
ON THE SEPARATION OF CONCERNSIN DISTRIBUTED PROGRAMMING:APPLICATION TO DISTRIBUTION STRUCTUREAND FAULT TOLERANCE IN MOZARTPETER VAN ROYUniversit�e catholique de Louvain, B-1348 Louvain-la-Neuve, BelgiumE-mail: pvr@info.ucl.ac.beWriting distributed applications is di�cult because the programmer has to ex-plicitly juggle many quite di�erent concerns, including application functionality,distribution structure, fault tolerance, security, open computing, and others. Animportant goal is to separate the application functionality from the other concerns.This article presents one step towards that goal. We show how to integrate mutablepointers into a design that separates functionality, distribution structure, and faulttolerance. Mutable pointers, as a realization of explicit state, are an important datatype that forms the basis for object-oriented programming. We start by de�ningmutable pointers in a centralized fault-free system. We then re�ne this de�nitionby successively adding a distribution model and a failure model. The resultingsemantics can be implemented e�ciently and is a su�cient base to build nontrivialabstractions for fault tolerance. The design presented here is fully implemented aspart of the Mozart Programming System (see http://www.mozart-oz.org).1 IntroductionThere are two basic ways to build a platform for distributed application devel-opment. Either one starts with an existing language, and adds functionalityin terms of library functions, or one designs the language in tandem with theplatform. The �rst approach is indicated for commercial developments, tomaintain upward compatibility with existing investments. This approach istaken by CORBA 1 and Java 2. The second approach is indicated for researchpurposes, to investigate what is appropriate in a language for distributed pro-gramming. This article gives an example of the second approach.Our goal is to build a platform in which it is possible to separate as muchas possible the di�erent concerns of distributed computing. What are theseconcerns? In our view, they are consequences of the properties of a distributedsystem. We de�ne a distributed system as a set of sites interconnected by anasynchronous network. In this article, we are interested in collaborative ap-plications running on the Internet. We de�ne a site as an operating systemprocess and the network as the Internet. Characteristic properties of a dis-tributed system include the lack of global information and global time, largeand unpredictable communication delays between sites, and the possibility of1



partial failures 3. From this point of view, a site is a maximal subset of adistributed system that does not have these three properties. We assume thatthe system can be partitioned into a �nite number of sites. We assume thatthe network is a fully connected graph between sites, i.e., we do not considerrouting explicitly.Four important concerns of a distributed application are (see 4):Application functionality What the application does if all e�ects of dis-tribution are disregarded. This is the primary concern; it de�nes theapplication as if it were running on a single site.Distribution structure The partitioning of the application over a set ofsites.Fault tolerance The ability for the application to continue providing itsservice despite partial failures in the implementation.Security The ability for the application to continue providing its servicedespite intentional interference.This article investigates the separation of the �rst three concerns, namelyapplication functionality, distribution structure, and fault tolerance. We dothis in the context of mutable pointers. A mutable pointer is one of thesimplest ways to implement the notion of state, which is at the heart of object-oriented programming. Mutable pointers are not easy to implement well in adistributed system, which is why we choose them to illustrate our approach.We use the following terminology, which is taken from 5. With regard toa given layer in the implementation, a fault occurs when one of the layer'sinput operations deviates from its correct behavior. A failure occurs whenthe layer can no longer deliver the correct behavior to a higher layer. TheMozart implementation has three layers: distribution layer, network layer,and underlying operating system including network. A failure in the networkshows up as a fault in the network layer. This may show up as a fault in thedistribution layer, which in turn may result in failure of a language entity toperform correctly.A system that completely separates functionality from distribution struc-ture is called network transparent 6. This means that a given program will runwith exactly the same semantics independent of its distribution structure. Tobe precise, we assume an interleaving semantics that does not require knowingthe time, but is based only on causal dependencies between instructions anda weak fairness condition. Section 3 gives a formal de�nition. 2



Distributed

Fault-free system

Is it simple?

protocol

semantics
Distributed

semantics
Centralized Centralized semantics

including failure model

Distributed semantics
including failure model

Distributed protocol
including failure model

Language
semantics

Implementation

Fault-prone system

Can it be implemented efficiently
(no overhead when no failures)?

tolerance be built with it?
Can abstractions for faultFigure 1. Re�ning the language semantics with distribution and fault toleranceThere are few systems that separate more than two concerns. Argus 7 andFT SR 8 both address distribution and fault tolerance. Each system imple-ments an eponymous language that provides high-level fault tolerance abstrac-tions. The FRIENDS project 9 has built a prototype system that partiallyseparates the concerns of functionality, fault tolerance, security, and groupcommunication. Our approach is complementary to these three projects. Wefocus on the semantics of language primitives. We ask three questions. Howshould fault tolerance show up in the language primitives? Can the primitivesbe implemented e�ciently? How can one build fault tolerance abstractionswithin the language by using these primitives?Separation of concerns is useful in a much wider context than just dis-tributed programming. For example, lazy functional languages allow the sep-aration of what is being calculated from how much of it is needed 10.Section 2 gives an overview of our approach: the basic design principlesand the semantic re�nements. Section 3 briey de�nes our execution modeland the formalism we use to de�ne the semantics. Section 4 gives the se-mantics of mutable pointers for centralized and distributed systems withoutfaults, and outlines a distributed protocol that implements these semantics.Section 5 de�nes and justi�es our failure model and gives the semantics ofmutable pointers for distributed systems obeying this failure model. Withthis semantics, two questions remain: can the semantics be implemented e�-ciently, and does it su�ce to build the abstractions we need for fault tolerance?Section 6 gives the properties of a distributed protocol that implements thefault tolerant distributed semantics. Section 7 lists the nontrivial abstractionsfor fault tolerance that we have built. Finally, Section 8 summarizes the mainlessons learned and outlines what remains to be done. 3



2 The Design ApproachWe �rst de�ne the semantics of mutable pointers in a standard way for acentralized, fault-free language. We then re�ne this semantics in two steps toincorporate two additional concerns: distribution structure and fault tolerance(see Figure 1). These re�nements follow two important design principles ofthe Mozart project:1. Each layer of the system should contain the right primitives. This prop-erty is impossible to achieve a priori. To achieve it, we initially put onlyquite simple primitives in the lower layers, but we make them exibleenough to allow building more powerful abstractions at higher layers. Aswe learn which abstractions are useful and how to implement them, wemodify the lower-layer primitives to be the right ones, i.e., to be simpleand to allow e�cient implementation of the abstractions we need.2. The system should have a simple formal semantics. New primitive oper-ations are de�ned carefully before being put in the system.For fault tolerance, following these principles implies that the distributedsemantics including failure model should be simple, implementable withoutoverhead when there are no faults, and su�ciently exible to allow nontrivialfault tolerance abstractions to be built. Sections 2.1 and 2.2 summarize howto apply this approach for fault-free and fault-prone systems. Sections 4 and 5de�ne the semantics and discuss some ancillary topics.2.1 Fault-Free SystemsA fault-free system is one whose components always work according to theirspeci�cation. We consider the following three levels of re�nement for fault-freesystems:� In Figure 1, we start at top left, with the centralized semantics of themutable pointer and of its atomic read-and-write operation, which iscalled \exchange" (see Section 4.1). Exchange is quite a simple operation;it is de�ned with a single reduction rule.� Following the arrow downwards, we re�ne the semantics to get the dis-tributed semantics (see Section 4.2). In a distributed setting, the muta-ble pointer is at each instant located on a single site. The distributedsemantics shows this, and also shows when and to which site the mutablepointer moves. 4



� Following the arrow downwards again, we re�ne the distributed semanticsto get the distributed protocol that implements this semantics in terms ofa message-passing architecture (see Section 4.3). The distributed protocolimplements the mobility of the mutable pointer.2.2 Fault-Prone SystemsThe re�nements of the preceding section are valid when there are no faults. Ifthe system components can have faults, i.e., the system is fault-prone, then thesituation becomes more complex. To understand it, we �rst de�ne a failuremodel, which enumerates what kind of failures our system is set up to detectand tolerate. The e�ect of the failure model shows up in the semantics atall levels; it is not at all like the distribution structure, which is completelyhidden at the centralized level.Why is it important that faults show up at the language level? Why is itwrong to de�ne a fault tolerant algorithm with enough redundancy, so thatthe centralized semantics remains the same? The reason is simple: we didnot want to hardwire a complex fault tolerant algorithm into the implementa-tion. This is contrary to the �rst design principle. We prefer a simple failuredetection ability in the distribution layer that allows us to build all the faulttolerance we need at the language level. Later, when we understand what theright primitives are, we migrate them to the implementation (the distributionand network layers) to regain any lost e�ciency. Therefore, our distributionlayer has a relatively simple protocol that satis�es two goals:� There is no performance penalty if there is no fault (see Section 6).� There are su�cient hooks to implement fault tolerance abstractions inthe language (see Section 7). In fact, these \hooks" are just that part ofthe failure model that shows up in the language semantics.It is not obvious that one can design such a protocol. In what follows, weprogressively show that it can be done. First we give the semantics of muta-ble pointers in three steps, ending up with a simple semantics for fault-pronedistributed systems (see Sections 3, 4, and 5). Along the way, we de�ne thenetwork-layer failure model (Section 5.1) and how it shows up for mutablepointers at the language level (Section 5.2). Then we show that this semanticscan be implemented e�ciently (see Section 6). Finally, we show that this se-mantics su�ces to build interesting nontrivial abstractions for fault tolerance(see Section 7). This article does not give all the details of the implementedprotocol nor of the fault tolerance abstractions. For more information, pleasesee 11;12. 5



S2 S3S1 Sn

Dataflow store

...Threads

W=c1

Y=42

Z=person(age: Y)
X

Store

(monotonic)
Mutable store

(nonmonotonic)

U
Q=p1:proc {$} skip end

c4:Z c2:X

c5:X
c3:Q

c1:Z

c6:W

Figure 2. The Oz execution model3 Notation and ConceptsMutable pointers are part of the Oz language. This section de�nes the Ozexecution model and a formalism for its semantics. Sections 4 and 5 de�nethe semantics of mutable pointers. We only give the semantics of a singleoperation, namely the atomic read-and-write, which we call exchange. Thisallows us to give the essential insights with a minimum of notation. Addingthe other operations is an easy exercise. The full Oz execution model also hassupport for logic programming and constraint programming 13;14. We do notpresent this support here since it is outside the scope of the article.3.1 Execution ModelThe Oz execution model consists of threads observing a shared store (seeFigure 2) 15. The store consists of two parts:� A dataow store, consisting of dataow variables that are either unboundor bound. A bound variable references a term (i.e., atom, record, proce-dure, or name) whose arguments themselves may be bound or unbound.aUnbound variables can be bound to unbound variables, in which casethey become identical references. The dataow store is monotonic, i.e.,bindings can only be added, not removed or changed.� A mutable store, consisting of mutable pointers that contain referencesaTechnically, dataow variables are a kind of single-assignment variable called logic variable;binding is done by distributed uni�cation 16. 6



into the dataow store.b (We use capital letters to denote references intothe dataow store.) A mutable pointer consists of two parts: its name,which is a value, and its content, which is a reference into the dataowstore. The mutable store is nonmonotonic because pointer contents canbe changed.Threads contain statement sequences Si and communicate through sharedreferences into the dataow store. We say a thread is ready if it can executeits �rst statement. Threads are dataow threads, i.e., a thread becomes readywhen the �rst statement's needed arguments are bound. If a needed argumentis unbound then the thread automatically blocks until the argument is bound.Since the dataow store is monotonic, a thread that is ready will stay readyat least until it executes its �rst statement. The system guarantees weakfairness, which implies that a ready thread will eventually execute its �rststatement.In a distributed setting, each mutable pointer exists on exactly one site atany instant. Both mutable pointers and dataow variables may be referencedfrom more than one site. Each site has part of the dataow store and part ofthe mutable store, corresponding to the variables and mutable pointers it ref-erences. The distributed protocol used to bind dataow variables guaranteesthat all sites stay consistent with each other.3.2 Reduction RulesOz execution is given by an interleaving semantics de�ned in terms of reduc-tion rules. The semantics of a statement is de�ned by the atomic reductionof rules written as follows:S S0� �0 Cwhere C is a boolean condition, S and � are the statement and the storebefore the reduction, and S0 and �0 are the new statement and store after thereduction.A rule becomes applicable for a given statement when the actual storematches the store given in the rule and the condition C is true. Reductionof multiple threads is in general nondeterministic, since many threads can beready. The e�ect of a reduction is to replace the current con�guration (S;�)by a result con�guration (S0;�0). Weak fairness between threads implies thata rule is guaranteed to reduce eventually if it is applicable and it refers to the�rst statement of a thread.bMutable pointers are called cells in 17. 7



3.3 Justi�cation of the ModelFor the curious reader, we briey justify the Oz execution model. This sectionis not needed to understand the article. See 4 for more information.� The store. We observe that the monotonic and nonmonotonic storesare fundamentally di�erent.{ The monotonic store is easy to reason with 18, but it cannot easilyexpress computations that interact with their environment. Themonotonic store is given a dataow behavior, which makes it moreuseful than a pure value store. In particular, dataow variables areuseful for concurrent programming.{ The nonmonotonic store is needed for computations that interactwith their environment. Mutable pointers make object referencespossible 19. Without mutable pointers stream merging is neces-sary, which is cumbersome and ine�cient 20. Mutable pointers anddataow variables together allow to express most concurrent pro-gramming idioms in a simple way 16.� Procedures. Higher-order procedures with lexical scoping are the basicmechanism for building abstractions. This mechanism is not limited topure functional languages; it is also useful in a concurrent language with anonmonotonic store. In particular, higher-order procedures and mutablepointers are the foundation of the object system 21.� Threads. Explicit threads facilitate debugging, reasoning about livenessproperties (such as termination), and exception handling. Originally,the Oz language had implicit concurrency, where execution order wasconstrained by data dependencies between single instructions 15. Wefound this to be ine�cient, hard to program, and hard to reason about.Since Oz 2, all concurrency is introduced by explicit thread creation 22.4 Semantics for Fault-Free SystemsWe �rst give the centralized and distributed semantics of mutable pointersin a language whose implementation never has faults. Then we outline thedistributed protocol that implements the distributed semantics.For both mutable pointers and dataow variables, we have given proofsthat the distributed protocol implements the centralized semantics. Theproofs are outside the scope of this article; for mutable pointers see 17 and fordataow variables see 16. The proofs use the fact that there exists a mapping8



from any distributed execution to a centralized execution. This mapping canbe used to prove properties about the distributed execution in terms of thecentralized execution. In particular, one can prove that any distributed ex-ecution corresponds to a correct centralized execution. This means that thesystem is network transparent: the centralized language semantics remainsvalid in the distributed system.4.1 Fault-Free Centralized SemanticsA mutable pointer is a pair n:W of a unique name n, which is a constant,together with W, which is a reference into the dataow store. The mutablepointer is referred to by its name n; the pair n:W is referred to indirectlythrough the exchange operation. Exchange does an atomic read-and-write.Exchange is written as the statement {Exchange X Y Z}; its semantics isde�ned by the following reduction rule:
{Exchange X Y Z} Y=W

X=n ^ n:W ^ � X=n ^ n:Z ^ �This rule is reducible when its �rst argument X refers to the name of a mutablepointer. It reduces to the new statement Y=W, which is a binding request thatwill give access to the old content W by means of Y. The mutable pointer's newcontent is Z.4.2 Fault-Free Distributed SemanticsThe distributed semantics is a re�nement of the language semantics. There�nement speci�es how the reduction is partitioned among multiple sites.We annotate each statement, store binding, and mutable pointer with the siteit is on. For example, to denote that statement S exists in a thread on site i,we write Si. A binding X=t on site i is denoted (X=t)i.We assume that the mutable pointer's name (n) can be known at manysites, but that the mutable pointer itself (n:W) exists on exactly one site atany instant. We write (n:W)j to denote that the pointer exists on site j. Ifanother site than j wants to update the pointer, then network operations areneeded. In terms of distributed semantics, these operations are not mentionedexplicitly; the reduction of exchange does an atomic transition of the pointerfrom one site to another.The distributed semantics of exchange is therefore given by the followingreduction rule:
{Exchange X Y Z}i (Y=W)i(X=n)i ^ (n:W)j ^ � (X=n)i ^ (n:Z)i ^ � 9



This rule states that, assuming the mutable pointer is on site j and the ex-change is on site i, then after the reduction the mutable pointer will be onsite i, the old content of the pointer will be accessible through Y, and the newcontent of the pointer will be Z.If i 6= j then this rule implies that the system must send messages be-tween sites to atomically bring the mutable pointer from site j to site i. Anyadditional exchanges on site i will be purely local, i.e., require no access toany site other than i.4.3 Fault-Free Distributed ProtocolThe protocol that controls the mobility of the mutable pointer is very simple.Here we summarize the protocol briey; see 17 for a formal de�nition andcorrectness proof. A mutable pointer has a �xed home site and a variablecurrent site. The home site is the site at which the pointer was originallycreated. The home site is used to serialize requests for the pointer. Thecurrent site is the site that is hosting the pointer at a particular moment intime. A site requests the pointer by sending a message to the home site. Thelatter then sends a forwarding message to the current site.c When the pointerarrives there, the current site forwards it to the requesting site, which becomesthe new current site.We summarize the network operations needed to implement the dis-tributed exchange rule according to this protocol:� If the exchange is done on the current site, then no network operationsare needed.� If the exchange is done on the home site or the current site is the homesite, then two messages are needed: one from the exchange to the currentsite, and one in the opposite direction.� In any other case, moving the pointer requires three messages to be passedbetween sites. One from the exchange site to the home site, one from thehome site to the current site, and �nally one from the current site to theexchange site.This gives the programmer a simple and predictable mental model of whathappens on the network. We say that the system is network aware 6.cMore precisely, to the last site that will eventually become the current site. 10



5 Semantics for Fault-Prone SystemsThis section gives the centralized and distributed semantics of mutable point-ers when the failure model is included. The failure model is designed to besimple and yet cover the vast majority of failures that occur in practice for In-ternet applications. There are two complementary views of the failure model.The �rst view explains the network-layer faults, i.e., the system faults thatare recognized by the Mozart implementation (Section 5.1). The second viewexplains how these faults show up at the Oz language level, i.e., in terms ofmutable pointers (Section 5.2).5.1 Network-Layer Failure ModelThe network layer recognizes two kinds of system faults:� Permanent site failures that are detectable by other sites. I.e., a site fromsome point onwards reduces no more rules, and this fact is eventuallyknown by any other site that attempts to contact the failed site. Inthe dependability community, this fault state is known as \fail-stop" or\fail-silent with failure detection" 23.� Temporary network inactivity between a pair of sites. This fault stateis characterized by a lack of precise knowledge of what the fault is andwhether it will go away. Network inactivity may be caused by a failureof part of the network or of other sites. Network problems are alwaystemporary, since it is always possible at least in principle to repair thenetwork. The Mozart system is careful not to store any state in thenetwork itself. This means that messages are never lost due to temporaryinactivity. Furthermore, if the TCP protocol closes the connection, thenthe system actively tries to reestablish a connection.In general, the network-layer faults that are detectable are limited bywhich network protocols the system uses. In the �rst Mozart release, sitesare operating system processes and the network is the Internet with the TCPprotocol family 24. This means that there are cases in which we cannot sayanything for certain; these cases are covered by a temporary inactivity state.5.2 Language-Level Failure ModelAt the language level, fault states are de�ned with respect to both a lan-guage entity and a particular site. In general, fault states are possible for any11



language entity 25. In this article, we only consider the mutable pointer. Alanguage entity is always in one of three fault states on a given site:� The entity works normally (local fault state none).� The entity is currently not working (local fault state tempFail). This isbecause a remote site crucial to the entity is currently unreachable dueto a network or site problem. This fault state may go away, but this isnot guaranteed.� The entity is permanently not working (local fault state permFail). Thisis because a site crucial to the entity has crashed and this is detected.This fault state is permanent.It is the responsibility of the distributed protocol implementing the mutablepointer to do the translation from network-layer faults to distribution-layer(i.e., language-level) faults.5.3 More on Temporary FaultsThe fault state tempFail exists to allow the application to react quicklyto temporary communication problems between sites. It is raised by thesystem as soon as a communication problem is recognized. It is thereforefundamentally di�erent from a time out. For example, TCP gives a time outafter some minutes. The TCP time out is very long, approximating in�nityfrom the viewpoint of the network connection. After the time out, one can berelatively sure that the connection is no longer working.The purpose of tempFail is to inform the application of network prob-lems, not to mark the end of a connection. For example, an application mightbe connected to a server. If there are problems with this server, the appli-cation would like to be informed quickly so that it can try connecting toanother server. A tempFail fault state will therefore be relatively frequent,much more frequent than a time out. In most cases, a tempFail fault statewill eventually go away.It is possible for a tempFail state to last forever. For example, if a userdisconnects the network connection of a laptop machine, then only he or sheknows whether the problem is permanent. The application cannot in generalknow this. The decision whether to continue waiting or to stop the wait cancut through all layers of the system to appear at the top-most layer (i.e., theuser). The application might then pop up a window to ask the user whetherto continue waiting or not. The important thing is that the network layer12



does not make this decision; the application is completely free to decide or tolet the user decide.5.4 Fault-Prone Centralized SemanticsThe exchange operation extended with the failure model has the followingcentralized semantics:
{Exchange X Y Z} Y=W

X=n ^ n:W ^ � X=n ^ n:Z ^ � fault(X,F), F=none
{Exchange X Y Z} raise F end

X=n ^ � X=n ^ � fault(X,F), F6=noneIn these rules, fault(X,F) is a relation that gives a current fault state of X.Possible values of F are none, tempFail, and permFail. The operation raise
F end raises an exception F in the current thread. It is part of the kernellanguage and has the standard dynamic scope semantics of exceptions 26.What these rules say is that an exchange operation has two possible re-sults: either do the exchange correctly, or do nothing and raise an exceptiondescribing an existing fault state. If an exception is raised then the applica-tion is free to retry the operation. If the fault is tempFail, then if the faultgoes away, the retry will succeed.The exchange operation lets us do synchronous failure detection, i.e., todetect a failure when we attempt an operation. In many cases it is useful tohave asynchronous failure detection as well, i.e., a site may want to be noti�edof a fault as soon as possible even though it is not currently using the mutablepointer. To do this, we introduce the operation Probe, with the property thatit never completes during normal operation. The probe operation exists forall language entities, not just mutable pointers. It is de�ned by the followingrule:

{Probe X} raise F end� � fault(X,F), F6=noneTo do asynchronous failure detection, it su�ces to invoke a Probe in its ownthread. This is practical in Mozart because of its lightweight threads.5.5 Fault-Prone Distributed SemanticsWe saw in the previous section how the exchange operation behaves at thelanguage level if the underlying system is faulty. At the language level, the13



behavior is not very useful, since we do not know at which site the faultwas detected. However, at the distribution level, the behavior of exchange isde�nitely useful, since it tells us on which site the fault occurs. The distributedsemantics of exchange and probe are:
{Exchange X Y Z}i (Y=W)i(X=n)i ^ (n:W)j ^ � (X=n)i ^ (n:Z)i ^ � fault(X,F)i, F=none
{Exchange X Y Z}i (raise F end)i(X=n)i ^ � (X=n)i ^ � fault(X,F)i, F 6=none
{Probe X}i (raise F end)i� � fault(X,F)i, F6=noneThese three rules completely de�ne the language interface for mutablepointers, taking into account the concerns of distribution structure and faulttolerance. Two questions remain to be answered:1. Can these rules be implemented e�ciently, i.e., with no overhead whenthere are no failures?2. Do these rules su�ce to build in Oz the fault tolerance abstractions weneed?The next two sections give answers to these questions.6 Distributed Protocol with Failure DetectionThe �rst question to answer is whether the three semantic rules of the preced-ing section are practical, i.e., can they be implemented e�ciently, given ourfailure model? The only good way we know of answering this question is by ac-tually implementing the protocol. This has been done in the Mozart system 27.When there are no faults, the resulting protocol has essentially the same per-formance as the protocol of Section 4.3. The message latency of mobility isthe same, but there is one extra message whose cost can be amortized 11. Theprotocol also has the good property that no matter what permanent failureshappen (either of the home site, the current site, or any other site), that eachsite making a request will eventually get correctly informed about the situ-ation. This is expressed precisely by the following theorem (taken from 28,which also has a proof):Theorem 1 (Mutable pointer with failure detection) If the mutablepointer is requested at a site, then exactly one of the following three state-ments is eventually true: 14



1. The home site does not fail and the pointer is never lost (e.g., the pointeris never on a site when that site fails permanently). Then the request-ing site will eventually receive the pointer exactly once. The exchangeexecutes normally.2. The home site does not fail and the pointer is lost before it reaches therequesting site. Then the requesting site will never receive the pointer, butit will eventually receive noti�cation from the home site that the pointeris lost. The exchange or probe operation raises an exception.3. The home site fails. Then the requesting site is eventually noti�ed of this.If it does not have the pointer, then it knows that it will never receive it.If it has the pointer, then it knows it will keep it forever. The exchangeor probe operation raises an exception.7 Building Abstractions for Fault ToleranceThe second question is whether the three rules of Section 5.5 su�ce to buildthe fault tolerance abstractions we need. So far, we only have a partial answerto this question. We have built the following three abstractions:1. The handler model, which is part of Mozart 25. When an operation isattempted on a mutable pointer, then if the operation cannot be com-pleted, it is replaced by a call to a user-de�ned procedure, called handler.The handler can implement arbitrary retries and time outs. The handlermodel gives a slightly higher level of abstraction than Section 5.5.2. A replicated object abstraction. An object's state is replicated on sev-eral sites, and a program implements a coherence protocol between thereplicas. We have built and tested a simple prototype of this abstraction.This abstraction does not appear to be immediately useful to distributedapplications, so we are not continuing its development.3. Transactional fault tolerance of an object store 12. The store is similar tothe store built in the PerDiS project 29. Our store provides a more exibleinterface that allows various degrees of synchronization among sites, fromfully asynchronous (complete decoupling of local operations from the net-work; some speculative computation possible) to fully synchronous (nospeculative computation; greater dependence on the network). Fault tol-erance is realized by implementing a single object as n mutable pointers,each on a di�erent site. Any site can submit a transaction, which isa sequence of state updates to a set of store objects. As long as one15



site survives, then the object store survives. We are currently testing aprototype implementation of the object store.We �nd that the transactional object store is a good abstraction for collabora-tive applications. We are integrating it into a collaborative graphic editor 30and we plan to build a reliable dictionary service with it.8 ConclusionsWe have presented and justi�ed the semantics for mutable pointers that is usedin the Mozart Programming System 27, which implements the Oz language.This semantics clearly separates the concerns of functionality, distributionstructure, and fault tolerance. We give evidence that it is possible to providea language interface to mutable pointers that lets one build nontrivial abstrac-tions for fault tolerance within the language. Furthermore, the protocol thatimplements this interface does not lose performance compared to a protocolwithout failure detection.However, these results do not solve the whole problem. We are contin-uing to build fault tolerance abstractions and applications that use them, todetermine which primitive operations should go into the implementation. Weare also working on a model that takes security into account.AcknowledgmentsThis article has pro�ted greatly from discussions with Per Brand, Seif Haridi,and Rapha�el Collet. Some of the basic ideas on language-based fault toleranceare originally due to Per Brand and Seif Haridi. The Mozart system's distribu-tion and network layers were implemented by Per Brand and Erik Klintskog.The transactional object store is being implemented by Ili�es Alouini. Thanksto Phil Trinder and Kevin Hammond for fruitful discussions at the PDSIA '99workshop. Thanks to Luc Onana for his insightful comments. This researchis partially �nanced by the Walloon Region of Belgium.References1. Alan Pope. The CORBA Reference Guide: Understanding the Com-mon Object Request Broker Architecture. Addison-Wesley, 1997. See alsohttp://www.omg.org.2. Sun Microsystems. The Java Series. Sun Microsystems, Mountain View,Calif., 1996. See also http://www.javasoft.com. 16



3. Gerard Tel. An Introduction to Distributed Algorithms. Cambridge Uni-versity Press, Cambridge, United Kingdom, 1994.4. Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Program-ming languages for distributed applications. New Generation Computing,16(3), May 1998.5. Jean-Claude Laprie. Dependability: A unifying concept for reliable com-puting and fault tolerance. In 7th International Conference on Dis-tributed Computing Systems, pages 129{146, September 1987.6. Luca Cardelli. A language with distributed scope. In Principles of Pro-gramming Languages (POPL), pages 286{297, January 1995.7. Barbara Liskov. Distributed programming in Argus. Communications ofthe ACM, 31(3):300{312, March 1988.8. Richard D. Schlichting and Vicraj T. Thomas. Programming languagesupport for writing fault-tolerant distributed software. IEEE Transac-tions on Computers, 44(2):203{212, February 1995.9. Jean-Charles Fabre and Tanguy P�erennou. A metaobject architecture forfault tolerant distributed systems: The FRIENDS approach. Technicalreport, Laboratoire d'Analyse et d'Architecture des Syst�emes (LAAS),Toulouse, January 1997.10. John Hughes. Why functional programming matters. The ComputerJournal, 32(2):98{107, 1989.11. Peter Van Roy, Per Brand, Seif Haridi, and Rapha�el Collet. A lightweightreliable object migration protocol. Lecture Notes in Computer Science,vol. 1686. Springer Verlag, October 1999.12. Ili�es Alouini and Peter Van Roy. An open distributed fault-tolerant trans-actional store in Mozart. In preparation, 2000.13. Gert Smolka. Problem solving with constraints and programming. ACMComputing Surveys, 28(4es), December 1996. Electronic Section.14. Christian Schulte. Programming constraint inference engines. In GertSmolka, editor, Proceedings of the 3rd International Conference on Prin-ciples and Practice of Constraint Programming, volume 1330 of LectureNotes in Computer Science, pages 519{533, Schlo� Hagenberg, Austria,October 1997. Springer-Verlag.15. Gert Smolka. The Oz programming model. In Computer Science Today,Lecture Notes in Computer Science, vol. 1000, pages 324{343. Springer-Verlag, Berlin, 1995.16. Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer,and Gert Smolka. E�cient logic variables for distributed computing.ACM Transactions on Programming Languages and Systems, 21(3), May1999. 17



17. Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl,and Ralf Scheidhauer. Mobile objects in Distributed Oz. ACM Transac-tions on Programming Languages and Systems, 19(5):804{851, September1997.18. Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press,1993.19. Sverker Janson, Johan Montelius, and Seif Haridi. Ports for objects inconcurrent logic programs. In Research Directions in Concurrent Object-Oriented Programming. MIT Press, 1993.20. Ehud Shapiro. The family of concurrent logic programming languages.ACM Computing Surveys, 21(3):413{510, September 1989.21. Martin Henz. Objects for Concurrent Constraint Programming, volume426 of The Kluwer International Series in Engineering and ComputerScience. Kluwer Academic Publishers, Boston, November 1997.22. DFKI Oz version 2.0, February 1998. Available athttp://www.ps.uni-sb.de.23. Shivakant Mishra and Richard D. Schlichting. Abstractions for construct-ing dependable distributed systems. Technical report, Dept. of ComputerScience, University of Arizona, August 1992. TR 92-19.24. Douglas E. Comer. Internetworking with TCP/IP. Vol. 1: Principles,Protocols, and Architecture. Prentice-Hall, Englewood Cli�s, N.J., 1995.25. Peter Van Roy, Seif Haridi, and Per Brand. Distributed programmingin Mozart { A tutorial introduction. Technical report, 1999. In Mozartdocumentation, available at http://www.mozart-oz.org.26. Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure andInterpretation of Computer Programs. MIT Press, Cambridge, Mass,1985.27. Mozart Consortium (DFKI, SICS, UCL, UdS). The Mozart programmingsystem (Oz 3), January 1999. Available at http://www.mozart-oz.org.28. Per Brand, Peter Van Roy, Rapha�el Collet, and Erik Klintskog. A reliablemobile state protocol. In preparation, 1999.29. Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, Jo~ao Gar-cia, Sytse Kloosterman, Nicolas Richer, Marcus Roberts, Fadi Sandakly,George Coulouris, Jean Dollimore, Paulo Guedes, Daniel Hagimont, andSacha Krakowiak. PerDiS: design, implementation, and use of a PERsis-tent DIstributed Store. Technical Report 3525, INRIA, October 1998.30. Donatien Grolaux. Editeur graphique r�eparti bas�e sur un mod�ele trans-actionnel (A distributed graphic editor based on a transactional model)(in French). Technical report, Universit�e catholique de Louvain, June1998. M�emoire de �n d'�etudes (Master's project). 18


