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Abstract. We present a procedure for computing normal forms of terms
in Abadi and Cardelli’s functional object calculus. Even when equipped
with simple types, terms of this calculus are not terminating in gen-
eral, and we draw on recent ideas about the normalization by evaluation
paradigm for the untyped lambda calculus. Technically, we work in the
framework of Shinwell and Pitts’ FM-domain theory, which leads to a
normalization procedure for the object calculus that is directly imple-
mentable in a language like Fresh O’Caml.

1 Introduction

Normalization by evaluation (NBE), sometimes referred to as reduction-free nor-
malization, is a technique for computing normal forms of terms. It was proposed
in [7] as an efficient method for proof normalization, based on the representa-
tion of natural deduction proofs as terms of the simply typed lambda calculus
(possibly enriched with constants). The underlying principle, once discovered, is
rather simple: In a model of the calculus, the denotations JaK and Ja′K of any
convertible terms a ↔ a′ are necessarily identified, so if it is possible to extract
a normal form b representing a semantic element d (i.e., such that JbK = d) then
interpretation followed by extraction yields a normal form for any given term.

Of course, the trick is to find models that allow for such term extraction.
Residualizing models contain (representations of) syntax and provide basic op-
erations on terms, which can be used to construct normal forms inside the model.
For instance, a residualizing interpretation of simply typed lambda calculus may
be obtained by constructing the full set-theoretic hierarchy over the set of terms,
where a term extraction function ↓, along with a term embedding function ↑ from
lambda terms to semantic elements, can be defined by mutual induction on the
type: letting ↓ι (a) = a and ↑ι (a) = a at base types ι, one considers

↓A⇒B (f) = lam(x, ↓B (f(↑A (varx)))) (1)

↑A⇒B (a) = λ(v ∈ JAK). ↑B (app(a, ↓A (v)) (2)

where lam, app and var are used as constructors for lambda terms. Indeed, [7]
proves that, as long as the variable x in (1) is chosen ‘fresh’, if ρ is the identity
environment then ↓A(JaKρ) is a βη-long normal form of the term a : A.

If one uses a (functional) programming language as an adequate meta-lan-
guage to describe the interpretation and extraction of terms, then NBE leads to



a normalization method that is directly executable, and correct by construction.
The method is robust and widely applicable; it has been adapted to various
type theories, going well beyond simply typed lambda calculus (for instance,
see [4, 3, 8, 7]). An introductory survey, including applications of NBE to partial
evaluation of functional programs, can be found in [10].

In this paper, we present a NBE procedure for Abadi and Cardelli’s functional
object calculus [1]. Even when equipped with simple types, the terms of this
calculus are not in general convertible to normal forms. Recursion is inherent
to objects, and arises from the presence of a distinguished ‘self’ identifier that
provides access to the host object from within method bodies. (Terms are also
not necessarily normalizing in similar foundational calculi for object-oriented
languages, e.g. [12], and we expect that our results can be straightforwardly
adapted.) Thus, we draw heavily on work about NBE of untyped lambda calculus
[11, 2]. In hindsight this is not surprising, since indeed it bears many similarities
to the self-application model of method invocation in object calculi. To take into
account the partiality of the normalization function, the correctness criterion is
weakened accordingly [11]: it comprises of soundness (results are normal forms
of the respective input), identification (convertible inputs yield the same result),
and completeness (the function is defined on every input that is convertible to
a normal form), which we also establish for our NBE procedure.

Just as in the defining equation (1) for abstractions above, a technical com-
plication arises during the extraction of terms corresponding to the methods of
an object in normal form. One has to find variables that are fresh, not simply
with respect to some given term, but rather ‘globally’: in general the name of
the bound variable must be chosen before the term for the method body can be
constructed recursively. Most previous work has addressed this issue by guaran-
teeing that variables generated in the normalization process are indeed globally
unique, for instance, by implementing a name generator using a state monad,
or avoided name clashes by adopting de Bruijn levels to identify variables. In
contrast, we follow Pitts and construct a residualizing model using nominal sets,
which allow for a rigorous yet fairly lightweight treatment of binding constructs,
via built-in notions of finite support and freshness [16].

More precisely, our model for the object calculus is a variant of the untyped
domain model of [17], where (1) we replace the category of domains by the
FM-domain theory of Shinwell and Pitts, and (2) use a continuation semantics
in the style of Shinwell and Pitts, and Benton and Leperchey [18, 19, 6]. This
provides a neat solution to the problem of interpreting fresh name generation in
the meta-language, and allows for a conceptually clear presentation of NBE and
its correctness. While the overall structure of our proof closely follows that of
Filinski and Rohde’s [11], proofs of individual properties have a distinct flavour
due to the continuation semantics. In particular, the central relation between
denotations and syntax is an instance of the relational >>-lifting of [14, 19].

Outline The next section recalls Abadi and Cardelli’s calculus. Section 3 sum-
marizes the relevant aspects from FM domain theory. The construction of the



x : at

a : at

a.` : at

a : at m : mnf

a.` := m : at

(∀i ∈ [k]) mi : mnf

[`i = mi
i∈[k]] : nf

a : at

a : nf

a : nf

ς(x)a : mnf

Fig. 1. Atomic terms and normal forms

If a ≡ [`i = mi
i∈[k]], j ∈ [k] and mj ≡ ς(xj)aj then

Selection: a.`j ↔ (xj 7→ a)(aj)

Update: a.`j := m ↔ [`i = mi
i∈[k],i6=j , `j = m]

Fig. 2. Conversion semantics

normalization procedure is given in Section 4, its correctness is established in
Section 5 which forms the technical core of the paper. The appendix contains
the existence proof omitted in Section 5.

2 Syntax and Conversion Semantics of Object Calculus

Syntax Fix a set L of labels, ranged over by `, and let x, y range over a countably
infinite set of variables Var . For k ∈ N, let [k] = {1, . . . , k}. The set obj of object
calculus terms is defined by the following grammar:

a, b ∈ obj ::= x | [`i = mi
i∈[k]] | a.` | a.` := m

m ∈ meth ::= ς(x)a

The self binder of methods is the only binding construct (ς(x)a binds x in the
method body a). This determines the set fv(a) of free variables of a, and we
identify terms up to α-equivalence. Given a (finite) map θ : Var → obj we write
capture-avoiding simultaneous substitution as θ(a).

The set of atomic (or neutral) terms and (method) normal forms, respec-
tively, are defined inductively by the inference rules in Figure 1. These will be
the output of the nbe procedure (if any). They roughly correspond to the ‘well-
formed’ irreducible terms with respect to the usual reduction semantics from [1]
(informally called results in [1]). In particular, note that [`i = ς(xi)ai

i∈[k]].` and
[`i = ς(xi)ai

i∈[k]].` := ς(y)b are not normal forms whenever ` 6= `i for all i ∈ [k]
even though both are irreducible. It is not difficult to repair this mismatch by
considering a minor variation of the reduction relation; e.g. as in [9].

Conversion The conversion relation a ↔ b between terms is the least equiva-
lence relation on obj containing the axioms in Figure 2 that is compatible, i.e.,
it is reflexive, symmetric, transitive, and for all contexts C[−] with a single hole,
if a↔ b then C[a] ↔ C[b].

3 FM Domain Theory

We work in the category FM-Cppo of FM-cppos over Var and equivariant strict
continuous functions. To keep this paper self-contained we recall the necessary



definitions from [19, 18]. In the following we write (xx′) for the transposition that
swaps x and x′ and fixes all other y ∈ Var , and denote by perm = perm(Var) the
group of bijections π : Var → Var generated by all transpositions (i.e., where
π(x) = x for all but finitely many x ∈ Var); id stands for the identity. An action
of perm on a set A is an operation · : perm × A → A such that id · a = a and
π · (π′ · a) = (π ◦ π′) · a for all a ∈ A and π, π′ ∈ perm. An FM-set A is given
by an action of perm on A such that every a ∈ A is finitely supported, meaning
that there exist finite sets V ⊆ Var such that for all π ∈ perm,(

∀(x ∈ V ) π(x) = x
)

⇒ π · a = a.

Each a ∈ A in fact possesses a smallest such set supp(a) supporting a. Every set
A gives rise to an FM-set when equipped with the trivial action π · a = a.

Syntax as FM-Set The set of obj-terms may be turned into an FM-set, where
the action of perm is defined by structural recursion and the interesting cases
are π · x = π(x) and π · ς(x)a = ς(π(x))(π · a). This gives rise to a well-defined
action of perm on α-equivalence classes of terms such that the notion of support
coincides with that of free variables, i.e., supp(a) = fv(a) for all a ∈ obj. More-
over, α-equivalence itself can be characterised using the action on terms, as the
least congruence relation ∼ such that whenever (x y) · a ∼ (x′ y) · a′ for some/all
y not occurring in a, a′ and different from x and x′, then ς(x)a ∼ ς(x′)a′ [16].

Domain-theoretic Constructions An FM-poset is an FM-set A equipped
with a partial order v on A that is compatible with the group action, i.e. where
a v a′ implies π · a v π · a′ for all a, a′ and π. More generally, a subset D ⊆ A
of an FM-set A is finitely supported if there exists finite V ⊆ Var such that
for all π that fix V pointwise, a ∈ D ⇔ π · a ∈ D. By an FM-cpo we mean
an FM-poset A where each finitely supported directed subset D has a least
upper bound tD. (The use of directed-complete FM-cpos is not essential for our
purposes; we could just as well have used chain-complete FM-posets as in [19].)
A continuous function f : A → B between FM-cpos is a monotonic function
f from A to B such that (1) f is equivariant : f(π · a) = π · (f(a)) for all a
and π, and (2) f preserves least upper bounds: f(tD) = tf(D) for all finitely
supported directed sets D ⊆ A. An FM-cppo is an FM-cpo that possesses a least
element ⊥, for which necessarily supp(⊥) = ∅ holds. A continuous function f
between FM-cppos is strict if f(⊥) = ⊥.

The smash product A1⊗A2 and coalesced sum A1⊕A2 of FM-cppos A1 and
A2 are given by the corresponding construction on pointed cpos (e.g. [15]) where
perm acts by π · 〈a, a′〉 = 〈π · a, π · a′〉 and π · ιi(a) = ιi(π · a) for i = 1, 2, resp.
(We may omit the tags ιi below). If A is a FM-cpo then its lift A⊥ is obtained
by adjoining a new element ⊥ /∈ A, with π · ⊥ = ⊥ and ⊥ v a for all π, a;
conversely, for an FM-cppo, A↓ is the FM-cpo obtained by removing ⊥.

The function space A → B between FM-cpos consists of those monotonic
functions f : A → B that preserve least upper bounds of finitely supported



directed subsets of A, and additionally are finitely supported in the sense that
there exists a finite set V ⊆ Var such that for all π ∈ perm and a ∈ A,(

∀(x ∈ V ) π(x) = x
)

⇒ π · (f(a)) = f(π · a).

If A,B are FM-cppos then the strict function space A ( B is the subset of
functions in A→ B that additionally preserve ⊥. When equipped with the action
where (π · f)(a) = π · (f(π−1 · a)) for a ∈ A, both sets become FM-c(p)pos.

For an FM-cppo A we also consider an FM-cppo of L-labelled records with
entries from A: its underlying set is

RecL(A) =
( ∑
L⊆finL

(L→ A↓)
)
⊥ (3)

For ⊥ 6= ιL(r) ∈ RecL(A) we write dom(r) = L and use record notation
{|`1 = a1, . . . , `k = ak|} if L = {`1, . . . , `k} and r(`i) = ai for all i ∈ [k]. We
shall also write r.` for r(`) and r.` := a for the record that maps ` to a and
all other `′ ∈ dom(r) to r.`′ (assuming ` ∈ dom(r); the expressions denote ⊥
otherwise). The ordering on (3) is given by

r v r′ ⇔ r 6= ⊥ ⇒ dom(r) = dom(r′) ∧ ∀(` ∈ dom(r)) r.` v r′.`,

and the action of perm by (π · r).` = π · (r.`) for all ` ∈ dom(r). In particular,
supp(r) =

⋃
`∈dom(r) supp(r.`) so that r is finitely supported.

Continuation Monad For the purposes of giving a denotation to objects in a
continuation semantics we denote by A⊥ the FM-cppo A ( 1⊥ and by A⊥⊥ the
FM-cppo (A⊥)⊥ = (A ( 1⊥) ( 1⊥, where 1 is a singleton cppo.

We shall write return a for the unit λ(h ∈ A⊥). h(a) of the continuation
monad, and denote by f∗ ∈ (A⊥⊥ ( B⊥⊥) the extension

f∗(d)(h) = d(λ(a ∈ A). f(a)(h))

of a function f ∈ (A ( B⊥⊥). The notation let a ⇐ d in e[a], where e may
depend strict continuously on a, stands for (λ(a ∈ A). e[a])∗(d). Note that return
and (−)∗ are equivariant and (strict) continuous operations, and that we have:

let a⇐ return a′ in e[a] = e[a′]
let a⇐ (let a′ ⇐ d in e′[a′]) in e[a] = let a′ ⇐ d in let a⇐ e′[a′] in e[a].

A Domain Equation for Objects An account of the self-application inherent
in Abadi and Cardelli’s object calculus requires a recursively defined domain. As
outlined in [19], the constructions on FM-cppos are functorial, with a locally FM-
continuous action on the morphisms of FM-Cppo. Essentially, this means that
solutions to recursive domain equations can be found by the classical technique
using embedding-projection pairs, suitably adapted to FM-cppos by replacing
arbitrary directed sets in the construction by finitely supported ones.



Similar to the untyped lambda calculus, for the object calculus we will be
interested in a model where the space of ‘records of pre-methods’ is a retract
of the model. More precisely, given an FM-cppo A, we let FA : FM-Cppoop ×
FM-Cppo −→ FM-Cppo be the locally FM-continuous functor

FA(X,Y ) = A⊕ RecL(X ( Y ⊥⊥) (4)

and observe that the construction referred to above yields solutions D with
i : FA(D,D) ∼= D that are minimal invariant objects in the sense that the
map δ : (D ( D) → (D ( D), defined as δ(e) = i ◦ FA(e, e) ◦ i−1, satisfies
idD = lfp(δ). This minimal invariant property will be employed in the existence
proof in Section 5 below.

For ease of notation we will usually omit the isomorphism i in the following.

4 Normalization Procedure

We will interpret the object calculus in a residualizing model, specified by the
following pair of mutually recursive domain equations:

O = obj⊥ ⊕ RecL(M) M = O ( O⊥⊥

Clearly O can be obtained as the minimal invariant of (4) by choosing A = obj⊥.

Term Constructors The embedding Var ↪→ obj extends to a strict continuous
function var ∈ (Var⊥ ( obj⊥) with empty support, mapping x ∈ Var to x.
Similarly, the other ways of constructing obj terms may be viewed as strict
continuous functions (with empty support):

– meth : Var⊥ ⊗ obj⊥ ( meth⊥ sends 〈x, a〉 6= ⊥ to ς(x)a
– obj : RecL(meth⊥) ( obj⊥ sends {|`i = mi

i∈[k]|} to [`i = mi
i∈[k]]

– sel : obj⊥ ⊗ L⊥ ( obj⊥ sends 〈a, `〉 6= ⊥ to a.`
– upd : obj⊥ ⊗ L⊥ ⊗meth⊥ ( obj⊥ sends 〈a, `,m〉 6= ⊥ to a.` := m

If we let tm(a) = i(ι1(a)) and rec(r) = i(ι2(r)) then any element ⊥ 6= d ∈ O may
be uniquely written as either d = tm(a) or d = rec r for (uniquely determined)
a ∈ obj and ⊥ 6= r ∈ RecL(M), respectively.

Reification and Reflection The reason for using FM domain theory and the
continuation semantics is that it lets us choose fresh variable names: there exists
an element fresh in the FM-cppo (Var⊥)⊥⊥ that maps h ∈ (V ar⊥)⊥ to h(x) ∈ 1⊥,
where x is any variable not in supp(h). The choice of x does not matter since
the action of perm on 1⊥ is necessarily trivial, hence if x, y /∈ supp(h) then
h(x) = ((x y) · h)(x) = (x y) · (h(y)) = h(y).

Now reflection ↑ : obj⊥ ( O⊥⊥, ↑(a) = return(tm a), lets us view terms as
elements of O. (Conceptually, it would be enough to have reflection for atomic
terms only.) Conversely, the (mutually recursive) reification functions ↓ : O (



JxKη = return(η(x))
r
[`i = mi

i∈[k]]
z

η
= let (fi ⇐ JmiKη | i ∈ [k]) in return(rec({|`i = fi

i∈[k]|} ))

Ja.`Kη = match JaKη with

tm(b) ⇒ ↑(sel(b, `))
| rec(r) ⇒ r.`(rec r)

Ja.l := mKη = match JaKη with

tm(b) ⇒ let m′ ⇐ ↓m∗(JmKη) in ↑(upd(b, `,m′))

| rec(r) ⇒ let f ⇐ JmKη in return(rec(r.` := f))

Jς(x)aKη = return(λ(d ∈ O). if d=⊥ then ⊥ else JaKη[x:=d])

Fig. 3. Interpretation of obj-terms in O⊥⊥

(obj⊥)⊥⊥ and ↓m : M ( (meth⊥)⊥⊥, allow us to read back object calculus terms
from semantic elements. They are defined as least fixed points, by the equations

↓(⊥) = ⊥
↓(tm a) = return(a)

↓(rec r) = let (m` ⇐ ↓m(r.`) | ` ∈ dom(r)) in return
(
obj({|` = m`

`∈dom(r)|} )
)

↓m(f) = let x⇐ fresh in let a⇐ ↓∗(f∗(↑(var x))) in return
(
meth(x, a)

)
where ↓m makes use of the function fresh described above.

Interpretation and Normalization of Objects We interpret obj in O. More
precisely, given an environment η ∈ Env = Var→O such that η(x) 6= ⊥ for all
x, the denotation of each term a ∈ obj is an element JaKη ∈ O⊥⊥. Similarly, the
denotation of each method m ∈ meth is an element JmKη ∈ M⊥⊥. The notation
match d with tm(a) ⇒ e1[a] | rec(r) ⇒ e2[r] (where e1 and e2 may depend strict
continuously on a and r, resp.) stands for the case construct

let v ⇐ d in
(
(λ(a ∈ obj⊥). e1)⊕ (λ(r ∈ RecL(M)). e2)

)
(v),

so that in particular

match (return d) with tm(a) ⇒ e1[a] | rec(r) ⇒ e2[r] =


⊥ if d = ⊥
e1[a] if d = tm a

e2[r] if d = rec r

The interpretation is given in Figure 3, defined by recursion on obj-terms. It can
be verified that J−Kη respects α-equivalence and therefore is also well-defined on
α-equivalence classes. Alternatively, J−Kη may be directly defined on equivalence
classes by α-structural recursion [16].



Lemma 1 (Substitution). For all a, x = x1 . . . xn, b = b1 . . . bn, d = d1 . . . dn

and η, if JbiKη = return(di) for all i ∈ [n] then J(x 7→ b)(a)Kη = JaKη[x:=d].

Proof. By α-structural induction on a, exploiting that the denotation of a only
depends on the value of the environment on fv(a) = supp(a) which is similarly
proven by α-structural induction using the definition of a 7→ JaKη. See [16]. ut

Theorem 1 (Model soundness). If a↔ a′ then JaK = Ja′K.

Proof (sketch). By induction on the derivation of a↔ a′. For instance, we have
for all a of the form [`i = mi

i∈[k]] and j ∈ [k] with each mi of the form ς(xi)ai:

Ja.`jKη = match JaKη with tm(b) ⇒ ↑(sel(b, `))
| rec(r) ⇒ r.`(rec r)

= gj(rec {|`i = gi
i∈[k]|} ) (for gi = λd.if d=⊥ then⊥ else JaiKη[xi:=d])

= JajKη[xj :=rec{|`i=gi
i∈[k]|} ]

= J(xj 7→ a)ajKη

where the second equation follows from JaKη = return(rec {|`i = gi
i∈[k]|} ) for

gi = λd.if d=⊥ then⊥ else JaiKη[xi:=d], the second is by definition of gj , and the
last equation is by Lemma 1. The case for update is similar, the cases for the
equivalence and compatibility rules are immediate by induction. ut

Note that return is injective. Thus we may define norm : obj → obj⊥ to be
the partial map satisfying

norm(a) = b ⇔ ↓∗(JaKη0
) = return(b) (some b ∈ obj) (5)

and norm(a) = ⊥ otherwise. Here, η0 = λ(x ∈ Var). tm(var x) denotes the
environment that maps every variable to the corresponding element of O.

5 Correctness

Following [11], the correctness properties we expect from norm : obj → obj⊥ are
split into three parts:

Soundness If the normalization function is defined, then the output is convert-
ible to the input, and in normal form: norm(a) = a′ ⇒ a′ : nf ∧ a↔ a′.

Identification The normalization function yields equal results on convertible
terms: a↔ a′ ⇒ norm(a) = norm(a′).

Completeness The normalization function will be defined whenever the input
term has a normal form: a↔ a′ ∧ a′ : nf ⇒ norm(a) 6= ⊥.

While identification and completeness are fairly direct consequences of Theo-
rem 1, the proof of soundness requires more work: as explained by Filinski and
Rohde, the property is closely related to proofs of adequacy of a denotational
semantics with respect to an operational one [11].



⊥ /obj b⇔ true

tm a /obj b⇔ a : at ∧ a = b

rec r /obj [`i = mi
i∈[k]] ⇔ {`i | i ∈ [k]} = dom(r) ∧ ∀(i ∈ [k]) r.`i /meth mi

f /meth ς(x)a⇔ ∀(d ∈ O)∀(b ∈ obj) d /obj b ⇒ f(d) / (x := b)(a)

d / b⇔ d (/obj)
⊥⊥ b

Fig. 4. Relations /obj ⊆ O× obj, /meth ⊆ M×meth, and / ⊆ O⊥⊥ × obj

Relating Denotations to NBE Results For an FM-cppo A and relation
R ⊆ A × obj we let R⊥ ⊆ (A ( (obj⊥)⊥⊥) × ctxt and R⊥⊥ ⊆ A⊥⊥ × obj be the
relations, resp., defined by:

ϕ R⊥ C[−] ⇔ ∀(d ∈ A)∀(b ∈ obj) d R b ∧ ϕ(d) 6= ⊥ ⇒
∃(a : nf) ϕ(d) = return(a) ∧ C[b] ↔ a

d R⊥⊥ b⇔ ∀(ϕ ∈ (A ( obj⊥⊥⊥ ))∀(C[−] ∈ ctxt) ϕ R⊥ C[−] ∧ ϕ∗(d) 6= ⊥ ⇒
∃(a : nf) ϕ∗(d) = return(a) ∧ C[b] ↔ a

Using this notation, Figure 4 defines a (recursive) relation / = (/obj)⊥⊥ ⊆ O⊥⊥×
obj. Note that the existence of such a relation / is not immediately obvious, due to
both positive and negative occurrences of the relation in the clause for /meth. The
existence proof follows the method of Pitts [15] (exploiting the minimal invariant
property of the domain O), and is given as Theorem A4 in the appendix.

Lemma 2 (Lifting). If d /obj b then return(d) / b.

Proof. By definition, since ϕ∗(return d) = ϕ(d). ut

Lemma 3 (Fundamental property of /). Suppose η is an environment and
θ is a substitution such that η(x) /obj θ(x) for all x ∈ fv(a). Then

1. for all a ∈ obj, JaKη / θ(a), and
2. for all m ∈ meth and g ∈ M, if JmKη = return g then g /meth θ(m).

Proof. Simultaneously by α-structural induction on a and m, respectively. The
cases where a is x or [`i = mi

i∈[k]] are easy. If a is a′.` then some desugaring
of the match expression yields JaKη = let v′ ⇐ Ja′Kη in (f1 ⊕ f2)(v′) where
f1 ∈ (obj⊥ ( O⊥⊥) and f2 ∈ (RecL(M) ( O⊥⊥) are

f1(b) = ↑(sel(b, `)) f2(r) = r.`(rec r)

We must prove that JaKη / θ(a), i.e., that there exists b : nf such that both
let v ⇐ JaKη in ϕ(v) = return(b) and C[θ(a)] ↔ b hold whenever ϕ (/obj)⊥ C[−]
and let v ⇐ JaKη in ϕ(v) 6= ⊥.



So let ϕ (/obj)⊥ C[−] and suppose let v ⇐ JaKη in ϕ(v) 6= ⊥. By part 1 of
the induction hypothesis, Ja′Kη / θ(a

′), hence for all ϕ′ (/obj)⊥ C ′[−],

let v′ ⇐ Ja′Kη in ϕ′(v′) 6= ⊥ ⇒
∃(b′ : nf) let v′ ⇐ Ja′Kη in ϕ′(v′) = return(b′) ∧ C ′[θ(a′)] ↔ b′. (6)

Thus, instantiating (6) with ϕ′(v′) = let v ⇐ (f1 ⊕ f2)(v) in ϕ(v′) and C ′[−] =
C[[−].`], and observing that by associativity

let v′ ⇐ Ja′Kη in ϕ′(v′) = let v ⇐ JaKη in ϕ(v) 6= ⊥,

we find that ϕ′ (/obj)⊥ C ′[−] implies

∃(b : nf) let v ⇐ JaKη in ϕ(v) = return(b) ∧ b↔ C ′[θ(a′)] = C[θ(a)]

from which we may conclude existence of the required normal form b once we
have established ϕ′ (/obj)⊥ C ′[−].

To that end, let d0 /obj b0 and assume ϕ′(d0) 6= ⊥. In particular, d0 6= ⊥, so
either d0 = tm a0 for a0 ∈ obj, or d0 = rec r where ⊥ 6= r ∈ RecL(M). In the
first case, a0 : at and a0 ↔ b0 by definition of /obj. Hence, tm(a0.`) /obj b0.`, and

⊥ 6= ϕ′(d0) = let v ⇐ f1(a0) in ϕ(v) = ϕ(tm (a0.`))

combined with ϕ (/obj)⊥ C[−] guarantees the existence of b′ : nf such that
ϕ′(d0) = return(b) and b′ ↔ C[a0.`] ↔ C[b0.`] ↔ C ′[b0]. In the second case,
where d0 = rec r, by the definition of /obj b0 must be [`i = mi

i∈[k]] where
{`i | i ∈ [k]} = dom(r) and r.`i /meth mi for all i. From ⊥ 6= ϕ′(d0) we obtain

ϕ′(d0) = let v ⇐ f2(r) in ϕ(v) = let v ⇐ r.`(rec r) in ϕ(v).

Writing mi as ς(xi)ai, the assumption d0 /obj b0 immediately yields r.`(rec r) /
(xi 7→ b0)(ai), so that from the assumption ϕ (/obj)⊥ C[−] we obtain ϕ′(d0) =
return(b′) and b′ ↔ C[(xi 7→ b0)(ai)]] for some b′ : nf. Thus also C ′[b0] =
C[b0.`i] ↔ C[(xi 7→ b0)(ai)] ↔ b′. This proves ϕ′ (/obj)⊥ C ′[−] and concludes
this case of the inductive proof.

The case where a is a′.` := m is similar, using ϕ′(v′) = let v ⇐ (f1 ⊕
f2)(v) in ϕ(v) where f1(b) = let m′ ⇐ ↓m∗ JmKη in ↑(upd(b, `,m′)) and f2(r) =
let f ⇐ JmKη in return(rec r.` := f), and the context C ′[−] = C[[−].` := θ(m)].

Finally, let us consider the case of methods, where m is ς(x)a and we may
assume that x /∈ supp(θ) =

⋃
x∈dom(θ){supp(θ(x))}∪dom(θ). Then JmKη denotes

return(g) for g(d) = if d = ⊥ then⊥else JaKη[x:=d], and θ(m) = ς(x)θ(a). We
must prove that JmKη /meth θ(m), so let d /obj b. Observe that for η′ = η[x := d]
and θ′ = (x 7→ b) ◦ θ we have η′(y) /obj θ′(y) for all y ∈ Var , hence by part 1 of
the induction hypothesis

(JmKη)(d) = JaKη′ / θ′(a) = (x 7→ b)(θ(a)).

Since this is true for all d /obj b we have proved JmKη /meth θ(m). ut



Lemma 4 (Reification of related elements).

1. For all a ∈ obj, if a : at then tm(a) /obj a.
2. For all d ∈ O, b ∈ obj, if d /obj b and ↓(d) 6= ⊥ then ↓(d) = return(a) for

some a : nf such that a↔ b.
3. For all f ∈ M, m ∈ meth, if f /meth m and ↓m(f) 6= ⊥ then ↓m(f) =

return(m′) for some m′ : mnf such that m′ ↔ m.

Proof (sketch). Part 1 is immediate from the definition of /obj. The proof of the
second and third part is by fixed point induction with respect to the admissible
predicates P ⊆ O ( (obj⊥)⊥⊥ and Q ⊆ M ( (meth⊥)⊥⊥,

P = {ϕ | ϕ (/obj)⊥ [−]}
Q = {ψ | ∀f /meth m.ψ(f) 6= ⊥ ⇒ ∃(m′ : mnf) ψ(f) = return(m′) ∧m′ ↔ m}

More precisely, defining Φ : (M ( (meth⊥)⊥⊥) → (O ( (obj⊥)⊥⊥) by

Φ(ψ)(d) = match d with

tm(a) ⇒ return(a)

| rec(r) ⇒ let (m` ⇐ ψ(r.`) | `∈dom(r)) in return(obj {|` = m`
`∈dom(r)|} )

and Ψ : (O ( (obj⊥)⊥⊥) → (M ( (meth⊥)⊥⊥) by

Ψ(ϕ)(f) = let x⇐ fresh in let a⇐ ϕ∗(f∗(↑(var x))) in return(meth(x, a))

we prove ϕ ∈ P ⇒ Ψ(ϕ) ∈ Q and ψ ∈ Q ⇒ Φ(ψ) ∈ P , for then the definition
of ↓ = lfp(Φ ◦ Ψ) ∈ P and ↓m = Φm(↓) = lfp(Ψ ◦ Φ) ∈ Q as least fixed points
have the required properties, by definition of (/obj)⊥ and Q, respectively. ut

Lemma 5 (Definedness of normal forms). Suppose that for all x ∈ fv(a)∪
fv(m), η(x) = tm(b) for some b ∈ obj. Then

1. if a : at then JaKη = return(tm a′) for some a′ ∈ obj;
2. if a : nf then ↓∗(JaKη) = return(a′) for some a′ ∈ obj; and
3. if m : mnf then ↓m∗(JmKη) = return(m′) for some m′ ∈ meth.

Proof. By induction on the derivation of a : at, a : nf and m : mnf, resp. ut

We can now prove correctness: since tm(var x) /obj x by Lemma 4(1) we have
JaKη0

/ a for η0 = λ(x ∈ Var). tm(var x), by Lemma 3. Hence, if norm(a) 6= ⊥
then ↓(JaK η0) = return(a′) for some a′ : nf such that a ↔ a′, by Lemma 4(2),
and norm(a) = return(a′).

Conversely, if a↔ a′ then ↓∗(JaKη0
) = ↓∗(Ja′Kη0

) by Theorem 1. In particular,
if a′ : nf then ↓∗(JaKη0

) 6= ⊥ by Lemma 5(2), and we have shown:

Theorem 2 (Correctness).

1. If norm(a) 6= ⊥ then norm(a) = return(a′) for some a′ : nf such that a′ ↔ a.
2. If a↔ a′ then norm(a) = norm(a′).
3. If a↔ a′ for some a′ : nf, then norm(a) 6= ⊥.



6 Conclusion

We have proved correctness of NBE for Abadi and Cardelli’s (untyped) object
calculus, giving a semi-decision procedure for the simplest of the equational the-
ories presented in [1]. Shinwell and Pitts prove that the continuation semantics
forms an adequate model of the Fresh O’Caml dialect of SML [19]. In this sense,
the normalization result leads to an implementation that is correct by construc-
tion.

The previous approach of Filinski and Rohde, using a de Bruijn-level naming
scheme for the computed normal forms, clearly carries over to object calculus.
Correspondingly, our main contribution here is not so much the consideration of
the object calculus but working out the details of the construction in the world
of nominal sets. We believe that our work provides further evidence to support
the point made in [16]: an approach to NBE using nominal sets in the formal
development “allows us to retain the essential simplicity of an informal account
[. . . ]”, without obscuring the basic ideas by issues of name generation.

However, while this is true for the statement of the properties, the use of the
continuation monad certainly complicates some of the proofs, as a comparison to
[11] shows: Filinski and Rohde prove correctness of NBE for the untyped lambda
calculus using standard domain-theoretic methods, and handle name generation
by means of ‘wrapper functions’ and Kripke relations to keep track of used names.
The proof of our logical relations lemma (Lemma 3) is less straightforward than
that of the corresponding property in [11]. Moreover, their constructions can be
implemented in ‘conventional’ functional programming languages, not relying
on language support for freshness. On the other hand, as observed by one of
the reviewers, these facts also indicate that NBE may simply not be a good
application for demonstrating the rather more powerful machinery of nominal
sets: deconstruction and pattern matching of abstract syntax with binders, which
is supported by nominal sets, is not necessary for NBE. (Pattern matching will
be implicitly used in an implementation, when comparing two normal forms in
(obj⊥)⊥⊥ for equality; due to the ‘extraction’ of a term b from the continuation
semantics in (5), the given definition of norm is computationally not meaningful.)

One remaining question is how to capture the more refined equational the-
ories of objects presented in [1] which rely on types. The problem here is that
subtyping is an obstacle to defining a reification map. Another question that
we leave open is the generalization from computing normal forms to computing
Böhm trees [5], which have a natural analogue in the object calculus. For un-
typed lambda terms, [11] shows that the domain-theoretic normalization result
extends to this infinitary case. It should be interesting to see if a similar general-
ization is possible within FM-domain theory: for instance, the domain of (lazy)
lambda trees used in [11] differs from a correspondingly constructed FM-cpo, in
that the FM-cpo cannot contain trees with infinitely many free variables (due
to the finite support property).

Acknowledgments I would like thank the reviewers for their valuable com-
ments that helped to improve correctness and readability of the paper.
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A Existence Proof

Let Rel be the set of finitely supported relations R ⊆ O×obj such that {d | d R b}
forms an admissible subset of O, for all b ∈ obj.

Lemma A1 (Admissibility preservation) If R ∈ Rel then {d | d R⊥⊥ b} is
an admissible subset of O⊥⊥, for all b ∈ obj.



Proof. That ⊥ R⊥⊥ b is immediate from the definition. So let b ∈ obj, D ⊆ O⊥⊥

be a finitely supported directed set such that d R⊥⊥ b holds for all d ∈ D, and
let e = tD. To prove e R⊥⊥ b let ϕ R⊥ C[−] and suppose

⊥ 6= ϕ∗(e) = t{ϕ∗(d) | d ∈ D}.

Thus there exists some d ∈ D such that ϕ∗(d) 6= ⊥, and for all such d we have
that there is a : nf where ϕ∗(d) = return(a) and C[b] ↔ a by d R⊥⊥ b. (From the
discrete ordering on obj it follows that this is the same a for all such d). Thus
ϕ∗(e) = return(a) and the result follows. ut

For R,S ∈ Rel let ΨM (R,S) ⊆ M×meth be

ΨM (R,S) = {(f, ς(x)a) | ∀(d ∈ O)∀(b ∈ obj) d R b ⇒ f(d) S⊥⊥ (x 7→ b)(a)}

and Ψ(R,S) ⊆ O× obj be such that (d, b) ∈ Ψ(R,S) holds if and only if

1. d = ⊥, or
2. d = tm(b) and b : at, or
3. d = rec(r), b = [`i = mi

i∈[k]] where dom(r) = {`i | i ∈ [k]}, and (r.`i,mi) ∈
ΨM (R,S) for all i ∈ [k].

Lemma A2 (Admissibility) For all R,S ∈ Rel, Ψ(R,S) ∈ Rel.

Proof. This follows easily with Lemma A1. ut

We note that Rel is a FM-complete lattice with respect to set inclusion, with
meets of finitely supported sets given by set-theoretic intersection. Moreover, by
Lemma A2, the symmetrization Ψ § of Ψ ,

R,S 7→ Ψ §(R,S) = (Ψ(S,R), Ψ(R,S))

is a monotone map on Relop ×Rel which has a least (pre-)fixed point (∆−,∆+)
by a variant of the Knaster-Tarski Fixed Point Theorem [18].

Since then also (∆+,∆−) is a fixed point, one has∆+ ⊆ ∆−. For the converse,
define for e ∈ (O ( O) and R,S ∈ Rel,

e : R ⊂ S ⇔ ∀(d ∈ O)∀(b ∈ obj). (d, b) ∈ R⇒ (e(d), b) ∈ S,

intuitively stating that e maps R-related elements to S-related elements. A con-
sequence of this definition is the following property.

Lemma A3 Suppose e : R ⊂ S. Then

1. (ϕ,C[−]) ∈ S⊥ ⇒ (ϕ ◦ e, C[−]) ∈ R⊥

2. (d, b) ∈ R⊥⊥ ⇒ (λ(h ∈ S⊥). d(h ◦ e), b) ∈ S⊥⊥

for all ϕ ∈ (O ( (obj⊥)⊥⊥), C[−] ∈ ctxt, d ∈ O⊥⊥ and b ∈ obj.

Proof. Part (1) is verified straightforwardly using the definition of R⊥ and S⊥;
part (2) then follows from (1) and the definitions of R⊥⊥ and S⊥⊥, resp. ut



Now to show ∆− = ∆+ it suffices to prove that id : ∆− ⊂ ∆+. Since by the
minimal invariant property of O one has id = lfp(δ) this follows by a fixed point
induction with respect to the admissible (because ∆+ ∈ Rel) predicate

[∆−,∆+] = {e ∈ (O ( O) | e : ∆− ⊂ ∆+}.

Clearly ⊥ ∈ [∆−,∆+]. Moreover, to show e ∈ [∆−,∆+] ⇒ δ(e) ∈ [∆−,∆+] it
suffices to prove that Ψ satisfies, for all R,S ∈ Rel,

e : R ⊂ S ⇒ δ(e) : Ψ(S,R) ⊂ Ψ(R,S), (7)

for then e ∈ [∆−,∆+] yields δ(e) : Ψ(∆+,∆−) ⊂ Ψ(∆−,∆+). But the latter
is just δ(e) : ∆− ⊂ ∆+ by choice of (∆−,∆+) = Ψ §(∆−,∆+) ∈ Relop × Rel,
establishing that e ∈ [∆−,∆+] implies δ(e) ∈ [∆−,∆+].

It remains to prove (7). To this end, assume e : R ⊂ S, and let (d, b) ∈
Ψ(S,R); we show (δ(e)(d), b) ∈ Ψ(R,S). This is clear if δ(e)(d) = ⊥, so assume
δ(e)(d) 6= ⊥. Then, by definition of δ, either d = tm(a) for some a ∈ obj and
δ(e)(d) = tm(a), or else d = rec(r) for some ⊥ 6= r ∈ RecL(M) and δ(e)(r).` =
δM (e)(r.`) for all ` ∈ dom(r). In the former case, (δ(e)(d), b) ∈ Ψ(R,S) follows
directly from the assumption (d, b) ∈ Ψ(S,R), so let us consider the other case.

The assumption (rec(r), b) ∈ Ψ(S,R) yields that b is of the form [`i = mi
i∈[k]]

where dom(r) = {`i | i ∈ [k]}, and it remains to show (δM (e)(r.`i),mi) ∈
ΨM (R,S) for all i ∈ [k]. By the precondition in (7), (e(d′), b′) ∈ S for all (d′, b′) ∈
R. Supposing that mi = ς(xi)ai then, since (r.`i,mi) ∈ ΨM (S,R), we have

∀(d′ ∈ O)∀(b′ ∈ obj). (d′, b′) ∈ R ⇒ (r.`i(e(d′)), (xi 7→ b′)(ai)) ∈ R⊥⊥. (8)

Using e : R ⊂ S we may instantiate Lemma A3(2) by the right-hand side of (8)
to obtain for all d′ ∈ O and all b′ ∈ obj:

(d′, b′) ∈ R ⇒ (λ(h ∈ S⊥). r.`i(e(d′))(h ◦ e), (xi 7→ b′)(ai)) ∈ S⊥⊥,

which shows the required property (δM (e)(r.`i),mi) ∈ ΨM (R,S).
Hence we have shown (7) and may define /obj to equal ∆− = ∆+, to obtain

the following:

Theorem A4 (Existence) There exists a relation /obj ∈ Rel such that /obj=
Ψ(/obj, /obj).


