Undecidability of Semi-unification on a Napkin

Andrej Dudenhefner

Saarland University, Saarbriicken, Germany

FSCD 2020
2020-07-02, Paris, France

Undecidability of Semi-unification on a Napkin

Semi-unification

Definition (Terms T)

TS o,7:=a|oc— 1T where a ranges over variables V

@ Semi-unification ~ first-order unification combined with matching

Problem (Semi-unification)

Given inequalities T = {01 < T1y...,0n < Tn},
is there a substitution ¢ : V — T such that

for each inequality (o < 1) € T

there is a substitution v : V — T such that

P(p(a)) = p(T)7

Theorem ([Kfoury, Tiuryn, and Urzyczyn 1993a])

Semi-unification is undecidable.

Semi-unification Occurrences

@ Type inference in polymorphic functional programming

[LeiB 1989; Kfoury, Tiuryn, and Urzyczyn 1993b; Henglein 1993]
Type inference in polymorphic logic programming

[Mycroft and O'Keefe 1984]

System F type checking
[Wells 1999]

Loop detection in term rewriting
[Purdom 1987]

Program flow analysis
[Fahndrich, Rehof, and Das 2000]

Natural language processing
[Dorre and Rounds 1990]

Semi-unification Example

Example (Composed Iteration)

@ iter2 :: Nat -> (a -> b) -> (b -> a) -> a -> a
@ iter2 0 f g x = x

o iter2 1 f gx =g (f x)

o iter2 2 f gx =g (f (g (f x)))

In Haskell

has type

where types of £ and g are unified.

Semi-unification Example

Example (Composed lteration)

iter2 0 £ g x X
iter2 n f g x = g (iter2 (n-1) g £ (£ x))

o Parametric polymorphism: monomorphic recursive calls
~> find substitution ¢ such that
p(Nat > (a > B) > (B > a) > o — a)
=¢(Nat = (8 = a) = (a = B) = 8 — B)
~ p={a= a,p = a}
@ Recursive polymorphism: instantiated recursive calls
~ find substitutions ¢, 1) such that
P(¢(Nat = (@ —> B) = (B — a) - a — a))
=p(Nat = (8 = a) = (a = B) = B — B)
weop={a=af=ply={a= A= a}
Different 1) for individual recursive calls ~~ semi-unification

Semi-unification Undecidability

Original Proof Synopsis.

IA

IN

IA

IA

IN

Turing machine immortality [Hooper 1966]
(is there an non-terminating configuration?)

Turing machine uniform boundedness
(is the number of reachable configurations uniformly bounded?)

Symmetric intercell Turing machine uniform boundedness
(as above; returning to potential past configurations)

Path equation derivability
(reachability in a tailored rewriting system)

Unification constraint normalization
(halting in a tailored redex contraction system)

Semi-unification

Uses excluded middle and Konig's lemma

Semi-unification Undecidability

New Proof Synopsis.
Turing machine immortality [Hooper 1966]
(is there an non-terminating configuration?)

< Stack machine uniform boundedness
(is the number of reachable configurations uniformly bounded?)

< Semi-unification

o First step uses fan theorem (Brouwer's intuitionism)

@ Second step is fully constructive (axiom-free Coq, 1500 loc)

Simple Stack Machine

Definition (Simple Stack Machine)

Instruction: ap — gb or pb —> aq
where p, q are states and a, b € {0,1} are symbols

Simple stack machine: list of instructions M

Configuration: sipit
where p is a state and s, t € {0,1}* are words
Step relation:
sapit — aq siqibt if (ap —> qb) € M
sipibt —> a4 saiqit if (pb — aq) € M

@ Simple stack machine ~ space-bounded intercell Turing machine

Problem (Uniform Boundedness)

Given a simple stack machine M,
is there an n € N such that for any configuration X we have
H{Y | X —3 Y} < n?

Simple Stack Machine Properties

@ Mechanization-friendly
(specification 30 loc)

@ No infinite tape
(linear automaton)

@ Decidable reachability and termination
(every run operates in bounded space)

@ Undecidable uniform boundedness
(similar to Turing machine immortality < Turing machine
uniform boundedness)

Simple Semi-unification

Definition (Simple Constraint)

Simple constraint: aice = e 81b
where &« € V and a,b € {0,1}
Model: (¢, Y0, %1) E acie = efib if either

b =0 and ¥,(¢(a)) = T = ¢(B) for some T
b =1and 0 — ¥,(p(a)) = ¢(B) for some o

Definition (Simple Semi-unification)
Given a finite set C of simple constraints,

are there substitutions ¢, ¥, %1 : V — T such that
for all constraints C € C we have (p, ¥, ¥1) = C?

@ Undecidable fragment of semi-unification

10

Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

11

Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie

11

Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie — A 00ipi1

11

Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie —Aq 00ipl —> A O1pi11

11

Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie — A1 00ipil — A4 01pI1l —> o4 epilll

11

Not Uniformly Bounded Example
Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}
000ipie — A1 00ipil — A4 01pI1l —> o4 epilll

~» 0"ipie reaches n + 1 distinct configurations
~> no uniform bound on number of reachable configurations

11

Not Uniformly Bounded Example
Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}
000ipie — A1 00ipil — A4 01pI1l —> o4 epilll

~» 0"ipie reaches n + 1 distinct configurations
~> no uniform bound on number of reachable configurations

o Op — pl1 ~ Oipie = eipil

Example (Unsolvable Constraints)
C ={0pe=epl}

o o — Yo(e(p)) = ¢(p)
~> no model

11

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)
M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}

12

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope

12

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Oipe — g aqil

12

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope —a eiqil — A4 Lipie

12

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
0Ope —r €ql —pq Lipie —> A €1q0

12

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope —a €1ql —pq Lipie —> a1 €1q0 —> A4 Oipie

12

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)
M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}

Ope —a €1ql —pq Lipie —> a1 €1q0 —> A4 Oipie
~» any configuration reaches at most 4 distinct configurations

12

Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M ={0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope —a €1ql —pq Lipie —> a1 €1q0 —> A4 Oipie
~» any configuration reaches at most 4 distinct configurations

Example (Solvable Constraints)

C ={0ipe = eql,lipe =eql,lipe =e€q0,0pe=ecq0}
o o — Po(e(p)) = ¢(q)
o o — P1(e(p)) = ¢(q)
o 1(¢(p)) = 7 = »(q)
° Yo(p(p)) — 7 = »(q)
~> model
¢(p) = a
vl =B—8
Yo(a) = P1(a) =B

Reduction Soundness

Definition (Machine Encoding)
Given simple stack machine M, define
C ={ape =eqb | (ap — qb) € M or (gb — ap) € M}

Definition (¢)

C(sipit) = {C(S|p|t0) — ¢(sipitl) if S|p|t. is narrow
Asipit] otherwise

where narrowness is decidable and [-] is a total and computable

Lemma (Reduction Soundness)
If M is uniformly bounded, then (¢, Y0, 1) = C where

e(p) = C(epie) Yo(aspt) = ¢(0sipit) Pi(aspe) = ¢((1sipit))

13

Reduction Completeness

Definition (Machine Encoding)

Given simple stack machine M, define
C ={apie = eiqb | (ap —> qb) € M or (gb — ap) € M}

Lemma
X —>j\4 Y and (309 o, "l)l) |= C implies (907 o, ¢1) |= X=Y

Remark

Size of the syntax tree of ¢(p) uniformly bounds reachable configuration
space from state p.

Lemma (Reduction Completeness)
If (@, 0, 11) = C, then M is uniformly bounded.

14

Contribution

e Intuitionistic (in sense of Brouwer) Turing reduction from
Turing machine immortality to
simple stack machine uniform boundedness

o Fully constructive many-one reduction from
simple stack machine uniform boundedness
to semi-unification
» simple and direct via ¢
» mechanized (axiom-free Coq)
(specification 100 loc, argument 1400 loc)
https://github.com/uds-psl/2020-fscd-semi-unification

15

https://github.com/uds-psl/2020-fscd-semi-unification

Ongoing Work

Mechanized reduction from
the Turing machine halting problem
to semi-unification

@ comprehensive
(current mechanization starts with boundedness)
@ many-one
(current proof requires Turing reductions)
@ axiom-free
(current proof requires fan theorem)
@ part of the Coq library of Undecidability Proofs
https://github.com/uds-psl/coq-library-undecidability

16

https://github.com/uds-psl/coq-library-undecidability

Ongoing Work

Mechanized reduction from
the Turing machine halting problem
to semi-unification

@ comprehensive
(current mechanization starts with boundedness)

@ many-one
(current proof requires Turing reductions)

@ axiom-free
(current proof requires fan theorem)

@ part of the Coq library of Undecidability Proofs
https://github.com/uds-psl/coq-library-undecidability

Thank You

16

https://github.com/uds-psl/coq-library-undecidability

Bibliography |

- Dorre, Jochen and William C. Rounds (1990). “On Subsumption and
Semiunification in Feature Algebras.” In: Proceedings of the Fifth
Annual Symposium on Logic in Computer Science (LICS '90),
Philadelphia, Pennsylvania, USA, June 4-7, 1990. |IEEE Computer
Society, pp. 300-310. DOT: 10.1109/LICS.1990.113756. URL:
https://doi.org/10.1109/LICS.1990.113756.

| Fahndrich, Manuel, Jakob Rehof, and Manuvir Das (2000). “Scalable
context-sensitive flow analysis using instantiation constraints.” In:
Proceedings of the 2000 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Vancouver, Britith
Columbia, Canada, June 18-21, 2000. Ed. by Monica S. Lam. ACM,
pp. 253-263. DOI: 10.1145/349299.349332. URL:
https://doi.org/10.1145/349299.349332.

17

https://doi.org/10.1109/LICS.1990.113756
https://doi.org/10.1109/LICS.1990.113756
https://doi.org/10.1145/349299.349332
https://doi.org/10.1145/349299.349332

Bibliography Il

| Henglein, Fritz (1993). “Type Inference with Polymorphic Recursion.” In:
ACM Trans. Program. Lang. Syst. 15.2, pp. 253-289. DOTI:
10.1145/169701.169692. URL:
https://doi.org/10.1145/169701.169692.

- Hooper, Philip K. (1966). “The Undecidability of the Turing Machine
Immortality Problem.” In: J. Symb. Log. 31.2, pp. 219-234. DOI:
10.2307/2269811. URL: https://doi.org/10.2307/2269811.

| Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn (1993a). “The

Undecidability of the Semi-unification Problem.” In: Inf. Comput. 102.1,

pp. 83-101. po1: 10.1006/inco.1993.1003. URL:
https://doi.org/10.1006/inco.1993.1003.

- — (1993b). “Type Reconstruction in the Presence of Polymorphic
Recursion.” In: ACM Trans. Program. Lang. Syst. 15.2, pp. 290-311.
DOI: 10.1145/169701.169687. URL:
https://doi.org/10.1145/169701.169687.

18

https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/169701.169692
https://doi.org/10.2307/2269811
https://doi.org/10.2307/2269811
https://doi.org/10.1006/inco.1993.1003
https://doi.org/10.1006/inco.1993.1003
https://doi.org/10.1145/169701.169687
https://doi.org/10.1145/169701.169687

Bibliography Il

| LeiB, Hans (1989). “Polymorphic recursion and semi-unification.” In:
International Workshop on Computer Science Logic. Springer,
pp. 211-224.

| Mycroft, Alan and Richard A. O'Keefe (1984). “A Polymorphic Type
System for Prolog.” In: Artif. Intell. 23.3, pp. 295-307. DOI:
10.1016/0004-3702(84)90017-1. URL:
https://doi.org/10.1016/0004-3702(84)90017-1.

- Purdom, Paul Walton (1987). “Detecting Looping Simplifications.” In:
Rewriting Techniques and Applications, 2nd International Conference,
RTA-87, Bordeaux, France, May 25-27, 1987, Proceedings. Ed. by

Pierre Lescanne. Vol. 256. Lecture Notes in Computer Science. Springer,

pp. b4-61. poI: 10.1007/3-540-17220-3_5. URL:
https://doi.org/10.1007/3-540-17220-3_5.

19

https://doi.org/10.1016/0004-3702(84)90017-1
https://doi.org/10.1016/0004-3702(84)90017-1
https://doi.org/10.1007/3-540-17220-3_5
https://doi.org/10.1007/3-540-17220-3_5

Bibliography IV

- Wells, J. B. (1999). “Typability and Type Checking in System F are
Equivalent and Undecidable.” In: Ann. Pure Appl. Log. 98.1-3,
pp. 111-156. por: 10.1016/30168-0072(98) 00047-5. URL:
https://doi.org/10.1016/50168-0072(98)00047-5.

20

https://doi.org/10.1016/S0168-0072(98)00047-5
https://doi.org/10.1016/S0168-0072(98)00047-5

Backup Slides

Constraint-based Semi-unification

Definition (Substitution Composition)
For substitutions g, %1 : V. — T and word v € {0,1}* define

V(o) =0 Yuo(o) = Py (o(0)) Yui(o) = Yu(Y1(a))

Definition (Path Function)
For w € {0,1}* define

(o) =0 mow(o — 1) = wu(0) mw(oc = 1) = ﬂ'w(T))

Definition (Constraint)

Constraint: siait = vifiw
where a, 8 € V and s, t,v,w € {0,1}*

Model: (¢, Y0, ¢1) FE (siaut = vifiw) if
me(Ps(p(@)) = mu (v (#(B))

22

Narrow Configuration, Representative

Definition (Joinable Configurations)

Configurations X, Y are joinable in M,
if X —, Z <, Y for some configuration Z.

Definition (Narrow Configuration)

A configuration X is narrow in M,
if X and sipie are joinable in M for some state p and a word s € B*.

Definition (Representative [X] /)

The representative of X in M is the lexicographically smallest
configuration Y such that X and Y are joinable in M.

@ Joinability is decidable
@ Narrowness is decidable

@ Representative is computable

23

	Semi-unification
	References

