Tableaux for HOL with Choice

Backes, Brown

Analytic Tableaux for Higher-Order Logic with Choice

Julian Backes, Chad E. Brown

Universität des Saarlandes

July 14, 2010

Automated	Interactive
Isabelle-HOL	Isabelle-HOL
TPS	HOL family:
	HOL4
	HOL-Light
	ProofPower
Simple Type Theory	Even More Simple Types
Simple Type Theory + Logical Constants	Even More Simple Types + Logical Constants
	+ Logical Constants
	+ Logical Constants + Extensionality

Andrews, Paulson, Nipkow, Gordon, ...

Tableaux for HOL with Choice

Automated	Interactive
Isabelle-HOL	Isabelle-HOL
TPS	HOL family:
LEO-II	HOL4
	HOL-Light
	ProofPower
Simple Type Theory	Even More Simple Types
Simple Type Theory + Logical Constants	Even More Simple Types + Logical Constants
1 51 5	1 51
+ Logical Constants	+ Logical Constants
+ Logical Constants + Extensionality	+ Logical Constants + Extensionality

Andrews, Paulson, Nipkow, Gordon, ... Kohlhase, Benzmüller, Brown, Smolka Tableaux for HOL with Choice

Automated	Interactive
Isabelle-HOL	Isabelle-HOL
TPS	HOL family:
LEO-II	HOL4
Satallax	HOL-Light
	ProofPower
Simple Type Theory	Even More Simple Types
+ Logical Constants	+ Logical Constants
+ Extensionality	+ Extensionality
+ Primitive Equality	+ Primitive Equality
+ Choice	+ Choice
	+ Infinity

Andrews, Paulson, Nipkow, Gordon, ... Kohlhase, Benzmüller, Brown, Smolka Backes, Brown Tableaux for HOL with Choice

Automated	Interactive
Isabelle-HOL	Isabelle-HOL
TPS	HOL family:
LEO-II	HOL4
Satallax	HOL-Light
CASC THF	ProofPower
Simple Type Theory	Even More Simple Types
+ Logical Constants	+ Logical Constants
+ Extensionality	+ Extensionality
+ Primitive Equality	+ Primitive Equality
+ Choice	+ Choice
	+ Infinity

Andrews, Paulson, Nipkow, Gordon, ... Kohlhase, Benzmüller, Brown, Smolka Backes, Brown Tableaux for HOL with Choice

Example 1: Let ε be a choice operator:

If p is nonempty, then εp is in p.

 $\forall px.px \rightarrow p(\varepsilon p)$

Tableaux for HOL with Choice

Example 1: Let ε be a choice operator:

If p is nonempty, then εp is in p.

 $\forall px.px \rightarrow p(\varepsilon p)$

Tableau Refutation of branch with

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲三 少へ⊙

Tableaux for HOL with Choice

Example 1: Let ε be a choice operator:

If p is nonempty, then εp is in p.

$$\forall px.px \rightarrow p(\varepsilon p)$$

Tableau Refutation of branch with

$$\begin{array}{c} px \\ \neg p(\varepsilon p) \\ \forall x. \neg px \end{array} \mid p(\varepsilon p) \end{array}$$

Mints (JSL, 1999) gave sequent rules for choice. Similar tableau rule: Split into p empty or $p(\varepsilon p)$. Tableaux for HOL with Choice

Example 1: Let ε be a choice operator:

If p is nonempty, then εp is in p.

 $\forall px.px \rightarrow p(\varepsilon p)$

Tableau Refutation of branch with

 $\begin{array}{c|c} px \\ \neg p(\varepsilon p) \\ \forall x. \neg px \\ p(\varepsilon p) \end{array}$

Mints (JSL, 1999) gave sequent rules for choice. Similar tableau rule: Split into p empty or $p(\varepsilon p)$. Tableaux for HOL with Choice

Example 1: Let ε be a choice operator:

If p is nonempty, then εp is in p.

 $\forall px.px \rightarrow p(\varepsilon p)$

Tableau Refutation of branch with

 $\begin{array}{c|c} px \\ \neg p(\varepsilon p) \\ \hline x.\neg px \\ \neg px \end{array} p(\varepsilon p)$

Mints (JSL, 1999) gave sequent rules for choice. Similar tableau rule: Split into p empty or $p(\varepsilon p)$. Tableaux for HOL with Choice

Example 1: Let ε be a choice operator:

If p is nonempty, then εp is in p.

 $\forall px.px \rightarrow p(\varepsilon p)$

Tableau Refutation of branch with

 $\begin{array}{c|c} px \\ \neg p(\varepsilon p) \\ x.\neg px \\ \neg px \end{array} p(\varepsilon p) \end{array}$

Mints (JSL, 1999) gave sequent rules for choice. Similar tableau rule: Split into p empty or $p(\varepsilon p)$. Mints: Because εp is a subterm. Can we further restrict? Tableaux for HOL with Choice

Outline

- Higher-Order Logic with Choice (ε)
- Higher-Order Tableau
- The Choice Rule
- Restrictions on Instantiations
- Examples

Tableaux for HOL with Choice

Higher Order Logic

Simple Types σ, τ :

```
o (propositions), \iota (individuals), \sigma \rightarrow \tau (functions)
```

Tableaux for HOL with Choice

Higher Order Logic

Simple Types σ, τ :

```
o (propositions), \iota (individuals), \sigma \rightarrow \tau (functions)
```

Variables x of each type.

Tableaux for HOL with Choice

Higher Order Logic

Simple Types σ, τ :

```
o (propositions), \iota (individuals), \sigma \rightarrow \tau (functions)
```

Variables x of each type.

Terms s, t:

$$x \mid c \mid (\lambda x.s) \mid (st)$$

Logical constants $c \dots$ (next slide)

```
[s] - normal form of s
```

Tableaux for HOL with Choice

Logical Constants

- ▶ ⊥ : 0
- $\blacktriangleright \neg : o \rightarrow o$
- $\blacktriangleright \forall : o \to o \to o$
- $\blacktriangleright =_{\sigma}: \sigma \to \sigma \to o$
- $\blacktriangleright \forall_{\sigma} : (\sigma \to o) \to o$

Tableaux for HOL with Choice

Logical Constants

- ► ⊥ : o
- $\blacktriangleright \neg : o \rightarrow o$
- $\blacktriangleright \forall : o \to o \to o$
- $\blacktriangleright =_{\sigma}: \sigma \to \sigma \to o$

$$\blacktriangleright \forall_{\sigma} : (\sigma \to o) \to o$$

ε_σ: (σ → o) → σ - choice function on σ
 Notation: Write εx.s for ε(λx.s)

Tableaux for HOL with Choice

Backes, Brown

Logical Constants

- ► ⊥ : o
- $\blacktriangleright \neg : o \rightarrow o$
- $\blacktriangleright \forall : o \to o \to o$
- $\blacktriangleright =_{\sigma}: \sigma \to \sigma \to o$
- $\blacktriangleright \forall_{\sigma} : (\sigma \to o) \to o$
- ► ε_{σ} : $(\sigma \to o) \to \sigma$ choice function on σ Notation: Write $\varepsilon x.s$ for $\varepsilon(\lambda x.s)$
- * : ι a default element of the nonempty type ι

Tableaux for HOL with Choice

Backes, Brown

Example 2: Fix $p : \iota \to o$. Can we have $\forall_o q.\varepsilon p \neq \varepsilon x.q$?

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Example 2: Fix $p : \iota \to o$. Can we have $\forall_o q.\varepsilon p \neq \varepsilon x.q$?

 εp must be different from $\varepsilon x \perp$ and $\varepsilon x \neg \perp$.

Tableaux for HOL with Choice

Example 2: Fix $p: \iota \to o$. Can we have $\forall_{\alpha} q.\varepsilon p \neq \varepsilon x.q$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 εp must be different from $\varepsilon x. \perp$ and $\varepsilon x. \neg \perp$.

Tableau procedure will decide whether or not this is satisfiable.

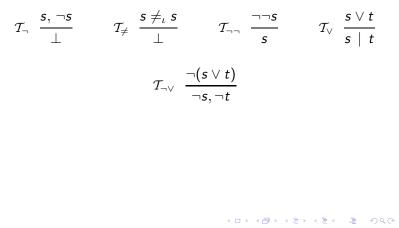
Tableaux for HOL with Choice

Brown, Smolka [LMCS 2010] (Complete for Henkin models without Choice) Tableaux for HOL with Choice

Backes, Brown

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ク۹ぐ

Brown, Smolka [LMCS 2010] (Complete for Henkin models without Choice) A few unsurprising rules...



Tableaux for HOL with Choice

Brown, Smolka [LMCS 2010] (Complete for Henkin models without Choice) Mating and decomposition...

$$\mathcal{T}_{_{\mathrm{MAT}}} \; rac{\delta s \;,\; \neg \delta t}{s
eq t} \qquad \qquad \mathcal{T}_{_{\mathrm{DEC}}} \; \; rac{\delta s
eq_\iota \; \delta t}{s
eq t}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

 δ either a variable or an ε (also, for arity > 1)

Tableaux for HOL with Choice

Brown, Smolka [LMCS 2010] (Complete for Henkin models without Choice) ...and more rules...extensionality, equality

$$\mathcal{T}_{\text{CON}} \quad \frac{s =_{\iota} t, u \neq_{\iota} v}{s \neq u, t \neq u \mid s \neq v, t \neq v} \qquad \mathcal{T}_{\text{BE}} \quad \frac{s \neq_{o} t}{s, \neg t \mid \neg s, t}$$
$$\mathcal{T}_{\text{BQ}} \quad \frac{s =_{o} t}{s, t \mid \neg s, \neg t}$$
$$\mathcal{T}_{\text{FE}} \quad \frac{s \neq_{\sigma\tau} t}{\neg [\forall x.sx = tx]} \quad x \notin \mathcal{V}s \cup \mathcal{V}t$$
$$\mathcal{T}_{\text{FQ}} \quad \frac{s =_{\sigma\tau} t}{[\forall x.sx = tx]} \quad x \notin \mathcal{V}s \cup \mathcal{V}t$$

Tableaux for HOL with Choice

Backes, Brown

Tableaux for HOL with Choice

Backes, Brown

$$\mathcal{T}_{\varepsilon} \quad \overline{[\forall x.\neg(sx)] \mid [s(\varepsilon s)]} \quad \varepsilon s \text{ accessible, } x \notin \mathcal{V}s$$

- * ロ ▶ * 母 ▶ * き ▶ * き * り < や

 $\mathcal{T}_{\varepsilon} \quad \frac{}{[\forall x. \neg(sx)] \mid [s(\varepsilon s)]} \in s \text{ accessible, } x \notin \mathcal{V}s$

When is $\varepsilon_{\sigma} s$ accessible? Depends on σ

Tableaux for HOL with Choice

Backes, Brown

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ● ● ● ●

$$\mathcal{T}_{\varepsilon} \quad \overline{[\forall x.\neg(sx)] \mid [s(\varepsilon s)]} \ \varepsilon s \text{ accessible, } x \notin \mathcal{V}s$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

When is $\varepsilon_{\sigma}s$ accessible? Depends on σ

 ι : $\varepsilon s \neq_{\iota} t$ or $t \neq_{\iota} \varepsilon s$ on the branch

Tableaux for HOL with Choice

$$\mathcal{T}_{\varepsilon} \quad \overline{[\forall x.\neg(sx)] \mid [s(\varepsilon s)]} \ \varepsilon s \text{ accessible, } x \notin \mathcal{V}s$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

When is $\varepsilon_{\sigma}s$ accessible? Depends on σ

 ι : $\varepsilon s \neq_{\iota} t$ or $t \neq_{\iota} \varepsilon s$ on the branch

 $\sigma_1 \to \cdots \to \sigma_n \to \iota: (\varepsilon s) u_1 \cdots u_n \neq_\iota t$ on the branch

Tableaux for HOL with Choice

$$\mathcal{T}_{\varepsilon} \quad \overline{[\forall x.\neg(sx)] \mid [s(\varepsilon s)]} \ \varepsilon s \text{ accessible, } x \notin \mathcal{V}s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When is $\varepsilon_{\sigma}s$ accessible? Depends on σ

 ι : $\varepsilon s \neq_{\iota} t$ or $t \neq_{\iota} \varepsilon s$ on the branch

$$\sigma_1 \to \cdots \to \sigma_n \to \iota: (\varepsilon s) u_1 \cdots u_n \neq_\iota t$$
 on the branch

o: εs or $\neg \varepsilon s$ on the branch

Tableaux for HOL with Choice

$$\mathcal{T}_{\varepsilon} \quad \overline{[\forall x.\neg(sx)] \mid [s(\varepsilon s)]} \ \varepsilon s \text{ accessible, } x \notin \mathcal{V}s$$

When is $\varepsilon_{\sigma}s$ accessible? Depends on σ

 $\iota: \varepsilon s \neq_{\iota} t \text{ or } t \neq_{\iota} \varepsilon s$ on the branch

$$\sigma_1 \to \cdots \to \sigma_n \to \iota$$
: $(\varepsilon s) u_1 \cdots u_n \neq_\iota t$ on the branch

o: εs or $\neg \varepsilon s$ on the branch

 $\sigma_1 \rightarrow \cdots \rightarrow \sigma_n \rightarrow o: (\varepsilon s) u_1 \cdots u_n$ or its negation on the branch

Tableaux for HOL with Choice

Backes, Brown

うしん 明 ふかとうかん モットロッ

$$\mathcal{T}_{orall} \; rac{orall_\sigma s}{[st]} \; \; t \in \mathcal{U}_\sigma$$

◆□ > < 個 > < 目 > < 目 > < 目 > < 0 < 0</p>

Restrict instantiations in the \mathcal{T}_\forall rule based to \mathcal{U}_σ on the type:

Tableaux for HOL with Choice

$$\mathcal{T}_{orall} \; rac{orall_\sigma s}{[st]} \; \; t \in \mathcal{U}_\sigma$$

Restrict instantiations in the \mathcal{T}_\forall rule based to \mathcal{U}_σ on the type:

 \mathcal{U}_{ι} Only terms *s* occurring as $s \neq t$ or $t \neq s$ on branch. If there are none, use default $* : \iota$ Finitely many!

Tableaux for HOL with Choice

$$\mathcal{T}_{orall} \; rac{orall_\sigma m{s}}{[m{s}t]} \;\; t \in \mathcal{U}_\sigma$$

Restrict instantiations in the \mathcal{T}_\forall rule based to \mathcal{U}_σ on the type:

- $\begin{aligned} \mathcal{U}_{\iota} & \text{Only terms } s \text{ occurring as } s \neq t \text{ or } t \neq s \text{ on branch.} \\ & \text{If there are none, use default } * : \iota \\ & \text{Finitely many!} \end{aligned}$
- \mathcal{U}_{o} Only \perp and $\neg \perp$ (false and true) Finitely many!

Tableaux for HOL with Choice

$$\mathcal{T}_orall \; rac{orall_\sigma s}{[st]} \;\; t \in \mathcal{U}_\sigma$$

Restrict instantiations in the \mathcal{T}_\forall rule based to \mathcal{U}_σ on the type:

 $\begin{aligned} \mathcal{U}_{\iota} \ \ \text{Only terms s occurring as $s \neq t$ or $t \neq s$ on branch.} \\ \text{If there are none, use default $*:$ ι} \\ \text{Finitely many!} \end{aligned}$

$$\mathcal{U}_{o}$$
 Only \perp and $\neg \perp$ (false and true)
Finitely many!

 $\mathcal{U}_{\sigma \to \tau} \ \ \text{Only normal terms using variables free on the branch} \\ \text{Infinitely many, of course.}$

If only quantifiers at o and ι , the procedure sometimes terminates.

Tableaux for HOL with Choice

Example 1

Tableaux for HOL with Choice

Backes, Brown

$px \\ \neg p(\varepsilon p)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▶ ▲□ ▶

Tableaux for HOL with Choice

Backes, Brown

px ¬p(εp)

・ロト ・日・・日・・日・ ・日・

Tableaux for HOL with Choice

Backes, Brown

$px \\ \neg p(\varepsilon p) \\ x \neq_{\iota} \varepsilon p$

Tableaux for HOL with Choice

Backes, Brown

px $\neg p(\varepsilon p)$ $x \neq_{\iota} \varepsilon p$

 εp accessible - Choice Rule Activated

px $\neg p(\varepsilon p)$ $x \neq_{\iota} \varepsilon p$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● ● ●

Tableaux for HOL with Choice

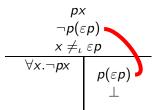
Tableaux for HOL with Choice

Backes, Brown

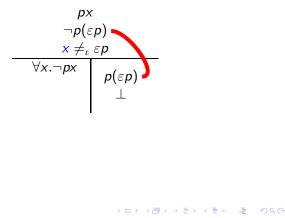
$$\begin{array}{c|c}
px \\
\neg p(\varepsilon p) \\
x \neq_{\iota} \varepsilon p \\
\hline
\forall x. \neg px \\ p(\varepsilon p)
\end{array}$$

Tableaux for HOL with Choice

Backes, Brown



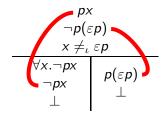
x accessible - Legal Instantiation for \forall



Tableaux for HOL with Choice

Tableaux for HOL with Choice

Backes, Brown



Tableaux for HOL with Choice

Backes, Brown

$\forall_o q. \varepsilon p \neq \varepsilon x. q$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Instantiate with \perp and $\neg \bot$

 $\forall_o q.\varepsilon p \neq \varepsilon x.q$

Tableaux for HOL with Choice

Backes, Brown

・ロト・西ト・モート 中 うえぐ

Instantiate with \perp and $\neg \bot$

 $\forall_{o}q.\varepsilon p \neq \varepsilon x.q$ $\varepsilon p \neq \varepsilon x.\bot$ $\varepsilon p \neq \varepsilon x.\neg\bot$

Tableaux for HOL with Choice

Backes, Brown

・ロ・・母・・曲・・曲・ 今々ぐ

Decompose

 $\forall_o q.\varepsilon p \neq \varepsilon x.q$ $\varepsilon p \neq \varepsilon x. \bot$ $\varepsilon p \neq \varepsilon x.\neg \bot$

Tableaux for HOL with Choice

Backes, Brown

Decompose

$$\begin{aligned} \forall_o q. \varepsilon p \neq \varepsilon x. q \\ \varepsilon p \neq \varepsilon x. \bot \\ \varepsilon p \neq \varepsilon x. \neg \bot \\ p \neq \lambda x. \bot \\ p \neq \lambda x. \neg \bot \end{aligned}$$

Tableaux for HOL with Choice

 $\forall_{o}q.\varepsilon p \neq \varepsilon x.q \\ \varepsilon p \neq \varepsilon x.\bot \\ \varepsilon p \neq \varepsilon x.\neg\bot \\ p \neq \lambda x.\bot \\ p \neq \lambda x.\neg\bot \\ \neg \forall x.px = \bot \\ \neg \forall x.px = \neg\bot$

Tableaux for HOL with Choice

Backes, Brown

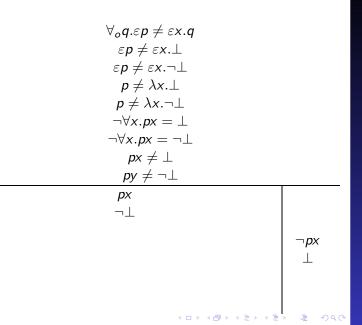
ペロト 4回ト 4回ト 4回ト 一回・ 99ペン

 $\begin{array}{l} \forall_o q. \varepsilon p \neq \varepsilon x. q \\ \varepsilon p \neq \varepsilon x. \bot \\ \varepsilon p \neq \varepsilon x. \neg \bot \\ p \neq \lambda x. \bot \\ p \neq \lambda x. \neg \bot \\ \neg \forall x. px = \bot \\ \neg \forall x. px = \neg \bot \\ px \neq \bot \\ py \neq \neg \bot \end{array}$

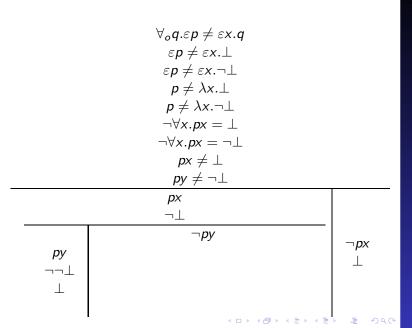
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Tableaux for HOL with Choice

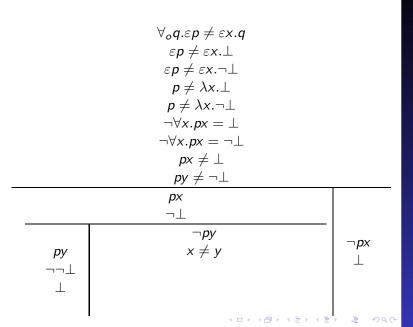
Tableaux for HOL with Choice



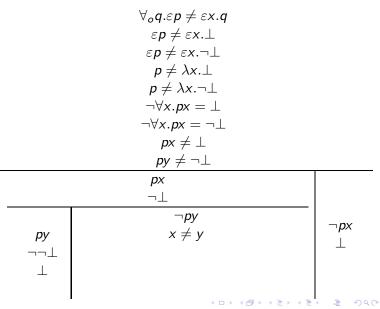
Tableaux for HOL with Choice



Tableaux for HOL with Choice

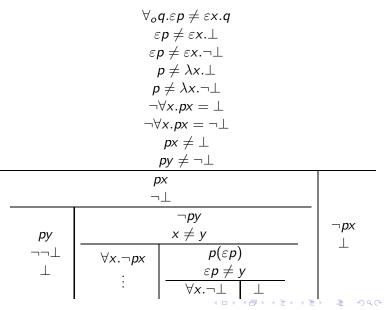


Accessible Choice Terms: εp , $\varepsilon x. \bot$, $\varepsilon x. \neg \bot$



Tableaux for HOL with Choice

Accessible Choice Terms: εp , $\varepsilon x. \bot$, $\varepsilon x. \neg \bot$



Tableaux for HOL with Choice

Evident (Hintikka) Set: Satisfiable

$$\begin{array}{c}
\forall_{o}q.\varepsilon p \neq \varepsilon x.q\\
\varepsilon p \neq \varepsilon x. \bot\\
\varepsilon p \neq \varepsilon x. \neg \bot\\
p \neq \lambda x. \bot\\
p \neq \lambda x. \neg \bot\\
\neg \forall x.px = \bot\\
\neg \forall x.px = \neg \bot\\
\varphi x \neq \bot\\
py \neq \neg \bot\\
\hline
\begin{array}{c}
px\\ \neg \bot\\
\hline
\end{array} \qquad \begin{array}{c}
px\\ \neg y\\
\hline
\end{array} \end{array}$$

Tableaux for HOL with Choice

 Completeness: If a branch cannot be refuted, it is satisfiable by a Henkin model (with choice). Tableaux for HOL with Choice

- Completeness: If a branch cannot be refuted, it is satisfiable by a Henkin model (with choice).
- In particular, if no more rules can be applied, the branch is satisfiable.

Tableaux for HOL with Choice

- Completeness: If a branch cannot be refuted, it is satisfiable by a Henkin model (with choice).
- In particular, if no more rules can be applied, the branch is satisfiable.
- Idea: Use a possible values relation (Prawitz 1968, Takahashi 1967+1968, Andrews 1971)

Tableaux for HOL with Choice

Backes, Brown

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

- Completeness: If a branch cannot be refuted, it is satisfiable by a Henkin model (with choice).
- In particular, if no more rules can be applied, the branch is satisfiable.
- Idea: Use a possible values relation (Prawitz 1968, Takahashi 1967+1968, Andrews 1971)
- and interpret *i* by discriminants (compatible sets of discriminating terms - those used in disequations) - Brown, Smolka [LMCS 2010]

Tableaux for HOL with Choice

- Completeness: If a branch cannot be refuted, it is satisfiable by a Henkin model (with choice).
- In particular, if no more rules can be applied, the branch is satisfiable.
- Idea: Use a possible values relation (Prawitz 1968, Takahashi 1967+1968, Andrews 1971)
- and interpret *i* by discriminants (compatible sets of discriminating terms - those used in disequations) - Brown, Smolka [LMCS 2010]
- and interpret Choice using a definition similar to Mints [JSL 1999]

Tableaux for HOL with Choice

- Given: Branch A that is not refutable.
- Extend to E satisfying certain properties. $(A \subseteq E)$
- Let X be the free variables in E.
- Define \mathcal{D}_{σ} and $\triangleright_{\sigma} \subseteq \Lambda_{\sigma}^{X} \times \mathcal{D}_{\sigma}$ by induction on types.

Tableaux for HOL with Choice

- Given: Branch A that is not refutable.
- Extend to E satisfying certain properties. $(A \subseteq E)$
- Let X be the free variables in E.
- Define \mathcal{D}_{σ} and $\triangleright_{\sigma} \subseteq \Lambda_{\sigma}^{X} \times \mathcal{D}_{\sigma}$ by induction on types.
- $\mathcal{D}_o = \{0,1\}$ (false and true)

Tableaux for HOL with Choice

- Given: Branch A that is not refutable.
- Extend to E satisfying certain properties. $(A \subseteq E)$
- Let X be the free variables in E.
- Define \mathcal{D}_{σ} and $\triangleright_{\sigma} \subseteq \Lambda_{\sigma}^{X} \times \mathcal{D}_{\sigma}$ by induction on types.
- $\mathcal{D}_o = \{0, 1\}$ (false and true)
- Interpret variables x such that $x \triangleright \mathcal{I}x$.

Tableaux for HOL with Choice

- Given: Branch A that is not refutable.
- Extend to *E* satisfying certain properties. $(A \subseteq E)$
- Let X be the free variables in E.
- Define \mathcal{D}_{σ} and $\triangleright_{\sigma} \subseteq \Lambda_{\sigma}^{X} \times \mathcal{D}_{\sigma}$ by induction on types.
- $\mathcal{D}_o = \{0,1\}$ (false and true)
- Interpret variables x such that $x \triangleright \mathcal{I}x$.
- Interpret logical constants c appropriately and ensure c ▷ I c.

Tableaux for HOL with Choice

Backes, Brown

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ◆ ● ◆ ●

- Given: Branch A that is not refutable.
- Extend to E satisfying certain properties. $(A \subseteq E)$
- Let X be the free variables in E.
- Define \mathcal{D}_{σ} and $\triangleright_{\sigma} \subseteq \Lambda_{\sigma}^{X} \times \mathcal{D}_{\sigma}$ by induction on types.
- $\mathcal{D}_o = \{0,1\}$ (false and true)
- Interpret variables x such that $x \triangleright \mathcal{I}x$.
- Interpret logical constants c appropriately and ensure c ▷ I c.
- Result will be a Henkin model of E.

Tableaux for HOL with Choice

Completeness (3): Forall

$$\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda_{\sigma}^{X} \times \mathcal{D}_{\sigma}$$

▶ $\mathcal{D}_o = \{0,1\}$ (false and true)

Tableaux for HOL with Choice

Completeness (3): Forall

$$\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$$

• $\mathcal{D}_o = \{0,1\}$ (false and true)

• Interpretation of \forall_{σ} is clear:

$$(\mathcal{I} \forall_{\sigma})(f) = egin{cases} 1 & ext{if } fa = 1 ext{ for all } a \ 0 & ext{othwerise} \end{cases}$$

Tableaux for HOL with Choice

Completeness (3): Forall

•
$$\mathcal{D}_{\sigma}$$
 and $\triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$

• $\mathcal{D}_o = \{0,1\}$ (false and true)

• Interpretation of \forall_{σ} is clear:

$$(\mathcal{I} orall_\sigma)(f) = egin{cases} 1 & ext{if } \textit{fa} = 1 ext{ for all } a \ 0 & ext{ othwerise} \end{cases}$$

• Easy to check $\forall_{\sigma} \triangleright \mathcal{I} \forall_{\sigma}$.

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- ▶ $\mathcal{D}_o = \{0,1\}$ (false and true)

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- $\mathcal{D}_o = \{0,1\}$ (false and true)
- To interpret ε_{σ} , let $f \in \mathcal{D}_{\sigma \to o}$.

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- $\mathcal{D}_o = \{0,1\}$ (false and true)
- To interpret ε_{σ} , let $f \in \mathcal{D}_{\sigma \to o}$.
- First attempt:

$$(\mathcal{I}\varepsilon_{\sigma})(f) = \begin{cases} \text{some } b & \text{such that } fb = 1 \text{ if such a } b \text{ exists.} \\ \text{some } a & \text{otherwise.} \end{cases}$$

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- $\mathcal{D}_o = \{0,1\}$ (false and true)
- To interpret ε_{σ} , let $f \in \mathcal{D}_{\sigma \to o}$.
- First attempt:

 $(\mathcal{I}\varepsilon_{\sigma})(f) = \begin{cases} \text{some } b & \text{such that } fb = 1 \text{ if such a } b \text{ exists.} \\ \text{some } a & \text{otherwise.} \end{cases}$

• Problem: Cannot ensure $\varepsilon_{\sigma} \triangleright \mathcal{I} \varepsilon_{\sigma}$

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- $\mathcal{D}_o = \{0,1\}$ (false and true)
- To interpret ε_{σ} , let $f \in \mathcal{D}_{\sigma \to o}$.
- Second attempt:

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- $\mathcal{D}_o = \{0,1\}$ (false and true)
- To interpret ε_{σ} , let $f \in \mathcal{D}_{\sigma \to o}$.
- Second attempt:
- Define $f^0 := \{ \varepsilon s \in \Lambda^X_\sigma | s \triangleright f \text{ and } \varepsilon[s] \text{ accessible in } E \}.$

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- $\mathcal{D}_o = \{0,1\}$ (false and true)

• To interpret
$$\varepsilon_{\sigma}$$
, let $f \in \mathcal{D}_{\sigma \to o}$.

Second attempt:
 Define f⁰ := {εs ∈ Λ_σ^X |s ⊳ f and ε[s] accessible in E}.
 Define

 $(\mathcal{I}\varepsilon_{\sigma})(f) = \begin{cases} \text{some } b & \text{such that } fb = 1 \text{ if } f^0 \text{ is empty} \\ & \text{and such a } b \text{ exists.} \\ \text{some } a & \text{such that } \varepsilon s \triangleright a \text{ for every } \varepsilon s \in f^0. \end{cases}$

Tableaux for HOL with Choice

- $\blacktriangleright \ \mathcal{D}_{\sigma} \text{ and } \triangleright_{\sigma} \subseteq \Lambda^{X}_{\sigma} \times \mathcal{D}_{\sigma}$
- $\mathcal{D}_o = \{0,1\}$ (false and true)

• To interpret
$$\varepsilon_{\sigma}$$
, let $f \in \mathcal{D}_{\sigma \to o}$.

Second attempt:
 Define f⁰ := {εs ∈ Λ_σ^X |s ⊳ f and ε[s] accessible in E}.
 Define

$$(\mathcal{I}\varepsilon_{\sigma})(f) = \begin{cases} \text{some } b & \text{such that } fb = 1 \text{ if } f^0 \text{ is empty} \\ & \text{and such a } b \text{ exists.} \\ \text{some } a & \text{such that } \varepsilon s \triangleright a \text{ for every } \varepsilon s \in f^0 \end{cases}$$

•
$$\mathcal{I}\varepsilon_{\sigma}$$
 is a choice function, and
• $\varepsilon_{\sigma} \triangleright \mathcal{I}\varepsilon_{\sigma}$.

Tableaux for HOL with Choice

Conclusion

- Directed, Cut-Free, Ground Tableau System for HOL (Brown, Smolka [LMCS 2010])
- Extended to include Choice (Backes, Brown [2010])
- Restricted Instantiations (Backes, Brown [2010])
- Similar techniques work for if-then-else and description (Backes [2010])
- Implementation: Satallax (Tableau + MiniSAT to search, competing in CASC)
- Can be used to determine both Unsatisfiability and (sometimes) Satisfiability.

Tableaux for HOL with Choice