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Undecidability of Semi-unification on a Napkin




Semi-unification

Definition (Terms T)

TS o,7:=a|oc— 1T where a ranges over variables V

@ Semi-unification ~ first-order unification combined with matching

Problem (Semi-unification)

Given inequalities T = {01 < T1y...,0n < Tn},
is there a substitution ¢ : V — T such that

for each inequality (o < 1) € T

there is a substitution v : V — T such that

P(p(a)) = p(T)7

Theorem ([Kfoury, Tiuryn, and Urzyczyn 1993a])

Semi-unification is undecidable.




Semi-unification Occurrences

@ Type inference in polymorphic functional programming

[LeiB 1989; Kfoury, Tiuryn, and Urzyczyn 1993b; Henglein 1993]
Type inference in polymorphic logic programming

[Mycroft and O'Keefe 1984]

System F type checking
[Wells 1999]

Loop detection in term rewriting
[Purdom 1987]

Program flow analysis
[Fahndrich, Rehof, and Das 2000]

Natural language processing
[Dorre and Rounds 1990]



Semi-unification Example

Example (Composed Iteration)

@ iter2 :: Nat -> (a -> b) -> (b -> a) -> a -> a
@ iter2 0 f g x = x

o iter2 1 f gx =g (f x)

o iter2 2 f gx =g (f (g (f x)))

In Haskell

has type

where types of £ and g are unified.




Semi-unification Example

Example (Composed lteration)

iter2 0 £ g x X
iter2 n f g x = g (iter2 (n-1) g £ (£ x))

o Parametric polymorphism: monomorphic recursive calls
~> find substitution ¢ such that
p(Nat > (a > B) > (B > a) > o — a)
=¢(Nat = (8 = a) = (a = B) = 8 — B)
~ p={a= a,p = a}
@ Recursive polymorphism: instantiated recursive calls
~ find substitutions ¢, 1) such that
P(¢(Nat = (@ —> B) = (B — a) - a — a))
=p(Nat = (8 = a) = (a = B) = B — B)
weop={a=af=ply={a= A= a}
Different 1) for individual recursive calls ~~ semi-unification




Semi-unification Undecidability

Original Proof Synopsis.

IA

IN

IA

IA

IN

Turing machine immortality [Hooper 1966]
(is there an non-terminating configuration?)

Turing machine uniform boundedness
(is the number of reachable configurations uniformly bounded?)

Symmetric intercell Turing machine uniform boundedness
(as above; returning to potential past configurations)

Path equation derivability
(reachability in a tailored rewriting system)

Unification constraint normalization
(halting in a tailored redex contraction system)

Semi-unification

Uses excluded middle and Konig's lemma




Semi-unification Undecidability

New Proof Synopsis.
Turing machine immortality [Hooper 1966]
(is there an non-terminating configuration?)

< Stack machine uniform boundedness
(is the number of reachable configurations uniformly bounded?)

< Semi-unification

o First step uses fan theorem (Brouwer's intuitionism)

@ Second step is fully constructive (axiom-free Coq, 1500 loc)




Simple Stack Machine

Definition (Simple Stack Machine)

Instruction: ap — gb or pb —> aq
where p, q are states and a, b € {0,1} are symbols

Simple stack machine: list of instructions M

Configuration: sipit
where p is a state and s, t € {0,1}* are words
Step relation:
sapit — aq siqibt if (ap —> qb) € M
sipibt —> a4 saiqit if (pb — aq) € M

@ Simple stack machine ~ space-bounded intercell Turing machine

Problem (Uniform Boundedness)

Given a simple stack machine M,
is there an n € N such that for any configuration X we have
H{Y | X —3 Y} < n?




Simple Stack Machine Properties

@ Mechanization-friendly
(specification 30 loc)

@ No infinite tape
(linear automaton)

@ Decidable reachability and termination
(every run operates in bounded space)

@ Undecidable uniform boundedness
(similar to Turing machine immortality < Turing machine
uniform boundedness)



Simple Semi-unification

Definition (Simple Constraint)

Simple constraint: aice = e 81b
where &« € V and a,b € {0,1}
Model: (¢, Y0, %1) E acie = efib if either

b =0 and ¥,(¢(a)) = T = ¢(B) for some T
b =1and 0 — ¥,(p(a)) = ¢(B) for some o

Definition (Simple Semi-unification)
Given a finite set C of simple constraints,

are there substitutions ¢, ¥, %1 : V — T such that
for all constraints C € C we have (p, ¥, ¥1) = C?

@ Undecidable fragment of semi-unification
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Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}
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Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie
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Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie — A 00ipi1
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Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie —Aq 00ipl —> A O1pi11
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Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}

000ipie — A1 00ipil — A4 01pI1l —> o4 epilll
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Not Uniformly Bounded Example
Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}
000ipie — A1 00ipil — A4 01pI1l —> o4 epilll

~» 0"ipie reaches n + 1 distinct configurations
~> no uniform bound on number of reachable configurations
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Not Uniformly Bounded Example
Example (Not Uniformly Bounded Stack Machine)
M = {Op — pl}
000ipie — A1 00ipil — A4 01pI1l —> o4 epilll

~» 0"ipie reaches n + 1 distinct configurations
~> no uniform bound on number of reachable configurations

o Op — pl1 ~ Oipie = eipil

Example (Unsolvable Constraints)
C ={0pe=epl}

o o — Yo(e(p)) = ¢(p)
~> no model
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Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)
M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
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Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope
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Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Oipe — g aqil

12



Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope —a eiqil — A4 Lipie
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Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
0Ope —r €ql —pq Lipie —> A €1q0
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Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope —a €1ql —pq Lipie —> a1 €1q0 —> A4 Oipie
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Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)
M = {0p — ql,q1 — 1p,1p — q0,q0 — Op}

Ope —a €1ql —pq Lipie —> a1 €1q0 —> A4 Oipie
~» any configuration reaches at most 4 distinct configurations
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Uniformly Bounded Example

Example (Uniformly Bounded Stack Machine)

M ={0p — ql,q1 — 1p,1p — q0,q0 — Op}
Ope —a €1ql —pq Lipie —> a1 €1q0 —> A4 Oipie
~» any configuration reaches at most 4 distinct configurations

Example (Solvable Constraints)

C ={0ipe = eql,lipe =eql,lipe =e€q0,0pe=ecq0}
o o — Po(e(p)) = ¢(q)
o o — P1(e(p)) = ¢(q)
o 1(¢(p)) = 7 = »(q)
° Yo(p(p)) — 7 = »(q)
~> model
¢(p) = a
vl =B—8
Yo(a) = P1(a) =B




Reduction Soundness

Definition (Machine Encoding)
Given simple stack machine M, define
C ={ape =eqb | (ap — qb) € M or (gb — ap) € M}

Definition (¢)

C(sipit) = {C(S|p|t0) — ¢(sipitl) if S|p|t. is narrow
Asipit] otherwise

where narrowness is decidable and [-] is a total and computable

Lemma (Reduction Soundness)
If M is uniformly bounded, then (¢, Y0, 1) = C where

e(p) = C(epie)  Yo(aspt) = ¢(0sipit)  Pi(aspe) = ¢((1sipit) )
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Reduction Completeness

Definition (Machine Encoding)

Given simple stack machine M, define
C ={apie = eiqb | (ap —> qb) € M or (gb — ap) € M}

Lemma
X —>j\4 Y and (309 o, "l)l) |= C implies (907 o, ¢1) |= X=Y

Remark

Size of the syntax tree of ¢(p) uniformly bounds reachable configuration
space from state p.

Lemma (Reduction Completeness)
If (@, 0, 11) = C, then M is uniformly bounded.
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Contribution

e Intuitionistic (in sense of Brouwer) Turing reduction from
Turing machine immortality to
simple stack machine uniform boundedness

o Fully constructive many-one reduction from
simple stack machine uniform boundedness
to semi-unification
» simple and direct via ¢
» mechanized (axiom-free Coq)
(specification 100 loc, argument 1400 loc)
https://github.com/uds-psl/2020-fscd-semi-unification
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https://github.com/uds-psl/2020-fscd-semi-unification

Ongoing Work

Mechanized reduction from
the Turing machine halting problem
to semi-unification

@ comprehensive
(current mechanization starts with boundedness)
@ many-one
(current proof requires Turing reductions)
@ axiom-free
(current proof requires fan theorem)
@ part of the Coq library of Undecidability Proofs
https://github.com/uds-psl/coq-library-undecidability
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https://github.com/uds-psl/coq-library-undecidability

Ongoing Work

Mechanized reduction from
the Turing machine halting problem
to semi-unification

@ comprehensive
(current mechanization starts with boundedness)

@ many-one
(current proof requires Turing reductions)

@ axiom-free
(current proof requires fan theorem)

@ part of the Coq library of Undecidability Proofs
https://github.com/uds-psl/coq-library-undecidability

Thank You
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Constraint-based Semi-unification

Definition (Substitution Composition)
For substitutions g, %1 : V. — T and word v € {0,1}* define

V(o) =0 Yuo(o) = Py (o(0)) Yui(o) = Yu(Y1(a))

Definition (Path Function)
For w € {0,1}* define

(o) =0 mow(o — 1) = wu(0) mw(oc = 1) = ﬂ'w(T))

Definition (Constraint)

Constraint: siait = vifiw
where a, 8 € V and s, t,v,w € {0,1}*

Model: (¢, Y0, ¢1) FE (siaut = vifiw) if
me(Ps(p(@)) = mu (v (#(B))
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Narrow Configuration, Representative

Definition (Joinable Configurations)

Configurations X, Y are joinable in M,
if X —, Z <, Y for some configuration Z.

Definition (Narrow Configuration)

A configuration X is narrow in M,
if X and sipie are joinable in M for some state p and a word s € B*.

Definition (Representative [X] /)

The representative of X in M is the lexicographically smallest
configuration Y such that X and Y are joinable in M.

@ Joinability is decidable
@ Narrowness is decidable

@ Representative is computable
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