
Oz Scheduler:
A Workbench for Scheduling Problems

Jörg Würtz
Programming Systems Lab, DFKI GmbH,

University of the Saarland, Geb. 45, 66041 Saarbrücken, Germany,
Email: wuertz@ps.uni-sb.de

Abstract

This paper describes the Oz Scheduler, a workbench for
scheduling problems. Through a graphical interface, the us-
er can freely combine the elements that define a scheduling
strategy. Such elements include constraints with different
popagation behavior or distribution and search strategies.
Exploring the possible combinationscan lead to better solu-
tions. Recent and successful techniques for scheduling are
incorporated.

Resulting from the selections made, a constraint problem
is generated dynamically. For this problem, the solution,
statistics and the search can be inspected by several graph-
ical tools. The functionality can be extended by sending
messages to the Scheduler. The functionality and the imple-
mentation of the Oz Scheduler are discussed. The overall
performance of the Scheduler for standard benchmarks is
comparable to state-of-the-art special-purpose systems for
scheduling. The implementation is based on the concurrent
constraint language Oz.

1. Introduction

Scheduling problems are in the core of many real-world
applications. They occur in areas as diverse as production
planning, time tabling or personel planning. For certain well
defined problem classes there exist efficient programs from
Operations Research (OR). But these programs are often
very problem specific and slight changes in the problem
definition raise difficulties in the adaptation of the special
purpose algorithms.

On the other hand, AI aims at developping general prob-
lem solving approaches. Unfortunately, these approaches
are often much slower than special-purpose algorithms. One
of the offsprings of AI is constraint programming [15, 24],
which offers flexibility by the formulation of constraints
in a high-level language. In the last years, constraint pro-

gramming and especially Finite Domain Programming, has
succeeded in solving real-world problems in various areas.
Moreover, efficient OR techniques were successfully inte-
grated into flexible constraint systems to solve scheduling
problems, which are considered extremely hard [7, 3, 1].

Solving a scheduling problem is a difficult undertaking.
To solve the problem one has to experiment with several
subproblems or variations. Different techniques have to
be tested like the kind of constraint propagation, ordering
heuristics or search strategies. These experiments should
be facilitated by an interface, which allows the combina-
tion of these parameters and provides tools to observe the
experimentation.

This paper describes the Oz Scheduler, a workbench for
scheduling problems. Through a graphical interface, the
user can freely combine different� problem specifications.� constraints with different propagation behavior.� distribution strategies for ordering the tasks to be

scheduled on resources.� search strategies like branch&bound or binary search
(on lower and upper bounds) to find optimal solutions
(including the proof of optimality) or to find good
solutions quickly. Furthermore, search for iteratively
improving lower and upper bounds is provided and
can be customized. Search can be interrupted and
resumed at any time.� visualization tools for the solution(s), statistics (either
text-based or graphically by so-called Gantt-charts)
and visualization of the search tree.

The search is parameterized by the user’s selections.
The user can add further components like search strategies
or constraints dynamically making use of the underlying
object-oriented structure. The problem does not have to be
stated statically as a constraint program in advance. Instead,



the selected parameters are used to dynamically create a
procedure by a so-called scheduling compiler. While the
first implementation of the Scheduler deals with one class
of scheduling problems only (see Section 3), it can be ex-
tended to handle further classes by the dynamic extension
to different scheduling compilers (see Section 4.2).

As an implementation language we use Oz [22, 23, 13].
Oz is a concurrent constraint language providing for func-
tional, object-oriented, and constraint programming, which
also features programmable search. Thus, Oz appears to be
a promising candidate for implementing a workbench like
this Scheduler.

Through the use of the constraint interface of Oz, we have
incorporated recent OR techniques. This allows us to solve
hard scheduling benchmark problems efficiently, compara-
ble to state-of-the-art special-purpose tools for scheduling.
This exemplifies the viability of the Oz Scheduler to be
a flexible and efficient tool. As far as we know, there is
no comparable graphical workbench available like the Oz
Scheduler. The Scheduler will be freely available in the next
release of Oz.

The paper is structured as follows. In Section 2, con-
straint programming in Oz is introduced. Section 3 explains
the essentials of scheduling problems. In Section 4, the
functionality and implementation applied in the Oz Sched-
uler are shown and its performance is evaluated.

2. Constraint Programming in Oz

This paper deals with constraints on finite sets of non-
negative integers, so-called finite domains, in the constraint
programming language Oz. For a more thorough treatment
see [21, 14, 17].

A basic constraint takes the form x = n, x = y orx 2 D, where n is a nonnegative integer and D is a finite
domain. The basic constraints reside in the constraint store.
Oz provides efficient algorithms to decide satisfiability and
implication for basic constraints.

For more expressive constraints, like x+ y = z, decid-
ing their satisfiability is not computationally tractable. Such
nonbasic constraints are not contained in the constraint store
but are imposed by propagators. A propagator is a computa-
tional agent that tries to narrow the domains of the variables
occurring in the corresponding constraint. This narrowing
is called constraint propagation.

As an example, assume a store containing X;Y; Z 2f1; : : : ; 10g. The propagator for X + Y < Z narrows the
domains to X;Y 2 f1; : : : ; 8g and Z 2 f3; : : : ; 10g (since
the other values cannot satisfy the constraint). Adding the
constraint Z = 5 causes the propagator to strengthen the
store to X;Y 2 f1; : : : ; 3g and Z = 5. Imposing X = 3
lets the propagator narrow the domain ofY to one. A tool for
displaying arbitrary data structures and the current domains

of variables is the Oz Browser. Changes in the domains
cause an update of the display [23].

A solution to a set of finite domain constraints is a map-
ping from variables to nonnegative integers. To obtain a
solution for a set of constraints S we usually have to choose
a (not necessarily basic) constraintC and solve bothS[fCg
and S [f:Cg; we distribute S with C at the current choice-
point. The second alternative S [f:Cg is solved if the first
alternative leads to an inconsistent store (the recovering ofS may be done by backtracking or by using previous copies
of the constraint stores, as in Oz). We say that a failure has
occurred, if constraint propagation leads to an inconsistent
store. Note, that distribution takes place only if propaga-
tion has reached a fixed point. In the example above we
have first distributed with Z = 5 and then with X = 3.
Thus, solving a constraint problem consists in a sequence
of interleaving propagation and distribution steps. In Oz,
distribution strategies like first fail but also more elaborated
ones can be programmed by the user [21].

Additionally, Oz offers programmable search [21]. Be-
sides depth-first for one solution or branch&bound, one can
program resource limited search (limited number of time
or failures) or strategies from AI like limited discrepancy
search [12]; both used in the Oz Scheduler. Furthermore, it
is possible to encapsulate a constraint store and the connect-
ed propagators. Into this capsule, further constraints can
be injected, allowing for local search techniques (parts of a
former solution are injected into a base problem, while the
other parts are subject of a new search run). The search for a
solution can be visualized by the Oz Explorer [20] (see also
Section 4).

A constraint problem can be solved by the combination
of three orthogonal concepts: Propagation, distribution and
search. Because in Oz these concepts are completely inde-
pendent from each other, the implementation of a tool like
the Scheduler is so convenient.

Oz comes with a fully developped finite domain sys-
tem offering reified constraints (reflecting the validity of a
constraint into a 0/1 valued variable), symbolic constraints
like atmost, and generic propagators for arithmetic (like
arbitrary scalar products or nonlinear constraints).

3. Scheduling

In this section, the characteristics of one class of schedul-
ing problems are shown by means of an example. The
problem is to build a bridge with a set of resources like a
crane, a concrete mixer etc. [11]. Because only one crane
etc. is available, the resources are called unary. Activi-
ties or tasks are, for example, positioning a bearer with the
crane, erecting a pillar with the bricklayer and so on. A
start time must be assigned to a task such that its resource
is available through the whole duration of the task. There



exist precedence constraints, like that the pillars must be
erected before the corresponding bearer is positioned, and
resource constraints, stating that the execution of tasks on
the same resource must not overlap in time (the tasks on
the resource must be serialized). Furthermore, there may
be additional constraints like that the time interval between
the completion of two tasks is restricted. The solution of a
scheduling problem (a schedule) consists in an assignment
of start times to tasks that is consistent with all constraints.
Often, one is interested in the schedule with the smallest
length, i.e., an optimal solution. For the first implementation
of the Oz Scheduler, we consider non-preemptive schedul-
ing problems with unary resources and fixed durations (for
extensions see Section 4.2).

Modeling a scheduling problem with finite domain con-
straints is simple, if the right abstractions are available. A
finite domain models the start time of a task. A precedence
constraint like thatA with duration d(A) must precede B is
stated as

A + d(A) � B:
The resource constraints can be modeled by stating the

following disjunction for all pairs of tasks A and B on the
same resource.

A + d(A) � B _ B + d(B) � A ;
i.e., either A precedes B or vice versa. By reified con-

straints this can be expressed as

C1 = (A + d(A) � B) ^ C2 = (B + d(B) � A)^ C1 +C2 = 1:
Here, the validity of e.g. A + d(A) � B is reflected

into the 0/1 valued variable C1. If the constraint (resp. its
negation) is implied by the constraint store,C1 is constrained
to 1 (resp. 0). On the other hand, if C1 is constrained to 1
(resp. 0), the constraint (resp. its negation ) is imposed.

Additional constraints may be added by imposing further
propagators.

After imposing the constraints, a distribution strategy is
needed to find a schedule. For scheduling problems, it is
often of advantage to serialize the tasks first,i.e., to distribute
with constraints A + d(A) � B, and then to distribute the
start times with constraints A = n. (For problems where
only constraints of the form A + d(A) � B occur, the
serialization is sufficient.) To obtain the optimal solution
one can use a branch&bound search strategy, stating that
the alternative solution must denote a schedule with smaller
length than the best solution found so far. The idea is that
imposing a bound allows for further propagation and can
strongly prune the search space.

While modeling the scheduling problem in this way is
simple, local reasoning on task pairs is insufficient for harder

scheduling problems. As an example consider three tasksA, B and C each with duration 8, and possible start times
between 1 and 10. Stating for the pairs (A;B), (A;C) and(B;C) that they must not overlap by reified constraints, will
lead to no further propagation. On the other hand, the tasks
must be scheduled between time point 1 and 18 (the latest
completion time of either A, B or C). Because the overall
duration is 24, this is impossible.

Hence, stronger propagators were suggested in [5] (in
terms of Operations Research, of course), reasoning on the
whole set of tasks on a resource and, thus, are called global
constraints. The principal ideas behind it are simple but very
powerful. For an arbitrary set of tasks S to be scheduled
on the same resource, the available time must be sufficient
(see the example above). Furthermore, one checks whether
a task T in S must be scheduled as the first or last task of S
(and analogously if T is not in S). Let S0 be S without T .
Then, T must be first, if it cannot be scheduled after all tasks
in S0 and not between two tasks in S0. Let s(T ), c(T ), andd(T ) be the earliest possible start time, the latest possible
completion time, and the duration of T , respectively. Lets(S0), c(S0), and d(S0) be the earliest possible start time,
the latest possible completion time and the sum of durations
of tasks in S0. Then, ifc(S0)� s(S0) < d(S);T cannot be between two tasks of S0, and ifc(T )� s(S0) < d(S);T cannot be scheduled after all tasks in S0. Hence, T
must be first and corresponding propagators can be imposed,
narrowing the start times. Analogously, ifc(S0) � s(S0) < d(S) ^ c(S0) � s(T ) < d(S);T must be last. For this kind of reasoning, the term edge-
finding was coined in [2]. There are several variations of
this idea in [5, 2, 6, 16] for the OR community and in [19, 7]
for the constraint community; they differ in the amount
of propagation and which sets S are considered for edge-
finding (in principle, there are exponentially many). The
resulting propagators do a lot of propagation, but are also
more expensive than e.g. reified constraints. Depending on
the problem, one has to choose the appropriated propagator.

For distribution, a similar idea is used, i.e., the sets of
tasks are computed, which can be scheduled first or last.
From these sets, one task is chosen to be the first (or the last)
and it is distributed with the corresponding constraints.

Unfortunately, scheduling problems are very hard and a
simple branch&bound search started from scratch often con-
verges too slowly to the optimal solution. Thus, the problem
can be divided into two. One problem is to find successively
increasing lower bounds LB such that it is proved that no



schedule with length LB or smaller exists (here, the used
search strategy must be complete). The second problem
is to find successively decreasing upper bounds UB of the
optimal schedule length (and a corresponding schedule).
Here, an incomplete strategy like local search is sufficient,
because one is interested in finding rather good solutions
quickly. The optimal solution is between LB and UB. If the
search for an upper bound does not improve anymore, one
may stop or switch to a complete branch&bound search to
find the optimal solution and prove its optimality.

A famous example of a scheduling problem (a so-called
job-shop problem1) is MT10 [18], which consists of 10
resources à 10 tasks. Stated 1963, it was not until 1989 that
the optimal solution was found and optimality proved with
the technique mentioned above [5]. The naive modeling
cannot solve the problem in several days. In the mid 90’s, it
was also solved by the constraint community by adapting the
ideas of [5] (see e.g. [7, 3]). The results on MT10 and other
problems for the Oz Scheduler are given in Section 4.3.

4. The Oz Scheduler

This section explains the Oz Scheduler. Section 4.1 intro-
duces the Scheduler by means of an example. In Section 4.2,
the implementation of the Scheduler is described. The paper
concludes with a performance evaluation.

4.1. An Example

Figure 1 shows the Oz Scheduler. From the main
menu Compiler Spec, we select the bridge problem
(see Section 3) from a submenu and use the default settings
branch&bound search (others are available from the menu
Search Spec), reified constraints for the resource con-
straints and a rather naive distribution strategy. The search
is started by selecting a submenu from Run.

We inspect the computation statistics by chosing an ap-
propriate submenu from the menu Display. By a pop-up
window (see Figure 2) we are informed about the name of
the problem and some of the used parameters. Further-
more, the computational resources like time (divided into
subgroups) and the number of failures and solutions are dis-
played (for details see [23]). We observe that three solutions
were found and, thus, the optimal solution was the third one.
Hence, we choose another distribution strategy for experi-
mentation. This time, we want to obtain more information
about the search tree and select the Oz Explorer from the
menu Run. The Explorer is invoked and the resulting search
tree is shown in Figure 3. By clicking on the search nodes

1An nxm job-shop problem consists of n jobs andm resources. Each
job consists of m tasks to be scheduled on different resources. The tasks
in a job are linearly ordered by precedence constraints. The resources are
unary and no preemption is allowed.

Figure 1. The Oz Scheduler

in the Explorer, the domains of the variables in the selected
node are displayed in the Oz Browser. Other visualization
tools may be added. While the first solution found is now the
optimal one (the leftmost leaf), we observe that the proof of
optimality is still large (including the whole right subtree at
the root of the search tree). Hence, we choose edge-finding
from a submenu under Compiler Spec. We solve the
problem again in the Explorer and note that the tree now
contains only 29 choice-points, the proof of optimality only
3 choice-points. The solution can be inspected graphically
by a so-called Gantt-chart as shown in Figure 4. Tasks on
the same resource share the same color and a vertical bar
indicates the optimal length (104).

The Oz Scheduler provides also for means to divide the
search for a schedule into three phases. In all phases, the
search can be interrupted at any time and resumed later
on to continue the search at the state of interruption. All
parameters are considered in each phase except the search
strategy. The provided search for an upper bound uses a
local search strategy and displays succesively the length
of the current found schedule in the corresponding label.
Search for an optimal solution is done by a phase called
Finish. The search is started at the last found upper
bound or a naively computed upper bound, otherwise. This
phase must be complete and proves also the optimality of
a found solution. Succesively, the last found solution is
displayed. The third phase consists in searching for a lower
bound. It displays succesively the last found lower bound.
A submenu allows to reset stored bounds.



Figure 2. Statistics of the Oz Scheduler

Figure 3. The Oz Explorer

4.2. Implementation

The Scheduler is provided as a concurrent object in Oz.
Thus, several instances may be created and encapsulation
and state are provided. The state is used to store the param-
eters, to resume search after interruption, and to coordinate
the different possible phases of search. It is important that
objects are concurrent, because search must be interruptable,
i.e., search and the Scheduler must run in different threads
of computation.

The overall structure of the Oz Scheduler is shown in
Figure 5. The user specifies the way a problem should be
solved by selecting the distributionstrategy, the search strat-
egy and the propagators for the resource constraints. These
procedures, which correspond to the selected parameters
(like the distribution strategy) are stored directly in the state
of the Scheduler. In order to parameterize the scheduling

Figure 4. A Gantt-chart for the optimal solu-
tion of the bridge problem

problem with the selections made, a constraint problem in
form of a procedure is generated dynamically by a schedul-
ing compiler, which is itself an Oz procedure and knows
the parameters. This is in contrast to an approach where
the user writes statically different programs, which are just
solved through an interface. The key to dynamic creation of
constraint procedures is higher-order programming in Oz,
i.e., functions and procedures can serve as values of data
structures, arguments of procedures and return values.

Input of the search is a unary procedure, which serves as a
query. If search or the Explorer are invoked, the scheduling
compiler is applied with the selected parameters as argu-
ments (the distribution strategy and resource constraints),
which returns the query. The argument of the query may be
bound to an arbitrary data structure containing e.g. the start
times. The query hosts at least the resource constraints and
calls to the distribution strategies (concluded by the select-
ed submenus). The query is then passed to the search or
Explorer, where it is applied.

All parameters including scheduling compiler and search
phases can be extended by sending appropriated messages
to the Oz Scheduler. The extensions are then available
through new menu entries. The only data structure, which
all scheduling compilers must make available (for statistics)
is a record containing the start times of the tasks.

4.2.1 The Scheduling Compiler

For scheduling problems with unary capacity, a problem
description is a record containing a datastructure and a pro-
cedure. The datastructure specifies the problem by stating
duration, predecesors and used resources of the occurring
tasks. The procedure hosts calls to the additional constraints.
To impose the appropriated propagators, this procedure is
parameterized by two records mapping the task names to
start times and durations.



Distribution Strategy Resource Constraints

Specification Scheduling Compiler

Oz Procedure

Search Strategy Search

Schedule

Figure 5. Structure of the Oz Scheduler

The scheduling compiler additionally does some prepro-
cessing like extraction of the records mapping task names to
start times and durations, or grouping of tasks scheduled on
the same resource. It also hosts the applications of the ad-
ditional constraints (stored in the problem description) and
the precedence constraints.

4.2.2 Resource Constraints

Additionally to reified constraints and constructive disjunc-
tion [25], two global constraints are provided. The first
compresses the set of reified constraints for tasks on the
same resource into one propagator, saving memory. The
second constraint uses the algorithmic ideas of [16] (basing
on the principles illustrated in Section 3), to implement a
propagator. It uses a (relatively) easy technique to construct
the sets of tasks S, on which edge-finding is applied. The
propagator is improved by incorporating the propagation
available through reified constraints for each task pair. This
propagator is implemented througha C++ interface, because
the algorithm is implemented more efficiently in a language
providing destructive datastructures.

4.2.3 Distribution Strategies

Currently, many distribution strategies are provided, among
them the successful strategies of [10, 7, 4]. The best re-
sults for the benchmarks in Section 4.3 were obtained with
a variant of the strategy proposed in [7]. While choosing
the constraints to distribute with, this strategy also does
some edge-finding. For all task pairs (t1; t2), scheduled on
the same resource, the set S (called task interval) of tasks
scheduled between the earliest start time of t1 and the latest

completion time of t2 is computed. If there exists exactly
one task to be scheduled first (resp. last), the corresponding
constraints can be imposed deterministically without distri-
bution. We improved the algorithm in that such information
is imposed by dynamically added propagators. By imple-
menting the distributionstrategy also through the C++ inter-
face, the provided atomicity helps to avoid the maintenance
of data structures, which is necessary in [7]

4.2.4 Search

Some of the search procedures offered (like branch&bound
or depth-first one solution search) are included in the li-
braries of Oz. Because search is programmable in Oz,
strategies like limited discrepancy search[12] can be im-
plemented in a straightforward way.

In the phase to find upper bounds, essentially the local
search techniques used in [9] are applied. Firstly, a good
initial solution is computed by a kind of greedy algorithm.
The initial solution is then optimized locally. I.e., parts of
the previous solution are kept (for example, the serialization
of one resource), while the rest is rescheduled with the con-
straint to find a better solution than the previous one. For
each iteration to find a better solution, only a limited number
of failures is allowed. If the number of iterations exceeds a
specified limit, the phase is stopped (if no user-interruption
took place before). This technique and the injection of parts
of the previous solution into a search problem, is provided
by programmable search in Oz [21].

The phase to find lower bounds LB, is based on binary
search. The initial interval ranges from the schedule length
found by propagation only (no distribution) to the length
of the last found solution in the upper bound phase or a
naively computed bound, otherwise. The current LB is the
left bound of the interval. The interval is split in the middle
until LB+1 is the optimal solution.

The finishing phase is implemented with branch&bound
search. An arbitrary cost function (selected in the Oz Sched-
uler) may be used to order different solutions. The phase
stops, if the optimal solution is found and the optimality is
proved.

Note that in all cases the search for a schedule is parame-
terized by the selected submenus. The user can also extend
the Scheduler to deal with new kinds of search phases by
sending it a message. This message must contain an Oz
class, which provides at least the methods start, stop,
and resume with appropriated arguments.

4.2.5 Extensions

The Scheduler can be extended dynamically to further prob-
lem classes like multiple capacitated resources, variable du-
rations or periodic tasks. This is supported by the modular



structure of the Scheduler and the orthogonalityof propaga-
tion, distribution and search in Oz. For multiple capacitated
resources we already have generalized our edge-finding al-
gorithm and plan to integrate it into the Oz Scheduler.

4.3. Performance Evaluation and Related Work

To evaluate the performance of the Oz Scheduler, we
choose ten instances of 10x10 job-shop problems used by
Applegate and Cook in [2]. For all problems the optimal
solution (starting with no information) has to be found and
the optimalityhas to be proved. First, the upper bound phase
is started, which terminates if a fixed number of iterations
is reached. Then, the finishing phase is started, which ter-
minates if the last solution found is proved to be optimal.
Table 1 and Table 2 contain the results. Problem denotes
the problem instance in [2], Fails the number of failures for
the overall search (including the proof of optimality), CPU
the corresponding runtime in seconds on a Sparc20/70 MHz
workstation, and Fails(pr) and CPU(pr) the number of fail-
ures and the time needed for the proof of optimality only.
For both phases, the distribution strategy described in Sec-
tion 4.2 is used. For Table 1, reified constraints were used
for the resource constraints2, while for Table 2, edge-finding
was used.

Reified
Problem Fails CPU Fails(pr) CPU(pr)

MT10 5838 169 3983 94
ABZ5 4295 130 2160 52
ABZ6 1737 64 239 5
La19 3798 112 1756 40
La20 4793 129 3247 78

ORB1 20164 554 16252 399
ORB2 2813 86 766 17
ORB3 42327 1071 39405 952
ORB4 6180 172 1939 45
ORB5 3987 114 1499 40

Table 1. Results for the Oz Scheduler

One surprising observation is that reified constraints for
the resource constraints in combination with the used distri-
bution strategy are sufficient to obtain good results. While
the distributionstrategy itself does some edge-finding, this is
applied only once per choice-point and its implementation is
rather simple. This observation contradicts the conventional
wisdom on solving 10x10 job-shop problems, because no
really elaborated edge-finding techniques are necessary to
solve (at least) these problems.

2Except for finding the upper bound for problem ORB1 and ORB3,
where edge-finding was used because in this phase, reified constraints
produced a too bad schedule length.

Edge-Finding
Problem Fails CPU Fails(pr) CPU(pr)

MT10 4117 157 2564 81
ABZ5 3455 138 1597 52
ABZ6 1508 71 200 6
La19 3331 138 1371 45
La20 6496 228 1943 57

ORB1 14242 521 11775 388
ORB2 2421 99 596 19
ORB3 34422 1121 28232 850
ORB4 3722 140 1340 38
ORB5 3468 138 1155 40

Table 2. Results for the Oz Scheduler

For comparison, ILOG SCHEDULE and Claire are cho-
sen, because they also rely on constraint technology and
are comparable to special-purpose OR-algorithms in their
efficiency. For these systems the number of backtracks is
indicated. Note that for a completely failed binary tree withf failure leafs, the number of backtracks is 2f � 2.

ILOG SCHEDULE [3] is a commercial C++ library dedicat-
ed to scheduling applications. By the combination with ILOG

SOLVER, the user can write flexible constraint programs. In
principle, a tool like Oz Scheduler can be written in ILOG

too, but it would be far more inconvenient due to the rather
low level of C++. The number of failures/backtracks for the
Oz Scheduler is for the most problems smaller compared
to ILOG SCHEDULE (see Table 3, BT denotes the number of
backtracks). The runtimes are comparable (in [3] a IBM
RS6000 workstation was used; further information on this
machine is not available from ILOG).

ILOG SCHEDULE Claire
Problem BT CPU BT CPU BT CPU

(pr) (pr) (pr) (pr)

MT10 13 684 236 4 735 67 1 575 80
ABZ5 19 303 282 4 519 61 1 350 61
ABZ6 6 227 101 312 5 217 ?
La19 18 102 270 6 561 91 1 361 48
La20 40 597 497 20 626 227 2 120 67

ORB1 22 725 407 6 261 108 7 265 315
ORB2 31 490 507 14 123 229 487 23
ORB3 36 729 606 22 138 343 7 500 320
ORB4 13 751 214 1 916 24 1 215 53
ORB5 12 648 211 2 658 37 904 43

Table 3. Results for ILOG and Claire

The programming language Claire [8] is a high-level lan-
guage to be used in C++ environments. By rules, constraint
programming techniques can be modeled. Claire lacks a rich



programming environment. We only compare the proof of
optimality, because in [9] the time for the upper bound phase
does not include the computation of the initial solution. For
the proof of optimality, the number of failures/backtracks
and the runtime (they used a Sparc10/40 MHz) are better
for Claire (see Table 3). This is due to a more elaborated
edge-finding and distribution strategy.

In [2], the proof of optimality for all problems took more
than 650 000 nodes in the search tree. Thus, the Oz Sched-
uler outperforms this approach by more than one order of
magnitude.

Remark and acknowledgements I would like to thank Gert

Smolka for fruitful discussions on the scheduling compiler and functionality

of the Oz Scheduler, and Joachim Walser for valuable comments on a

draft version of this paper. The research reported in this paper has been

supported by the Bundesminister für Bildung, Wissenschaft, Forschung

und Technologie (FTZ-ITW-9105).

References

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to
solve complex scheduling and placement problems. Mathl.
Comput. Modelling, 17(7):57–73, 1993.

[2] D. Applegate and W. Cook. A computational study of the
job-shop scheduling problem. Operations Research Society
of America, Journal on Computing, 3(2):149–156, 1991.

[3] P. Baptiste and C. L. Pape. A theoretical and experimental
comparison of constraint propagation techniques for disjunc-
tive scheduling. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, Montreal,
Quebec, pages 600–606, 1995.

[4] P. Baptiste, C. L. Pape, and W. Nuijten. Incorporating ef-
ficient operations research algorithms in constraint-based
scheduling. In First International Joint Workshop on Ar-
tificial Intelligence and Operations Research, 1995.

[5] J. Carlier and E. Pinson. An algorithm for solving the job-
shop problem. Management Science, 35(2):164–176, 1989.

[6] J. Carlier and E. Pinson. Adjustment of heads and tails for
the job-shop problem. European Journal of Operational
Research, 78:146–161, 1994.

[7] Y. Caseau and F. Laburthe. Improved CLP scheduling with
task intervals. In Proceedings of the International Confer-
ence on Logic Programming, pages 369–383, 1994.

[8] Y. Caseau and F. Laburthe. Introduction to the CLAIRE
programming language. Laboratoire Mathematiques et In-
formatique de l’Ecole Normale Superieure, 1994.

[9] Y. Caseau and F. Laburthe. Disjunctive scheduling with
task intervals. LIENS Technical Report 95-25, Laboratoire
d’Informatique de l’Ecole Normale Superieure, 1995.

[10] C.-C. Cheng and S. Smith. Generating feasible schedules
under complex metric constraints. In Proceedings of the
AAAI National Conference on Artificial Intelligence, pages
1086–1091, 1994.

[11] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving
large combinatorial problems in logic programming. Journal
of Logic Programming, 8:75–93, 1990.

[12] W. Harvey and M. Ginsberg. Limited discrepancy search. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, pages 607–613, 1995.

[13] M. Henz, G. Smolka, and J. Würtz. Object-oriented concur-
rent constraint programming in oz. In V. Saraswat and P. V.
Hentenryck, editors, Principles and Practice of Constraint
Programming, chapter 2, pages 27–48.The MIT Press, Cam-
bridge, MA, 1995.

[14] M. Henz and J. Würtz. Using oz for college timetabling.
In E. Burke and P. Ross, editors, The Practice and Theory
of Automated Timetabling: The Selected Proceedings of the
1st International Conference on the Practice and Theory of
Automated Timetabling, Edinburgh 1995, pages 162–178.
Springer Verlag, 1996.

[15] J. Jaffar and M. Maher. Constraint logic programming -
a survey. Journal of Logic Programming, 19/20:503–582,
1994.

[16] P. Martin and D. Shmoys. A new approach to computing
optimal schedules for the job shop scheduling problem. To
appear in IPCO V, 1996.

[17] T. Müller and J. Würtz. A survey on finite domain program-
ming in Oz. In Notes on the DFKI-Workshop: Constraint-
Based Problem Solving, To appear as Technical report D-
96-02, 1996.

[18] J. Muth and G. Thompson. Industrial Scheduling. Prentice
Hall, 1963.

[19] W. Nuijten. Time and resourceconstrained scheduling. PhD
thesis, Technical University Eindhoven, 1994.

[20] C. Schulte. Oz Explorer: A visual constraint programming
tool. Available from http://www.ps.uni-sb.de/
˜schulte/papers.html, 1996.

[21] C. Schulte, G. Smolka, and J. Würtz. Encapsulated search
and constraint programming in Oz. In A. Borning, editor,
Second Workshop on Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science, vol. 874,
pages 134–150, Orcas Island, Washington, USA, 2-4 May
1994. Springer Verlag.

[22] G. Smolka. The Oz programming model. In J. van Leeuwen,
editor, Computer Science Today, Lecture Notes in Computer
Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin,
1995.

[23] G. Smolka and R. Treinen, editors. DFKI Oz Documentation
Series. Deutsches Forschungszentrum für Künstliche Intel-
ligenz GmbH, Stuhlsatzenhausweg 3, 66123 Saarbrücken,
Germany, 1995.

[24] P. Van Hentenryck. Constraint Satisfaction in Logic Pro-
gramming. Programming Logic Series. The MIT Press,
Cambridge, MA, 1989.

[25] P. Van Hentenryck, V. Saraswat, and Y. Deville. De-
sign, implementation and evaluation of the constraint lan-
guage cc(FD). In A. Podelski, editor, Constraints: Basics
and Trends, Lecture Notes in Computer Science, vol. 910.
Springer Verlag, 1995.


