
On Rewrite Constraints and Context

Unification

Joachim Niehren 1,2,3

Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany

Sophie Tison 1,2

LIFL, Unicersité Lille 1, F-59655 Villeneuve d’Ascq cedex, France

Ralf Treinen 1

LRI, Université Paris-Sud, F-91405 Orsay cedex, France

Abstract

We show that stratified context unification, which is one of the most expressive frag-
ments of context unification known to be decidable, is equivalent to the satisfiability
problem of slightly generalized rewriting constraints.

Key words: Automatic Theorem Proving; Theory of Computation; Unification;
Rewrite Constraints.

1 Introduction

Context unification (CU) was introduced in rewriting and unification theory
[3,14]. CU can be considered as second-order linear unification [6], that is
second-order unification where the interpretation of second-order variables is
restricted to lambda-terms with exactly one occurrence of the bound variable.
Hence, CU is a restriction of higher-order unification (which is undecidable
even in the second-order case [5]) and a generalization of string unification
(which is decidable [9]). Decidability of CU is still open.

1 Partially supported by the Esprit Working Group 22457 - CCL II
2 Partially supported by the PROCOPE project D/9822758
3 Partially supported by the Collaborative Research Center (Sonderforschungsbe-
reich) 378

Preprint submitted to Elsevier Preprint 3 October 2001

A decidable fragment of CU called stratified CU has been introduced in [15].
It is shown in [17] that context unification with two context variables – each
of which may occur an arbitrary number of times – is decidable. Furthermore,
so-called bounded second-order unification where lambda-terms may have one
or zero occurrence of the bound variable is decidable [16]. CU has applica-
tions in solving membership constraints in completion of constrained rewrit-
ing [3], solving constraints occurring in distributive unification [15], extended
critical pairs in bi-rewriting systems [7] and semantics of ellipses in natural
language [13,4,11].

The investigation of (one-step) rewrite constraints (RC) has been initiated
by [1]. Atomic rewrite constraints have the form x → y by R, saying that a
ground term denoted by x rewrites by the rewrite system R to a ground term
denoted by y (in its most primitive form only one fixed rewrite system R is
allowed to occur in a constraint). The original project was to show decidability
of the first-order theory of these constraints since such a result would have
allowed to generalize known decidability results in rewrite theory. However,
undecidability of the ∀∗∃∗-fragment could be shown even for very simple classes
of rewrite systems [19,20,10,18]. The question of decidability of the purely
existential fragment of positive and negative rewrite constraints remains open,
even though some cases for restricted classes of rewrite systems are solved [2,8].

It has been shown in [12] that satisfiability of RC can be expressed as satis-
fiability of stratified CU and hence is decidable. However, it was not known
whether stratified CU really is more difficult than solving RC. In this paper,
we propose a minor extension of RC and show that it is in fact equivalent to
stratified CU, with linear-time translations in both directions. Our extension
concerns a means to compare the positions at which one term rewrites into
another. We consider this extension to be insignificant since whenever rewrite
constraints such as x → y by R1 ∧ x → z by R2 are to be resolved then it is a
natural first step to consider the different cases according to the relative posi-
tions of the two redeces in x. Hence, in our opinion, any method to solve RC
anyway has to cope with comparisons of positions of redeces in a term. In this
sense we argue that Stratified Context Unification Problems are essentially
equivalent to Rewrite Constraints.

2 The Languages

The syntax of context unification is given in Figure 1. A CU-term T is a
tree-valued term which is built from tree variables x, y, z, context variables
C,D,E, and function symbols from a signature Σ (a is a constant and f a
function symbol in Σ). A tree over Σ is a ground CU-term, i.e. a term without
(tree or context) variables.

2

CU-terms T ::= C(T) | x | f(T1, . . . , Tn)

CU-equation systems E ::= T = T ′ | E ∧ E ′

Fig. 1. Terms and equations in context unification

FO-terms t ::= x | f(t1, . . . , tn)

rewrite constraints R ::= x → y at C by t → t′

| C=id | C ≤ C ′ | R ∧ R′

Fig. 2. First-order terms and rewrite constraints

A system of CU-equations is a conjunction of equations between CU-terms.
CU-equations are interpreted in the two sorted algebra where every context-
variable is assigned a context, that is a λ-term with exactly one occurrence
of the bound variable, and where a CU-term t denotes the tree obtained as
β-normal form of the λ-term t with his variables replaced by their values.

A context term is a sequence of context variables C1 . . . Cn, n ≥ 0. The empty
sequence is written id. The second-order prefix of a position in a term (CU-
term or context term) is the context term given by the sequence of context-
variables lying on the path from the root of the term to the position. A set
of CU-terms is called stratified if every two occurrences of the same (tree or
context) variable have the same second-order prefix. A CU-equation system
E is stratified if the set of all CU-terms used as left or right hand side in an
equation of E is stratified.

Example 1 The system D(f(a)) = f(D(a)) is stratified since both occur-
rences of the context-variable D have the second-order prefix id. The set of so-
lutions for D is {(λx.fn(x)) | n ≥ 0}. The system D(f(D(a))) = f(D(f(a)))
is not stratified since the innermost occurrence of D on the left hand side has
second-order prefix D but the two other occurrences of D have second-order
prefix id. Its only solution is λx.f(x).

The syntax of rewrite constraints is given in Figure 2. Variables x, y, z denote
trees. The rewrite constraint x → y at C by t → t′ means that x rewrites to y at
context C by using the rule t → t′. We assume x, y 6∈ V where V = V (t)∪V (t′).
Then, x → y at C by t → t′ is equivalent to ∃V (x = C(t) ∧ y = C(t)). Hence,
the variables in a rewrite rule should be seen as bound variables having that
rewrite rule as scope. The ordering constraint C ≤ D means that D denotes
an instance of C and is equivalent to ∃E(CE = D) where juxtaposition is
interpreted by composition.

Example 2 The rewrite constraint x → y at id by f(z) → z is equivalent to
x = f(y).

3

(U1) x → y at C by t → t′

∃V (x = C(t) ∧ y = C(t′))

V = V (t) ∪ V (t′)
fresh variables

(U2) C = id
C(a) = a

a ∈ Σ

(U3) C ≤ D

∃E(D(t) = C(E(t)) ∧D(t′) = C(E(t′)))

t 6= t′ ground
E fresh

Fig. 3. Rewrite Constraints as CU-Equations

Our main result is

Theorem 3 For every signature, there is a linear time, satisfiability preserv-
ing translation which maps a stratified system of CU-equations to a rewrite
constraint, and vice versa.

3 Rewrite Constraints as Stratified CU Equations

It was already shown in [12] that rewrite constraints of the form x → y by t →
t′ can be translated into a stratified system of CU-equations. This translation
is extended in Figure 3 to the slightly more general rewrite constraints that
we consider in this article. The correctness of the translation of C ≤ D by
rule (U3) was already proved in [11].

Proposition 4 Given a rewrite constraint the rules (U1)–(U3) in Figure 3
terminate and yield a satisfaction equivalent stratified system of CU-equation
in linear time.

4 Stratified CU-Equations as Rewrite Constraints

It remains to show that stratified systems of CU-equations can be translated
to rewrite constraints. We proceed in three steps: We first show that we can
restrict ourselves to normalized CU-equations, that is equations of the form
x = T where T is a CU-term without tree variables. Second, we translate
normalized CU-equations into contextual constraints - an expressive general-
ization of rewrite constraints - such that stratification is preserved. Third, we
map stratified contextual constraints to rewrite constraints.

Proposition 5 For every signature Σ there exists a signature Σ′ with a single
constant such that CU-equations over Σ can be translated in linear time by
preserving satisfiability and stratification into CU-equations over Σ ′.

4

context terms ∆ ::= ∆C | id

contextual constraints S ::= x → y at ∆ by t → t′ | S ∧ S ′

Fig. 4. Contextual constraints

(C1)
x = ∆(f(T1, . . . , Tn))

∧

i=1,...,n

∃xi(xi = ∆(Ti) ∧ x → xi at ∆ by f(u1, . . . , un) → ui)
n 6= 0

(C2)
x = ∆(a)

x → x at ∆ by a → a
a constant

Fig. 5. Normal CU-equations into contextual constraints

Proof: For any signature Σ let Σ′ be the signature consisting of all non-
constant symbols of Σ, plus the constants of Σ considered as unary function
symbols, plus a new constant a. Analogously, we can transform a system of
context equations E into a system E ′ by replacing every constant c by c(a).
Now it is easy to see that E is satisfiable over Σ iff E ′ is satisfiable over Σ′.
Note that we can obtain, from an arbitrary solution of E ′ over Σ′, a solution
of E over Σ simply be replacing c(a) by the constant c and by removing all
remaining new unary function symbols c. 2

Proposition 6 Every CU-equation can be normalized in linear time such that
stratification and satisfiability are preserved.

Proof: According to Proposition 5 we can assume that the signature Σ
contains only one constant a. For any tree variable x, we fix a new context-
variable Cx and replace all occurrences of x by Cx(a). This transformation
preserves satisfiability since all ground terms have to contain the constant
a. It also preserves stratification since the occurrences of Cx have the same
second-order prefixes as the occurrences of x before. Finally, we replace an
equation t = s by x = t ∧ x = s for some fresh variable x. 2

In Figure 4 we present contextual constraints which are much more expressive
than rewrite constraints in that they allow to specify the rewrite position by
a context term ∆. A contextual constraint x → y at ∆ by t → t′ is equivalent
to ∃V (x = ∆(t) ∧ y = ∆(t′)) where all variables in V = V (t) ∪ V (t′) are
supposed to be fresh. We call a system of contextual constraints stratified if
its set of context terms is stratified.

Proposition 7 A normalized system of CU-equations can be translated in
linear time to a contextual constraint such that stratification and satisfiability
are preserved.

Proof: Given a normalized system of CU-equations, the rules (C1)–(C2)
in Figure 5 yield a satisfaction equivalent contextual constraint. The rules

5

A stratified system of CU-equations:

x = D(f(E(g(a)))) x = D(h(E(b), F (c)))

Translation to a stratified contextual constraint:

x → x1 at D by f(u) → u x1 → x1 at DE by g(a) → g(a)

x → x2 at D by h(u1, u2) → u1 x2 → x2 at DE by b → b

x → x3 at D by h(u1, u2) → u2 x3 → x3 at DF by c → c

Translation to a rewrite constraint:

x → x1 at D by f(u) → u x1 → x1 at C1 by g(a) → g(a)

x → x2 at D by h(u1, u2) → u1 x2 → x2 at C1 by b → b

x → x3 at D by h(u1, u2) → u2 x3 → x3 at C2 by c → c

D ≤ C1 ∧ D ≤ C2

Fig. 6. Translation of a stratified CU-equations by example

terminate in linear time: Both rules replace one CU-equation by one contextual
constraint plus one CU-equation per subterm. It is obvious that both rules are
sound. They preserve stratification since deletion of function symbols does not
change second-order prefixes. 2

In fact, we could generalize rule (C2) be allowing an arbitrary ground term
instead of a constant a. An example for the translation of a stratified system
of normalized CU-equations into a stratified contextual constraint is given in
Figure 6.

Proposition 8 A stratified contextual constraint can be transformed in linear
time into a satisfaction equivalent rewrite constraint.

Proof: Given a contextual constraint, we replace all its context terms ∆1, . . . , ∆n

by fresh variables C1, . . . , Cn, always using the same variable for replacing mul-
tiple occurrences of the same context term. We obtain a rewrite constraint plus
a system of equations

∧n
i=1

Ci = ∆i such that 1) for all i, j ∈ {1, . . . , n}: Ci

does not occur in ∆j, 2) all ∆i are pairwise distinct, 3) the set {∆1, . . . , ∆n}
is stratified.

Let ∆j be a term of maximal length in this set. If ∆j = id then all equations in∧n
i=1

Ci = ∆i are of the form Ci = id and hence rewrite constraints. Otherwise,
∆j = ∆′

jD for some context term ∆′

j and context variable D. We next show
that D cannot occur elsewhere in the equation system. If ∆i = ∆1D∆2 for

6

some i, ∆1, ∆2 then ∆1 = ∆′

j by stratification and ∆2 = id due to maximality.
Since all terms ∆i are distinct, the occurrences of D in ∆j and ∆1D∆2 must
be equal.

If our equation system does not contain an equation C = ∆′

j for some C than
we add one for a fresh variable C. Given that D occurs only once, we can safely
replace the equation Cj = ∆′

jD by ∃D(Cj = ∆′

jD) and thus by C ≤ Cj, and
continue the process. 2

Example 9 The following stratified system of equations

C1 = id ∧ C2 = D ∧ C3 = DE ∧

C4 = DF ∧ C5 = DEG ∧ C6 = DEH

is satisfaction equivalent to the following system of ordering constraints:

C1=id ∧ C1 ≤ C2 ∧ C2 ≤ C3 ∧ C2 ≤ C4 ∧ C3 ≤ C5 ∧ C3 ≤ C6

Acknowledgements

We wish to thank Franck Seynhaeve and Marc Tommasi for interesting dis-
cussions.

References

[1] A.-C. Caron, J.-L. Coquidé, and M. Dauchet. Encompassment properties and
automata with constraints. In 5th Int. Conference on Rewriting Techniques and
Applications, volume 690 of LNCS, pages 328–342, 1993.

[2] A.-C. Caron, F. Seynhaeve, S. Tison, and M. Tommasi. Deciding the
satisfiability of quantifier free formulae on one-step rewriting. In 10th Int.
Conference on Rewriting Techniques and Applications, volume 1631 of LNCS,
pages 103–117, 1999.

[3] H. Comon. Completion of rewrite systems with membership constraints. In
Coll. on Automata, Languages and Programming, volume 623 of LNCS, 1992.

[4] M. Egg, J. Niehren, P. Ruhrberg, and F. Xu. Constraints over lambda-structures
in semantic underspecification. In Proc. of COLING/ACL, pages 253–359, 1998.

[5] W. D. Goldfarb. The undecidability of the second-order unification problem.
Journal of Theoretical Computer Science, 13:225–230, 1981.

7

[6] J. Lévy. Linear second order unification. In 7th Int. Conference on Rewriting
Techniques and Applications, volume 1103 of LNCS, pages 332–346, 1996.

[7] J. Levy and J. Agust. Bi-rewriting systems. Journal of Symbolic Computation,
22(3):279–314, Sept. 1996.

[8] S. Limet and P. Réty. A new result about the decidability of the existential
one-step rewriting theory. In 10th Int. Conference on Rewriting Techniques and
Applications, volume 1631 of LNCS, pages 118–132, 1999.

[9] G. Makanin. The problem of solvability of equations in a free semigroup. Soviet
Akad. Nauk SSSR, 223(2), 1977.

[10] J. Marcinkowski. Undecidability of the first order theory of one-step right
ground rewriting. In 8th Int. Conference on Rewriting Techniques and
Applications, volume 1232 of LNCS, pages 241–253, 1997.

[11] J. Niehren and A. Koller. Dominance constraints in context unification. In Third
International Conference on Logical Aspects of Computational Linguistics,
Grenoble, France, Dec. 1998. To appear in LNCS.

[12] J. Niehren, M. Pinkal, and P. Ruhrberg. On equality up-to constraints over
finite trees, context unification and one-step rewriting. In 14th Int. Conference
on Automated Deduction, volume 1249 of LNAI, pages 34–48, 1997.

[13] J. Niehren, M. Pinkal, and P. Ruhrberg. A uniform approach to
underspecification and parallelism. In Annual Meeting of the Association of
Computational Linguistics, pages 410–417, 1997.

[14] M. Schmidt-Schauß. Unification of stratified second-order terms. Technical
Report 12/94, J. W. Goethe Universität, Frankfurt, 1994.

[15] M. Schmidt-Schauß. A unification algorithm for distributivity and a
multiplicative unit. J. of Symbolic Computation, 22(3):315–344, 1997.

[16] M. Schmidt-Schauß. Decidability of bounded second order unification. Internal
Report Frank-11, Universität Frankfurt, Frankfurt, Germany, 1999. Available
at http://www.ki.informatik.uni-frankfurt.de/papers/articles.html.

[17] M. Schmidt-Schauß and K. Schulz. Solvability of context equations with two
context variables is decidable. In 16th Int. Conference on Automated Deduction,
volume 1632 of LNCS, 1999.

[18] F. Seynhaeve, M. Tommasi, and R. Treinen. Grid structures and undecidable
constraint theories. In Theory and Practice of Software Development, volume
1214 of LNCS, pages 357–368, 1997. Extended Version to appear in Theoretical
Computer Science.

[19] R. Treinen. The first-order theory of one-step rewriting is undecidable. In
7th Int. Conference on Rewriting Techniques and Applications, volume 1103 of
LNCS, pages 276–286, 1996. Extended Version in Theoretical Computer Science
208, Nov. 1998, pp. 149-177.

8

[20] S. Vorobyov. The first-order theory of one step rewriting in linear noetheran
systems is undecidable. In 8th Int. Conference on Rewriting Techniques and
Applications, volume 1232 of LNCS, pages 254–268, 1997.

9

