
Parallelism and Tree Regular Constraints

Joachim Niehren1 and Mateu Villaret2?

1 Programming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany.
2 IMA, Universitat de Girona, Campus de Montilivi, Girona, Spain.

Abstract. Parallelism constraints are logical descriptions of trees. Parallelism
constraints subsume dominance constraints and are equal in expressive power to
context unification. Parallelism constraints belong to the constraint language for
lambda structures (CLLS) which serves for modeling natural language seman-
tics. In this paper, we investigate the extension of parallelism constraints by tree
regular constraints. This canonical extension is subsumed by the monadic second-
order logic over parallelism constraints. We analyze the precise expressiveness of
this extension on basis of a new relationship between tree automata and logic. Our
result is relevant for classifying different extensions of parallelism constraints, as
in CLLS. Finally, we prove that parallelism constraints and context unification
remain equivalent when extended with tree regular constraints.

Keywords: computational logic, tree automata, unification.

1 Introduction

Parallelism constraints [11, 13] are logical descriptions of trees, i.e., of ground terms
such as f(f(a, b), a). Parallelism constraints constitute a purely conjunctive language.
They can talk about the mother, ancestor, and parallelism relation of a tree:

1.

π 1
π 3

2π 4π

Fig. 1. Parallelism

The parallelism relation π1/π2∼π3/π4 holds for
nodes π1, . . ., π4 of some tree (see Fig. 1) if π1 is
an ancestor of π2, π3 an ancestor of π4, while tree
segment between π1 and π2 is structurally equal to
the segment between π3 and π4.

2. The labeling relation π:f(π1, . . . , πn) requires that
node π is labeled with f and has the children π1,
. . ., πn in this order.

Parallelism constraints subsume dominance constraints [18, 2] for which efficient
satisfiability tests exists [1]. Dominance constraints are widely used throughout com-
putational linguistics (see e.g. [21, 10]). They can express the ancestor relation π1

� ∗π2

between nodes π1 and π2 of some tree (which is equivalent to π1/π2∼π1/π2).
Parallelism constraints are equal in expressive power to the equational language

of context unification (CU) [5, 22, 23, 17] as proved in [19]. Whether CU is decidable

? This work has been partially supported by the SFB 378 of the DFG and the CICYT projects
DENOC (BFM2000-1054-C02) and CADVIAL (TIC2001-2392-C03-01).



(and thus the satisfiability of parallelism constraints) is a prominent open problem in
unification theory. So far, only fragments could be proved decidable.

Parallelism constraints belong to CLLS – the constraint language for lambda struc-
tures which serves for modeling natural language semantics [11, 12]. CLLS extends par-
allelism constraints in several directions: there are lambda binding and beta reduction
constraints [3, 4], but also anaphoric binding and group parallelism constraints. These
extensions are used in applications but their expressiveness has never been studied.

In this paper, we investigate the canonical extension P+R of parallelism with tree
regular constraints. The formulas of P+R are conjunctions of parallelism constraints P
with regular constraints R. Let A be a tree automaton:

– A tree regular restriction tree(π)∈L(A) is valid in a tree with node π if the subtree
rooted by π belongs to the language recognized by tree automaton A.

The extended language P+R is sufficiently restricted so that processing methods for
pure parallelism constraints still apply: Given an extended constraint of P+R, we can
first enumerate the minimal solved forms (i.e., the most general unifiers) of the pure
parallelism part by saturation [13] and then test all minimal solved forms for compati-
bility with the tree regular part. We obtain a semi-decision procedure for P+R; even if
we could decide the satisfiability of parallelism constraints we might still have to check
infinitely many minimal solved forms for compatibility.

The language P+R is obviously subsumed by the monadic second-order logic over
parallelism constraints. But it is less clear to which precise logical fragment P+R cor-
responds. This is the question, we will answer in this paper.

The basic idea is to exploit the classical relationship between tree automata and the
weak monadic second-order logic of the binary tree (WS2S) [25, 9], which states that
regular constraints R and formulas of WS2S have the same expressive power. But un-
fortunately, this result cannot be lifted to extensions of parallelism constraints as the
languages P+R and WS2S have different models. We propose to consider the mona-
dic second-order logic over dominance constraints (SDom) instead of WS2S. Both lan-
guages talk about the ancestor relation of trees. But WS2S is interpreted over the infinite
binary tree while SDom models ground terms.

We establish a new relationship between tree automata and the logic SDom on basis
of the old techniques for WS2S: We show that tree regular constraints R are equal in
expressiveness to formulas of SDom (Section 3). We then lift our new result to the
respective extensions of parallelism constraints: We prove that the languages P+R and
P+SDom can be inter-translated (Section 4). This answers the question raised above.
Our result also shows that the languages SDom and WS2S have equal expressiveness.
We thereby generalize and complement an earlier insight of Rogers [2, 15] who noticed
that the first-order theory of dominance constraints can be expressed in WS2S.

Finally, we reconsider the relationship between CU and parallelism constraints (which
have the same expressiveness [19]). We show that P+R is equal in expressive power to
CU with tree regular constraints (Section 5). This language in turn is equivalent to linear
second order unification (LSOU) with tree regular constraints [16]. It is open whether
CU+R is decidable (even if we freely assume that CU is decidable). But the situation is
better for the special case of string unification with regular constraints [24] which can
be decided in PSPACE [8].

2



Our contributions are relevant for classifying extensions of parallelism constraint, as
for instance provided by CLLS. A forthcoming paper [20] proves, for instance, that the
monadic second-order dominance logic SDom can express lambda binding constraints.
The results of this paper thus imply that the extension of parallelism with lambda bind-
ing constraints (as provided by CLLS) can be expressed in P+R and CU+R.

2 Parallelism Constraints

We assume a finite signature Σ of function symbols ranged over by f, g. Each function
symbol comes with an arity ar(f) ≥ 0. We assume at least one constant a ∈ Σ, i.e. a
function symbol of arity 0 and at least one binary function symbol.

A (finite, ranked, rooted) tree τ over Σ is a ground term built from function symbols
in Σ, i.e. τ ::= f(τ1, . . . , τn) where n = ar(f) and f ∈ Σ. We identify a node of a tree
with the word of positive integers π that addresses it seen from the root:

nodes(f(τ1, . . . , τn)) = {ε} ∪ {iπ | 1 ≤ i ≤ n, π ∈ nodes(τi)}

The empty word ε is called the root of the tree, while iπ is node π of the i-th subtree.
We freely identify a tree τ with the function τ : nodes(τ) → Σ that maps every node
of τ to its node label. For a tree τ equal to f(τ1, . . . , τn) we set:

τ(π) = f(τ1, . . . , τn)(π) =

{

f if π = ε
τi(π

′) if π = iπ′, 1 ≤ i ≤ n

If τ is a tree with node π then we write τ.π for the subtree of τ rooted by π. Furthermore,
we write τ [π/τ ′] for the tree obtained by replacing the subtree of τ at node π by τ ′.

Let τ be a tree with nodes π, π′, π1, . . . , πn. The labeling relation π:f(π1, . . . , πn)
holds in τ if π is labeled by f in τ and has the sequence of children π1, . . . , πn in that
order from the left to the right. This is if τ(π) = f and π1 = π1, . . ., πn = πn where
n = ar(f).

The dominance relation π
� ∗π′ is valid in τ if π is an ancestor of π′, i.e. if π is

above π′ in τ , resp. if π is a prefix of π′. Strict dominance π
� +π′ holds in τ if π

� ∗π′

but not π=π′ in τ . Disjointness π⊥π′ is valid in τ if neither π
� ∗π′ nor π′ � ∗π in τ .

We now define the parallelism relation. We consider more general tree segments
than in the introduction (Fig. 1) where several holes are permitted (see Fig. 2).

2ππ 1

π

Fig. 2. Segment π/π1, π2

Definition 1. A segment σ of a tree τ is a tuple
of nodes in τ – written as π/π1, . . . , πn – where
π dominates all πi which in turn are pairwise
disjoint. We call π the root of the segment and
π1, . . . , πn its holes. The segment π/ is the seg-
ment with 0 holes.

A segment can be seen as an occurrence of a context: Let {•1, . . . , •n, . . .} be an
infinite set of hole markers. A context γ with n holes over Σ is a tree over Σ and hole

3



markers {•1, . . . , •n} such that each of the hole markers occurs exactly once in γ. For
instance, f(•2, g(•1)) is a context with two holes. Every segment σ of a tree τ with n
holes defines a unique context with n holes:

contextτ (π/π1, . . . , πn) = (τ [π1/•1] . . . [πn/•n]).π

The substitutions [πi/•i] remove the subtrees below the segment holes. The order in
which the substitutions are performed does not matter since all holes πi of a segment
are pairwise disjoint. Note also, that the root π of a segment is never removed from τ
since it dominates all holes πi.

Definition 2. Parallelism σ1∼σ2 is valid in a tree τ if the segments σ1 and σ2 of τ are
occurrences of the same context, i.e. iff contextτ (σ1) = contextτ (σ2).

We now define the purely conjunctive language of parallelism constraints. We as-
sume an infinite set Vnode of node variables X, Y, Z.

P ::= X:f(X1, . . . , Xn) | S1∼S2 | P1 ∧ P2

S ::= X/X1, . . . , Xm

A parallelism constraint P is a conjunction of labeling and parallelism literals. They are
interpreted over the respective relations of some tree in the usual Tarski’an manner. We
use segment terms S of the form X/X1, . . . , Xm to describe segments with m holes,
given that the values of X and X1, . . . , Xm satisfy the conditions imposed on the root
and holes of segments in Definition 2. A parallelism literal S1∼S2 requires that S1 and
S2 denote segments.

Note that dominance literals X
� ∗Y can also be expressed even though they are

not directly part of the language. This follows from Definition 2 which forces roots of
segments to dominate holes so that the following equivalence X

� ∗Y ↔ X/Y ∼X/Y
gets valid.

Parallelism constraints are useful to model the meaning of natural language ellipses
[11]. Here they avoid the over-generation problem of the previous approach based on
higher-order unification [7]. Consider the sentence simplistic example: Peter sings and
so does Bill. The meaning of this sentence is represented by the formula:

and(sing(peter), sing(bill))

which is a tree. A simplified compositional semantics could construct the following
tree description from the syntactic structure of the sentence. Node X1 stands for the
semantics of the source clause Peter sings, Y0 for the semantics of the target clause so
does Bill. The semantics of the complete sentence starts at node Z:

Z:and(X0, Y0) ∧ conjunction of source and target
X0

� ∗X1 ∧ X1:sing(X2) ∧ X2:peter ∧ source clause
Y0

� ∗Y1 ∧ Y1:bill ∧ target clause
X0/X2∼Y0/Y1 ellipses description

The parallelism literal X0/X2∼Y0/Y1 states that the semantics of the source clause
without peter is equal to the semantics of the target clause up to bill. In the given solu-
tion, the terms X0/X2 and Y0/Y1 denote the two occurrences of the context sing(•1).

4



For a less trivial example consider the sentence peter sings a song and so does bill.
It has two readings (there is a song that both sing, or both sing different songs). It is
possible and appropriate to represent both readings with a single constraint.3

To keep this section self-contained let us quickly recall some model theoretic no-
tions. We write var(P ) for the set of free variables of a constraint P . A variable assign-
ment to the nodes of a tree τ is a total function α : V → nodes(τ) where V is a finite
subset of node variables. A solution of a constraint P thus consists of a tree τ and a
variable assignment α : V → nodes(τ) such that var(P ) ⊆ V . As usual, we require
that all literals of a constraint P are validated by every solution τ, α of P . We write
τ, α |= P if τ, α is a solution of P . A formula P is valid in a tree τ if τ, α |= P holds
for all α whose domain subsumes var(P ). We write α|V ′ for the restriction of a variable
assignment α : V → nodes(τ) to the variables in V ′.

3 Tree Regular Constraints

We next introduce tree regular constraints and show how to express them in logics. A
tree regular constraints R has the form:

R ::= tree(X) ∈ L(A) | R1 ∧ R2

Interpreted over a tree τ , the term tree(X) denotes the subtree of τ rooted by X , while
L(A) stands for the tree language accepted by tree automaton A over Σ.

But which properties of trees can be expressed by tree regular constraints? Can we
express, for instance, a first-order dominance formula which requires that no f labeled
node intervenes between nodes X and Y ? Such formulas are needed in an application
of CLLS [14].

3.1 Monadic Second-Order Dominance Logic

We next define the monadic second-order dominance logic (SDom) to be the monadic
second-order logic over dominance constraints, i.e. of ground terms. Note that monadic
second-order logics were already investigated for many other graph structures (e.g. [6]).

We assume an infinite set Vset of monadic second-order variables A, B that denote
sets of nodes. The formulas D of SDom have the form:

D ::= X
� ∗Y | X:f(X1, . . . , Xn) | X ∈ A | D ∧ D′ | ¬D | ∃X. D | ∃A. D

Beyond of conjunctions of dominance and labeling literals, there are membership con-
straints, existential quantification over nodes and sets, negation, and thus universal
quantification.

The logic SDom is interpreted over ground terms. Every ground term τ now defines
a two sorted domain: domainτ = nodes(τ) ] 2nodes(τ). Variables assignments to a tree
τ are functions α : V → domainτ defined on a finite set V ⊆ Vnode ] Vset which

3 One can use dominance constraints to leave the scope of the quantifier a song underspecified
so that parallelism constraints correctly model its interaction with the ellipses.

5



map node variables to nodes and set variables to sets of nodes, i.e. for all X, A ∈ V :
α(X) ∈ nodes(τ) and α(A) ∈ 2nodes(τ).

The language SDom is closely related to the weak monadic second-order logic of
the complete binary tree (WS2S) [25, 9]. This was first noticed by Rogers in 1995 [2].
The models of SDom are ground terms while the only model of WS2S is the infinite
binary tree. The later is simpler in that all its nodes have first and second successors
(children). This allows to found WS2S on the two successor functions while SDom
must rely on the labeling relation.

Still, one can encode all ground terms in the infinite binary tree and thereby encode
SDom into WS2S. This was used in [15] to encode the first-order theory of dominance
constraints in WS2S [15]. The current section generalizes and complements these ear-
lier result.

Proposition 1. Every tree regular constraint R is equivalent to some formula D in the
monadic second-order dominance logic over the same signature.

Proof. Let A be a tree automaton and X a node variable. We show how to express
tree(X) ∈ L(A) through an equivalent formula D of SDom. Let Q be the set of states
of A and Qfin the set of its final states. We consider all states q ∈ Q as second-order
variables, whose set value contains all those nodes Y such that tree(Y ) has a run into
state q in A. We then require that the value of tree(X) has a run into a final state, i.e.
that tree(X) ∈ q for some final state q ∈ Qfin.

D = ∃Q.(
∨

q∈Qfin

X ∈ q ∧
∧

q∈Q

∀Y. (Y ∈ q ↔ stepA(Y, q)))

where stepA(Y, q) step means that there is a single automaton step proving that the
value of tree(Y ) has a run into q.

stepA(Y, q) =
∨

f(q1,...,qn)→q∈A ∃Y1 . . . ∃Yn. (Y :f(Y1, . . . , Yn) ∧

Y1 ∈ q1 ∧ . . . ∧ Yn ∈ qn)

Note that all states of Amay belong to the set of free set variables of formula stepA(Y, q)
so that the values of all sets q ∈ Q are defined by mutual recursion.

The converse of the above proposition is wrong. For instance, one cannot express
X

� ∗Y equivalently by tree regular constraints R since satisfiable tree regular con-
straints can always be satisfied such that all variables denote disjoint nodes. Neverthe-
less, a weakened converse modulo satisfaction equivalence still holds.

Theorem 1. Every tree regular constraint R is satisfaction equivalent to some formula
D of the monadic second-order dominance logic over the same signature, and vice
versa.

This theorem establishes a bidirectional relationship between dominance logics and
tree automata. The one direction is already proved (Proposition 1). The proof of the
other direction relies on standard encoding techniques known from WS2S. For every
formula of SDom, we have to construct a tree automaton that recognizes all its solu-
tions converted into some tree format (Corollary 1 below). This format is obtained by
encoding information about the values of node variables into extended node labels of
some extended signature.

6



3.2 Extending Node Labels

This trick is to encode a solution pair τ, α into a single tree which looks like the tree τ
except that it contains all information about the variable assignment α in extended node
labels. Given a formula D of SDom, one can then recognize all encoded solutions of D
by a tree automaton.

We first illustrate the encoding of pairs τ, α at an example. Let τ be the tree f(a, b)
with nodes nodes(τ) = {ε, 1, 2} and α be the variable assignment given by α(X) = ε,
α(Y ) = 1, α(Z) = 2, and α(A) = {1, 2}. We then encode τ, α by the following tree
with extended node labels:

(f, [X=1, Y=0, Z=0, A=0])

(b, [X=0, Y=0, Z=1, A=1])(a, [X=0, Y=1, Z=0, A=1])

In the general case, we encode pairs τ, α : V → Σ into trees over the signature of
extended labels ΣV :

ΣV = {(f, c) | f ∈ Σ, c : V → {0, 1}}

The second components of extended labels (f, c) are finite characteristic functions with
domain V . The arity of a label (f, c) in ΣV is equal to the arity of f . As in the preceding
example, we will use the record notation [Z1=B1, . . . , Zn=Bn] to represent the finite
characteristic function c : {Z1, . . . , Zn} → {0, 1} with c(Z1) = B1, . . ., c(Zn) = Bn.

We encode a pair τ, α : V → nodes(τ) through the α-extension extα(τ). The trees
extα(τ) and τ have the same set of nodes; a node π of extα(τ) is given the label (f, c)
if and only if the same node of τ is given the label f and for all X, A ∈ V :

π = α(X) iff c(X) = 1 and π ∈ α(A) iff c(A) = 1

We illustrate the encoding at the example of non-intervenance which is crucial for ap-
plications [14, 20]. We present a tree automaton which accepts trees where no f -labeled
node intervences properly between X and Y :

¬ ∃Z. (X
� +Z ∧ Z

� +Y ∧ ∃Z1∃Z2. Z:f(Z1, Z2) )

Since automata are closed under complementation, it is sufficient to construct an au-
tomaton positive intervenance. The signature is ΣV where V = {X, Y }. The accep-
tance state is qabove(X). For all g ∈ Σ we have the following rules:

(g, [X=0, Y =0])(qbelow(Y ), . . . , qbelow(Y )) → qbelow(Y )

(g, [X=0, Y =1])(qbelow(Y ), . . . , qbelow(Y )) → qabove(Y )

(g, [X=0, Y =0])(. . . , qabove(Y ), . . .) → qabove(Y ) if f 6= g
(f, [X=0, Y =0])(. . . , qabove(Y ), . . .) → qabovef

(g, [X=0, Y =0])(. . . , qabovef
, . . .) → qabovef

(g, [X=1, Y =0])(. . . , qabovef
, . . .) → qabove(X)

(g, [X=0, Y =0])(. . . , qabove(X), . . .) → qabove(X)

7



The state qbelow(Y ) recognizes all trees where Y =0 for all nodes. The state above(Y )
recognizes trees containing a node where Y =1; abovef recognizes trees which contain
a proper f -labeled ancestor of some node with Y =1. Finally, qabove(X) accepts all trees
where X=1 occurs properly above an f-ancestor of where Y =1.

We also need to check that X=1 and Y =1 are seen at most once in a node label.
This can be done by intersection with another tree automaton.

3.3 Constructing Tree Automata

We now construct tree automata for general formulas of SDom. The following lemma
will be useful. We omit its simple proof.

Lemma 1. If extα1
(τ1) = extα2

(τ2) then α1 = α2 and τ1 = τ2.

Proposition 2. For all second-order dominance formulas D and finite sets V of vari-
ables there exists a tree automaton A over the signature ΣV which accepts those trees
over ΣV that encode tree-assignment-pairs τ, α|V such that τ, α |= D:

L(A) = {extα|V
(τ) | τ, α |= D}

Proof. We can assume without loss of generality that var(D) ⊆ V . Otherwise, we can
apply the proposition to D′ =df ∃var(D) − V. D which satisfies var(D′) = V since
var(D)−(var(D)−V ) ⊆ V . The automaton A for D′ recognizes the required language
L(A) = {extα|V

(τ) | τ, α |= D′} = {extα|V
(τ) | τ, α |= D}. Let a V -extension of

a tree τ be some α-extension of τ with α : V → domainτ . We next construct an
automaton AextV which only accepts those trees over ΣV that are V extensions of
some tree in Σ. This automaton has to check for every first-order variable X ∈ V and
acceptable trees τ that there exists exactly one node in τ whose characteristic function
maps X to 1. The automaton A∅ accepts all trees of Σ. For the general case, let V1 ⊆ V
where V1 is the set of first order variables we define AextV =

⋂

X∈V1
Aext{X}

. It only
remains to define the automata Aext{X}

for singleton sets {X}. Let V = {Z1, . . . , Zn}.
The rules are:

(f, [. . . , X=0, . . .])(qnone, . . . , qnone) → qnone

(f, [. . . , X=1, . . .])(qnone, . . . , qnone) → qonce

(f, [. . . , X=0, . . .])(qnone, . . . , qnone, qonce, qnone, . . . , qnone) → qonce

The automaton counts how often X=1 was seen. It starts with qnone and increments to
qonce when the first occurrences comes, and rejects starting from the second occurrence.
The only finial state of Aext{X}

is qonce.
We next construct automata AD over the signature ΣV that check the validity of D.

The proposition is then always satisfied with A = AD ∩ AextV . The construction is by
induction on formulas D.

1. Case D = X=Y . We construct the following automaton that checks whether X=1
and Y =1 occur simultaneously at some same. The only final states qequal of AD

indicates this case. The state qall can reached without restrictions.

(f, [. . . , X=0, . . . , Y =0, . . .])(qall, . . . , qall) → qall

(f, [. . . , X=1, . . . , Y =1, . . .])(qall, . . . , qall) → qequal

(f, [. . . , X=0, . . . , Y =0, . . .])(. . . , qequal, . . .) → qequal

8



2. Case D = X
� +Y . We construct the following automaton that checks whether

Y =1 is seen properly below X=1. The final state of AD is qabove(X).

(f, [. . . , X=0, . . . , Y =0, . . .])(qall, . . . , qall) → qall

(f, [. . . , Y =1, . . .])(qall, . . . , qall) → qabove(Y)

(f, [. . . , X=0, . . .])(. . . , qabove(Y), . . .) → qabove(Y)

(f, [. . . , X=1, . . .])(. . . , qabove(Y), . . .) → above(X)
(f, [. . .])(. . . , qabove(X), . . .) → qabove(X)

3. Case D = X
� ∗Y . Tree automata are closed under union, so let AD=AX � +Y ∪

AX=Y .
4. Case D = ∃X.D′. We can assume without loss of generality that X /∈ V . Let

AD′ be the automaton for D′ but over the extended signature ΣV ]{X}. We call a
tree τ over ΣV an X-projection of a tree τ ′ over ΣV ]{X} if τ is obtained from τ ′

by restricting all characteristic functions in node labels of τ ′ to V . We can easily
define the automaton AD such that it accepts all X-projections of trees in L(AD′).

5. Other cases: The constructions for labeling X:g(X1, . . . , Xn) and membership lit-
erals X ∈ A are obvious. Conjunctions D1 ∧ D2 and negation ¬D can be reduced
to complementation and intersection of tree automata. Second-order quantification
∃A.D can be encoded as in the first-order case.

We can now prove that tree regular constraints can indeed express second order
monadic dominance formulas modulo satisfaction equivalence (but not equivalence).
This completes the proof of Theorem 1.

Corollary 1. For every monadic second-order formula D of SDom there exists a satis-
faction equivalent tree regular constraint R over the same signature.

Proof. We can assume w.l.o.g. that D is closed. Let V = ∅ and let A be a tree automa-
ton according to Proposition 2 that satisfies: L(A) = {τ | τ |= D}. We don’t need any
variable assignment to interpret D since D is closed. Let X, Y be fresh variables. The
following conditional equivalence is valid in all trees:

∀Y. X
� ∗Y → (D ↔ tree(X) ∈ L(A))

If a tree τ, α satisfies the assumption ∀Y. X
� ∗Y then α(X) must be the root of τ . In

this case, tree(α(X)) ∈ L(A) is equal to τ ∈ L(A) which is τ |= D. Next note that
the assumption ∀Y. X

� ∗Y can be met while solving tree(X) ∈ L(A) resp. D. Thus,
D is satisfaction equivalent to tree regular constraint tree(X) ∈ L(A).

4 Extensions of Parallelism Constraints

Our next goal is to lift Theorem 1 to extensions of parallelism constraints. This means
that we want to reduce satisfiability of a conjunction P ∧ R to the satisfiability of some
conjunctions P ′ ∧ D and vice versa.

Theorem 2. The satisfiability problems of parallelism plus tree regular constraints P ∧
R resp. parallelism constraints plus monadic second-order dominance formulas P ′ ∧D
are equal modulo non-deterministic polynomial time transformations.

9



Note that the signatures are part of the input of both satisfiability problems, i.e. the
satisfaction equivalent formulas need not be defined over the same signature.

The one direction still follows immediately from Proposition 1 (which is modulo
equivalence). But we cannot directly apply Theorem 1 to prove the converse. This weak-
ness is due to the notion of satisfaction equivalence used there in contrast to ordinary
equivalence.

Proposition 3. Every conjunction P ∧ D of a parallelism constraint with a formula of
SDom is satisfaction equivalent to some formula

∨n

i=1 Pi ∧ Ri with parallelism plus
tree regular constraints.

The proof captures the rest of this section. The idea is to describe a solution τ, α of
P ∧ D by talking about a large tree that contains τ and extα(τ) simultaneously. The
translation keeps the parallelism constraint P in order to describe τ while it expresses
the dominance formula D through a tree regular constraint about extα(τ). The intended
relationship between τ and extα(τ) is enforced by additional parallelism constraints
(Lemma 2).

We first introduce formulas extV (X, Y ) for finite sets V of variables. The free vari-
ables of extV (X, Y ) are those in V ∪ {X, Y }. A pair τ ′, α satisfies extV (X, Y ) if the
tree below α(Y ) in τ ′ is the α|V extension of the tree below α(X) in τ ′, i.e.:

τ ′, α |= extV (X, Y )
iff

τ ′.α(Y ) = extα|V
(τ ′.α(X))

α α
YX

=τ

τ

=extα|V(τ )
X) τ τ )Y.α(.α( ’ ’ 

’ 

’ 

Every solution τ ′, α of extV (X, Y ) indeed contains occurrences of τ = τ ′.α(X)
and its extension extα|V

(τ) = τ ′.α(Y ) simultaneously. Note that α|V must map to
nodes of τ by definition of extensions, while the unrestricted assignment α may map to
arbitrary nodes of τ ′.

From now on, let us identify the labels f and (f, c) where c is the constant 0-
valued function. Through this identification, we turn Σ into a subset of ΣV . This has
an important consequence: if V contains only first-order variables then the trees τ and
extα(τ) have the same structure with finitely many exceptions: for all Z ∈ V the node
α(Z) below α(X) and its correspondent below α(Y ) carry distinct labels. The number
of exceptions is bounded by size of V . This property would fails if we permitted second-
order variables in V : a single second-order variable A ∈ V where α(Y ) contains all
nodes of τ makes all corresponding node labels of τ and extα|V

(τ) distinct.

Lemma 2. Let V be a set of first-order variables. Every formula extV (X, Y ) is equiv-
alent to some positive existentially quantified formula

∨n

l=1 ∃Zl
1 . . .∃Zl

kl
Pl.

Proof. We construct a formula E of the above form by induction on the since of V . If
V = ∅ then we set E =df X/∼Y/. Otherwise, we guess node labels for all variables in
V and all relationships between them: properly above, properly below the i-th children,
equal, or disjoint. These are O(|V |2 ∗ M) guesses where M is the maximal arity of

10



function symbols in Σ. We then translate deterministically for all possible choices. Let
X1, . . . , Xn be some maximal set of top-most situated variables that take distinct values
(according to our guesses). We define:

E =df ∃Y1, . . . , ∃Yn. X/X1, . . . , Xn ∼ Y/Y1, . . . , Yn ∧
n
∧

i=1

Ei

The formulas Ei are still to be defined. Let ci : V → {0, 1} be the function that map
all variables to 1 that take the same value as Xi and all others to 0 (according to our
guesses). Let fi be the guessed node label of arity ni for the variable Xi and V j

i be the
set of variables lying below the j-th child of Xi. We then define:

Ei =df ∃X1
1 . . .∃Xni

n . Xi:fi(X
1
i , . . . , Xni

i ) ∧

∃Y 1
1 . . . ∃Y ni

n . Yi:(fi, ci)(Y
1
i , . . . , Y ni

i ) ∧
∧ni

j=1 ext
V

j
i
(Xj

i , Y j
i ) ut

Proof (of Proposition 3). We consider a formula P ∧ D were D does not contain
free second-order variables w.l.o.g. Otherwise, we can produce a satisfaction equivalent
formula of the same form by existential quantification.

Let X be a fresh variable and V = var(P∧D) ∪ {X} a set of first-order variables.
We next define a formula E that we will prove satisfaction equivalent to P ∧ D:

E =df P ∧ ∃Y. extV (X, Y ) ∧ tree(Y ) ∈ {extα|V
(τ) | τ, α |= D}

First note that E can be rewritten into a satisfaction equivalent disjunction of the re-
quired form

∨n

i=1 Pi ∧ Ri. We can express extV (X, Y ) by a disjunction of parallelism
constraints up to satisfaction equivalence (Lemma 2) and state the membership condi-
tion on tree(Y ) by a tree regular constraint (Proposition 2).

It remains to show that E is satisfaction equivalent to P ∧ D. For the one direction,
suppose τ ′, α′ |= E. We show that τ ′.α′(X), α′

|V |= P ∧ D. First note that α′
|V maps

to nodes below α′(X) since τ ′, α′ |= extV (X, Y ). Second note that α′
|V can interpret

all variables of P ∧ D by definition of V . Third, we show that τ′.α′(X), α′
|V solves

P : By assumption, τ ′, α′ |= E and thus τ ′, α′
|V |= P . But since P contains parallelism

literals only, we can restrict this solution to the subtree of τ ′ to which α′
|V maps; thus:

τ ′.α′(X), α′
|V |= P . Forth, we show that τ ′.α′(X), α′

|V solves D. Since τ ′, α′ satisfies
the membership restriction on tree(Y ) there exists a solution τ, α |= D such that:

τ ′.α′(Y ) = extα|V
(τ)

Since τ ′, α′ |= extV (X, Y ) we also know τ ′.α′(Y ) = extα′
|V

(τ ′.α′(X)). The previous

two equations combine into extα|V
(τ) = extα′

|V
(τ ′.α′(X)) such that the uniqueness

Lemma 1 yields α′
|V = α|V and τ ′.α′(X) = τ . From τ, α |= D, we get τ, α|V |= D,

and hence, τ ′.α′(X), α′
|V |= D.

For the other direction, we assume that P ∧ D is satisfiable and construct a solution
of E. Let τ, α be a solution of P ∧ D. We define τ′ = f(τ, extα|V

(τ), . . .) where f
is some function symbol of arity at least 2. (The children of τ starting from position 3
can be chosen arbitrarily.) Let π1 be the first child of the root of τ′. It then holds that
τ ′, α[X 7→ π1] |= E whereby the existentially quantified variable Y can be mapped to
the second child of τ ′. ut

11



5 Relation to Context Unification

Parallelism constraints and context unification have the same expressiveness [19]. We
now show that this result can be lifted when extending both languages with tree regular
constraints.

We first recall the definition of context unification with tree regular constraints. The
version of context unification we use is quite rich but can be reduced to the standard
version.

Context unification is equation solving in the algebra of contexts where contexts
may have one or arbitrary many holes. We consider contexts γ with n holes as n-ary
functions on trees:

γ(τ1, . . . , τn) = γ[•1/τ1] . . . [•n/τn]

Contexts of arity 0 can be identified with trees. We assume a set of context variables
F, G with arities ar(F ) ≥ 0 which contains infinitely many variables for all arities. The
arity of F determines the number of holes of the value of F . We next define context
terms t over Σ where f ∈ Σ, ar(f) = n, and ar(F ) = m.

t ::= f(t1, . . . , tn) | F (t1, . . . , tm) | •i

An n-ary context term is a context term with hole markers •1, . . . , •n each of which
occurs exactly once. An n-ary context term denotes a context with n holes. A context
equation is a pair t1 = t2 between n-ary context terms.

Context unification is the problem of solving finite conjunctions of context equa-
tions. For instance, the context equation F (x, b)=f(a, G(b)) is solved by the variable
assignment β with β(F ) = f(•1, •2), β(G) = •1 and β(x) = a. The problem can be
freely restricted in several ways: It is sufficient to have a single equation and context
variables of arity 1 only.

A tree variable x is a context variable of arity 0. The extension of context unification
with tree regular constraints allows for membership literals x ∈ L(A) to be added to
equation sets where A is a tree automaton over Σ.

Theorem 3. The extensions of parallelism constraints and context unification with tree
regular constraints are equivalent modulo polynomial time reductions.

As shown by Levy and Villaret there is a third equivalent problem which is linear
second-order unification (LSOU) with tree regular constraints [16].

The proof of Theorem 3 is non-trivial but can be obtained by extending the proof in
[19]. We show both implications independently. We first translate CU+R to P+R. Here,
we simplify the argument of [19]. Suppose w.l.o.g that we are given a single equation
t1 = t2 and a single tree regular constraint x ∈ L(A). We first introduce fresh node
variables for all subterm positions in the equation t1 = t2. We then collect parallelims,
labeling, and membership literals in four steps.

1. We collect labeling literals for all subterms in t1 = t2 that have the form f(s1, . . . , sn).
Let X be the node variable for the position of such a subterm and X1, . . . , Xn the
node variables for the positions of the subterms s1, . . . , sn. We then add the label-
ing literal:

X:f(X1, . . . , Xn)

12



2. We collect parallelism literals for all context variables occuring in t1 = t2. So let
F (s1, . . . , sn) be an occurences of some context variable F in t1 = t2, X be the
node variable of this occurence and X1, . . . , Xn the node variables of the subterms
s1,..., sn. Let F (s′1, . . . , s

′
n) be a second possibly equal occurences of same context

variable F in t1 = t2, Y be the node variable of this occurence and Y1, . . . , Yn the
node variables of the subterms s′1, . . . , s

′
n. We then add the parallelism literal:

X/X1, . . . , Xn ∼ Y/Y1, . . . , Yn

3. Suppose that x occurs in the equation t1 = t2 at some position with node variable
X . We then add:

tree(X) ∈ L(A)

4. We ensure that both sides of the equation t1 = t2 denote equal values. Let X1 and
X2 be the node variables of the subterm positions of t1 and t2. We then add the
parallelims literal:

X1/ ∼ X2/

Example 1. For instance, the context equation F (f(x)) = f(F (a)) with regular con-
straint: x ∈ L(A)

X0 X1 X2 Y0 Y1 Y2

↓ ↓ ↓ ↓ ↓ ↓
F ( f( x )) = f( F ( a ))

We first introduce node variables for all sub-
term positions. The above constraint is then trans-
lated as follows where the lines contain the lit-
erals of the subsequent steps:

1. X1:f(X2) ∧ X2:a ∧ Y0:f(Y1) ∧ Y2:a ∧
2. X0/X1 ∼ Y1/Y2 ∧
3. tree(X2) ∈ L(A) ∧
4. X0/ ∼ Y0/

In step 2 of this example we have freely omitted parallelism literals between equal seg-
ment terms: X0/X1 ∼ X0/X1 and Y1/Y2 ∼ Y1/Y2. These literal enforce dominance
relations X0

� ∗X1 and Y1
� ∗Y2 that are entailed by X0/X1 ∼ Y1/Y2 anyway.

Lemma 3. A context equation with tree regular constraints t1 = t2 ∧ x ∈ L(A) is
satisfiable if and only if its translation is.

We give an inverse reduction which maps P+R to CU+R. The difficulty of this
reduction is raised by the different views on trees: While parallelism constraints talk
about nodes and segments, context unification deals with trees and contexts. So how
can we speak about the nodes of a tree in context unification? The idea is that we speak
about the context between the root of the tree and this node.

We now encode an extended parallelism constraint E = P ∧ R with the set of node
variable V = vars(E). Let xall be a tree variable which is supposed to denote a model
of E. For every node variable X ∈ V let FX be a unary context variable, denoting the
context from the root of xall to node X , and a first-order variable x denoting the tree
below X in xall. We express these relationships through the context equations eV :

eV =df

∧

X∈V

xall=FX(x)

13



bX : f(X1, . . . , Xn)c =df FX1
(•1)=FX(f(•1, x2, . . . , xn))

∧ . . . ∧ FXn(•1)=FX(f(x1, . . . , xn−1, •1))
bX : ac =df x=a

bX/X1, . . . , Xn ∼ Y/Y1, . . . , Ync =df ∃F (FX1
(•1)=FX(F (•1, x2, . . . , xn)) ∧

FY1
(•1)=FY (F (•1, y2, . . . , yn) ∧
∧ . . . ∧

FXn(•1)=FX(F (x1, x2, . . . , •1)) ∧
FYn(•1)=FY (F (y1, y2, . . . , •1))) (F fresh)

bE1 ∧ E2c =df bE1c ∧ bE2c
btree(X) ∈ L(A)c =df x ∈ L(A)

Fig. 3. Reduction of P+R to CU+R

The translations bEc of the literals of E is given in Figure 3.

Lemma 4. An extended parallelism constraint P ∧ R with variable set V is satisfiable
if and only the system of context equation eV ∧ bP ∧ Rc is.

Conclusion

We have presented a new relationship between tree regular constraints and the second-
order monadic dominance logic. We have lifted this relationship to the respective exten-
sions of parallelism constraints, P+R and P+SDom. We have also proved that CU with
tree regular constraints is equivalent to parallelism and tree regular constraint. To sum-
marize, the following four languages have equivalent satisfiability problems (modulo
non-elementary time reductions):

P + SDom = P + R = CU + R = LSOU + R

The first three equations are contributed by the present paper while the last equation
was proved before [16]. Our result is relevant for classifying different extensions of
parallelism constraints, as in the constraint language for lambda structures (CLLS).
For instance, we will show in a forthcoming paper [20] that parallelism constraints
plus lambda binding constraints of CLLS can be expressed in P+SDom and thus in all
equivalent languages.

References

1. Ernst Althaus, Denys Duchier, Alexander Koller, Kurt Mehlhorn, Joachim Niehren, and Sven
Thiel. An efficient algorithm for the configuration problem of dominance graphs. In 12th
ACM-SIAM Symposium on Discrete Algorithms, pages 815–824, 2001.

2. R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the theory of
finite trees. Journal of Logic, Language, and Information, 4:5–39, 1995.

3. Manuel Bodirsky, Katrin Erk, Alexander Koller, and Joachim Niehren. Beta reduction con-
straints. In RTA’01, volume 2051 of LNCS, pages 31–46, 2001.

14



4. Manuel Bodirsky, Katrin Erk, Alexander Koller, and Joachim Niehren. Underspecified beta
reduction. In ACL’01, pages 74–81, 2001.

5. Hubert Comon. Completion of rewrite systems with membership constraints. Symbolic
Computation, 25(4):397–453, 1998. Extends on a paper at ICALP’92.

6. Bruno Courcelle. The monadic second-order logic of graphs XIII: Graph drawings with edge
crossings. Computational Intelligence, 244(1-2):63–94, 2000.

7. Mary Dalrymple, Stuart Shieber, and Fernando Pereira. Ellipsis and higher-order unification.
Linguistics & Philosophy, 14:399–452, 1991.

8. Volker Diekert, Claudio Guterrez, and Christian Hagenah. The existential theory of equations
with rational constraints in free groups is pspace-complete. In STACS 2001, volume 2010 of
LNCS, pages 170–182, 2001.

9. John Doner. Tree acceptors and some of their applications. Journal of Computer System
Science, 4:406– 451, 1970. Received December 1967, Revised May 1970.

10. Denys Duchier and Claire Gardent. Tree descriptions, constraints and incrementality. In
Computing Meaning, volume 77 of Studies In Linguistics And Philosophy, pages 205–227.
Kluwer Academic Publishers, 2001.

11. Markus Egg, Alexander Koller, and Joachim Niehren. The constraint language for lambda
structures. Logic, Language, and Information, 10:457–485, 2001.

12. Katrin Erk, Alexander Koller, and Joachim Niehren. Processing underspecified semantic
representations in the constraint language for lambda structures. Journal of Language and
Computation, 2002. To appear.

13. Katrin Erk and Joachim Niehren. Parallelism constraints. In RTA’00, volume 1833 of LNCS,
pages 110–126, 2000.

14. Alexander Koller and Joachim Niehren. On underspecified processing of dynamic semantics.
In 18th Int. Conf. on Computational Linguistics, pages 460–466, July 2000.

15. Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance constraints: Algorithms
and complexity. In LACL’98, volume 2014 of LNAI, 2001.

16. Jordi Levy and Mateu Villaret. Linear second-order unification and context unification with
tree-regular constraints. In RTA’00, volume 1833 of LNCS, pages 156–171, 2000.

17. Jordi Levy and Mateu Villaret. Context unification and traversal equations. In RTA’01,
volume 2051 of LNCS, pages 167–184, 2001.

18. Mitchell P. Marcus, Donald Hindle, and Margaret M. Fleck. D-theory: Talking about talking
about trees. In Proceedings of the 21st ACL, pages 129–136, 1983.

19. Joachim Niehren and Alexander Koller. Dominance constraints in context unification. In
Logical Aspects of Computational Linguistics (1998), volume 2014 of LNAI, 2001.

20. Joachim Niehren and Mateu Villaret. On lambda binding, parallelism constraints and context
unification, 2002. Available at http://www.ps.uni-sb.de/Papers.

21. J. Rogers and K. Vijay-Shanker. Obtaining trees from their descriptions: An application to
tree-adjoining grammars. Computational Intelligence, 10:401–421, 1994.

22. M. Schmidt-Schauß. A decision algorithm for stratified context unification. Technical Report
F-rep.-12, FB Informatik, J.W. Goethe Universität Frankfurt, 1999.

23. Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations with two
context variables is decidable. In CADE-16, LNAI, pages 67–81, 1999.

24. Klaus U. Schulz. Makanin’s algorithm for word equations- two improvements and a gener-
alization. In Proceedings of the First International Workshop of Word Equations and Related
Topics, volume 572 of LNCS, Tübingen, Germany, 1992.

25. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1967.

15


