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Abstract

We show that stratified context unification, which is one of the most expressive frag-
ments of context unification known to be decidable, is equivalent to the satisfiability
problem of slightly generalized rewriting constraints.
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1 Introduction

Context unification (CU) was introduced in rewriting and unification theory
[3,14]. CU can be considered as second-order linear unification [6], that is
second-order unification where the interpretation of second-order variables is
restricted to lambda-terms with exactly one occurrence of the bound variable.
Hence, CU is a restriction of higher-order unification (which is undecidable
even in the second-order case [5]) and a generalization of string unification
(which is decidable [9]). Decidability of CU is still open.
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A decidable fragment of CU called stratified CU has been introduced in [15].
It is shown in [17] that context unification with two context variables – each
of which may occur an arbitrary number of times – is decidable. Furthermore,
so-called bounded second-order unification where lambda-terms may have one
or zero occurrence of the bound variable is decidable [16]. CU has applica-
tions in solving membership constraints in completion of constrained rewrit-
ing [3], solving constraints occurring in distributive unification [15], extended
critical pairs in bi-rewriting systems [7] and semantics of ellipses in natural
language [13,4,11].

The investigation of (one-step) rewrite constraints (RC) has been initiated
by [1]. Atomic rewrite constraints have the form x → y by R, saying that a
ground term denoted by x rewrites by the rewrite system R to a ground term
denoted by y (in its most primitive form only one fixed rewrite system R is
allowed to occur in a constraint). The original project was to show decidability
of the first-order theory of these constraints since such a result would have
allowed to generalize known decidability results in rewrite theory. However,
undecidability of the ∀∗∃∗-fragment could be shown even for very simple classes
of rewrite systems [19,20,10,18]. The question of decidability of the purely
existential fragment of positive and negative rewrite constraints remains open,
even though some cases for restricted classes of rewrite systems are solved [2,8].

It has been shown in [12] that satisfiability of RC can be expressed as satis-
fiability of stratified CU and hence is decidable. However, it was not known
whether stratified CU really is more difficult than solving RC. In this paper,
we propose a minor extension of RC and show that it is in fact equivalent to
stratified CU, with linear-time translations in both directions. Our extension
concerns a means to compare the positions at which one term rewrites into
another. We consider this extension to be insignificant since whenever rewrite
constraints such as x → y by R1 ∧ x → z by R2 are to be resolved then it is a
natural first step to consider the different cases according to the relative posi-
tions of the two redeces in x. Hence, in our opinion, any method to solve RC
anyway has to cope with comparisons of positions of redeces in a term. In this
sense we argue that Stratified Context Unification Problems are essentially
equivalent to Rewrite Constraints.

2 The Languages

The syntax of context unification is given in Figure 1. A CU-term T is a
tree-valued term which is built from tree variables x, y, z, context variables
C,D,E, and function symbols from a signature Σ (a is a constant and f a
function symbol in Σ). A tree over Σ is a ground CU-term, i.e. a term without
(tree or context) variables.
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CU-terms T ::= C(T ) | x | f(T1, . . . , Tn)

CU-equation systems E ::= T = T ′ | E ∧ E ′

Fig. 1. Terms and equations in context unification

FO-terms t ::= x | f(t1, . . . , tn)

rewrite constraints R ::= x → y at C by t → t′

| C=id | C ≤ C ′ | R ∧ R′

Fig. 2. First-order terms and rewrite constraints

A system of CU-equations is a conjunction of equations between CU-terms.
CU-equations are interpreted in the two sorted algebra where every context-
variable is assigned a context, that is a λ-term with exactly one occurrence
of the bound variable, and where a CU-term t denotes the tree obtained as
β-normal form of the λ-term t with his variables replaced by their values.

A context term is a sequence of context variables C1 . . . Cn, n ≥ 0. The empty
sequence is written id. The second-order prefix of a position in a term (CU-
term or context term) is the context term given by the sequence of context-
variables lying on the path from the root of the term to the position. A set
of CU-terms is called stratified if every two occurrences of the same (tree or
context) variable have the same second-order prefix. A CU-equation system
E is stratified if the set of all CU-terms used as left or right hand side in an
equation of E is stratified.

Example 1 The system D(f(a)) = f(D(a)) is stratified since both occur-
rences of the context-variable D have the second-order prefix id. The set of so-
lutions for D is {(λx.fn(x)) | n ≥ 0}. The system D(f(D(a))) = f(D(f(a)))
is not stratified since the innermost occurrence of D on the left hand side has
second-order prefix D but the two other occurrences of D have second-order
prefix id. Its only solution is λx.f(x).

The syntax of rewrite constraints is given in Figure 2. Variables x, y, z denote
trees. The rewrite constraint x → y at C by t → t′ means that x rewrites to y at
context C by using the rule t → t′. We assume x, y 6∈ V where V = V (t)∪V (t′).
Then, x → y at C by t → t′ is equivalent to ∃V (x = C(t) ∧ y = C(t)). Hence,
the variables in a rewrite rule should be seen as bound variables having that
rewrite rule as scope. The ordering constraint C ≤ D means that D denotes
an instance of C and is equivalent to ∃E(CE = D) where juxtaposition is
interpreted by composition.

Example 2 The rewrite constraint x → y at id by f(z) → z is equivalent to
x = f(y).
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(U1) x → y at C by t → t′

∃V (x = C(t) ∧ y = C(t′))

V = V (t) ∪ V (t′)
fresh variables

(U2) C = id
C(a) = a

a ∈ Σ

(U3) C ≤ D

∃E(D(t) = C(E(t)) ∧D(t′) = C(E(t′)))

t 6= t′ ground
E fresh

Fig. 3. Rewrite Constraints as CU-Equations

Our main result is

Theorem 3 For every signature, there is a linear time, satisfiability preserv-
ing translation which maps a stratified system of CU-equations to a rewrite
constraint, and vice versa.

3 Rewrite Constraints as Stratified CU Equations

It was already shown in [12] that rewrite constraints of the form x → y by t →
t′ can be translated into a stratified system of CU-equations. This translation
is extended in Figure 3 to the slightly more general rewrite constraints that
we consider in this article. The correctness of the translation of C ≤ D by
rule (U3) was already proved in [11].

Proposition 4 Given a rewrite constraint the rules (U1)–(U3) in Figure 3
terminate and yield a satisfaction equivalent stratified system of CU-equation
in linear time.

4 Stratified CU-Equations as Rewrite Constraints

It remains to show that stratified systems of CU-equations can be translated
to rewrite constraints. We proceed in three steps: We first show that we can
restrict ourselves to normalized CU-equations, that is equations of the form
x = T where T is a CU-term without tree variables. Second, we translate
normalized CU-equations into contextual constraints - an expressive general-
ization of rewrite constraints - such that stratification is preserved. Third, we
map stratified contextual constraints to rewrite constraints.

Proposition 5 For every signature Σ there exists a signature Σ′ with a single
constant such that CU-equations over Σ can be translated in linear time by
preserving satisfiability and stratification into CU-equations over Σ ′.
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context terms ∆ ::= ∆C | id

contextual constraints S ::= x → y at ∆ by t → t′ | S ∧ S ′

Fig. 4. Contextual constraints

(C1)
x = ∆(f(T1, . . . , Tn))

∧

i=1,...,n

∃xi(xi = ∆(Ti) ∧ x → xi at ∆ by f(u1, . . . , un) → ui)
n 6= 0

(C2)
x = ∆(a)

x → x at ∆ by a → a
a constant

Fig. 5. Normal CU-equations into contextual constraints

Proof: For any signature Σ let Σ′ be the signature consisting of all non-
constant symbols of Σ, plus the constants of Σ considered as unary function
symbols, plus a new constant a. Analogously, we can transform a system of
context equations E into a system E ′ by replacing every constant c by c(a).
Now it is easy to see that E is satisfiable over Σ iff E ′ is satisfiable over Σ′.
Note that we can obtain, from an arbitrary solution of E ′ over Σ′, a solution
of E over Σ simply be replacing c(a) by the constant c and by removing all
remaining new unary function symbols c. 2

Proposition 6 Every CU-equation can be normalized in linear time such that
stratification and satisfiability are preserved.

Proof: According to Proposition 5 we can assume that the signature Σ
contains only one constant a. For any tree variable x, we fix a new context-
variable Cx and replace all occurrences of x by Cx(a). This transformation
preserves satisfiability since all ground terms have to contain the constant
a. It also preserves stratification since the occurrences of Cx have the same
second-order prefixes as the occurrences of x before. Finally, we replace an
equation t = s by x = t ∧ x = s for some fresh variable x. 2

In Figure 4 we present contextual constraints which are much more expressive
than rewrite constraints in that they allow to specify the rewrite position by
a context term ∆. A contextual constraint x → y at ∆ by t → t′ is equivalent
to ∃V (x = ∆(t) ∧ y = ∆(t′)) where all variables in V = V (t) ∪ V (t′) are
supposed to be fresh. We call a system of contextual constraints stratified if
its set of context terms is stratified.

Proposition 7 A normalized system of CU-equations can be translated in
linear time to a contextual constraint such that stratification and satisfiability
are preserved.

Proof: Given a normalized system of CU-equations, the rules (C1)–(C2)
in Figure 5 yield a satisfaction equivalent contextual constraint. The rules
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A stratified system of CU-equations:

x = D(f(E(g(a)))) x = D(h(E(b), F (c)))

Translation to a stratified contextual constraint:

x → x1 at D by f(u) → u x1 → x1 at DE by g(a) → g(a)

x → x2 at D by h(u1, u2) → u1 x2 → x2 at DE by b → b

x → x3 at D by h(u1, u2) → u2 x3 → x3 at DF by c → c

Translation to a rewrite constraint:

x → x1 at D by f(u) → u x1 → x1 at C1 by g(a) → g(a)

x → x2 at D by h(u1, u2) → u1 x2 → x2 at C1 by b → b

x → x3 at D by h(u1, u2) → u2 x3 → x3 at C2 by c → c

D ≤ C1 ∧ D ≤ C2

Fig. 6. Translation of a stratified CU-equations by example

terminate in linear time: Both rules replace one CU-equation by one contextual
constraint plus one CU-equation per subterm. It is obvious that both rules are
sound. They preserve stratification since deletion of function symbols does not
change second-order prefixes. 2

In fact, we could generalize rule (C2) be allowing an arbitrary ground term
instead of a constant a. An example for the translation of a stratified system
of normalized CU-equations into a stratified contextual constraint is given in
Figure 6.

Proposition 8 A stratified contextual constraint can be transformed in linear
time into a satisfaction equivalent rewrite constraint.

Proof: Given a contextual constraint, we replace all its context terms ∆1, . . . , ∆n

by fresh variables C1, . . . , Cn, always using the same variable for replacing mul-
tiple occurrences of the same context term. We obtain a rewrite constraint plus
a system of equations

∧n
i=1

Ci = ∆i such that 1) for all i, j ∈ {1, . . . , n}: Ci

does not occur in ∆j, 2) all ∆i are pairwise distinct, 3) the set {∆1, . . . , ∆n}
is stratified.

Let ∆j be a term of maximal length in this set. If ∆j = id then all equations in∧n
i=1

Ci = ∆i are of the form Ci = id and hence rewrite constraints. Otherwise,
∆j = ∆′

jD for some context term ∆′

j and context variable D. We next show
that D cannot occur elsewhere in the equation system. If ∆i = ∆1D∆2 for
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some i, ∆1, ∆2 then ∆1 = ∆′

j by stratification and ∆2 = id due to maximality.
Since all terms ∆i are distinct, the occurrences of D in ∆j and ∆1D∆2 must
be equal.

If our equation system does not contain an equation C = ∆′

j for some C than
we add one for a fresh variable C. Given that D occurs only once, we can safely
replace the equation Cj = ∆′

jD by ∃D(Cj = ∆′

jD) and thus by C ≤ Cj, and
continue the process. 2

Example 9 The following stratified system of equations

C1 = id ∧ C2 = D ∧ C3 = DE ∧

C4 = DF ∧ C5 = DEG ∧ C6 = DEH

is satisfaction equivalent to the following system of ordering constraints:

C1=id ∧ C1 ≤ C2 ∧ C2 ≤ C3 ∧ C2 ≤ C4 ∧ C3 ≤ C5 ∧ C3 ≤ C6
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