklung
dargestellt, Erste Abteilung, Stuttgart/DE.

Frank, A. & Erk, K. (2004), Towards an LFG syntax-semantics interface for frame semantics
annotation,in A. Gelbukh, ed., ‘Computational Linguistics and Intelligent Text Process-
ing’, Lecture Notes in Computer Science, Springer Verlag.

Frank, A. & van Genabith, J. (2001), GlueTag. Linear Logic-based semantics for LTAG—and
what it teaches us about LFG and LTAG,in M. Butt & T. H. King, eds, ‘Proceedings of
the LFG01 Conference’, Hong Kong/HK.

Fuchss, R., Koller, A., Niehren, J. & Thater, S. (2004), Minimal recursion semantics as domi-
nance constraints: Translation, evaluation, and analysis, in ‘Proceedings of ACL 2004’,
Barcelona/ES.

Gaifman, H. (1965), ‘Dependency systems and phrase-structure systems’,Information and
Control8(3), 304–337.

233

Bibliography

Gardent, C. & Kallmeyer, L. (2003), Semantic construction in FTAG, in ‘Proceedings of
EACL 2003’, Budapest/HU.

Gazdar, G., Klein, E., Pullum, G. & Sag, I. (1985),Generalized Phrase Structure Grammar,
B. Blackwell, Oxford/UK.

Gerdes, K. & Kahane, S. (2001), Word order in German: A formaldependency grammar using
a topological hierarchy,in ‘ACL 2001 Proceedings’, Toulouse/FR.

Goldsmith, J. (1979), Autosegmental Phonology, PhD thesis, MIT.

Goldsmith, J. (1990),Autosegmental and Metrical Phonology, Blackwell, Cambridge/US.

Grabowski, R., Kuhlmann, M. & Möhl, M. (2005), Lexicalised Configuration Grammars,in
‘Proceedings of the Second International Workshop on Constraint Solving and Language
Processing’, Springer, Sitges/ES.

Gross, M. (1964), On the equivalence of models of language used in the fields of mechanical
translation and information retrieval,in ‘Information Storage and Retrieval’, Harvard
University, pp. 43–57.

Harary, F. (1994),Graph Theory, Addison-Wesley, Reading/US.

Harper, M. P., Hockema, S. A. & White, C. M. (1999), Enhanced constraint dependency
parsers,in ‘Proceedings of the IASTED International Conference on Artificial Intelli-
gence and Soft Computing’, Honolulu/US.

Hays, D. G. (1964), ‘Dependency theory: A formalism and someobservations’,Language
40, 511–525.

Heinecke, J., Kunze, J., Menzel, W. & Schröder, I. (1998), Eliminative parsing with graded
constraints,in ‘Proceedings of COLING/ACL 1998’, Montréal/CA, pp. 526–530.

Hentenryck, P. V. & Saraswat, V. (1996), ‘Strategic directions in constraint programming’,
ACM Computing Surveys28(4), 701–726.

Henz, M., Müller, T. & Thiel, S. (2004), ‘Global constraintsfor round robin tournament
scheduling’,European Journal of Operational Research (EJORS).

Herling, S. (1821), ‘Über die Topik der deutschen Sprache’.

Higgins, D. (1998), Parsing parallel grammatical representations,in ‘Proceedings of COL-
ING/ACL 1998’, Montréal/CA.

Holan, T., Kubon, V., Oliva, K. & Platek, M. (2000), ‘On complexity of word-order’,Journal
t.a.l. pp. 273–301.

Hudson, R. A. (1990),English Word Grammar, B. Blackwell, Oxford/UK.

234

Bibliography

Iordanskaja, L. & Mel’̌cuk, I. (2005), Towards establishing an inventory of surface-syntactic
relations: Valency-controled surface-syntactic dependents of verb in french. to appear.

Jackendoff, R. (1977),̄X Syntax: A Study of Phrase Structure, number 2in ‘Linguistic Inquiry
Monographs’, MIT Press, Cambridge/US.

Jackendoff, R. (2002),Foundations of Language, Oxford University Press.

Jaffar, J. & Lassez, J.-L. (1988), From unification to constraints, in ‘Proceedings of the 6th
Conference on Logic programming ’87’, Springer, Tokyo/JP,pp. 1–18.

Jaffar, J. & Maher, M. M. (1994), ‘Constraint Logic Programming: A survey’,The Journal of
Logic Programming19/20, 503–582. Special Issue: Ten Years of Logic Programming.

Joshi, A. K. (1987), An introduction to tree-adjoining grammars,in A. Manaster-Ramer, ed.,
‘Mathematics of Language’, John Benjamins, Amsterdam/NL,pp. 87–115.

Joshi, A. K. & Bangalore, S. (1994), Disambiguation of superparts of speech (or supertags):
Almost parsing,in ‘Proceedings of COLING 1994’, Kyoto/JP.

Joshi, A. K., Levy, L. & Takahashi, M. (1975), ‘Tree Adjunct Grammars’,Journal of Com-
puter and System Sciences10(1).

Joshi, A. K. & Shanker, V. K. (1999), Compositional semantics with Lexicalized Tree Ad-
joining Grammar (LTAG): How much underspecification is necessary?,in H. C. Blunt
& E. G. C. Thijsse, eds, ‘Proceedings of the Third International Workshop on Computa-
tional Semantics (IWCS-3)’, Tilburg/NL, pp. 131–145.

Kahane, S. (2001), ‘A fully lexicalized grammar for french based on Meaning-Text Theory’,
Computational Linguistics.

Kallmeyer, L. & Joshi, A. K. (2003), ‘Factoring predicate argument and scope semantics:
Underspecified semantics with LTAG’,Research on Language and Computation1(1–
2), 3–58.

Kathol, A. (2000),Linear Syntax, Oxford University Press.

Kay, M. (1980), Algorithm schemata and data structures in syntactic processing, Technical
report, Xerox Palo Alto Research Center. CSL-80-12.

Koller, A., Kuhlmann, M. & Thater, S. (2005), ‘utool: The swiss army knife of underspecifi-
cation’. http://utool.sourceforge.org/.

Koller, A., Niehren, J. & Thater, S. (2003), Bridging the gapbetween underspecification for-
malisms: Hole semantics as dominance constraints,in ‘Proceedings of EACL 2003’,
Budapest/HU.

Koller, A. & Striegnitz, K. (2002), Generation as dependency parsing,in ‘Proceedings of ACL
2002’, Philadelphia/US.

235

Bibliography

Korthals, C. (2003), Unsupervised learning of word order rules, Master’s thesis, Saarland
University. Diploma thesis.

Kruijff, G.-J. M. & Baldridge, J. (2004), Generalizing dimensionality in Combinatory Cate-
gorial Grammar,in ‘Proceedings of COLING 2004’, Geneva/CH.

Kruijff, G.-J. M. & Duchier, D. (2003), Information structure in Topological Dependency
Grammar,in ‘Proceedings of EACL 2003’, Budapest/HU.

Kubon, V. (2001), Problems of Robust Parsing of Czech, PhD thesis, Institute of Formal and
Applied Linguistics, Prague/CZ.

Kunze, J. (1975),Abhängigkeitsgrammatik, Akademie Verlag, Berlin/DE.

Marcus, M. P., Hindle, D. & Fleck, M. M. (1983), D-theory: Talking about talking about trees,
in ‘Proceedings of ACL 1983’, pp. 129–136.

Marcus, M. P., Santorini, B. & Marcinkiewicz, M. A. (1993), Building a large annotated
corpus of English: the Penn Treebank, Technical report, University of Pennsylvania.

Maruyama, H. (1990), Structural disambiguation with constraint propagation,in ‘Proceedings
of ACL 1990’, Pittsburgh/US, pp. 31–38.

McCawley, J. D. (1968), ‘Concerning the base component of a Transformational Grammar’,
Foundations of Language4, 243–269.

Melamed, I. D., Satta, G. & Wellington, B. (2004), Generalized Multitext Grammars,in ‘Pro-
ceedings of ACL 2004’, Barcelona/ES.

Mel’ čuk, I. (1988),Dependency Syntax: Theory and Practice, State Univ. Press of New York,
Albany/US.

Mel’ čuk, I. & Polguère, A. (1987), ‘A formal lexicon in the Meaning-Text Theory (or how to
do lexica with words)’,Computational Linguistics13(3–4), 261–275.

Menzel, W. (1998), ‘Constraint satisfaction for robust parsing of spoken language’,Journal of
Experimental and Theoretical Artificial Intelligence10(1), 77–89.

Menzel, W. & Schröder, I. (1998), Decision procedures for dependency parsing using
graded constraints,in ‘Proceedings of the COLING/ACL 1998 Workshop Processing
of Dependency-based Grammars’, Montréal/CA.

Möhl, M. (2004), ‘Modellierung natürlicher Sprache mit Hilfe von Topologischer Depen-
denzgrammatik’. Fortgeschrittenenpraktikum, Saarland University, http://www.ps.uni-
sb.de/ rade/papers/related/Moehl04.pdf.

Montague, R. (1974), The proper treatment of quantificationin ordinary English,in R. Thoma-
son, ed., ‘Formal Philosophy: Selected Papers of Richard Montague’, Yale University
Press.

236

Bibliography

Montanari, U. (1970), Networks of constraints: Fundamental properties and application to
picture processing, Technical report, Carnegie Mellon University.

Mozart Consortium (2006), ‘The Mozart-Oz website’. http://www.mozart-oz.org/.

Narendranath, R. (2004), ‘Evaluation of the stochastic extension of a constraint-based depen-
dency parser’. Bachelorarbeit, Saarland University.

Odeh, M. (2004), ‘Topologische Dependenzgrammatik fürs Arabische’. Forschungsprak-
tikum, Saarland University.

Owens, J. (1988),An Introduction to Medieval Arabic Grammatical Theory, Studies in the
History of Language Sciences, 45 edn, John Benjamins.

Panenová, J. (1974), ‘On verbal frames in Functional Generative Description’,Prague Bulletin
of Mathematical Linguistics.

Peirce, C. S. (1898),Reasoning and the Logic of Things: The Cambridge ConferenceLectures
1898, Harvard University Press, Cambridge/US. published 1992.

Pelizzoni, J. & das Gracas Volpe Nunes, M. (2005), N:M mapping in XDG - the case for
upgrading groups,in ‘Proceedings of the International Workshop on Constraint Solving
and Language Processing’, Sitges/ES.

Penn, G. (1999), A generalized-domain-based approach to serbo-croatian second-position
clitic placement,in G. Bouma, E. Hinrichs, G.-J. M. Kruijff & R. Oehrle, eds, ‘Con-
straints and Resources in Natural Language Syntax and Semantics’, CSLI Publications,
Stanford/US, pp. 119–136.

Pierce, B. (2002),Types and Programming Languages, MIT Press.

Pierrehumbert, J. (1980), The Phonetics and Phonology of English Intonation, PhD thesis,
Massachusetts Institute of Technology, Bloomington/US.

Pollard, C. & Sag, I. A. (1987),Information-Based Syntax and Semantics. Volume 1: Funda-
mentals, CSLI, Stanford/US.

Pollard, C. & Sag, I. A. (1994),Head-Driven Phrase Structure Grammar, University of
Chicago Press, Chicago/US.

Prevost, S. & Steedman, M. (1994), Information based intonation synthesis,in ‘Proceedings
of the ARPA Workshop on Human Language Technology’, Princeton/US.

Pullum, G. K. & Scholz, B. C. (2001), On the distinction between model-theoretic and
generative-enumerative syntactic frameworks,in P. de Groote, G. Morrill & C. Retoré,
eds, ‘Logical Aspect of Computational Linguistics: 4th International Conference’, Lec-
ture Notes in Artificial Intelligence, Springer, Berlin/DE, pp. 17–43.

237

Bibliography

Rogers, J. (1996), A model-theoretic framework for theories of syntax,in ‘Proceedings of
ACL 1996’.

Rogers, J. (1998), A descriptive characterization of tree-adjoining languages,in ‘Proceedings
of COLING/ACL 1998’, Montréal/CA.

Ross, J. R. (1967), Constraints on Variables in Syntax, PhD thesis, MIT.

Sadock, J. M. (1991),Autolexical Syntax, University of Chicago Press.

Saraswat, V. (1993),Concurrent Constraint Programming, MIT Press.

Sarkar, A. (2000), Practical experiments in parsing using Tree Adjoining Grammars,in ‘Pro-
ceedings of TAG+5’, Paris/FR.

Schulte, C. (1997), Oz Explorer: A visual constraint programming tool, in L. Naish, ed.,
‘Proceedings of the Fourteenth International Conference on Logic Programming’, MIT
Press, Leuven/BE, pp. 286–300.

Schulte, C. (2002),Programming Constraint Services, Vol. 2302 ofLecture Notes in Artificial
Intelligence, Springer-Verlag.

Schulte, C. & Stuckey, P. J. (2004), Speeding up constraint propagation,in ‘Tenth International
Conference on Principles and Practice of Constraint Programming’, Vol. 3258 ofLecture
Notes in Computer Science, Springer-Verlag, Toronto/CA, pp. 619–633.

Sgall, P., Hajicova, E. & Panevova, J. (1986),The Meaning of the Sentence in its Semantic and
Pragmatic Aspects, D. Reidel, Dordrecht/NL.

Shanker, V. K. & Weir, D. (1994), ‘The equivalence of four extensions of context-free gram-
mars’,Mathematical Systems Theory27(6), 511–546.

Shieber, S. M. (1984), The design of a computer language for linguistic information,in ‘Pro-
ceedings of COLING 1984’, pp. 362–366.

Shieber, S. M. (1985), ‘Evidence against the context-freeness of natural language’,Linguistics
and Philosophy8, 334–343.

Shieber, S. M. & Schabes, Y. (1990), Synchronous Tree Adjoining Grammars,in ‘Proceedings
of COLING 1990’, Helsinki/FI.

Smolka, G. (1995), The Oz programming model,in J. van Leeuwen, ed., ‘Computer Sci-
ence Today’, Lecture Notes in Computer Science, vol. 1000, Springer-Verlag, Berlin/DE,
pp. 324–343.

Smolka, G. & Uszkoreit, H. (1996–2001), ‘NEGRA project of the collaborative research cen-
tre (SFB) 378’. Saarland University.

238

Bibliography

Steedman, M. (2000a), ‘Information structure and the syntax-phonology interface’,Linguistic
Inquiry 31(4), 649–689.

Steedman, M. (2000b), The Syntactic Process, MIT Press, Cambridge/US.

Steele, S. M. (1978), Word order variation: A typological study, in J. Greenberg, ed., ‘Univer-
sals of Human Language’, Stanford University Press, Stanford/US, pp. 585–624.

Stys, M. & Zemke, S. (1995), Incorporating discourse aspects in English-polish MT: Towards
robust implementation,in ‘Recent Advances in NLP’, Velingrad/BG.

Sutherland, I. E. (1963), Sketchpad: A man-machine graphical communication system,in
E. C. Johnson, ed., ‘Proceedings of the 1963 Spring Joint Computer Conference’, Vol. 23
of AFIPS Conference Proceedings, American Federation of Information Processing So-
cieties, Spartan Books, Baltimore/US, pp. 329–346.

Tack, G. (2002), IOzSeF - the integrated Oz search factory, Technical report, Saarland Uni-
versity.

Tesnière, L. (1959),Eléments de Syntaxe Structurale, Klincksiek, Paris/FR.

Trautwein, M. (1995), The complexity of structure sharing in unification-based Grammars,in
W. Daelemans, G. Durieux & S. Gillis, eds, ‘Computational Linguistics in the Nether-
lands 1995’, pp. 165–179.

Valin, R. D. V. & LaPolla, R. (1997),Syntax: Structure, Meaning and Function, Cambridge
University Press.

Wallace, M. (1996), ‘Practical applications of constraintprogramming’,Constraints Journal
1(1).

Waltz, D. L. (1975), Understanding the line drawings of scenes with shadows,in P. Winston,
ed., ‘The Psychology of Computer Vision’, McGraw-Hill.

Wechsler, S. (1995), The Semantic Basis of Argument Structure, PhD thesis, University of
Chicago.

Weir, D. J. (1988), Characterizing Mildly Context-Sensitive Grammar Formalisms, PhD the-
sis, University of Pennsylvania.

White, M. (2004), Reining in CCG chart realization,in ‘Proceedings of the 3rd International
Conference on Natural Language Generation’.

XTAG Research Group (2001), A Lexicalized Tree Adjoining Grammar for English, Technical
Report IRCS-01-03, IRCS, University of Pennsylvania.

239

Index

Abhängigkeitsgrammatik, 18
accented, 158
accumulative lattice, 90, 195
agreement, 128
agreement tuple, 27, 62, 126, 178
anchor, 31
anchor label, 26, 61
argument variable, 92
attribute, 26
Autolexical Syntax, 19
Autosegmental Phonology, 19

background, 158
binding constraint, 217
boundary tone, 158

cardinality, 26, 58, 90
cardinality lattice, 196
Categorial Grammar, 19
categorization, 127
CCG, 18
CDG, 18
CFG, 17
chart parsing, 21
CLLS, 23, 217
Combinatory Categorial Grammar, 18
compatibility, 50
configuration, 57
constituent, 15
Constraint Dependency Grammar, 18
Constraint Language for Lambda Structures,

23, 217
constraint parser, 86
constraint parsing, 21
constraint programming, 21
constraint satisfaction problem, 21

constraint variable, 21, 105
Content-To-Speech system, 158
Context-Free Grammar, 17
coordination and ellipsis, 186
core term, 95
CP, 21
cross-serial dependencies, 70
CSP, 21
CTS, 158

DAG, 27
daughter set, 100
deep guard, 21, 112
dependency grammar, 15
dependency graph, 15
dependency relation, 15
dependency tree, 15
dependent, 15
derivation dimension, 66
derivation tree, 38
derived tree, 38
DG, 15
dimension, 28, 30, 37

SEM, 28
CLLS, 217, 220
DERI, 66
ID, 22, 123
ID/LP, 123, 136
ID/PA, 168
IS, 22, 143
LP, 22, 123
PA, 22, 125, 143
PA/SC, 143, 154
PL, 80
PS, 22, 163, 164
PS/IS, 168, 179

240

Index

SC, 22, 143, 151
SYN, 28
SYNSEM, 28

dimension variable, 92, 106, 202
Directed Acyclic Graph, 27
distribution, 21
distribution strategy, 186
dominance constraint, 217
dominance constraints, 217
dominance edge, 208

edge constraint functor, 106, 107
edge functor, 111
edge label

ID
adj, 127
adv, 16, 127
comp, 127
det, 73, 127
iobj, 127
obj, 16, 127
part, 16, 127
pmod, 127
pobj1, 127
pobj2, 127
prepc, 127
rel, 127
root, 127
sub, 127
subj, 16, 127
vbse, 73, 127
vinf, 16, 127
vprt, 127

IS
bg, 160
rh, 160
th, 160
umth, 160

LP
adjf, 132
compf, 132
detf, 132
fadvf, 132
lbf, 132

mf1, 132
mf2, 132
nf, 132
padjf, 132
padvf, 132
prepcf, 132
rbf, 132
relf, 132
root, 132
rprof, 132
tadvf, 132
vf, 132
vvf, 132

PA
addr, 147
ag, 17, 147
agm, 147
del, 147
det, 147
pat, 17, 147
patm, 147
root, 147
th, 17, 147

PS
bt1, 165
bt2, 165
pa1, 165
pa1bt1, 165
pa2, 165
pa2bt2, 165
ua, 165

SC
del, 153
q, 153
r, 153
root, 153
s, 153

edge record, 207, 208
emergence, 20
English Resource Grammar, 42
ERG, 42
Extensible Dependency Grammar, 22
eXtensible MetaGrammar, 41

241

Index

FB-TAG, 40
feature path, 93, 192
Feature-Based Tree Adjoining Grammar, 40
FGD, 17
finite domain constraint variable, 198
finite set constraint programming, 99
finite set constraint variable, 198
finite set of integers, 99
focus, 158
FODG, 18
fragment, 57, 218
fragment pair, 70
Free Order Dependency Grammar, 18
Functional Generative Description, 17

GB, 15
Gecode, 120, 186
Generalized Multitext Grammars, 186
Generalized Phrase Structure Grammar, 15
generalized quantifier, 219
generate all orderings, 215
generate and test, 21
Generate-Enumerative Syntax, 18
generation, 186
GES, 18
Glue Semantics, 20, 39
GNF, 66
government, 129
Government and Binding, 15
GPSG, 15
grammar induction, 186
grammatical function, 15, 123, 168
Greibach Normal Form, 66
group, 42
guided search, 120, 186

head, 15
Head-driven Phrase Structure Grammar, 15
hippo sentence, 72
Hole Semantics, 217
HPSG, 15

ID tree, 123
IL, 87
immediate dominance, 22, 123

information structural constituent, 159
information structural valency, 160
information structure, 22, 143
Intermediate Language, 87
intersective lattice, 90, 196
IOzSeF, 87, 104
IS constituent, 159, 179
IS tree, 159

labeled edge relation, 47
labeling constraint, 217
lattice functor method

bot, 88, 188, 201
decode, 88, 188, 200, 208
encode, 88, 188, 201
glb, 88, 188, 201
makeVar, 88, 105, 188, 198
pretty, 88, 188, 200, 208
select, 88, 106, 188, 198
top, 88, 188, 201

lattice functors, 86, 188, 201
LCFG, 66
LCFRS, 77
LCG, 69
lexical attribute, 26, 31
lexical attributes, 56
lexical attributes type, 55
lexical class, 34, 95
lexical class definition, 95
lexical entry, 18, 31
Lexical Functional Grammar, 15
Lexicalised Configuration Grammars, 69
Lexicalized Context-Free Grammar, 66
Lexicalized Tree Adjoining Grammar, 41
lexicon, 18, 31
LFG, 15
Linear Context-Free Rewriting Systems, 77
linear precedence, 22, 123
linking principles, 63
logic variable, 198
logical constant, 51
LP tree, 130
LTAG, 41

Machine Translation, 158

242

Index

MC-TAG, 77
Meaning Text Theory, 17
metagrammar, 22, 33, 41
metagrammar compiler, 86, 201
mildly context-sensitive, 72
Minimal Recursion Semantics, 21, 217
model creator, 87
model record, 107
Model-Theoretic Syntax, 18, 19
modification, 127
Mozart/Oz, 21
MRS, 21, 217
MT, 158
MTS, 18, 19
MTT, 17
Multi-Component TAG, 77
multigraph, 26, 28, 45
multigraph constant, 51
multigraph type, 48
multiword expressions, 42

NEGRA, 186
node admissibility conditions, 69
node constraint functor, 106, 107
node record, 100, 192
node-attributes mapping, 45
node-word mapping, 45
non-lexical attribute, 27
non-lexical attributes, 56
non-projective, 17

OL, 87, 207
OpenCCG, 43
oracle, 184
ordered configuration, 60
ordered fragment, 59
output functor, 207

CLLS, 212, 217, 223
Dag, 212
Decode, 211
Latex, 212
Pretty, 211

Output Language, 87, 207
output library, 87, 207

output preparer, 87, 207, 226
Oz Browser, 212
Oz Explorer, 36, 87, 104
Oz Inspector, 212
Oz script, 103

PA DAG, 144
parallel grammar architecture, 19, 37
PDT, 120
Penn Treebank, 120
phonology-semantics interface, 23, 168
phrase, 15
phrase structure grammar, 15
phrase structure tree, 15
pickle, 205
pied piping, 140, 178
pitch accent, 158, 165
Prague Dependency Treebank, 120
precedence relation, 47
predicate-argument structure, 17, 22, 125,

143
prepositional adjective, 132, 146
prepositional adverb, 146
principle, 30, 53

Agr, 32, 62, 128
Agreement, 32, 62, 108, 128, 178
Barriers, 137
Climbing, 74, 137
CSD, 74
DAG, 32, 54
Edgeless, 33, 54, 103
Government, 129
Graph, 100, 107, 127
Lexicalization, 33, 56
LinkingAboveBelow1or2Start, 171
LinkingAboveEnd, 156
LinkingBelow1or2Start, 169
LinkingBelowStart, 157, 173
LinkingDaughterEnd, 139, 158, 177
LinkingEnd, 33, 63, 114, 139
LinkingMother, 33, 63, 169, 175
LockingDaughters, 149, 169, 174
Order, 32, 61, 115, 133, 165
PartialAgreement, 169, 178

243

Index

PL, 83
Projectivity, 32, 55, 61, 116
Subgraphs, 181
Tree, 30, 32, 54, 127
Valency, 30, 32, 58, 108, 127, 133, 147,

153, 160, 165, 197
principle definition, 92, 106
principle library, 33, 87, 106
projection edge, 16
projective, 17
propagate and distribute, 21
propagation, 21
propositional logic, 80
prosodic constituent, 163
prosodic structure, 22, 163, 164
prosodic valency, 165
PS constituent, 163, 179
PS tree, 164
PSG, 15
PTB, 120

QLF, 217
Quasi Logical Form, 217

recognition problem
fixed, 79
universal, 79

record, 26
rheme, 158
rigid word order language, 16
Role and Reference Grammar, 19
RRG, 19

SC tree, 151
scopal valency, 153
scope structure, 22, 143, 151
scope underspecification, 161
scrambling, 70
Search, 104
search engine, 87, 104
segmentation, 186
selection constraint, 106, 199
selection union constraint, 109
set generator, 93, 200
SL, 86, 100

solved form, 220
Solver Language, 86, 100
STAG, 38
subcategorization, 127
supertagging, 121, 186
Synchronous TAG, 38
syntactic category, 15
syntacto-centric architecture, 19
syntax-semantics interface, 168

TAG, 15
TDG, 18, 22
thematic role, 17, 144, 168
theme, 158
TIGER treebank, 120
topicalization, 140
Topological Dependency Grammar, 18, 22
topological field, 130

left bracket, 130
Mittelfeld, 73, 130
Nachfeld, 130
right bracket, 130
Vor-Vorfeld, 131
Vorfeld, 130

Tree Adjoining Grammar, 15

uDraw(Graph), 212, 217, 224
UL, 87
unaccented, 165
unbounded dependency, 125
underspecification, 114
unmarked theme, 159
User Language, 87
Utool, 217

valency, 17
in valency, 18
out valency, 18

vector, 32
verb cluster, 73
visualizer, 86, 207

WG, 18
wh question, 140
Word Grammar, 18

244

Index

XDG, 22
XDG Development Kit, 22
XDK, 22
xdk, 213
XDK description language, 22, 33
xdkc, 213
xdkconv, 213
xdks, 213
XMG, 41
XML, 87
XML Language, 87
XTAG, 42

245

