ON THE SEPARATION OF CONCERNS
IN DISTRIBUTED PROGRAMMING:
APPLICATION TO DISTRIBUTION STRUCTURE
AND FAULT TOLERANCE IN MOZART

PETER VAN ROY

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
E-mail: pvr@info.ucl.ac.be

Writing distributed applications is difficult because the programmer has to ex-
plicitly juggle many quite different concerns, including application functionality,
distribution structure, fault tolerance, security, open computing, and others. An
important goal is to separate the application functionality from the other concerns.
This article presents one step towards that goal. We show how to integrate mutable
pointers into a design that separates functionality, distribution structure, and fault
tolerance. Mutable pointers, as a realization of explicit state, are an important data
type that forms the basis for object-oriented programming. We start by defining
mutable pointers in a centralized fault-free system. We then refine this definition
by successively adding a distribution model and a failure model. The resulting
semantics can be implemented efficiently and is a sufficient base to build nontrivial
abstractions for fault tolerance. The design presented here is fully implemented as
part of the Mozart Programming System (see http://wuw.mozart-oz.org).

1 Introduction

There are two basic ways to build a platform for distributed application devel-
opment. Either one starts with an existing language, and adds functionality
in terms of library functions, or one designs the language in tandem with the
platform. The first approach is indicated for commercial developments, to
maintain upward compatibility with existing investments. This approach is
taken by CORBA ! and Java 2. The second approach is indicated for research
purposes, to investigate what is appropriate in a language for distributed pro-
gramming. This article gives an example of the second approach.

Our goal is to build a platform in which it is possible to separate as much
as possible the different concerns of distributed computing. What are these
concerns? In our view, they are consequences of the properties of a distributed
system. We define a distributed system as a set of sites interconnected by an
asynchronous network. In this article, we are interested in collaborative ap-
plications running on the Internet. We define a site as an operating system
process and the network as the Internet. Characteristic properties of a dis-
tributed system include the lack of global information and global time, large
and unpredictable communication delays between sites, and the possibility of

partial failures 2. From this point of view, a site is a maximal subset of a
distributed system that does not have these three properties. We assume that
the system can be partitioned into a finite number of sites. We assume that
the network is a fully connected graph between sites, i.e., we do not consider
routing explicitly.

Four important concerns of a distributed application are (see 4):

Application functionality What the application does if all effects of dis-
tribution are disregarded. This is the primary concern; it defines the
application as if it were running on a single site.

Distribution structure The partitioning of the application over a set of
sites.

Fault tolerance The ability for the application to continue providing its
service despite partial failures in the implementation.

Security The ability for the application to continue providing its service
despite intentional interference.

This article investigates the separation of the first three concerns, namely
application functionality, distribution structure, and fault tolerance. We do
this in the context of mutable pointers. A mutable pointer is one of the
simplest ways to implement the notion of state, which is at the heart of object-
oriented programming. Mutable pointers are not easy to implement well in a
distributed system, which is why we choose them to illustrate our approach.

We use the following terminology, which is taken from ®>. With regard to
a given layer in the implementation, a fault occurs when one of the layer’s
input operations deviates from its correct behavior. A failure occurs when
the layer can no longer deliver the correct behavior to a higher layer. The
Mozart implementation has three layers: distribution layer, network layer,
and underlying operating system including network. A failure in the network
shows up as a fault in the network layer. This may show up as a fault in the
distribution layer, which in turn may result in failure of a language entity to
perform correctly.

A system that completely separates functionality from distribution struc-
ture is called network transparent ®. This means that a given program will run
with exactly the same semantics independent of its distribution structure. To
be precise, we assume an interleaving semantics that does not require knowing
the time, but is based only on causal dependencies between instructions and
a weak fairness condition. Section 3 gives a formal definition.

Fault-free system Fault-prone system

Centralized | | Centralized semantics
semantics including failure model - isits mblE?, ,
Language PR
semantics l l I
Distributed | | Distributed semantics [~ _-"Can it beimplemented efficiently ™.
semantics including failure model [~ ™. (no overhead when o failures)? -
{ i S
’ Distributed Distributed protocol " Can abstractions for fault ™,
Implementatlon{ protocol [| including failure model . tolerance be built with it? .

Figure 1. Refining the language semantics with distribution and fault tolerance

There are few systems that separate more than two concerns. Argus 7 and
FT SR ® both address distribution and fault tolerance. Each system imple-
ments an eponymous language that provides high-level fault tolerance abstrac-
tions. The FRIENDS project ? has built a prototype system that partially
separates the concerns of functionality, fault tolerance, security, and group
communication. Qur approach is complementary to these three projects. We
focus on the semantics of language primitives. We ask three questions. How
should fault tolerance show up in the language primitives? Can the primitives
be implemented efficiently? How can one build fault tolerance abstractions
within the language by using these primitives?

Separation of concerns is useful in a much wider context than just dis-
tributed programming. For example, lazy functional languages allow the sep-
aration of what is being calculated from how much of it is needed '°.

Section 2 gives an overview of our approach: the basic design principles
and the semantic refinements. Section 3 briefly defines our execution model
and the formalism we use to define the semantics. Section 4 gives the se-
mantics of mutable pointers for centralized and distributed systems without
faults, and outlines a distributed protocol that implements these semantics.
Section 5 defines and justifies our failure model and gives the semantics of
mutable pointers for distributed systems obeying this failure model. With
this semantics, two questions remain: can the semantics be implemented effi-
ciently, and does it suffice to build the abstractions we need for fault tolerance?
Section 6 gives the properties of a distributed protocol that implements the
fault tolerant distributed semantics. Section 7 lists the nontrivial abstractions
for fault tolerance that we have built. Finally, Section 8 summarizes the main
lessons learned and outlines what remains to be done.

2 The Design Approach

We first define the semantics of mutable pointers in a standard way for a
centralized, fault-free language. We then refine this semantics in two steps to
incorporate two additional concerns: distribution structure and fault tolerance
(see Figure 1). These refinements follow two important design principles of
the Mozart project:

1. Each layer of the system should contain the right primitives. This prop-
erty is impossible to achieve a priori. To achieve it, we initially put only
quite simple primitives in the lower layers, but we make them flexible
enough to allow building more powerful abstractions at higher layers. As
we learn which abstractions are useful and how to implement them, we
modify the lower-layer primitives to be the right ones, i.e., to be simple
and to allow efficient implementation of the abstractions we need.

2. The system should have a simple formal semantics. New primitive oper-
ations are defined carefully before being put in the system.

For fault tolerance, following these principles implies that the distributed
semantics including failure model should be simple, implementable without
overhead when there are no faults, and sufficiently flexible to allow nontrivial
fault tolerance abstractions to be built. Sections 2.1 and 2.2 summarize how
to apply this approach for fault-free and fault-prone systems. Sections 4 and 5
define the semantics and discuss some ancillary topics.

2.1 Fault-Free Systems

A fault-free system is one whose components always work according to their
specification. We consider the following three levels of refinement for fault-free
systems:

e In Figure 1, we start at top left, with the centralized semantics of the
mutable pointer and of its atomic read-and-write operation, which is
called “exchange” (see Section 4.1). Exchange is quite a simple operation;
it is defined with a single reduction rule.

e Following the arrow downwards, we refine the semantics to get the dis-
tributed semantics (see Section 4.2). In a distributed setting, the muta-
ble pointer is at each instant located on a single site. The distributed
semantics shows this, and also shows when and to which site the mutable
pointer moves.

e Following the arrow downwards again, we refine the distributed semantics
to get the distributed protocol that implements this semantics in terms of
a message-passing architecture (see Section 4.3). The distributed protocol
implements the mobility of the mutable pointer.

2.2 Fault-Prone Systems

The refinements of the preceding section are valid when there are no faults. If
the system components can have faults, i.e., the system is fault-prone, then the
situation becomes more complex. To understand it, we first define a failure
model, which enumerates what kind of failures our system is set up to detect
and tolerate. The effect of the failure model shows up in the semantics at
all levels; it is not at all like the distribution structure, which is completely
hidden at the centralized level.

Why is it important that faults show up at the language level? Why is it
wrong to define a fault tolerant algorithm with enough redundancy, so that
the centralized semantics remains the same? The reason is simple: we did
not want to hardwire a complex fault tolerant algorithm into the implementa-
tion. This is contrary to the first design principle. We prefer a simple failure
detection ability in the distribution layer that allows us to build all the fault
tolerance we need at the language level. Later, when we understand what the
right primitives are, we migrate them to the implementation (the distribution
and network layers) to regain any lost efficiency. Therefore, our distribution
layer has a relatively simple protocol that satisfies two goals:

e There is no performance penalty if there is no fault (see Section 6).

e There are sufficient hooks to implement fault tolerance abstractions in
the language (see Section 7). In fact, these “hooks” are just that part of
the failure model that shows up in the language semantics.

It is not obvious that one can design such a protocol. In what follows, we
progressively show that it can be done. First we give the semantics of muta-
ble pointers in three steps, ending up with a simple semantics for fault-prone
distributed systems (see Sections 3, 4, and 5). Along the way, we define the
network-layer failure model (Section 5.1) and how it shows up for mutable
pointers at the language level (Section 5.2). Then we show that this semantics
can be implemented efficiently (see Section 6). Finally, we show that this se-
mantics suffices to build interesting nontrivial abstractions for fault tolerance
(see Section 7). This article does not give all the details of the implemented
protocol nor of the fault tolerance abstractions. For more information, please
see 11,12

X

Z=person(age: Y)
Q=p1l:proc {$} skip end

Dataflow store Mutable store
(monotonic) (nonmonotonic)

Figure 2. The Oz execution model

3 Notation and Concepts

Mutable pointers are part of the Oz language. This section defines the Oz
execution model and a formalism for its semantics. Sections 4 and 5 define
the semantics of mutable pointers. We only give the semantics of a single
operation, namely the atomic read-and-write, which we call exzchange. This
allows us to give the essential insights with a minimum of notation. Adding
the other operations is an easy exercise. The full Oz execution model also has
support for logic programming and constraint programming *'4. We do not
present this support here since it is outside the scope of the article.

3.1 Execution Model

The Oz execution model consists of threads observing a shared store (see
Figure 2) '5. The store consists of two parts:

¢ A dataflow store, consisting of dataflow variables that are either unbound
or bound. A bound variable references a term (i.e., atom, record, proce-
dure, or name) whose arguments themselves may be bound or unbound.®
Unbound variables can be bound to unbound variables, in which case
they become identical references. The dataflow store is monotonic, i.e.,
bindings can only be added, not removed or changed.

¢ A mutable store, consisting of mutable pointers that contain references

“Technically, dataflow variables are a kind of single-assignment variable called logic variable;
binding is done by distributed unification 6.

into the dataflow store.” (We use capital letters to denote references into
the dataflow store.) A mutable pointer consists of two parts: its name,
which is a value, and its content, which is a reference into the dataflow
store. The mutable store is nonmonotonic because pointer contents can
be changed.

Threads contain statement sequences S; and communicate through shared
references into the dataflow store. We say a thread is ready if it can execute
its first statement. Threads are dataflow threads, i.e., a thread becomes ready
when the first statement’s needed arguments are bound. If a needed argument
is unbound then the thread automatically blocks until the argument is bound.
Since the dataflow store is monotonic, a thread that is ready will stay ready
at least until it executes its first statement. The system guarantees weak
fairness, which implies that a ready thread will eventually execute its first
statement.

In a distributed setting, each mutable pointer exists on exactly one site at
any instant. Both mutable pointers and dataflow variables may be referenced
from more than one site. Each site has part of the dataflow store and part of
the mutable store, corresponding to the variables and mutable pointers it ref-
erences. The distributed protocol used to bind dataflow variables guarantees
that all sites stay consistent with each other.

3.2 Reduction Rules

Oz execution is given by an interleaving semantics defined in terms of reduc-
tion rules. The semantics of a statement is defined by the atomic reduction
of rules written as follows:

!
S S: c
ol o
where C' is a boolean condition, S and o are the statement and the store
before the reduction, and S' and ¢’ are the new statement and store after the
reduction.

A rule becomes applicable for a given statement when the actual store
matches the store given in the rule and the condition C' is true. Reduction
of multiple threads is in general nondeterministic, since many threads can be
ready. The effect of a reduction is to replace the current configuration (S;0)
by a result configuration (S’;0'). Weak fairness between threads implies that
a rule is guaranteed to reduce eventually if it is applicable and it refers to the
first statement of a thread.

bMutable pointers are called cells in 17.

3.8 Justification of the Model

For the curious reader, we briefly justify the Oz execution model. This section
is not needed to understand the article. See * for more information.

e The store. We observe that the monotonic and nonmonotonic stores
are fundamentally different.

— The monotonic store is easy to reason with '8, but it cannot easily
express computations that interact with their environment. The
monotonic store is given a dataflow behavior, which makes it more
useful than a pure value store. In particular, dataflow variables are
useful for concurrent programming.

— The nonmonotonic store is needed for computations that interact
with their environment. Mutable pointers make object references
possible '9. Without mutable pointers stream merging is neces-
sary, which is cumbersome and inefficient 2°. Mutable pointers and
dataflow variables together allow to express most concurrent pro-
gramming idioms in a simple way 6.

e Procedures. Higher-order procedures with lexical scoping are the basic
mechanism for building abstractions. This mechanism is not limited to
pure functional languages; it is also useful in a concurrent language with a
nonmonotonic store. In particular, higher-order procedures and mutable
pointers are the foundation of the object system 2!.

e Threads. Explicit threads facilitate debugging, reasoning about liveness
properties (such as termination), and exception handling. Originally,
the Oz language had implicit concurrency, where execution order was
constrained by data dependencies between single instructions . We
found this to be inefficient, hard to program, and hard to reason about.

Since Oz 2, all concurrency is introduced by explicit thread creation 22.

4 Semantics for Fault-Free Systems

We first give the centralized and distributed semantics of mutable pointers
in a language whose implementation never has faults. Then we outline the
distributed protocol that implements the distributed semantics.

For both mutable pointers and dataflow variables, we have given proofs
that the distributed protocol implements the centralized semantics. The
proofs are outside the scope of this article; for mutable pointers see 17 and for
dataflow variables see '®. The proofs use the fact that there exists a mapping

from any distributed execution to a centralized execution. This mapping can
be used to prove properties about the distributed execution in terms of the
centralized execution. In particular, one can prove that any distributed ex-
ecution corresponds to a correct centralized execution. This means that the
system is network transparent: the centralized language semantics remains
valid in the distributed system.

4.1 Fault-Free Centralized Semantics

A mutable pointer is a pair n: Wof a unique name n, which is a constant,
together with W which is a reference into the dataflow store. The mutable
pointer is referred to by its name n; the pair n: Wis referred to indirectly
through the exchange operation. Exchange does an atomic read-and-write.
Exchange is written as the statement { Exchange X Y Z}; its semantics is
defined by the following reduction rule:

{Exchange X Y 7} || Y=W
X=n A n"WAcg |[[X=n A n:Z Ao

This rule is reducible when its first argument X refers to the name of a mutable
pointer. It reduces to the new statement Y=W which is a binding request that
will give access to the old content Wby means of Y. The mutable pointer’s new
content is Z.

4.2 Fault-Free Distributed Semantics

The distributed semantics is a refinement of the language semantics. The
refinement specifies how the reduction is partitioned among multiple sites.
We annotate each statement, store binding, and mutable pointer with the site
it is on. For example, to denote that statement S exists in a thread on site 1,
we write S;. A binding X=t on site i is denoted (X=t),.

We assume that the mutable pointer’s name (n) can be known at many
sites, but that the mutable pointer itself (n: W exists on exactly one site at
any instant. We write (n: W; to denote that the pointer exists on site j. If
another site than j wants to update the pointer, then network operations are
needed. In terms of distributed semantics, these operations are not mentioned
explicitly; the reduction of exchange does an atomic transition of the pointer
from one site to another.

The distributed semantics of exchange is therefore given by the following
reduction rule:

{Exchange XYz, | (Y-V\J
(X=n), n: W; /\O’H (n:2), No

This rule states that, assuming the mutable pointer is on site 7 and the ex-
change is on site i, then after the reduction the mutable pointer will be on
site 7, the old content of the pointer will be accessible through Y, and the new
content of the pointer will be Z.

If i # j then this rule implies that the system must send messages be-
tween sites to atomically bring the mutable pointer from site j to site i. Any
additional exchanges on site ¢ will be purely local, i.e., require no access to
any site other than 4.

4.8 Fault-Free Distributed Protocol

The protocol that controls the mobility of the mutable pointer is very simple.
Here we summarize the protocol briefly; see '7 for a formal definition and
correctness proof. A mutable pointer has a fixed home site and a variable
current site. The home site is the site at which the pointer was originally
created. The home site is used to serialize requests for the pointer. The
current site is the site that is hosting the pointer at a particular moment in
time. A site requests the pointer by sending a message to the home site. The
latter then sends a forwarding message to the current site.° When the pointer
arrives there, the current site forwards it to the requesting site, which becomes
the new current site.

We summarize the network operations needed to implement the dis-
tributed exchange rule according to this protocol:

e If the exchange is done on the current site, then no network operations
are needed.

o If the exchange is done on the home site or the current site is the home
site, then two messages are needed: one from the exchange to the current
site, and one in the opposite direction.

e In any other case, moving the pointer requires three messages to be passed
between sites. One from the exchange site to the home site, one from the
home site to the current site, and finally one from the current site to the
exchange site.

This gives the programmer a simple and predictable mental model of what

happens on the network. We say that the system is network aware 6.

“More precisely, to the last site that will eventually become the current site.

10

5 Semantics for Fault-Prone Systems

This section gives the centralized and distributed semantics of mutable point-
ers when the failure model is included. The failure model is designed to be
simple and yet cover the vast majority of failures that occur in practice for In-
ternet applications. There are two complementary views of the failure model.
The first view explains the network-layer faults, i.e., the system faults that
are recognized by the Mozart implementation (Section 5.1). The second view
explains how these faults show up at the Oz language level, i.e., in terms of
mutable pointers (Section 5.2).

5.1 Network-Layer Failure Model

The network layer recognizes two kinds of system faults:

e Permanent site failures that are detectable by other sites. I.e., a site from
some point onwards reduces no more rules, and this fact is eventually
known by any other site that attempts to contact the failed site. In
the dependability community, this fault state is known as “fail-stop” or
“fail-silent with failure detection” 23.

e Temporary network inactivity between a pair of sites. This fault state
is characterized by a lack of precise knowledge of what the fault is and
whether it will go away. Network inactivity may be caused by a failure
of part of the network or of other sites. Network problems are always
temporary, since it is always possible at least in principle to repair the
network. The Mozart system is careful not to store any state in the
network itself. This means that messages are never lost due to temporary
inactivity. Furthermore, if the TCP protocol closes the connection, then
the system actively tries to reestablish a connection.

In general, the network-layer faults that are detectable are limited by
which network protocols the system uses. In the first Mozart release, sites
are operating system processes and the network is the Internet with the TCP
protocol family 24, This means that there are cases in which we cannot say
anything for certain; these cases are covered by a temporary inactivity state.

5.2 Language-Level Failure Model

At the language level, fault states are defined with respect to both a lan-
guage entity and a particular site. In general, fault states are possible for any

11

language entity 2°. In this article, we only consider the mutable pointer. A
language entity is always in one of three fault states on a given site:

e The entity works normally (local fault state none).

e The entity is currently not working (local fault state t enpFai |). This is
because a remote site crucial to the entity is currently unreachable due
to a network or site problem. This fault state may go away, but this is
not guaranteed.

e The entity is permanently not working (local fault state per nfFai |). This
is because a site crucial to the entity has crashed and this is detected.
This fault state is permanent.

It is the responsibility of the distributed protocol implementing the mutable
pointer to do the translation from network-layer faults to distribution-layer
(i.e., language-level) faults.

5.8 More on Temporary Faults

The fault state t enpFail exists to allow the application to react quickly
to temporary communication problems between sites. It is raised by the
system as soon as a communication problem is recognized. It is therefore
fundamentally different from a time out. For example, TCP gives a time out
after some minutes. The TCP time out is very long, approximating infinity
from the viewpoint of the network connection. After the time out, one can be
relatively sure that the connection is no longer working.

The purpose of tenpFai | is to inform the application of network prob-
lems, not to mark the end of a connection. For example, an application might
be connected to a server. If there are problems with this server, the appli-
cation would like to be informed quickly so that it can try connecting to
another server. A tenpFail fault state will therefore be relatively frequent,
much more frequent than a time out. In most cases, a t enpFai | fault state
will eventually go away.

It is possible for a t enpFai | state to last forever. For example, if a user
disconnects the network connection of a laptop machine, then only he or she
knows whether the problem is permanent. The application cannot in general
know this. The decision whether to continue waiting or to stop the wait can
cut through all layers of the system to appear at the top-most layer (i.e., the
user). The application might then pop up a window to ask the user whether
to continue waiting or not. The important thing is that the network layer

12

does not make this decision; the application is completely free to decide or to
let the user decide.

5.4 Fault-Prone Centralized Semantics

The exchange operation extended with the failure model has the following
centralized semantics:

{Exchange X Y Zz} Y=W
X=n A ntWAogo X=n A niZ Ao

fault (X, F), F=none

{Exchange X Y Zz} rai se F end
X=n Ao X=n Ao

faul t (X, F), F#£none

In these rules, faul t (X, F) is a relation that gives a current fault state of X.
Possible values of F are none, t enpFai | , and per nFai | . The operationr ai se
F end raises an exception F in the current thread. It is part of the kernel
language and has the standard dynamic scope semantics of exceptions 26.

What these rules say is that an exchange operation has two possible re-
sults: either do the exchange correctly, or do nothing and raise an exception
describing an existing fault state. If an exception is raised then the applica-
tion is free to retry the operation. If the fault is t enpFai | , then if the fault
goes away, the retry will succeed.

The exchange operation lets us do synchronous failure detection, i.e., to
detect a failure when we attempt an operation. In many cases it is useful to
have asynchronous failure detection as well, i.e., a site may want to be notified
of a fault as soon as possible even though it is not currently using the mutable
pointer. To do this, we introduce the operation Pr obe, with the property that
it never completes during normal operation. The probe operation exists for
all language entities, not just mutable pointers. It is defined by the following
rule:

{Probe X} | raise F end
o | o

faul t (X, F), F#£none

To do asynchronous failure detection, it suffices to invoke a Pr obe in its own
thread. This is practical in Mozart because of its lightweight threads.

5.5 Fault-Prone Distributed Semantics

We saw in the previous section how the exchange operation behaves at the
language level if the underlying system is faulty. At the language level, the

13

behavior is not very useful, since we do not know at which site the fault
was detected. However, at the distribution level, the behavior of exchange is
definitely useful, since it tells us on which site the fault occurs. The distributed
semantics of exchange and probe are:

{Exchange X Y Z}; || (Y=w,
(x=n); A (W, Ao | (X=n); A (n:2); Ao

faul t (X, F);, F=none

{Exchange X Y Z}; H (rai se F end), faul t(X, F);, Fnone
1 (3]

(X=n), Ao (X=n), Ao

(3

{Probe X}; H (raise F end), faul t (X F);, F#none

a g

These three rules completely define the language interface for mutable
pointers, taking into account the concerns of distribution structure and fault
tolerance. Two questions remain to be answered:

1. Can these rules be implemented efficiently, i.e., with no overhead when
there are no failures?

2. Do these rules suffice to build in Oz the fault tolerance abstractions we
need?

The next two sections give answers to these questions.

6 Distributed Protocol with Failure Detection

The first question to answer is whether the three semantic rules of the preced-
ing section are practical, i.e., can they be implemented efficiently, given our
failure model? The only good way we know of answering this question is by ac-
tually implementing the protocol. This has been done in the Mozart system 27.
When there are no faults, the resulting protocol has essentially the same per-
formance as the protocol of Section 4.3. The message latency of mobility is
the same, but there is one extra message whose cost can be amortized ''. The
protocol also has the good property that no matter what permanent failures
happen (either of the home site, the current site, or any other site), that each
site making a request will eventually get correctly informed about the situ-
ation. This is expressed precisely by the following theorem (taken from 28,
which also has a proof):

Theorem 1 (Mutable pointer with failure detection) If the mutable
pointer is requested at a site, then exactly one of the following three state-
ments is eventually true:

14

1. The home site does not fail and the pointer is never lost (e.g., the pointer
is never on a site when that site fails permanently). Then the request-
ing site will eventually receive the pointer exactly once. The exchange
executes normally.

2. The home site does not fail and the pointer is lost before it reaches the
requesting site. Then the requesting site will never receive the pointer, but
it will eventually receive notification from the home site that the pointer
is lost. The exchange or probe operation raises an exception.

3. The home site fails. Then the requesting site is eventually notified of this.
If it does not have the pointer, then it knows that it will never receive it.
If it has the pointer, then it knows it will keep it forever. The exchange
or probe operation raises an exception.

7 Building Abstractions for Fault Tolerance

The second question is whether the three rules of Section 5.5 suffice to build
the fault tolerance abstractions we need. So far, we only have a partial answer
to this question. We have built the following three abstractions:

1. The handler model, which is part of Mozart 2°. When an operation is

attempted on a mutable pointer, then if the operation cannot be com-
pleted, it is replaced by a call to a user-defined procedure, called handler.
The handler can implement arbitrary retries and time outs. The handler
model gives a slightly higher level of abstraction than Section 5.5.

2. A replicated object abstraction. An object’s state is replicated on sev-
eral sites, and a program implements a coherence protocol between the
replicas. We have built and tested a simple prototype of this abstraction.
This abstraction does not appear to be immediately useful to distributed
applications, so we are not continuing its development.

3. Transactional fault tolerance of an object store '2. The store is similar to
the store built in the PerDiS project 2°. Our store provides a more flexible
interface that allows various degrees of synchronization among sites, from
fully asynchronous (complete decoupling of local operations from the net-
work; some speculative computation possible) to fully synchronous (no
speculative computation; greater dependence on the network). Fault tol-
erance is realized by implementing a single object as n mutable pointers,
each on a different site. Any site can submit a transaction, which is
a sequence of state updates to a set of store objects. As long as one

15

site survives, then the object store survives. We are currently testing a
prototype implementation of the object store.

We find that the transactional object store is a good abstraction for collabora-
tive applications. We are integrating it into a collaborative graphic editor 3°
and we plan to build a reliable dictionary service with it.

8 Conclusions

We have presented and justified the semantics for mutable pointers that is used
in the Mozart Programming System 27, which implements the Oz language.
This semantics clearly separates the concerns of functionality, distribution
structure, and fault tolerance. We give evidence that it is possible to provide
a language interface to mutable pointers that lets one build nontrivial abstrac-
tions for fault tolerance within the language. Furthermore, the protocol that
implements this interface does not lose performance compared to a protocol
without failure detection.

However, these results do not solve the whole problem. We are contin-
uing to build fault tolerance abstractions and applications that use them, to
determine which primitive operations should go into the implementation. We
are also working on a model that takes security into account.

Acknowledgments

This article has profited greatly from discussions with Per Brand, Seif Haridji,
and Raphaél Collet. Some of the basic ideas on language-based fault tolerance
are originally due to Per Brand and Seif Haridi. The Mozart system’s distribu-
tion and network layers were implemented by Per Brand and Erik Klintskog.
The transactional object store is being implemented by Ilies Alouini. Thanks
to Phil Trinder and Kevin Hammond for fruitful discussions at the PDSIA 99
workshop. Thanks to Luc Onana for his insightful comments. This research
is partially financed by the Walloon Region of Belgium.

References

1. Alan Pope. The CORBA Reference Guide: Understanding the Com-
mon Object Request Broker Architecture. Addison-Wesley, 1997. See also
http://wuw.omg.org.

2. Sun Microsystems. The Java Series. Sun Microsystems, Mountain View,
Calif., 1996. See also http://www.javasoft.com.

16

10.

11.

12.

13.

14.

15.

16.

Gerard Tel. An Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, Cambridge, United Kingdom, 1994.

Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Program-
ming languages for distributed applications. New Generation Computing,
16(3), May 1998.

Jean-Claude Laprie. Dependability: A unifying concept for reliable com-
puting and fault tolerance. In 7th International Conference on Dis-
tributed Computing Systems, pages 129-146, September 1987.

Luca Cardelli. A language with distributed scope. In Principles of Pro-
gramming Languages (POPL), pages 286-297, January 1995.

Barbara Liskov. Distributed programming in Argus. Communications of
the ACM, 31(3):300-312, March 1988.

Richard D. Schlichting and Vicraj T. Thomas. Programming language
support for writing fault-tolerant distributed software. IEFE Transac-
tions on Computers, 44(2):203-212, February 1995.

Jean-Charles Fabre and Tanguy Pérennou. A metaobject architecture for
fault tolerant distributed systems: The FRIENDS approach. Technical
report, Laboratoire d’Analyse et d’Architecture des Systemes (LAAS),
Toulouse, January 1997.

John Hughes. Why functional programming matters. The Computer
Journal, 32(2):98-107, 1989.

Peter Van Roy, Per Brand, Seif Haridi, and Raphaél Collet. A lightweight
reliable object migration protocol. Lecture Notes in Computer Science,
vol. 1686. Springer Verlag, October 1999.

Tlies Alouini and Peter Van Roy. An open distributed fault-tolerant trans-
actional store in Mozart. In preparation, 2000.

Gert Smolka. Problem solving with constraints and programming. ACM
Computing Surveys, 28(4es), December 1996. Electronic Section.
Christian Schulte. Programming constraint inference engines. In Gert
Smolka, editor, Proceedings of the 3rd International Conference on Prin-
ciples and Practice of Constraint Programming, volume 1330 of Lecture
Notes in Computer Science, pages 519-533, Schloff Hagenberg, Austria,
October 1997. Springer-Verlag.

Gert, Smolka. The Oz programming model. In Computer Science Today,
Lecture Notes in Computer Science, vol. 1000, pages 324-343. Springer-
Verlag, Berlin, 1995.

Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer,
and Gert Smolka. Efficient logic variables for distributed computing.
ACM Transactions on Programming Languages and Systems, 21(3), May
1999.

17

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl,
and Ralf Scheidhauer. Mobile objects in Distributed Oz. ACM Transac-
tions on Programming Languages and Systems, 19(5):804-851, September
1997.

Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press,
1993.

Sverker Janson, Johan Montelius, and Seif Haridi. Ports for objects in
concurrent logic programs. In Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993.

Ehud Shapiro. The family of concurrent logic programming languages.
ACM Computing Surveys, 21(3):413-510, September 1989.

Martin Henz. Objects for Concurrent Constraint Programming, volume
426 of The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston, November 1997.

DFKI Oz version 2.0, February 1998. Available at
http://www.ps.uni-sb.de.

Shivakant Mishra and Richard D. Schlichting. Abstractions for construct-
ing dependable distributed systems. Technical report, Dept. of Computer
Science, University of Arizona, August 1992. TR 92-19.

Douglas E. Comer. Internetworking with TCP/IP. Vol. 1: Principles,
Protocols, and Architecture. Prentice-Hall, Englewood Cliffs, N.J., 1995.
Peter Van Roy, Seif Haridi, and Per Brand. Distributed programming
in Mozart — A tutorial introduction. Technical report, 1999. In Mozart
documentation, available at http://wuw.mozart-oz.org.

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, Mass,
1985.

Mozart Consortium (DFKI, SICS, UCL, UdS). The Mozart programming
system (Oz 3), January 1999. Available at http://www.mozart-oz.org.
Per Brand, Peter Van Roy, Raphaél Collet, and Erik Klintskog. A reliable
mobile state protocol. In preparation, 1999.

Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, Joao Gar-
cia, Sytse Kloosterman, Nicolas Richer, Marcus Roberts, Fadi Sandakly,
George Coulouris, Jean Dollimore, Paulo Guedes, Daniel Hagimont, and
Sacha Krakowiak. PerDiS: design, implementation, and use of a PERsis-
tent DIstributed Store. Technical Report 3525, INRIA, October 1998.
Donatien Grolaux. Editeur graphique réparti basé sur un modele trans-
actionnel (A distributed graphic editor based on a transactional model)
(in French). Technical report, Université catholique de Louvain, June
1998. Mémoire de fin d’études (Master’s project).

18

