
Coq à la Carte:
A Practical Approach to Modular Syntax with Binders

Yannick Forster and Kathrin Stark

CPP 2020, January 21

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 1 / 25

Our Motivation: The Expression Problem[Wadler, 2003]

You start with the λ-calculus:

s, t ∈ tm ::= x | s t | λx .s

You give
I recursive functions on terms,
I proofs by induction on terms,
I and predicates and proofs over the terms.

. . . and then want to extend this calculus, e.g. by boolean expressions:

s, t ∈ tm ::= · · · | b | if s then t else u

True modularity: “[..] add new cases to the datatype [..] without recompiling existing
code.”

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 2 / 25

Our Motivation: The Expression Problem[Wadler, 2003]

You start with the λ-calculus:

s, t ∈ tm ::= x | s t | λx .s

You give
I recursive functions on terms,
I proofs by induction on terms,
I and predicates and proofs over the terms.

. . . and then want to extend this calculus, e.g. by boolean expressions:

s, t ∈ tm ::= · · · | b | if s then t else u

True modularity: “[..] add new cases to the datatype [..] without recompiling existing
code.”

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 2 / 25

Our Motivation: The Expression Problem[Wadler, 2003]

You start with the λ-calculus:

s, t ∈ tm ::= x | s t | λx .s

You give
I recursive functions on terms,
I proofs by induction on terms,
I and predicates and proofs over the terms.

. . . and then want to extend this calculus, e.g. by boolean expressions:

s, t ∈ tm ::= · · · | b | if s then t else u

True modularity: “[..] add new cases to the datatype [..] without recompiling existing
code.”

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 2 / 25

Contribution: An Approach to Modular Syntax

A solution to the expression problem in Coq

Scales to proofs of preservation and strong normalisation

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 3 / 25

Related Work (I)
True Modularity in Haskell: Data Types à la Carte[Swierstra, 2008]

Features as functors, e.g.1

Inductive exp λ (exp : Type) :=
| var : nat → exp λ exp

| app : exp → exp → exp λ exp

| abs : exp → exp λ exp.

A general expression type as fixed point of functors:

Inductive exp (F : Type → Type) : Type :=
| In : F (exp F) → exp F.

and variants which instantiate the general data type with coproducts of feature functors.

Functions = algebras, assembling via type classes

1We use Coq syntax for convenience.
Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 4 / 25

Related Work (I)
True Modularity in Haskell: Data Types à la Carte[Swierstra, 2008]

Features as functors, e.g.1

Inductive exp λ (exp : Type) :=
| var : nat → exp λ exp

| app : exp → exp → exp λ exp

| abs : exp → exp λ exp.

A general expression type as fixed point of functors:

Inductive exp (F : Type → Type) : Type :=
| In : F (exp F) → exp F.

and variants which instantiate the general data type with coproducts of feature functors.

Functions = algebras, assembling via type classes

1We use Coq syntax for convenience.
Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 4 / 25

Related Work (I)
True Modularity in Haskell: Data Types à la Carte[Swierstra, 2008]

Features as functors, e.g.1

Inductive exp λ (exp : Type) :=
| var : nat → exp λ exp

| app : exp → exp → exp λ exp

| abs : exp → exp λ exp.

A general expression type as fixed point of functors:

Inductive exp (F : Type → Type) : Type :=
| In : F (exp F) → exp F.

and variants which instantiate the general data type with coproducts of feature functors.

Functions = algebras, assembling via type classes

1We use Coq syntax for convenience.
Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 4 / 25

Related Work (II)
True Modularity in a Proof Assistant?

Problem: The general expression type is impossible in a proof assistant due to the restriction
to positivity!

Solution: Encode the functor.

Modular Type Safety Proofs in Agda [Schwaab and Siek, 2013]

Meta-Theory à la Carte [Delaware et al., 2013]

Generic Data Types à la Carte [Keuchel et al., 2013]

Modular Monadic Meta-Theory [Delaware et al., 2013]

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 5 / 25

Related Work (II)
True Modularity in a Proof Assistant?

Problem: The general expression type is impossible in a proof assistant due to the restriction
to positivity!

Solution: Encode the functor.

Modular Type Safety Proofs in Agda [Schwaab and Siek, 2013]

Meta-Theory à la Carte [Delaware et al., 2013]

Generic Data Types à la Carte [Keuchel et al., 2013]

Modular Monadic Meta-Theory [Delaware et al., 2013]

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 5 / 25

Related Work (III)
Why are there no developments based on these approaches?

These developments are truly modular, but not practical[Aydemir et al., 2005]:

Many introductory statements and intermediate proofs — failing conciseness

Encoded definitions — failing transparency

Encoded definitions and intermediate tactics — failing accessibility

Problem: Encoding of the functor adds a layer of indirectness and Coq’s tactic support fails.

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 6 / 25

Related Work (III)
Why are there no developments based on these approaches?

These developments are truly modular, but not practical[Aydemir et al., 2005]:

Many introductory statements and intermediate proofs — failing conciseness

Encoded definitions — failing transparency

Encoded definitions and intermediate tactics — failing accessibility

Problem: Encoding of the functor adds a layer of indirectness and Coq’s tactic support fails.

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 6 / 25

Related Work (III)
Why are there no developments based on these approaches?

These developments are truly modular, but not practical[Aydemir et al., 2005]:

Many introductory statements and intermediate proofs — failing conciseness

Encoded definitions — failing transparency

Encoded definitions and intermediate tactics — failing accessibility

Problem: Encoding of the functor adds a layer of indirectness and Coq’s tactic support fails.

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 6 / 25

Contribution: A Practical Approach to Modular Syntax

Modular syntax via variants with direct injections:

Inductive exp (F : Type → Type) : Type :=
| In : F (exp F) → exp F.

⇒
Inductive exp :=
| injλ : exp λ exp → exp

| injB : expB exp → exp.

Tool support:
I Boilerplate generation with an extension of Autosubst 2
I Assembling via MetaCoq[Sozeau et al., 2019]

Result:
I Practical modular developments
I Improvement in case study of Delaware et al. from 1000 loc/feature to 125 loc/feature

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 8 / 25

Contribution: A Practical Approach to Modular Syntax

Modular syntax via variants with direct injections:

Inductive exp (F : Type → Type) : Type :=
| In : F (exp F) → exp F.

⇒
Inductive exp :=
| injλ : exp λ exp → exp

| injB : expB exp → exp.

Tool support:
I Boilerplate generation with an extension of Autosubst 2
I Assembling via MetaCoq[Sozeau et al., 2019]

Result:
I Practical modular developments
I Improvement in case study of Delaware et al. from 1000 loc/feature to 125 loc/feature

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 8 / 25

Contribution: A Practical Approach to Modular Syntax

Modular syntax via variants with direct injections:

Inductive exp (F : Type → Type) : Type :=
| In : F (exp F) → exp F.

⇒
Inductive exp :=
| injλ : exp λ exp → exp

| injB : expB exp → exp.

Tool support:
I Boilerplate generation with an extension of Autosubst 2
I Assembling via MetaCoq[Sozeau et al., 2019]

Result:
I Practical modular developments
I Improvement in case study of Delaware et al. from 1000 loc/feature to 125 loc/feature

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 8 / 25

Modular Syntax

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 9 / 25

Framework

1 Mechanisation of features.
I Parameterised by variants.
I Unchanged for new variants.

2 Mechanisation of variants.

λ B +

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 10 / 25

Framework

1 Mechanisation of features.
I Parameterised by variants.
I Unchanged for new variants.

2 Mechanisation of variants.

λ B

+

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 10 / 25

Framework

1 Mechanisation of features.
I Parameterised by variants.
I Unchanged for new variants.

2 Mechanisation of variants.

λ B

+

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 10 / 25

Framework

1 Mechanisation of features.
I Parameterised by variants.
I Unchanged for new variants.

2 Mechanisation of variants.

λ B +

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 10 / 25

Modular Expressions

1 Define features, parameterised by the variants.

Inductive exp λ (exp : Type) :=
| var : nat → exp λ exp

| app : exp → exp → exp λ exp

| abs : exp → exp λ exp.

2 Define variants.

Inductive exp :=
| injλ : exp λ exp → exp

| injB : expB exp → exp.

3 What is the connection between features and variants?

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 11 / 25

Modular Expressions

1 Define features, parameterised by the variants.

Inductive exp λ (exp : Type) :=
| var : nat → exp λ exp

| app : exp → exp → exp λ exp

| abs : exp → exp λ exp.

2 Define variants.

Inductive exp :=
| injλ : exp λ exp → exp

| injB : expB exp → exp.

3 What is the connection between features and variants?

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 11 / 25

Connection via a Retract

exp λ exp exp

inj : exp λ exp → exp

retr : exp → O (exp λ exp)

If retr y = Some x, then inj x = y.

Possibility to lift constructors from features to variants[Swierstra,’08]:

app : exp → exp → exp λ exp

app_ : exp → exp → exp

app_ s t := inj (app s t)

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 12 / 25

Connection via a Retract

exp λ exp exp

inj : exp λ exp → exp

retr : exp → O (exp λ exp)

If retr y = Some x, then inj x = y.

Possibility to lift constructors from features to variants[Swierstra,’08]:

app : exp → exp → exp λ exp

app_ : exp → exp → exp

app_ s t := inj (app s t)

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 12 / 25

Connection via a Retract

exp λ exp exp

inj : exp λ exp → exp

retr : exp → O (exp λ exp)

If retr y = Some x, then inj x = y.

Possibility to lift constructors from features to variants[Swierstra,’08]:

app : exp → exp → exp λ exp

app_ : exp → exp → exp

app_ s t := inj (app s t)

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 12 / 25

Connection via a Retract

exp λ exp exp

inj : exp λ exp → exp

retr : exp → O (exp λ exp)

If retr y = Some x, then inj x = y.

Possibility to lift constructors from features to variants[Swierstra,’08]:

app : exp → exp → exp λ exp

app_ : exp → exp → exp

app_ s t := inj (app s t)

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 12 / 25

Connection via a Retract

exp λ exp exp

inj : exp λ exp → exp

retr : exp → O (exp λ exp)

If retr y = Some x, then inj x = y.

Possibility to lift constructors from features to variants[Swierstra,’08]:

app : exp → exp → exp λ exp

app_ : exp → exp → exp

app_ s t := inj (app s t)

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 12 / 25

Connection via a Retract

exp λ exp exp

inj : exp λ exp → exp

retr : exp → O (exp λ exp)

If retr y = Some x, then inj x = y.

Possibility to lift constructors from features to variants[Swierstra,’08]:

app : exp → exp → exp λ exp

app_ : exp → exp → exp

app_ s t := inj (app s t)

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 12 / 25

Modular Recursive Functions

1 Define feature functions, parameterised by the variant functions.

2 Define variant functions.

3 What is the connection between feature function and variant function?

∀(s : expi exp).|s|i = |inji s|

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 13 / 25

Modular Recursive Functions

1 Define feature functions, parameterised by the variant functions.

Variable | | : exp → nat.
Definition | |λ : exp λ exp → nat :=
fun e ⇒ match e with

| var x ⇒ 1
| λ.s ⇒ |s|
| app s t ⇒ |s| + |t|
end.

2 Define variant functions.

3 What is the connection between feature function and variant function?

∀(s : expi exp).|s|i = |inji s|

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 13 / 25

Modular Recursive Functions
1 Define feature functions, parameterised by the variant functions.

Variable | | : exp → nat.
Definition | |λ : exp λ exp → nat :=
fun e ⇒ match e with

| var x ⇒ 1
| λ.s ⇒ |s|
| app s t ⇒ |s| + |t|
end.

2 Define variant functions.

Fixpoint | | (e : exp) : nat :=
match e with

| injλ e ⇒ |e|| |
λ

| injB e ⇒ |e|| |
B

end.

3 What is the connection between feature function and variant function?

∀(s : expi exp).|s|i = |inji s|

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 13 / 25

Modular Recursive Functions
1 Define feature functions, parameterised by the variant functions.

Variable | | : exp → nat.
Definition | |λ : exp λ exp → nat :=
fun e ⇒ match e with

| var x ⇒ 1
| λ.s ⇒ |s|
| app s t ⇒ |s| + |t|
end.

2 Define variant functions.

Fixpoint | | (e : exp) : nat :=
match e with

| injλ e ⇒ |e|| |
λ

| injB e ⇒ |e|| |
B

end.

3 What is the connection between feature function and variant function?

∀(s : expi exp).|s|i = |inji s|
Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 13 / 25

Modular Inductive Proofs

1 Define feature proofs.

2 Define variant proofs.

3 Connection between feature proof and variant proof?

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 14 / 25

Modular Inductive Predicates over Modular Syntax

1 Define feature predicate.

2 Define variant predicate.

3 Connection between feature inductive predicate and variant inductive predicate?

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 15 / 25

General Framework and Tool Support

λ B +

The good:
I Transparent and accessible
I Implementable in any proof assistant
I Truly modular∗

F Termination has to be rechecked,
custom induction principles
change this

The bad:
1 Preliminary definitions for retracts,

smart constructors, and induction
principles

2 Combination of definitions
3 Proofs might require additional

steps

1.) Header file,
generated by Autosubst
according to a specification

2.) MetaCoq support for
combining functions/proofs

3.) Simple tactic support for
simplification, constructor,
and inversion

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 16 / 25

General Framework and Tool Support

λ B +

The good:
I Transparent and accessible
I Implementable in any proof assistant
I Truly modular∗

F Termination has to be rechecked,
custom induction principles
change this

The bad:
1 Preliminary definitions for retracts,

smart constructors, and induction
principles

2 Combination of definitions
3 Proofs might require additional

steps

1.) Header file,
generated by Autosubst
according to a specification

2.) MetaCoq support for
combining functions/proofs

3.) Simple tactic support for
simplification, constructor,
and inversion

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 16 / 25

General Framework and Tool Support

λ B +

The good:
I Transparent and accessible
I Implementable in any proof assistant
I Truly modular∗

F Termination has to be rechecked,
custom induction principles
change this

The bad:
1 Preliminary definitions for retracts,

smart constructors, and induction
principles

2 Combination of definitions
3 Proofs might require additional

steps

1.) Header file,
generated by Autosubst
according to a specification

2.) MetaCoq support for
combining functions/proofs

3.) Simple tactic support for
simplification, constructor,
and inversion

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 16 / 25

General Framework and Tool Support

λ B +

The good:
I Transparent and accessible
I Implementable in any proof assistant
I Truly modular∗

F Termination has to be rechecked,
custom induction principles
change this

The bad:
1 Preliminary definitions for retracts,

smart constructors, and induction
principles

2 Combination of definitions
3 Proofs might require additional

steps

1.) Header file,
generated by Autosubst
according to a specification

2.) MetaCoq support for
combining functions/proofs

3.) Simple tactic support for
simplification, constructor,
and inversion

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 16 / 25

General Framework and Tool Support

λ B +

The good:
I Transparent and accessible
I Implementable in any proof assistant
I Truly modular∗

F Termination has to be rechecked,
custom induction principles
change this

The bad:
1 Preliminary definitions for retracts,

smart constructors, and induction
principles

2 Combination of definitions
3 Proofs might require additional

steps

1.) Header file,
generated by Autosubst
according to a specification

2.) MetaCoq support for
combining functions/proofs

3.) Simple tactic support for
simplification, constructor,
and inversion

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 16 / 25

Demo

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 17 / 25

Start with a specification...

begin lam

arr : ty → ty → ty

ab : ty → (exp → exp) → exp

app : exp → exp → exp

end lam

begin bool

boolTy : ty
constBool : bool → exp

If : exp → exp → exp → exp

end bool

begin arith

natTy : ty
plus : exp → exp → exp

constNat : nat → exp

end arith

compose lambdas := lam

compose all := lam :+: bool :+: arith

...import the generated file in the feature
file and prove preservation for the lambda

feature...

...and then combine everything.

Case Study: Modular Proofs on the Meta-Theory of a Lambda Calculus

Proof of

preservation;

weak head normalisation

and strong normalisation

for a λ-calculus with

boolean expressions

and arithmetic expressions

with 1000 loc for all features + 190 loc for
the variant.

What Mod. Param. Global
Substitution boilerplate x - -
Typing x - -
Reduction x - -
CRL x - -
CML x - -
Preservation x - -
LR for WN x - -
Monotonicity LR x - -
Lifting of LR - x -
Value inclusion - x -
Congruence x - -
Fundamental lemma x - -
WN - x -
LR for SN x - -
Monotonicity LR x - -
Closure properties - x -
Substitutivity reduction x - -
Anti-renaming reduction - - x
Fundamental lemma SN x - -
SN - x -

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 23 / 25

Case Study: Modular Proofs on the Meta-Theory of a Lambda Calculus

Proof of

preservation;

weak head normalisation

and strong normalisation

for a λ-calculus with

boolean expressions

and arithmetic expressions

with 1000 loc for all features + 190 loc for
the variant.

What Mod. Param. Global
Substitution boilerplate x - -
Typing x - -
Reduction x - -
CRL x - -
CML x - -
Preservation x - -
LR for WN x - -
Monotonicity LR x - -
Lifting of LR - x -
Value inclusion - x -
Congruence x - -
Fundamental lemma x - -
WN - x -
LR for SN x - -
Monotonicity LR x - -
Closure properties - x -
Substitutivity reduction x - -
Anti-renaming reduction - - x
Fundamental lemma SN x - -
SN - x -

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 23 / 25

Wrap-Up

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 24 / 25

Wrap-up

Main Novel Results

A practical approach to truly modular syntax via feature functors and direct injections:
I Support of simple inductive types, recursive functions, and inductive predicates
I Usable both with and without tool support
I Could cut previous case studies from 1000 loc/feature to 125 loc/feature

Future Work

Explore new dimensions of modularity

Tool support for scoped syntax and dependent predicates
I Modular solutions to the POPLMark/POPLMark Reloaded challenge

Available online:
www.github.com/uds-psl/coq-a-la-carte-cpp20

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 25 / 25

http://www.github.com/uds-psl/coq-a-la-carte-cpp20

Wrap-up

Main Novel Results

A practical approach to truly modular syntax via feature functors and direct injections:
I Support of simple inductive types, recursive functions, and inductive predicates
I Usable both with and without tool support
I Could cut previous case studies from 1000 loc/feature to 125 loc/feature

Future Work

Explore new dimensions of modularity

Tool support for scoped syntax and dependent predicates
I Modular solutions to the POPLMark/POPLMark Reloaded challenge

Available online:
www.github.com/uds-psl/coq-a-la-carte-cpp20

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 25 / 25

http://www.github.com/uds-psl/coq-a-la-carte-cpp20

Wrap-up

Main Novel Results

A practical approach to truly modular syntax via feature functors and direct injections:
I Support of simple inductive types, recursive functions, and inductive predicates
I Usable both with and without tool support
I Could cut previous case studies from 1000 loc/feature to 125 loc/feature

Future Work

Explore new dimensions of modularity

Tool support for scoped syntax and dependent predicates
I Modular solutions to the POPLMark/POPLMark Reloaded challenge

Available online:
www.github.com/uds-psl/coq-a-la-carte-cpp20

Yannick Forster and Kathrin Stark Coq à la Carte CPP 2020, January 21 25 / 25

http://www.github.com/uds-psl/coq-a-la-carte-cpp20

	Our Motivation – Modular Syntax in an Interactive Proof Assistant
	Related Work
	An Overview on Coq à la Carte

