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Semi-unification

Definition (Terms T)

T 3 σ, τ ::= α | σ → τ where α ranges over variables V

Semi-unification ∼ first-order unification combined with matching

Problem (Semi-unification)
Given inequalities I = {σ1 ≤ τ1, . . . , σn ≤ τn},
is there a substitution ϕ : V→ T such that
for each inequality (σ ≤ τ ) ∈ I
there is a substitution ψ : V→ T such that
ψ(ϕ(σ)) = ϕ(τ )?

Theorem ([Kfoury, Tiuryn, and Urzyczyn 1993a])
Semi-unification is undecidable.
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Semi-unification Occurrences

Type inference in polymorphic functional programming
[Leiß 1989; Kfoury, Tiuryn, and Urzyczyn 1993b; Henglein 1993]
Type inference in polymorphic logic programming
[Mycroft and O’Keefe 1984]
System F type checking
[Wells 1999]
Loop detection in term rewriting
[Purdom 1987]
Program flow analysis
[Fähndrich, Rehof, and Das 2000]
Natural language processing
[Dörre and Rounds 1990]
. . .
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Semi-unification Example

Example (Composed Iteration)
iter2 :: Nat -> (a -> b) -> (b -> a) -> a -> a

iter2 0 f g x = x

iter2 1 f g x = g (f x)

iter2 2 f g x = g (f (g (f x)))

. . .
In Haskell

iter2 0 f g x = x
iter2 n f g x = g (iter2 (n -1) g f (f x))

has type

iter2 :: Nat -> (a -> a) -> (a -> a) -> a -> a

where types of f and g are unified.

4



Semi-unification Example
Example (Composed Iteration)

iter2 0 f g x = x
iter2 n f g x = g (iter2 (n -1) g f (f x))

Parametric polymorphism: monomorphic recursive calls
 find substitution ϕ such that

ϕ(Nat→ (α→ β)→ (β → α)→ α→ α)
=ϕ(Nat→ (β → α)→ (α→ β)→ β → β)

 ϕ = {α Z⇒ a, β Z⇒ a}
Recursive polymorphism: instantiated recursive calls
 find substitutions ϕ,ψ such that

ψ(ϕ(Nat→ (α→ β)→ (β → α)→ α→ α))
=ϕ(Nat→ (β → α)→ (α→ β)→ β → β)

 ϕ = {α Z⇒ α, β Z⇒ β}, ψ = {α Z⇒ β, β Z⇒ α}
Different ψ for individual recursive calls  semi-unification
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Semi-unification Undecidability
Original Proof Synopsis.

Turing machine immortality [Hooper 1966]
(is there an non-terminating configuration?)

≤ Turing machine uniform boundedness
(is the number of reachable configurations uniformly bounded?)

≤ Symmetric intercell Turing machine uniform boundedness
(as above; returning to potential past configurations)

≤ Path equation derivability
(reachability in a tailored rewriting system)

≤ Unification constraint normalization
(halting in a tailored redex contraction system)

≤ Semi-unification

Uses excluded middle and König’s lemma
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Semi-unification Undecidability

New Proof Synopsis.
Turing machine immortality [Hooper 1966]
(is there an non-terminating configuration?)

≤ Stack machine uniform boundedness
(is the number of reachable configurations uniformly bounded?)

≤ Semi-unification

First step uses fan theorem (Brouwer’s intuitionism)
Second step is fully constructive (axiom-free Coq, 1500 loc)
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Simple Stack Machine
Definition (Simple Stack Machine)

Instruction: ap −→ qb or pb −→ aq
where p, q are states and a, b ∈ {0, 1} are symbols

Simple stack machine: list of instructionsM
Configuration: s pppt

where p is a state and s, t ∈ {0, 1}∗ are words
Step relation:

sapppt −→M s pqpbt if (ap −→ qb) ∈M
s pppbt −→M sapqpt if (pb −→ aq) ∈M

Simple stack machine ∼ space-bounded intercell Turing machine

Problem (Uniform Boundedness)
Given a simple stack machineM,
is there an n ∈ N such that for any configuration X we have
|{Y | X −→∗M Y}| ≤ n?
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Simple Stack Machine Properties

Mechanization-friendly
(specification 30 loc)
No infinite tape
(linear automaton)
Decidable reachability and termination
(every run operates in bounded space)
Undecidable uniform boundedness
(similar to Turing machine immortality ≤ Turing machine
uniform boundedness)
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Simple Semi-unification

Definition (Simple Constraint)
Simple constraint: apαpε .= εpβpb
where α ∈ V and a, b ∈ {0, 1}

Model: (ϕ,ψ0, ψ1) |= apαpε .= εpβpb if either
I b = 0 and ψa(ϕ(α))→ τ = ϕ(β) for some τ
I b = 1 and σ → ψa(ϕ(α)) = ϕ(β) for some σ

Definition (Simple Semi-unification)
Given a finite set C of simple constraints,
are there substitutions ϕ,ψ0, ψ1 : V→ T such that
for all constraints C ∈ C we have (ϕ,ψ0, ψ1) |= C?

Undecidable fragment of semi-unification
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Not Uniformly Bounded Example

Example (Not Uniformly Bounded Stack Machine)
M = {0p −→ p1}

000pppε

−→M 00ppp1

−→M 0ppp11 −→M εppp111

 0n pppε reaches n + 1 distinct configurations
 no uniform bound on number of reachable configurations

0p −→ p1  0pppε .= εppp1

Example (Unsolvable Constraints)
C = {0pppε .= εppp1}

σ → ψ0(ϕ(p)) = ϕ(p)
 no model
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Uniformly Bounded Example
Example (Uniformly Bounded Stack Machine)
M = {0p −→ q1, q1 −→ 1p, 1p −→ q0, q0 −→ 0p}

0pppε

−→M εpqp1

−→M 1pppε −→M εpqp0 −→M 0pppε

 any configuration reaches at most 4 distinct configurations

Example (Solvable Constraints)
C = {0pppε .= εpqp1, 1pppε .= εpqp1, 1pppε .= εpqp0, 0pppε .= εpqp0}

σ → ψ0(ϕ(p)) = ϕ(q)
σ → ψ1(ϕ(p)) = ϕ(q)
ψ1(ϕ(p))→ τ = ϕ(q)
ψ0(ϕ(p))→ τ = ϕ(q)

 model
ϕ(p) = α

ϕ(q) = β → β

ψ0(α) = ψ1(α) = β
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Reduction Soundness

Definition (Machine Encoding)
Given simple stack machineM, define
C ={apppε .= εpqpb | (ap −→ qb) ∈M or (qb −→ ap) ∈M}

Definition (ζ)

ζ(s pppt) =
{
ζ(s pppt0)→ ζ(s pppt1) if s pppt is narrow
α[s pppt] otherwise

where narrowness is decidable and [·] is a total and computable

Lemma (Reduction Soundness)
IfM is uniformly bounded, then (ϕ,ψ0, ψ1) |= C where

ϕ(p) = ζ(εpppε) ψ0(αs pppt) = ζ(0s pppt) ψ1(αs pppt) = ζ(1s pppt)
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Reduction Completeness

Definition (Machine Encoding)
Given simple stack machineM, define
C ={apppε .= εpqpb | (ap −→ qb) ∈M or (qb −→ ap) ∈M}

Lemma
X −→∗M Y and (ϕ,ψ0, ψ1) |= C implies (ϕ,ψ0, ψ1) |= X .= Y

Remark
Size of the syntax tree of ϕ(p) uniformly bounds reachable configuration
space from state p.

Lemma (Reduction Completeness)
If (ϕ,ψ0, ψ1) |= C, thenM is uniformly bounded.
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Contribution

Intuitionistic (in sense of Brouwer) Turing reduction from
Turing machine immortality to
simple stack machine uniform boundedness
Fully constructive many-one reduction from
simple stack machine uniform boundedness
to semi-unification

I simple and direct via ζ
I mechanized (axiom-free Coq)

(specification 100 loc, argument 1400 loc)
https://github.com/uds-psl/2020-fscd-semi-unification
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Ongoing Work

Mechanized reduction from
the Turing machine halting problem
to semi-unification

comprehensive
(current mechanization starts with boundedness)
many-one
(current proof requires Turing reductions)
axiom-free
(current proof requires fan theorem)
part of the Coq library of Undecidability Proofs
https://github.com/uds-psl/coq-library-undecidability
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Ongoing Work

Mechanized reduction from
the Turing machine halting problem
to semi-unification

comprehensive
(current mechanization starts with boundedness)
many-one
(current proof requires Turing reductions)
axiom-free
(current proof requires fan theorem)
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https://github.com/uds-psl/coq-library-undecidability

Thank You
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Constraint-based Semi-unification
Definition (Substitution Composition)
For substitutions ψ0, ψ1 : V→ T and word v ∈ {0, 1}∗ define

ψε(σ) = σ ψv0(σ) = ψv(ψ0(σ)) ψv1(σ) = ψv(ψ1(σ))

Definition (Path Function)
For w ∈ {0, 1}∗ define

πε(σ) = σ π0w(σ → τ ) = πw(σ) π1w(σ → τ ) = πw(τ )

Definition (Constraint)
Constraint: s pαpt .= v pβpw
where α, β ∈ V and s, t, v,w ∈ {0, 1}∗

Model: (ϕ,ψ0, ψ1) |= (s pαpt .= v pβpw) if
πt(ψs(ϕ(α)) = πw(ψv(ϕ(β))
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Narrow Configuration, Representative
Definition (Joinable Configurations)
Configurations X,Y are joinable inM,
if X −→∗M Z ←−∗M Y for some configuration Z .

Definition (Narrow Configuration)
A configuration X is narrow inM,
if X and s pppε are joinable inM for some state p and a word s ∈ B∗.

Definition (Representative [X]M)
The representative of X inM is the lexicographically smallest
configuration Y such that X and Y are joinable inM.

Joinability is decidable
Narrowness is decidable
Representative is computable
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