
A Typed Semantics of Higher-Order Store and
Subtyping

Jan Schwinghammer

Informatics, University of Sussex, Brighton, UK
j.schwinghammer@sussex.ac.uk

Abstract. We consider a call-by-value language, with higher-order func-
tions, records, references to values of arbitrary type, and subtyping. We
adapt an intrinsic denotational model for a similar language based on
a possible-world semantics, recently given by Levy [14], and relate it to
an untyped model by a logical relation. Following the methodology of
Reynolds [22], this relation is used to establish coherence of the typed
semantics, with a coercion interpretation of subtyping. We obtain a
typed denotational semantics of (imperative) object-based languages.

1 Introduction

Languages such as Standard ML and Scheme allow to store values of arbitrary
types, including function types. Essentially the same effect is pervasive in object-
based languages (see [1, 21]), where objects are created on-the-fly and arbitrary
method code needs to be kept in the store. This feature is often referred to
as higher-order store or general references, and complicates the semantics (and
logics) of such languages considerably: Besides introducing recursion to the lan-
guage [13], higher order store in fact requires the semantic domain to be defined
by a mixed-variant recursive equation. So far, only few models of (typed) lan-
guages with general references appeared in the literature [4, 5, 14], and most of
the work done on semantics of storage does not readily apply to languages with
higher-order store.

In a recent paper, Paul Levy proposed a typed semantics for a language
with higher-order functions and higher-order store [14]. This is a possible worlds
model, explicating the dynamic allocation of new (typed) storage locations in the
course of a computation. We recall this model below, and extend it to accommo-
date subtyping by using coercion maps. In the terminology of Reynolds [22], we
obtain an intrinsic semantics: Meaning is given to derivations of typing judge-
ments, rather than to terms, with the consequence that

– ill-typed phrases are meaningless,
– terms satisfying several judgements will be assigned several meanings, and
– coherence between the meaning of several derivations of the same judgement

must be established.

Due to the addition of subtyping to Levy’s model, derivations are indeed no
longer unique and we must prove coherence. A standard approach for such proofs
is to transform derivations into a normal form while preserving their semantics.
This can be quite involved, even for purely functional languages (see, e.g., [7]).

In contrast to intrinsic semantics, an extrinsic semantics gives meaning to
all terms. Types (and typing judgements) are interpreted as, e.g., predicates or
partial equivalence relations over an untyped model. Usually, the interpretation
of subtyping is straightforward in such models. In [22], Reynolds uses a logical
relation between intrinsic and extrinsic cpo models of a lambda calculus with
subtyping (but no state) to prove coherence. The proof essentially relies on the
fact that (the denotations of) all derivations of a judgement Γ.e : A are related to
the denotation JeK of e in the untyped model underlying the extrinsic semantics,
via the basic lemma of logical relations. A family of retractions between intrinsic
and extrinsic semantics is then used to obtain the meaning of JΓ . e : AK in
terms of Γ , JeK and A alone, i.e., independent of any particular derivation of the
judgement.

We apply the same ideas to obtain a coherence proof for the language consid-
ered here. Two modifications have to be made: Firstly, because of the indexing
by worlds we use a Kripke logical relation [16] to relate intrinsic and extrinsic
semantics — this is straightforward. Secondly, due to the mixed-variant recur-
sion forced by the higher-order store we can no longer use induction over the
type structure to establish properties of the relations. In fact even the existence
of the logical relation requires a non-trivial proof — we use the framework of
Pitts [18] to deal with this complication.

While the combination of higher-order storage and subtyping is interesting
in its own right, we see the current work as a step toward our longer-term goal of
investigating logics for languages involving higher-order store. In particular, we
are interested in semantics and reasoning principles for object-oriented programs,
and it should be noted that a number of object encodings used a target language
similar to the one considered here [2, 11]. Some evidence that the model of this
paper can indeed serve as basis for such logics is provided, by giving a semantics
to the object calculus [1]. This is done using a typed variant of Kamin and
Reddy’s “closure model” [11]. To the best of our knowledge this is the first
(intrinsically typed) domain-theoretic model of the imperative object calculus.

In summary, our technical contributions here are (1) we present a model of
a language that includes general references and subtyping, (2) we successfully
apply the ideas of Reynolds [22] to prove coherence, and (3) we provide the first
(typed) model of the imperative object calculus, based on cpos.

Structure of the paper. In the next section, language and type system are in-
troduced. Then, typed and untyped models are presented (Sects. 3 and 4). The
logical relation is defined next, and retractions between types of the intrinsic
semantics and the untyped value space are used to prove coherence in Sect. 6.
In Sect. 7 both a derived per semantics and an interpretation of objects in the
model are discussed.

Table 1. Typing

Γ . e : A A � B

Γ . e : B

x:A ∈ Γ
Γ . x : A

Γ . e1 : B Γ, x:B . e2 : A

Γ . let x=e1 in e2 : A Γ . true : bool

Γ . x : bool Γ . e1 : A Γ . e2 : A

Γ . if x then e1 else e2 : A Γ . false : bool

Γ . xi : Ai ∀i ∈ I
Γ . {mi = xi}i∈I : {mi : Ai}i∈I

Γ . x : {mi : Ai}i∈I
Γ . x.mj : Aj

(j ∈ I)

Γ, x:A . e : B

Γ . λx.e : A⇒ B

Γ . x : A⇒ B Γ . y : A

Γ . x(y) : B

Γ . x : A

Γ . newA x : ref A

Γ . x : ref A

Γ . deref x : A

Γ . x : ref A Γ . y : A

Γ . x:=y : 1

Complete proofs, further examples and discussions can be found in the tech-
nical report [23].

2 Language

We consider a single base type of booleans, bool, records {mi : Ai}i∈I with

labels m ∈ L, and function types A ⇒ B. We set 1
def
= {} to be the empty

record type. Finally, we have a type ref A of mutable references to values of type
A. Term forms include constructs for creating, dereferencing and updating of
storage locations. The syntax of types and terms is given by the grammar:

A,B ∈ Type ::= bool | {mi : Ai}i∈I | A⇒ B | ref A

v ∈ Val ::= x | true | false | {mi = xi}i∈I | λx.e
e ∈ Exp ::= v | let x=e1 in e2 | if x then e1 else e2 | x.m | x(y)

| newA x | deref x | x:=y

The subtyping relation A � B is the least reflexive and transitive relation closed
under the rules

Ai � A′i ∀i ∈ I ′ I ′ ⊆ I

{mi : Ai}i∈I � {mi : A′i}i∈I′
A′ � A B � B′

A⇒B � A′⇒B′

Note that there is no rule for reference types as these need to be invariant, i.e.,
ref A � ref B only if A ≡ B. A type inference system is given in Table 1, where
contexts Γ are finite sets of variable-type pairs, with each variable occurring
at most once. As usual, in writing Γ, x:A we assume x does not occur in Γ . A
subsumption rule is used for subtyping of terms.

3 Intrinsic Semantics

In this section we recall the possible worlds model of [14]. Its extension with
records is straightforward, and we interpret the subsumption rule using coercion
maps.

Worlds. For each A ∈ Type let LocA be mutually disjoint, countably infinite sets
of locations. We let l range over Loc

def
=

⋃
A∈Type LocA, and may use the notation

lA to emphasize that l ∈ LocA. A world w is a finite set of locations lA ∈ Loc. A
world w′ extends w, written w′ ≥ w, if w′ ⊇ w. We write W = (W,≤) for the
poset of worlds.

Semantic Domain. Let pCpo be the category of cpos (not necessarily contain-
ing a least element) and partial continuous functions. For a partial continuous
function f we write f(a) ↓ if the application is defined, and f(a) ↑ otherwise.
Let Cpo be the subcategory of pCpo where the morphisms are total continuous
functions.

Informally, a world describes the shape of the store, i.e., the number of lo-
cations of each type allocated in the store. In the semantics we want a cpo Sw

of w-stores for each w ∈ W, and a cpo JAKw of values of type A. In fact, we
require that each JAK denotes a co-variant functor from W to Cpo, formalising
the intuition that values can always be used with larger stores. We write the
image of w ≤ w′ under JAK as JAKw′

w .
The cpo of w-stores is defined as Sw =

∏
lA∈w JAKw. For worlds w ∈ W,

JboolKw = BVal denotes the set {true, false} of truth values considered as discrete
cpo, and similarly, Jref AKw = {lA | lA ∈ w} is the discretely ordered cpo of A-
locations allocated in w-stores. Further, J{mi : Ai}i∈IKw = {|mi : JAiKw |}i∈I is
the cpo of records {|mi = ai|}i∈I with component mi in JAiKw, ordered pointwise.

On morphisms w ≤ w′, JboolKw′

w = idBVal is the identity map, and Jref AKw′

w
is the inclusion Jref AKw ⊆ Jref AKw′ . Records act pointwise on the components,
J{mi : Ai}Kw′

w = λr.{|mi = JAiK
w′

w (r.mi)|}. The type of functions A ⇒ B is the
most interesting since it involves the store S,

JA⇒ BKw
def
=

Q
w′≥w(Sw′ × JAKw′ ⇀

P
w′′≥w′(Sw′′ × JBKw′′)) (1)

This says that a function f ∈ JA⇒ BKw may be applied in any future (larger)
store w′ to a w′-store s and value v ∈ JAKw′ . The computation fw′(s, v) may
allocate new storage, and upon termination it yields a store and value in a yet
larger world w′′ ≥ w′. For a morphism w ≤ w′, JA⇒ BKw′

w (f) = λw′′≥w′fw′′ is
the restriction to worlds w′′ ≥ w′.

Equation (1) clearly shows the effect of allowing higher-order store: Since
functions A⇒ B can also be stored, S and JA⇒ BK are mutually recursive. Due
to the use of S in both positive and negative positions in (1) a mixed-variant
domain equation for S must be solved. To this end, in [14] a bilimit-compact
category C is considered, i.e.,

– C is Cpo-enriched and each hom-cpo C(A,B) has a least element ⊥A,B s.t.
⊥ ◦ f = ⊥ = g ◦ ⊥;

– C has an initial object; and
– in the category CE of embedding-projection pairs of C, every ω-chain ∆ =
D0 → D1 → . . . has an O-colimit [24], i.e., a cocone 〈ei, pi〉i∈N : ∆ → D in
CE s.t.

⊔
i ei ◦ pi = idD in C(D,D).

It follows that every locally continuous functor F : Cop × C → C has a minimal
invariant, i.e., an object D in C s.t. F (D,D) = D (omitting isomorphisms) and
idD is the least fixed point of the continuous endofunction δ : C(D,D) → C(D,D)

given by δ(e)
def
= F (e, e) [18].

Following [14] the semantics of types can now be obtained as minimal invari-
ant of the locally continuous functor F : Cop × C → C (derived from the domain
equations for types by separating positive and negative occurrences of the store)
over the bilimit-compact category

C =
Q
w∈W pCpo×

Q
A∈Type[W,Cpo] •→ [W,pCpo] (2)

Here, [W,Cpo] •→ [W,pCpo] denotes the category where objects are functors
A,B : W → Cpo and morphisms are partial natural transformations µ : A .→ B,
i.e., for A,B : W → Cpo the diagram

Aw

Aw′
w ��

µw / Bw
Bw′

w��
Aw′

µw′
/ Bw′

(3)

commutes. The first component of the product in (2) is used to define Sw
def
= DSw

from the minimal invariant D = 〈{DSw}w, {DA}A〉, and the second component

yields JAK def
= DA. In fact, D gives isomorphisms F (D,D)A = DA in the category

[W,Cpo] of functors W → Cpo and total natural transformations.

Semantics. Each subtyping derivation A � B determines a coercion, which is
in fact a (total) natural transformation from JAK to JBK, defined in Table 2.
We follow the notation of [22] and write P(J) to distinguish a derivation of
judgement J from the judgement itself.

Writing JΓ Kw for the set of maps from variables to
⋃

A JAKw s.t. ρ(x) ∈ JAKw
for all x:A ∈ Γ , we define the semantics of (derivations of) typing judgments

JΓ . e : AKw : JΓ Kw → Sw ⇀
P
w′≥w(Sw′ × JAKw′) .

As observed in Levy’s paper, each value Γ . v : A determines a natural transfor-
mation from JΓ K to JAK in [W,Cpo]. Here this is a consequence of the fact that
(i) values do not affect the store and (ii) coercion maps determine (total) natural
transformations. We make use of this fact in the statement of the semantics. For
example, in the case of records we do not have to fix an order for the evaluation
of the components.

Table 2. Coercion maps

s

A � A

{

w

= idJAKw

s
P(A � A′) P(A′ � B)

A � B

{

w

= JP(A′ � B)Kw ◦ JP(A � A′)Kw
s

I ′ ⊆ I P(Ai � A′i) ∀i ∈ I ′

{mi : Ai}i∈I � {mi : A′i}i∈I′

{

w

= λr.{|mi = JP(Ai � A′i)Kw (r.mi)|}i∈I′

s
P(A′ � A) P(B � B′)

A⇒B � A′⇒B′

{

w

= λfλw′≥w λ〈s, x〉.

8<:
〈w′′, 〈s′, JP(B � B′)Kw′′ x

′〉〉
if fw′〈s, JP(A′ � A)Kw′ (x)〉 = 〈w′′, 〈s′, x′〉〉↓

undefined otherwise

The semantics of subtyping judgements is used for the subsumption rule,
s

P(Γ . e : A) P(A � B)

Γ . e : B

{

w

ρs =

8<:
〈w′, 〈s′, JP(A � B)Kw′ a〉〉

if JP(Γ . e : A)Kw ρs = 〈w′, 〈s′, a〉〉↓
undefined otherwise

As explained above, the semantics of functions is parameterised over extensions
of the current world w,

s
P(Γ, x : A . e : B)

Γ . λx.e : A⇒ B

{

w

ρs

= 〈w, 〈s, λw′ ≥ wλ〈s′, a〉. JP(Γ, x:A . e : B)Kw′ (JΓ Kw
′

w ρ)[x := a] s′〉〉

Function application is
s

P(Γ . x : A⇒ B) P(Γ . y : A)

Γ . x(y) : B

{

w

ρs = fw(s, a)

where 〈w, 〈s, f〉〉 = JP(Γ . x : A⇒ B)Kw ρs and 〈w, 〈s, a〉〉 = JP(Γ . y : A)Kw ρs.
The remaining cases are similarly straightforward (see [14, 23]).

4 An Untyped Semantics

We give an untyped semantics of the language in pCpo. Let Val satisfy

Val = BVal + Loc + RecL(Val) + (St× Val ⇀ St× Val) (4)

where St
def
= RecLoc(Val) denotes the cpo of records with labels from Loc, ordered

by r1 v r2 iff dom(r1) = dom(r2) and r1.m v r2.m for all m ∈ dom(r1). The
interpretation of terms, JeK : Env → St ⇀ St×Val, is essentially straightforward,
typical cases are those of abstraction and application:

Jλx.eK ησ = 〈σ, λ〈σ′, v〉. JeK η[x := v]σ′〉

Jx(y)K ησ =

η(x)〈σ, η(y)〉 if η(x) ∈ [St× Val ⇀ St× Val] and η(y)↓
undefined otherwise

Table 3. Kripke logical relation

〈x, y〉 ∈ Rbool
w

def⇐⇒ y ∈ BVal ∧ x = y

〈r, s〉 ∈ R{mi:Ai}
w

def⇐⇒ s ∈ RecL(Val) ∧ ∀i. (s.mi ↓ ∧ 〈r.mi, s.mi〉 ∈ RAi
w)

〈f, g〉 ∈ RA⇒Bw
def⇐⇒ g ∈ [St× Val ⇀ St× Val] ∧

∀w′ ≥ w ∀〈s, σ〉 ∈ RSt
w′ ∀〈x, y〉 ∈ RAw′

(fw′(s, x)↑ ∧ g(σ, y)↑)
∨ ∃w′′ ≥ w′ ∃s′ ∈ Sw′ ∃x′ ∈ JBKw′ ∃σ′ ∈ St ∃y′ ∈ Val.

(fw′(s, x) = 〈w′′, 〈s′, x′〉〉 ∧ g(σ, y) = 〈σ′, y′〉
∧ 〈s′, σ′〉 ∈ RSt

w′′ ∧ 〈x′, y′〉 ∈ RBw′′)

〈x, y〉 ∈ Rref A
w

def⇐⇒ y ∈ w ∩ LocA ∧ x = y

with the auxiliary relation RSt
w ⊆ Sw × St,

〈s, σ〉 ∈ RSt
w

def⇐⇒ dom(s) = w = dom(σ) ∧ ∀lA ∈ w. 〈s.lA, σ.lA〉 ∈ RAw

Compared to the intrinsic semantics of the previous section, there are now many
more possibilities of undefinedness if things “go wrong”, e.g., if x in x(y) does
not denote a function value.

The semantics of newA may be slightly surprising as there is still some type
information in the choice of locations:

JnewA xK ησ = 〈σ + {|lA = η(x)|}, lA〉 where lA ∈ LocA \ dom(σ)

if η(x)↓, and undefined otherwise. Informally, the worlds of the intrinsic seman-
tics are encoded in the domain of untyped stores. Although σ with dom(σ) = w
need not necessarily correspond to a (typed) w-store in any sense, this will be
the case for stores being derived from well-typed terms. This is one of the results
of Sect. 5 below. See also the discussion in Sect. 7.1.

5 A Kripke Logical Relation

While in [22] a logical relation between typed and untyped models was used to
establish coherence, here this must be slightly generalised to a Kripke logical re-
lation. Kripke logical relations are not only indexed by types but also by possible
worlds, subject to a monotonicity condition (Lemma 2 below).

In Table 3 such a family of Type- and W-indexed relations RA
w ⊆ JAKw ×Val

is defined. The existence of this family R has to be established: There are both
positive and negative occurrences of RSt

w in the case of function types A⇒B.
Thus R cannot be defined by induction on the type structure, nor does it give
rise to a monotone operation (on the complete lattice of admissible predicates).

5.1 Existence of RA
w

To establish the existence of such a relation one uses Pitts’ technique for the
bilimit-compact product category C×pCpo. Let G : pCpoop×pCpo → pCpo

be the locally continuous functor for which (4) is the minimal invariant, so that
〈D,Val〉 is the minimal invariant of F × G. A relational structure R on the
category C × pCpo, in the sense of [18], is given by the following data.

– For each object 〈X,Y 〉 of C × pCpo, let R(X,Y) consist of the type- and
world-indexed families R of admissible relations, where RA

w ⊆ XAw × Y and
RSt

w ⊆ XSw × RecLoc(Y).
– For morphisms f = 〈f1, f2〉 : 〈X,Y 〉 → 〈X ′, Y ′〉, and relations R ∈ R(X,Y)

and S ∈ R(X ′, Y ′), we define f : R ⊂ S iff, for all w ∈ W, A ∈ Type, for all
x ∈ XAw, y ∈ Y , s ∈ XSw and σ ∈ RecLoc(Y),

〈x, y〉 ∈ RAw =⇒

f1Aw(x)↑ ∧ f2(y)↑ or
f1Aw(x)↓ ∧ f2(y)↓ ∧ 〈f1Aw(x), f2(y)〉 ∈ SAw

〈s, σ〉 ∈ RSt
w =⇒

f1Sw(x)↑ ∧ RecLoc(f2)(σ)↑ or
f1Sw(x)↓ ∧ RecLoc(f2)(σ)↓ ∧ 〈f1Sw(x),RecLoc(f2)(σ)〉 ∈ SSt

w

We define a functional Φ(R−, R+) on R corresponding to the equations
for the Kripke logical relation R above (by separating positive and negative
occurrences of R in the right-hand sides) such that for S ∈ R(X,Y) and
S′ ∈ R(X ′, Y ′) we have Φ(S, S′) ∈ R((F × G)(〈X,Y 〉〈X ′, Y ′〉)). The map Φ
is an admissible action of the functor F ×G on R, in the following sense:

Lemma 1. For all e = 〈e1, e2〉, f = 〈f1, f2〉 and R,R′, S, S′, if e : R′ ⊂ R and
f : S ⊂ S′ then (F ×G)(e, f) : Φ(R,S) ⊂ Φ(R′, S′).

According to [18], Lemma 1 guarantees that Φ has a unique fixed point fix(Φ)
in R(D,Val), and we obtain the Kripke logical relation R = fix(Φ) satisfying
R = Φ(R,R) as required.

Theorem 1 (Existence, [18]). The functional Φ has a unique fixed point.

5.2 The Basic Lemma

By induction on A and the derivation of A � B, resp., the following monotonicity
properties are established:

Lemma 2 (Kripke Monotonicity). Suppose 〈a, u〉 ∈ RA
w and w′ ≥ w. Then

〈JAKw′

w (a), u〉 ∈ RA
w′ .

Lemma 3 (Subtype Monotonicity). Let w ∈ W, A � B and 〈a, u〉 ∈ RA
w.

Then 〈JA � BKw (a), u〉 ∈ RB
w .

Lemmas 2 and 3 show a key property of the relation R, which is at the heart
of the coherence proof: For 〈a, u〉 ∈ RA

w we can apply coercions to a and enlarge
the world w while remaining in relation with u ∈ Val.

We extend R to contexts Γ in the natural way. It is not hard to prove
the fundamental property of logical relations which says that the (typed and
untyped) denotations of well-typed terms compute related results.

Table 4. Bracketing maps

φbool
w (b) = b

ψbool
w (v) =

v if v ∈ BVal
undefined otherwise

φ
{mi:Ai}
w (r) = {|mi = φAi

w (r.mi)|}

ψ
{mi:Ai}
w (v) =

{|mi = ψAi

w (v.mi)|} if v ∈ RecL(Val) and ψAi
w (v.mi)↓ for all i

undefined otherwise

φA⇒Bw (f) = λ〈σ, v〉.

8<:
〈φSt
w′′(s), φBw′′(b)〉 if dom(σ) = w′ ∈ W, ψSt

w′(σ)↓, ψAw′(v)↓
and fw′(ψSt

w′(σ), ψAw′(v)) = 〈w′′, 〈s, b〉〉
undefined otherwise

ψA⇒Bw (g) = λw′≥w λ〈s, a〉.

8>><>>:
〈w′′, 〈ψSt

w′′(σ), ψBw′′(v)〉〉 if g(φSt
w′(s), φAw′(a)) = 〈σ, v〉↓

dom(σ) = w′′ ∈ W,
ψSt
w′′(σ)↓ and ψBw′′(v)↓

undefined otherwise

φref A
w (l) = l

ψref A
w (v) =

v if v ∈ LocA
undefined otherwise

φSt
w (s) = {|lA = φAw(s.lA)|}lA∈w

ψSt
w (σ) =

{|lA = ψAw(σ.lA)|}lA∈w if ψAw(σ.lA)↓ for all lA ∈ w
undefined otherwise

Lemma 4 (Basic Lemma). Suppose Γ . e : A, w ∈ W, 〈ρ, η〉 ∈ RΓ
w and

〈s, σ〉 ∈ RSt
w . Then

– either JΓ . e : AKw ρs↑ and JeK ησ↑, or
– there are w′ ≥ w, s′, x′, σ′, y′ s.t.JΓ . e : AKw ρs = 〈w′, 〈s′, a〉〉 and JeK ησ =
〈σ′, u〉 s.t. 〈s′, σ′〉 ∈ RSt

w′ and 〈a, u〉 ∈ RA
w′ .

Proof. By induction on the derivation of Γ . e : A, using Lemmas 2 and 3. ut

5.3 Bracketing

Next, in Table 4, we define families of “bracketing” maps φw, ψw,

JAKw
φA

w //
Val

ψA
w

oo and Sw
φSt

w //
ψSt

w

oo St

such that ψA
w ◦ φA

w = idJAKw
, i.e., each JAKw is a retract of the untyped model.

As in [22], the retraction property follows from a more general result which
justifies the term “bracketing”, φA

w ⊆ RA
w ⊆ (ψA

w)op, relating the (graphs of the)
bracketing maps and the Kripke logical relation of the previous section.

Theorem 2 (Bracketing). For all w ∈ W and A ∈ Type,

– ∀x ∈ JAKw . 〈x, φA
w(x)〉 ∈ RA

w;

– ∀s ∈ Sw. 〈s, φSt
w (s)〉 ∈ RSt

w ;
– ∀〈x, y〉 ∈ RA

w. x = ψA
w(y); and

– ∀〈s, σ〉 ∈ RSt
w . s = ψSt

w (σ).

Proof (Sketch). Compared to Reynolds work, the proof of the theorem is more
involved, again due to the (mixed-variant) type recursion caused by higher-order
store. By a simultaneous induction on n we first prove the properties

– ∀x ∈ JAKw . π
Aw
n (x)↓ =⇒ 〈πAw

n (x), φA
w(πAw

n (x))〉 ∈ RA
w

– ∀〈x, y〉 ∈ RA
w. π

Aw
n (x)↓ =⇒ πAw

n (x) = πAw
n (ψA

w(y))

for all n ∈ N, using the projection maps that come with the minimal invariant
solutionD of the endofunctor F on C: For δ(e) = F (e, e) we set πAw

n
def
= δn(⊥)Aw,

and similarly πSw
n

def
= δn(⊥)Sw. By definition of the minimal invariant solution,⊔

n π
Aw
n = (

⊔
n δ

n(⊥))Aw = (lfp(δ))Aw = idAw follows. Also,
⊔

n π
Sw
n = idSw.

Now for the first part of the theorem let x ∈ JAKw. Thus, x =
⊔

n π
Aw
n (x)

entails πAw
n (x)↓ for n sufficiently large. By the above, 〈πAw

n (x), φA
w(πAw

n (x))〉 ∈
RA

w for all sufficiently large n ∈ N. This is a countable chain in JAKw × Val, and
admissibility of RA

w and continuity of φA
w prove the result. The other parts are

similar. ut

6 Coherence of the Intrinsic Semantics

We have now all the parts assembled in order to prove coherence (which proceeds
exactly as in [22]): Suppose P1(Γ . e : A) and P2(Γ . e : A) are derivations of
the judgement Γ . e : A. We show that their semantics agree. Let w ∈ W,
ρ ∈ JΓ Kw and s ∈ Sw. By Theorem 2 parts (1) and (2), 〈ρ, φΓ

w(ρ)〉 ∈ RΓ
w and

〈s, φSt
w (s)〉 ∈ RSt

w . Hence, by two applications of the Basic Lemma, either

JP1(Γ . e : A)Kw ρs↑ ∧ JeK (φΓw(ρ))(φSt
w (s))↑ ∧ JP2(Γ . e : A)Kw ρs↑

or else there exist wi ≥ w, si ∈ Swi
, vi ∈ JAKwi

and σ ∈ St, v ∈ Val such that

JP1(Γ . e : A)Kw ρs = 〈w1, 〈s1, v1〉〉 ∧ JeK (φΓw(ρ))(φSt
w (s)) = 〈σ, v〉

∧ JP2(Γ . e : A)Kw ρs = 〈w2, 〈s2, v2〉〉

where 〈si, σ〉 ∈ RSt
wi

and 〈vi, v〉 ∈ RA
wi

, for i = 1, 2. The definition of the relation
RSt

wi
entails w1 = dom(σ) = w2, and by Theorem 2 parts (3) and (4), s1 =

ψSt
w1

(σ) = ψSt
w2

(σ) = s2 and v1 = ψA
w1

(v) = ψA
w2

(v) = v2. Thus we have shown

Theorem 3 (Coherence). All derivations of a judgement Γ . e : A have the
same meaning in the intrinsic semantics.

Note that this result does not hold if the type annotation A in newA was
removed. In particular, there would then be two different derivations of the
judgement

x:{m : bool} . new x; true : bool (5)

one without use of subsumption, and one where x is coerced to type 1 before
allocation. The denotations of these two derivations are different (clearly not
even the resulting extended worlds are equal). It could be argued that, at least
in this particular case, this is a defect of the underlying model: The use of a
global store does not reflect the fact that the cell allocated in (5) above remains
local and cannot be accessed by any enclosing program. However, in the general
case we do not know if the lack of locality is the only reason preventing coherence
for terms without type annotations.

7 Discussion

We consider some aspects in more detail. Firstly, the technical development so
far can be used to obtain an (extrinsic) semantics over the untyped model, based
on partial equivalence relations. Secondly, we show that our simple notion of sub-
typing is useful in obtaining a pleasingly straightforward semantics of the object
calculus [1]. Finally, we demonstrate how to prove (non-trivial) properties of
programs using higher-order store in the model: We consider an object-oriented,
“circular” implementation of the factorial function.

7.1 Extrinsic PER Semantics

Apart from proving coherence, Reynolds used (his analogue of) Theorem 2 to
develop an extrinsic semantics of types in the language [22]. Besides Theorem 2
this only depends on the Basic Lemma, and we can do exactly the same here.
More precisely, the binary relation ||A||w, defined as (RA

w)op ◦ RA
w, is a partial

equivalence relation (per) on Val × Val. We observe that a direct proof of tran-
sitivity is non-trivial, but it follows easily with part (3) of Theorem 2.

This definition induces a per ||w|| ⊆ St×St for every w ∈ W by 〈σ, σ′〉 ∈ ||w||
iff dom(σ) = w = dom(σ′) and 〈σ.lA, σ′.lA〉 ∈ ||A||w for all lA ∈ w. The Basic
Lemma then shows that the semantics is well-defined on ||−||-equivalence classes,
in the sense that if Γ . e : A then for all w ∈ W, for all 〈η, η′〉 ∈ ||Γ ||w and all
〈σ, σ′〉 ∈ ||w||,

JeK ησ↓ ∨ JeK η′σ′ ↓ =⇒

JeK ησ = 〈σ1, u〉 ∧ JeK η′σ′ = 〈σ′1, u′〉 ∧
∃w′ ≥ w. 〈σ1, σ

′
1〉 ∈ ||w′|| ∧ 〈u, u′〉 ∈ ||A||w′

(6)

The resulting per model satisfies some of the expected typed equations: For
instance, {|m = true, m′ = true|} and {|m = true, m′ = false|} are equal at {m :
bool}. Unfortunately, no non-trivial equations involving store are valid in this
model; in particular, locality and information hiding are not captured. This is
no surprise since we work with a global store, and the failure of various desirable
equations has already been observed for the underlying typed model [14].

However, locality is a fundamental assumption underlying many reasoning
principles about programs, such as object and class invariants in object-oriented
programming. The work of Reddy and Yang [19], and Benton and Leperchey [6],

shows how more useful equivalences can be built in into typed models of lan-
guages with storable references. It would be interesting to investigate if these
ideas carry over to full higher-order store.

We remark that, unusually, the per semantics sketched above does not seem
to work over a “completely untyped” partial combinatory algebra: The construc-
tion relies on the partition of the location set Loc =

⋃
A LocA. In particular, the

definition of the pers depends on this rather arbitrary partition. The amount of
type information retained by using typed locations allows to express the invari-
ance required for references in the presence of subtyping. We have been unable
to find a more “semantic” condition.

Further, it is interesting to observe the role the typed “witness” of 〈x1, x2〉 ∈
||A||w play, i.e., the unique element a ∈ JAKw with 〈a, xi〉 ∈ RA

w: Crucially, a
determines the world w′ ≥ w over which the result store and value are to be
interpreted in the case of application.

Previously we have given a denotational semantics for a logic of objects [3],
where an untyped cpo model was used [20]. This logic has a built-in notion
of invariance which makes it very similar to a type system, and the semantic
structure of function types used in [20] closely resembles (6). In fact, in [20] an
ad-hoc construction was necessary to “determinise” the existential quantifica-
tion over world extensions of (6) in order to preserve admissibility of predicates
(corresponding to types and specifications of the logic). Regarding the setting of
the present paper, the tracking of the computation on W is hard-wired into the
witnesses coming from the typed model.

7.2 A Semantics of Objects

Next, we sketch how to give a semantics to Abadi and Cardelli’s imperative
object calculus with first-order types [1], where we distinguish between fields and
methods (with parameters). Fields are mutable, but methods cannot be updated.
The type of objects with fields fi of type Ai and methods mj of type Cj (with
self parameter yj) and parameter zj of type Bj , is written [fi:Ai,mj :Bj⇒Cj]i,j .
The introduction rule is

A ≡ [fi:Ai,mj :Bj⇒Cj]i,j
Γ ` xi : Ai ∀i Γ, yj :A, zj :Bj ` bj : Cj ∀j
Γ ` [fi = xi,mj = ς(yj)λzj . bj]i,j : A

(7)

Subtyping on objects is by width, and for methods also by depth:

Bj⇒Cj � B′j⇒C′j ∀j ∈ J ′ I ′ ⊆ I J ′ ⊆ J

[fi : Ai,mj : Bj ⇒ Cj]i∈I,j∈J � [fi : Ai,mj : B′j ⇒ C′j]i∈I′,j∈J′
(8)

The following is essentially a (syntactic) presentation of the fixed-point (or clo-
sure) model of objects [11], albeit in a typed setting: Objects of type A ≡
[fi:Ai,mj :Bj⇒Cj]i,j are simply interpreted as records of the corresponding record
type A∗ ≡ {fi:ref A∗i ,mj :B∗

j⇒C∗
j }i,j . Note that the self parameter does not play

any part in this type (in contrast to functional interpretations of objects, cf. [8]),
and soundness of (8) follows directly from the rules of Sect. 2.

A new object [fi=xi,mj=ς(yj)λzj . bj]i,j of type A is created by allocating
a state record s and defining the methods by mutual recursion (using obvious
syntax sugar),

let s = {fi = newAi(xi)}i∈I in MethA(s)({mj = λyjλzj . bj}j∈J)

where MethA : {fi:ref Ai}i∈I ⇒ {mj :A∗⇒Bj⇒Cj}j∈J ⇒ A∗ is given by

MethA ≡ µf(s).λm. {fi = s.fi,mj = λzj . (m.mj(f(s)(m)))(zj)}i∈I,j∈J

Here µf(x).e is a recursively defined function f ; note that this is meaningful: Us-
ing the fixed-point of the map h 7→ Jλx.eKw ρ[f := h] in Cpo recursive functions
can be interpreted in the model. The Basic Lemma holds also for the language
extended with recursive functions [23]. Soundness of (7) follows immediately
from this interpretation of objects and object types.

7.3 Reasoning about Higher-order Store and Objects

In the following program let A ≡ [fac : int ⇒ int], and B ≡ [f : A, fac : int ⇒ int]
(so B � A). The program computes the factorial, making the recursive calls
through the store.

let a : A = [fac = ς(x)λn. n]

let b : B = [f = a, fac = ς(x)λn. if n < 1 then 1 else n× (x.f.fac(n− 1))]

in b.f := b; b.fac(x)

While we certainly do not claim that this is a particularly realistic example, it
does show how higher-order store complicates reasoning. We illustrate a pattern
for dealing with the self-application arising from higher-order store, following
the general ideas of [21]: To prove that the call in the last line indeed computes
the factorial of x, consider the family of predicates P = (Pw)w where w ranges
over worlds ≥ {l:A} and Pw ⊆ Jint ⇒ intKw,

h ∈ Pw
def⇐⇒ ∀w′ ≥ w ∀s ∈ Sw′ ∀n ∈ JintKw′ . (s.l.fac ∈ Pw′ ∧ n ≥ 0 ∧ hw′(s, n)↓)

=⇒ ∃w′′ ≥ w′ ∃s′ ∈ Sw′′ . hw′(s, n) = 〈w′′, 〈s′, n!〉〉

Note that Pw corresponds to a partial correctness assertion, i.e., if the result
is defined, then it is indeed n!. This example has also been considered in the
context of total correctness, in recent work of Honda et al. [9] (where, rather
different to here, the proof relies on well-founded induction using a termination
order).

Existence of P is established along the lines of Theorem 1. Then, assuming
that l is the location allocated for field f, a simple fixed-point induction shows

Jx:int, a : A . [f = a, fac = ς(x)λn. . . .] : BKw ρs = 〈w′, 〈s′, o〉〉

such that w′ is w ∪ {l:A}, and o.fac ∈ Pw′ . Now let ŝ = s′[l := JB � AKw′ (o)].
Thus, ŝ.l.fac = o.fac ∈ Pw′ ; and if ρ(x) ≥ 0 we conclude

Jx:int, a:A, b:[f:A, fac:int⇒int] . b.f := b; b.fac(x) : intKw′ ρ[b := o]ŝ

= ŝ.l.facw′(ŝ, ρ(x))

= 〈w′′, 〈s′′, ρ(x)!〉〉

for some w′′ ∈ W and s′′ ∈ Sw′′ .

8 Related Work

Possible worlds models of programming languages were first considered in the
work of Reynolds and Oles on the semantics of local stack-allocated variables [17].
The current work is closer in spirit to the various possible worlds models for
languages with dynamic allocation of heap storage [14, 19, 25, 6].

Apart from Levy’s work [14, 15] which we built upon here, we are aware
of only few other semantic models of higher-order store in the literature. The
models [4, 12] use games semantics and are not location-based, i.e., the store is
modelled only indirectly via possible program behaviours. They do not appear
to give rise to reasoning principles such as those necessary to establish the ex-
istence of the logical relation, or the predicate used in Sect. 7.3. Ahmed, Appel
and Virga [5] construct a model with a rather operational flavour: The seman-
tics of types is obtained by approximating absence of type errors in a reduction
semantics; soundness of this construction follows from an encoding into type
theory. Again we do not see how strong reasoning principles can be obtained.
Jeffrey and Rathke [10] provide a model of the object calculus in terms of in-
teraction traces, very much in the spirit of games semantics. Apart from Jeffrey
and Rathke’s semantics, none of these models deals with subtyping.

The proof principles applied in Sect. 7.3 are direct adaptations of those pre-
sented in [21] in the context of an untyped model of the object calculus.

9 Conclusions and Future Work

We have extended a model of general references with subtyping, to obtain a se-
mantics of imperative objects. While the individual facts are much more intricate
to prove than for the functional language considered in [22], the overall structure
of the coherence proof is almost identical to loc.cit. It could be interesting to
work out the general conditions needed for the construction.

In a different direction, we can extend the language with a more expressive
type system: Recursive types and polymorphism feature prominently in the work
on semantics of functional objects (see [8]). In [15] it is suggested that the con-
struction of the intrinsic model also works for a variant of recursive types. We
haven’t considered the combination with subtyping yet, but do not expect any
difficulties. In fact, also the extension with ML-like (prenex) polymorphism is
straightforward – essentially because there is no interaction with the store.

Finally, we plan to develop (Hoare-style) logics, with pre- and post-conditions,
for languages involving higher-order store. As a starting point, we would like to
adapt the program logic of [3] to the language considered here.

Acknowledgement I wish to thank Bernhard Reus for many helpful discussions. Paul

Levy pointed out a flaw in an earlier version. Financial support was provided by EPSRC

grant GR/R65190/01, “Programming Logics for Denotations of Recursive Objects”

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

2. M. Abadi, L. Cardelli, and R. Viswanathan. An interpretation of objects and
object types. In Proc. POPL’96, pages 396–409. 1996.

3. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Verification:
Theory and Practice. Essays Dedicated to Zohar Manna on the Occasion of His 64th
Birthday, LNCS, pages 11–41. Springer, 2004.

4. S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for
general references. In Proc. LICS’98, pages 334–344. 1998.

5. A. J. Ahmed, A. W. Appel, and R. Virga. A stratified semantics of general refer-
ences embeddable in higher-order logic. In Proc. LICS’02, pages 75–86. 2002.

6. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proc. TLCA’05, volume 3461 of LNCS, pages 86–101. 2005.

7. V. Breazu-Tannen, T. Coquand, G. Gunter, and A. Scedrov. Inheritance as implicit
coercion. Information and Computation, 93(1):172–221, July 1991.

8. K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1/2):108–133, Nov. 1999.

9. K. Honda, M. Berger, and N. Yoshida. An observationally complete program logic
for imperative higher-order functions. To appear in Proc. LICS’05, 2005.

10. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proc. LICS’02, pages 101–112. 2002.

11. S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented languages.
In Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and
Language Design, pages 464–495. MIT Press, 1994.

12. J. Laird. A categorical semantics of higher-order store. In Proc. CTCS’02, vol-
ume 69 of ENTCS, pages 1–18. 2003.

13. P. J. Landin. The mechanical evaluation of expressions. Computer Journal,
6(4):308–320, Jan. 1964.

14. P. B. Levy. Possible world semantics for general storage in call-by-value. In Proc.
CSL’02, volume 2471 of LNCS. 2002.

15. P. B. Levy. Call-By-Push-Value. A Functional/Imperative Synthesis, volume 2 of
Semantic Structures in Computation. Kluwer, 2004.

16. J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Annals
of Pure and Applied Logic, 51(1–2):99–124, 1991.

17. F. J. Oles. A Category-theoretic approach to the semantics of programming lan-
guages. PhD thesis, Syracuse University, 1982.

18. A. M. Pitts. Relational properties of domains. Information and Computation,
127:66–90, 1996.

19. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, March 2004.

20. B. Reus and J. Schwinghammer. Denotational semantics for Abadi and Leino’s
logic of objects. In Proc. ESOP’05, volume 3444 of LNCS, pages 264–279. 2005.

21. B. Reus and T. Streicher. Semantics and logic of object calculi. Theoretical Com-
puter Science, 316:191–213, 2004.

22. J. C. Reynolds. What do types mean? — From intrinsic to extrinsic semantics. In
Essays on Programming Methodology. Springer, 2002.

23. J. Schwinghammer. A typed semantics for languages with higher-order store and
subtyping.Technical Report 2005:05, Informatics, University of Sussex, 2005.

24. M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM Journal on Computing, 11(4):761–783, Nov. 1982.

25. I. Stark. Names, equations, relations: Practical ways to reason about new. Funda-
menta Informaticae, 33(4):369–396, April 1998.

