Oz Scheduler:
A Workbench for Scheduling Problems

Jorg Wirtz
Programming Systems Lab, DFKI GmbH,
University of the Saarland, Geb. 45, 66041 Saarbriicken, Germany,
Email: wuert z@s. uni - sb. de

Abstract

This paper describes the Oz Scheduler, a workbench for
scheduling problems. Through a graphical interface, theus-
er can freely combine the elements that define a scheduling
strategy. Such elements include constraints with different
popagation behavior or distribution and search strategies.
Exploring the possi ble combinationscan lead to better solu-
tions. Recent and successful techniques for scheduling are
incorporated.

Resulting from the sel ections made, a constraint problem
is generated dynamically. For this problem, the solution,
statisticsand the search can be inspected by several graph-
ical tools. The functionality can be extended by sending
messages to the Scheduler. The functionality and theimple-
mentation of the Oz Scheduler are discussed. The overall
performance of the Scheduler for standard benchmarks is
comparable to state-of-the-art special-purpose systems for
scheduling. The implementationis based on the concurrent
constraint language Oz

1. Introduction

Scheduling problems are in the core of many real-world
applications. They occur in areas as diverse as production
planning, timetabling or personel planning. For certain well
defined problem classes there exist efficient programs from
Operations Research (OR). But these programs are often
very problem specific and dlight changes in the problem
definition raise difficulties in the adaptation of the specia
purpose algorithms.

Onthe other hand, Al aims at devel opping generd prob-
lem solving approaches. Unfortunately, these approaches
are often much slower than special-purposea gorithms. One
of the offsprings of Al is constraint programming [15, 24],
which offers flexibility by the formulation of constraints
in a high-level language. In the last years, constraint pro-

gramming and especialy Finite Domain Programming, has
succeeded in solving real-world problems in various areas.
Moreover, efficient OR techniques were successfully inte-
grated into flexible constraint systems to solve scheduling
problems, which are considered extremely hard [7, 3, 1].

Solving a scheduling problem is a difficult undertaking.
To solve the problem one has to experiment with severa
subproblems or variations. Different techniques have to
be tested like the kind of constraint propagation, ordering
heuristics or search strategies. These experiments should
be facilitated by an interface, which alows the combina
tion of these parameters and provides tools to observe the
experimentation.

This paper describes the Oz Scheduler, a workbench for
scheduling problems. Through a graphica interface, the
user can freely combine different

e problem specifications.
o constraints with different propagation behavior.

o digtribution strategies for ordering the tasks to be
scheduled on resources.

o search strategies like branch&bound or binary search
(on lower and upper bounds) to find optimal solutions
(including the proof of optimality) or to find good
solutionsquickly. Furthermore, search for iteratively
improving lower and upper bounds is provided and
can be customized. Search can be interrupted and
resumed at any time.

¢ visudizationtoolsfor thesolution(s), statistics (either
text-based or graphically by so-caled Gantt-charts)
and visualization of the search tree.

The search is parameterized by the user's selections.
The user can add further components like search strategies
or constraints dynamically making use of the underlying
object-oriented structure. The problem does not have to be
stated statically asaconstraint programin advance. Instead,

the selected parameters are used to dynamically create a
procedure by a so-called scheduling compiler. While the
first implementation of the Scheduler deals with one class
of scheduling problems only (see Section 3), it can be ex-
tended to handle further classes by the dynamic extension
to different scheduling compilers (see Section 4.2).

As an implementation language we use Oz [22, 23, 13].
Oz is a concurrent constraint language providing for func-
tional, object-oriented, and constraint programming, which
also features programmable search. Thus, Oz appearsto be
a promising candidate for implementing a workbench like
this Scheduler.

Throughtheuse of theconstraintinterface of Oz, wehave
incorporated recent OR techniques. This allowsusto solve
hard scheduling benchmark problems efficiently, compara-
ble to state-of-the-art specia-purpose tools for scheduling.
This exemplifies the viability of the Oz Scheduler to be
a flexible and efficient tool. As far as we know, there is
no comparable graphical workbench available like the Oz
Scheduler. The Scheduler will befreely availableinthenext
release of Oz

The paper is structured as follows. In Section 2, con-
straint programming in Oz isintroduced. Section 3 explains
the essentials of scheduling problems. In Section 4, the
functionality and implementation applied in the Oz Sched-
uler are shown and its performance is eval uated.

2. Constraint Programming in Oz

This paper deals with congtraints on finite sets of non-
negative integers, so-called finite domains, in the constraint
programming language Oz. For a more thorough treatment
see[21, 14, 17].

A basic congraint takes the form ¢ = n, * = y or
z € D, where n isanonnegative integer and D isafinite
domain. The basic constraintsresidein the constraint store.
Oz provides efficient algorithmsto decide satisfiability and
implication for basic constraints.

For more expressive constraints, likez + y = z, decid-
ing their satisfiability is not computationally tractable. Such
nonbasi ¢ constraintsare not contained in the constraint store
but areimposed by propagators. A propagator isacomputa
tional agent that triesto narrow the domains of the variables
occurring in the corresponding constraint. This narrowing
is called constraint propagation.

As an example, assume a store containing X, Y, 7 €
{1,...,10}. The propagator for X + Y < Z narrows the
domainsto X,Y € {1,...,8} and Z € {3,...,10} (since
the other values cannot satisfy the constraint). Adding the
congtraint ~ = 5 causes the propagator to strengthen the
storeto X, Y € {1,...,3}and Z = 5. Imposing X = 3
letsthe propagator narrow thedomain of Y toone. A tool for
displaying arbitrary data structures and the current domains

of variables is the Oz Browser. Changes in the domains
cause an update of the display [23].

A solution to a set of finite domain constraintsis a map-
ping from variables to nonnegative integers. To obtain a
solutionfor aset of constraints S we usualy have to choose
a(not necessarily basic) constraint ' and solveboth SU{C'}
and S U {—(C'}; wedistribute Swith C at the current choice-
point. The second dternative S U {—C'} issolved if thefirst
aternative leads to an inconsistent store (the recovering of
S may be done by backtracking or by using previous copies
of the congtraint stores, asin Oz). We say that afailure has
occurred, if constraint propagation leads to an inconsistent
store. Note, that distribution takes place only if propaga-
tion has reached a fixed point. In the example above we
have first distributed with 2 = 5 and then with X = 3.
Thus, solving a constraint problem consists in a sequence
of interleaving propagation and distribution steps. In Oz,
distribution strategies likefirst fail but also more el aborated
ones can be programmed by the user [21].

Additionally, Oz offers programmable search [21]. Be-
sides depth-first for one solution or branch& bound, one can
program resource limited search (limited number of time
or failures) or strategies from Al like limited discrepancy
search [12]; both used in the Oz Scheduler. Furthermore, it
ispossibleto encapsul ate a constraint store and the connect-
ed propagators. Into this capsule, further constraints can
be injected, alowing for local search techniques (parts of a
former solution are injected into a base problem, while the
other partsare subject of anew search run). The search for a
solution can be visualized by the Oz Explorer [20] (seedso
Section 4).

A constraint problem can be solved by the combination
of three orthogonal concepts: Propagation, distribution and
search. Because in Oz these concepts are completely inde-
pendent from each other, the implementation of a tool like
the Scheduler is so convenient.

Oz comes with a fully developped finite domain sys-
tem offering reified constraints (reflecting the validity of a
congtraint into a 0/1 valued variable), symbolic constraints
like at nost , and generic propagators for arithmetic (like
arbitrary scalar products or nonlinear constraints).

3. Scheduling

Inthissection, the characteristics of one class of schedul-
ing problems are shown by means of an example. The
problem is to build a bridge with a set of resources like a
crane, a concrete mixer etc. [11]. Because only one crane
etc. is available, the resources are caled unary. Activi-
ties or tasks are, for example, positioning a bearer with the
crane, erecting a pillar with the bricklayer and so on. A
start time must be assigned to a task such that its resource
is available through the whole duration of the task. There

exist precedence constraints, like that the pillars must be
erected before the corresponding bearer is positioned, and
resource constraints, stating that the execution of tasks on
the same resource must not overlap in time (the tasks on
the resource must be serialized). Furthermore, there may
be additional constraintslikethat the timeinterval between
the completion of two tasks isrestricted. The solution of a
scheduling problem (a schedul€) consists in an assignment
of start times to tasks that is consistent with al constraints.
Often, one is interested in the schedule with the smallest
length, i.e., an optimal solution. For thefirstimplementation
of the Oz Scheduler, we consider non-preemptive schedul-
ing problems with unary resources and fixed durations (for
extensions see Section 4.2).

Modeling a scheduling problem with finite domain con-
straintsis simple, if the right abstractions are available. A
finite domain model s the start time of atask. A precedence
constraint likethat A with duration d(A) must precede B is
stated as

A+d(A) <B.

The resource constraints can be modeled by stating the
following digunction for all pairs of tasks A and B on the
same resource.

A +d(A)< BV B+d(B)<A,

i.e, either A precedes B or vice versa. By reified con-
straintsthis can be expressed as

Ci=(A+d(A)<B) A C;=(B+d(B)<A)
ANC1+Chr=1.

Here, the vaidity of eg. A + d(A) < B is reflected
into the 0/1 valued variable C;. If the constraint (resp. its
negation) isimplied by theconstraint store, C'; isconstrained
to 1 (resp. 0). On the other hand, if €7 is constrained to 1
(resp. 0), the congtraint (resp. itsnegation) isimposed.

Additional constraintsmay be added by imposing further
propagators.

After imposing the constraints, a distribution strategy is
needed to find a schedule. For scheduling problems, it is
often of advantageto serializethetasksfirst,i.e., todistribute
with constraints A + d(A) < B, and then to distributethe
start times with constraints A = n. (For problems where
only constraints of the form A + d(A) < B occur, the
seridization is sufficient.) To obtain the optimal solution
one can use a branch&bound search strategy, stating that
the alternative solution must denote a schedule with smaller
length than the best solution found so far. The ideais that
imposing a bound alows for further propagation and can
strongly prune the search space.

While modeling the scheduling problem in this way is
simple, local reasoning ontask pairsisinsufficient for harder

scheduling problems. As an example consider three tasks
A, B and C' each with duration 8, and possible start times
between 1 and 10. Stating for the pairs (A, B), (A, ') and
(B, C') that they must not overlap by reified constraints, will
lead to no further propagation. On the other hand, the tasks
must be scheduled between time point 1 and 18 (the latest
completion time of either A, B or C'). Because the overall
durationis 24, thisisimpossible.

Hence, stronger propagators were suggested in [5] (in
terms of Operations Research, of course), reasoning on the
whole set of tasks on aresource and, thus, are called global
constraints. The principal ideasbehindit aresimplebut very
powerful. For an arbitrary set of tasks S to be scheduled
on the same resource, the available time must be sufficient
(see the example above). Furthermore, one checks whether
atask 7' in .S must be scheduled as thefirst or last task of S
(and analogousdly if T isnotin S). Let S’ be S without T'.
Then, 7' must befirgt, if it cannot be schedul ed after all tasks
in .S’ and not between two tasksin S”. Let s(7), ¢(T), and
d(T) bethe earliest possible start time, the latest possible
completion time, and the duration of 7, respectively. Let
s(S"), ¢(S7), and d(S’) be the earliest possible start time,
the latest possible compl etion time and the sum of durations
of tasksin S’. Then, if

c(S") — s(S") < d(S),
T cannot be between two tasks of 5/, and if
e(T) — s(5") < d(9),

T cannot be scheduled after all tasks in S'. Hence, T
must befirst and corresponding propagatorscan beimposed,
narrowing the start times. Analogously, if

c(S') = s(S") < d(S) A e(S') — s(T) < d(S),

T must be last. For this kind of reasoning, the term edge-
finding was coined in [2]. There are several variations of
thisideain |5, 2, 6, 16] for the OR community andin[19, 7]
for the constraint community; they differ in the amount
of propagation and which sets S are considered for edge-
finding (in principle, there are exponentialy many). The
resulting propagators do a lot of propagation, but are also
more expensive than e.g. reified constraints. Depending on
the problem, one has to choose the appropriated propagator.
For distribution, a similar idea is used, i.e., the sets of
tasks are computed, which can be scheduled first or last.
Fromthese sets, onetask ischosen to be thefirst (or thelast)
and it is distributed with the corresponding constraints.
Unfortunately, scheduling problems are very hard and a
simplebranch& bound search started from scratch often con-
vergestoo slowly to theoptimal solution. Thus, the problem
can bedividedintotwo. One problemisto find successively
increasing lower bounds LB such that it is proved that no

schedule with length LB or smaller exists (here, the used
search strategy must be complete). The second problem
is to find successively decreasing upper bounds UB of the
optimal schedule length (and a corresponding schedule).
Here, an incomplete strategy like loca search is sufficient,
because one is interested in finding rather good solutions
quickly. The optimal solutionisbetween LB and UB. If the
search for an upper bound does not improve anymore, one
may stop or switch to a complete branch& bound search to
find the optimal solution and prove its optimality.

A famous example of a scheduling problem (a so-called
job-shop problem?) is MT10 [18], which consists of 10
resources a 10 tasks. Stated 1963, it was not until 1989 that
the optimal solution was found and optimality proved with
the technique mentioned above [5]. The naive modeling
cannot solve the problemin several days. Inthemid 90's, it
was al so solved by the constraint community by adapting the
ideas of [5] (seee.g. [7, 3]). Theresultson MT10 and other
problemsfor the Oz Scheduler are given in Section 4.3.

4. The Oz Scheduler

Thissectionexplainsthe Oz Scheduler. Section4.1intro-
ducesthe Schedul er by means of an example. In Section 4.2,
theimplementation of the Schedul er isdescribed. The paper
concludes with a performance eval uation.

4.1. An Example

Figure 1 shows the Oz Scheduler. From the main
menu Conpi | er Spec, we sdect the bridge problem
(see Section 3) from a submenu and use the default settings
branch& bound search (others are available from the menu
Sear ch Spec), reified constraints for the resource con-
straints and a rather naive distribution strategy. The search
is started by selecting a submenu from Run.

We inspect the computation statistics by chosing an ap-
propriate submenu from themenu Di spl ay. By a pop-up
window (see Figure 2) we are informed about the name of
the problem and some of the used parameters. Further-
more, the computational resources like time (divided into
subgroups) and the number of failuresand solutionsare dis-
played (for detailssee[23]). We observe that three solutions
werefound and, thus, the optimal solutionwasthethird one.
Hence, we choose another distribution strategy for experi-
mentation. This time, we want to obtain more information
about the search tree and select the Oz Explorer from the
menu Run. The Explorer isinvoked and the resulting search
tree is shown in Figure 3. By clicking on the search nodes

1An nxm job-shop problem consists of » jobs and m resources. Each
job consists of m tasks to be scheduled on different resources. The tasks
in ajob are linearly ordered by precedence constraints. The resources are
unary and no preemption is allowed.

Optimum found

Compiler Spec Search Spec Run Display

Upper | Start | i | Resuime
Fnish |1I]4 Start | Resume
Lowrer | Start | 51 | Resume

Figure 1. The Oz Scheduler

in the Explorer, the domains of the variables in the sel ected
node are displayed in the Oz Browser. Other visualization
toolsmay beadded. Whilethefirst solutionfoundisnow the
optimal one (the leftmost | eaf), we observe that the proof of
optimality istill large (including the whol e right subtree at
theroot of the search tree). Hence, we choose edge-finding
from a submenu under Conpi | er Spec. We solve the
problem again in the Explorer and note that the tree now
contains only 29 choice-points, the proof of optimality only
3 choice-points. The solution can be inspected graphically
by a so-called Gantt-chart as shown in Figure 4. Tasks on
the same resource share the same color and a vertical bar
indicates the optimal length (104).

The Oz Scheduler provides aso for means to divide the
search for a schedule into three phases. In al phases, the
search can be interrupted at any time and resumed later
on to continue the search at the state of interruption. All
parameters are considered in each phase except the search
strategy. The provided search for an upper bound uses a
loca search strategy and displays succesively the length
of the current found schedule in the corresponding label.
Search for an optimal solution is done by a phase called
Fi ni sh. The search is started a the last found upper
bound or a naively computed upper bound, otherwise. This
phase must be complete and proves also the optimality of
a found solution. Succesively, the last found solution is
displayed. The third phase consistsin searching for alower
bound. It displays succesively the last found lower bound.
A submenu alowsto reset stored bounds.

=

Problen: Bridge

Task distribution: No choices

Resource distribution: Minimal slack, firsts
Resource constraints: Reified

Finish strategy: Branch-and-Bound
order: New < 01d

Compiler: Disjunctive scheduling
Run time: 0.647 secs

Prop time: 0.319 secs

Copy time: 0.500 secs

GC time: 0.200 secs

Total time: 1.666 secs

Heap space: 2.349 MB

#Clones: 221

#Failures: 148

#Solutions: 3

Makespan: 104

Figure 2. Statistics of the Oz Scheduler

Explorer Options Move Search Hodes Hide ||

ol

i

= [i=

|1 BAB Searchtime: 16,615 {22%c) . 104 ’ 10 104 Depth: 26

Figure 3. The Oz Explorer

4.2. Implementation

The Scheduler is provided as a concurrent object in Oz.
Thus, severa instances may be created and encapsulation
and state are provided. The stateis used to store the param-
eters, to resume search after interruption, and to coordinate
the different possible phases of search. It isimportant that
obj ectsare concurrent, because search must beinterruptable,
i.e,, search and the Scheduler must run in different threads
of computation.

The overdl structure of the Oz Scheduler is shown in
Figure 5. The user specifies the way a problem should be
solved by selecting the distributionstrategy, the search strat-
egy and the propagators for the resource constraints. These
procedures, which correspond to the selected parameters
(likethe distribution strategy) are stored directly inthe state
of the Scheduler. In order to parameterize the scheduling

s &0
"
—_—
ma

cba
e

—
=

Sane
ans
ana

o

Figure 4. A Gantt-chart for the optimal solu-
tion of the bridge problem

problem with the selections made, a constraint problem in
form of a procedure is generated dynamically by a schedul -
ing compiler, which is itself an Oz procedure and knows
the parameters. Thisisin contrast to an approach where
the user writes statically different programs, which are just
solved through an interface. The key to dynamic creation of
constraint procedures is higher-order programming in Oz,
i.e,, functions and procedures can serve as values of data
structures, arguments of procedures and return values.

Input of the search isaunary procedure, which servesasa
query. If search or the Explorer are invoked, the scheduling
compiler is applied with the selected parameters as argu-
ments (the distribution strategy and resource constraints),
which returnsthe query. The argument of the query may be
bound to an arbitrary data structure containing e.g. the start
times. The query hosts at least the resource constraints and
cals to the distribution strategies (concluded by the select-
ed submenus). The query is then passed to the search or
Explorer, whereit isapplied.

All parametersincluding scheduling compiler and search
phases can be extended by sending appropriated messages
to the Oz Scheduler. The extensions are then available
through new menu entries. The only data structure, which
all scheduling compilers must make available (for statistics)
isarecord containing the start times of the tasks.

421 The Scheduling Compiler

For scheduling problems with unary capacity, a problem
description isarecord containing a datastructure and a pro-
cedure. The datastructure specifies the problem by stating
duration, predecesors and used resources of the occurring
tasks. Theprocedurehostscallstotheadditiona constraints.
To impose the appropriated propagators, this procedure is
parameterized by two records mapping the task names to
start times and durations.

| Distribution Strategy | | Resource Constraints|

| Specification |—>| Scheduling Compiler |

Oz Procedure
vch]

Search Strategy ———>|§ear

Figure 5. Structure of the Oz Scheduler

The scheduling compiler additionally does some prepro-
cessing likeextraction of the records mapping task names to
start times and durations, or grouping of tasks scheduled on
the same resource. It aso hosts the applications of the ad-
ditiona constraints (stored in the problem description) and
the precedence constraints.

4.2.2 Resource Constraints

Additionally to reified constraints and constructive digunc-
tion [25], two globa congtraints are provided. The first
compresses the set of reified constraints for tasks on the
same resource into one propagator, saving memory. The
second constraint uses the a gorithmic ideas of [16] (basing
on the principles illustrated in Section 3), to implement a
propagator. It usesa (relatively) easy technique to construct
the sets of tasks .S, on which edge-finding is applied. The
propagator is improved by incorporating the propagation
available through reified constraints for each task pair. This
propagator isimplemented througha C++ interface, because
the agorithmisimplemented more efficiently in alanguage
providing destructive datastructures.

4.2.3 Disribution Strategies

Currently, many distribution strategies are provided, among
them the successful strategies of [10, 7, 4]. The best re-
sultsfor the benchmarks in Section 4.3 were obtained with
a variant of the strategy proposed in [7]. While choosing
the constraints to distribute with, this strategy aso does
some edge-finding. For all task pairs (¢1,?2), scheduled on
the same resource, the set S (called task interval) of tasks
scheduled between the earliest start time of ¢; and the latest

completion time of ¢, is computed. If there exists exactly
onetask to be scheduled first (resp. last), the corresponding
constraints can be imposed deterministicaly without distri-
bution. Weimproved the algorithmin that such information
isimposed by dynamically added propagators. By imple-
menting the distributionstrategy also through the C++ inter-
face, the provided atomicity helps to avoid the maintenance
of data structures, whichis necessary in [7]

424 Search

Some of the search procedures offered (like branch& bound
or depth-first one solution search) are included in the li-
braries of Oz. Because search is programmable in Oz,
strategies like limited discrepancy search[12] can be im-
plemented in a straightforward way.

In the phase to find upper bounds, essentialy the local
search techniques used in [9] are applied. Firstly, a good
initial solution is computed by a kind of greedy agorithm.
The initia solution is then optimized locdly. |.e., parts of
the previous solution are kept (for example, the serialization
of one resource), whiletherest isrescheduled with the con-
straint to find a better solution than the previous one. For
each iterationto find abetter solution, only alimited number
of failuresisalowed. If the number of iterations exceeds a
specified limit, the phase is stopped (if no user-interruption
took place before). Thistechniqueand theinjection of parts
of the previous solution into a search problem, is provided
by programmable search in Oz [21].

The phase to find lower bounds LB, is based on binary
search. Theinitia interval ranges from the schedule length
found by propagation only (no distribution) to the length
of the last found solution in the upper bound phase or a
naively computed bound, otherwise. The current LB isthe
left bound of theinterval. Theinterval issplitinthe middle
until LB+1 isthe optimal solution.

The finishing phase isimplemented with branch& bound
search. Anarbitrary cost function (selected in the Oz Sched-
uler) may be used to order different solutions. The phase
stops, if the optimal solution is found and the optimality is
proved.

Notethat in al cases the search for ascheduleis parame-
terized by the selected submenus. The user can aso extend
the Scheduler to deal with new kinds of search phases by
sending it a message. This message must contain an Oz
class, which provides at least the methods st art, st op,
and r esune with appropriated arguments.

425 Extensions

The Scheduler can be extended dynamically to further prob-
lem classes like multiple capacitated resources, variable du-
rations or periodic tasks. Thisis supported by the modular

structure of the Schedul er and the orthogonality of propaga-
tion, distributionand search in Oz. For multiplecapacitated
resources we already have generalized our edge-finding al-
gorithm and plan to integrate it into the Oz Scheduler.

4.3. Performance Evaluation and Related Work

To evauate the performance of the Oz Scheduler, we
choose ten instances of 10x10 job-shop problems used by
Applegate and Cook in [2]. For al problems the optimal
solution (starting with no information) has to be found and
theoptimality hasto beproved. First, theupper bound phase
is started, which terminates if a fixed number of iterations
isreached. Then, the finishing phase is started, which ter-
minates if the last solution found is proved to be optimal.
Table 1 and Table 2 contain the results. Problem denotes
the problem instance in [2], Failsthe number of failuresfor
the overall search (including the proof of optimality), CPU
the corresponding runtimein seconds on a Sparc20/70 MHz
workstation, and Fails(pr) and CPU(pr) the number of fail-
ures and the time needed for the proof of optimality only.
For both phases, the distribution strategy described in Sec-
tion 4.2 isused. For Table 1, reified constraints were used
for the resource constraints?, whilefor Table 2, edge-finding
was used.

Reified
Problem | Fails | CPU | Fails(pr) | CPU(pr)
MT10 | 5838 [169 3983 94
ABZ5 | 4295 | 130 2160 52
ABz6 | 1737 | 64 239 5
Lal9 3798 | 112 1756 40
La20 | 4793 | 129 3247 78
ORB1 | 20164 | 554 | 16252 399
ORB2 | 2813 | 86 766 17
ORB3 | 42327 | 1071 | 39405 952
ORB4 | 6180 | 172 1939 45
ORB5 | 3987 | 114 1499 40

Table 1. Results for the Oz Scheduler

One surprising observation is that reified constraints for
the resource constraintsin combination with the used distri-
bution strategy are sufficient to obtain good results. While
thedistributionstrategy itself does someedge-finding, thisis
applied only once per choice-point and itsimplementationis
rather simple. Thisobservation contradictsthe conventional
wisdom on solving 10x10 job-shop problems, because no
really elaborated edge-finding techniques are necessary to
solve (at |east) these problems.

2Except for finding the upper bound for problem ORB1 and ORB3,
where edge-finding was used because in this phase, reified constraints
produced atoo bad schedulelength.

Edge-Finding
Problem | Fails [CPU | Fails(pr) | CPU(pr)
MT10 4117 | 157 2564 81
ABZ5 3455 138 1597 52
ABZ6 1508 71 200 6
Lal9 3331 138 1371 45
La20 6496 228 1943 57
ORB1 | 14242 | 521 11775 388
ORB2 2421 99 596 19
ORB3 34422 | 1121 28232 850
ORB4 3722 140 1340 38
ORB5 3468 138 1155 40

Table 2. Results for the Oz Scheduler

For comparison, ILoG ScHEDULE and Claire are cho-
sen, because they also rely on constraint technology and
are comparable to specia-purpose OR-agorithms in their
efficiency. For these systems the number of backtracks is
indicated. Notethat for acompletely failed binary treewith
f falureleafs, the number of backtracksis2f — 2.

ILOG SCHEDULE [3] isacommercia C++ library dedicat-
ed to scheduling applications. By thecombinationwithlLoG
SOLVER, the user can write flexible constraint programs. In
principle, a tool like Oz Scheduler can be written in ILOG
too, but it would be far more inconvenient due to the rather
low level of C++. The number of failures/backtracksfor the
Oz Scheduler is for the most problems smaller compared
to ILOG SCHEDULE (see Table 3, BT denotes the number of
backtracks). The runtimes are comparable (in [3] a IBM
RS6000 workstation was used; further information on this
machine is not available from ILOG).

ILOG SCHEDULE Claire
Problem BT | CPU BT | CPU BT | CPU
P | e | (N | ()
MT10 13684 236 4735 67 | 1575 80
ABZ5 19 303 282 4519 61 | 1350 61
ABZ6 6227 101 312 5 217 ?
Lal9 18102 | 270 6561 91 | 1361 48
La20 40597 497 | 20626 227 | 2120 67

ORB1 | 22725 | 407 | 6261 | 108 | 7265 | 315
ORB2 | 31490 | 507 | 14123 | 229 487 23
ORB3 | 36729 | 606 | 22138 | 343 | 7500 | 320
ORB4 | 13751 | 214 | 10916 24 | 1215 53
ORB5 | 12648 | 211 | 2658 37 904 43

Table 3. Results for ILoG and Claire

The programming language Claire[8] isahigh-level lan-
guage to be used in C++ environments. By rules, constraint
programming techniquescan bemodeled. Clairelacksarich

programming environment. We only compare the proof of
optimality, becausein[9] thetimefor theupper bound phase
does not include the computation of theinitial solution. For
the proof of optimality, the number of failures/backtracks
and the runtime (they used a Sparc10/40 MHz) are better
for Claire (see Table 3). Thisis due to a more elaborated
edge-finding and distribution strategy.

In[2], the proof of optimality for al problemstook more
than 650 000 nodes in the search tree. Thus, the Oz Sched-
uler outperforms this approach by more than one order of
maghitude.

Remark and acknowledgements | would like to thank Gert
Smolkafor fruitful discussionson thescheduling compiler andfunctionality
of the Oz Scheduler, and Joachim Walser for valuable comments on a
draft version of this paper. The research reported in this paper has been
supported by the Bundesminister fir Bildung, Wissenschaft, Forschung
und Technologie (FTZ-1TW-9105).

References

[1] A. Aggounand N. Beldiceanu. Extending CHIP in order to
solve complex scheduling and placement problems. Mathl.
Comput. Modelling, 17(7):57—73, 1993.

[2] D. Applegate and W. Cook. A computational study of the
job-shop scheduling problem. Operations Research Society
of America, Journal on Computing, 3(2):149-156, 1991.

[3] P. Baptiste and C. L. Pape. A theoretical and experimental
comparison of constraint propagationtechniquesfor disjunc-
tive scheduling. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, Montreal,
Quebec, pages 600-606, 1995.

[4] P Baptiste, C. L. Pape, and W. Nuijten. Incorporating ef-
ficient operations research agorithms in constraint-based
scheduling. In First International Joint Workshop on Ar-
tificial Intelligence and Operations Research, 1995.

[5] J. Carlier and E. Pinson. An algorithm for solving the job-
shop problem. Management Science, 35(2):164-176, 1989.

[6] J. Carlier and E. Pinson. Adjustment of heads and tails for
the job-shop problem. European Journal of Operational
Research, 78:146-161, 1994.

[7] Y. Caseauand F. Laburthe. Improved CLP scheduling with
task intervals. In Proceedings of the International Confer-
ence on Logic Programming, pages 369-383, 1994.

[8] Y. Caseau and F. Laburthe. Introduction to the CLAIRE
programming language. Laboratoire Mathematiques et In-
formatique de I’ Ecole Normale Superieure, 1994,

[9] Y. Caseau and F. Laburthe. Disjunctive scheduling with
task intervals. LIENS Technical Report 95-25, Laboratoire
d'Informatique de I’ Ecole Normale Superieure, 1995.

[10] C.-C. Cheng and S. Smith. Generating feasible schedules
under complex metric constraints. In Proceedings of the
AAAI National Conference on Artificial Intelligence, pages
1086-1091, 1994.

[11] M. Dinchas, H. Simonis, and P. Van Hentenryck. Solving
large combinatorial problemsinlogic programming. Journal
of Logic Programming, 8:75-93, 1990.

[12] W.Harvey and M. Ginsberg. Limited discrepancy search. In
Proceedingsof the International Joint Conference on Artifi-
cial Intelligence, pages 607-613, 1995.

[13] M. Henz, G. Smolka, and J. Wiirtz. Object-oriented concur-
rent constraint programming in oz. In V. Saraswat and P. V.
Hentenryck, editors, Principles and Practice of Constraint
Programming, chapter 2, pages27-48. TheMIT Press, Cam-
bridge, MA, 1995.

[14] M. Henz and J. Wirtz. Using oz for college timetabling.
In E. Burke and P. Ross, editors, The Practice and Theory
of Automated Timetabling: The Selected Proceedings of the
1st International Conference on the Practice and Theory of
Automated Timetabling, Edinburgh 1995, pages 162-178.
Springer Verlag, 1996.

[15] J. Jaffar and M. Maher. Constraint logic programming -
a survey. Journal of Logic Programming, 19/20:503-582,
1994,

[16] P. Martin and D. Shmoys. A new approach to computing
optimal schedulesfor the job shop scheduling problem. To
appear in IPCO V, 1996.

[17] T.Muller and J. Wiirtz. A survey on finite domain program-
ming in Oz. In Notes on the DFKI-Workshop: Constraint-
Based Problem Solving, To appear as Technical report D-
96-02, 1996.

[18] J. Muth and G. Thompson. Industrial Scheduling. Prentice
Hall, 1963.

[19] W. Nuijten. Time and resourceconstrained scheduling. PhD
thesis, Technical University Eindhoven, 1994.

[20] C. Schulte. Oz Explorer: A visual constraint programming
tool. Availablefromht t p: // www. ps. uni - sh. de/
“schul t e/ papers. ht i, 1996.

[21] C. Schulte, G. Smolka, and J. Wirtz. Encapsulated search
and constraint programming in Oz. In A. Borning, editor,
Second Workshop on Principles and Practice of Constraint
Programming, L ecture Notesin Computer Science, vol. 874,
pages 134-150, Orcas Island, Washington, USA, 2-4 May
1994. Springer Verlag.

[22] G. Smolka. The Oz programming model. In J. van Leeuwen,
editor, Computer Science Today, L ecture Notesin Computer
Science, vol. 1000, pages 324—343. Springer-Verlag, Berlin,
19095.

[23] G.SmolkaandR. Treinen, editors. DFKI Oz Documentation
Series. Deutsches Forschungszentrum fir Kiinstliche Intel-
ligenz GmbH, Stuhlsatzenhausweg 3, 66123 Saarbriicken,
Germany, 1995.

[24] P. Van Hentenryck. Constraint Satisfaction in Logic Pro-
gramming. Programming Logic Series. The MIT Press,
Cambridge, MA, 1989.

[25] P. Van Hentenryck, V. Saraswat, and Y. Deville. De-
sign, implementation and evaluation of the constraint lan-
guage cc(FD). In A. Podelski, editor, Constraints: Basics
and Trends, Lecture Notes in Computer Science, vol. 910.
Springer Verlag, 1995.

