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• Backtracking 
recovers previous 
(or equivalent) state z≠1
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Two Goals
• Survey

- what are the stateful data structures?
(domains, dependencies, internal propagator state)

- how is state managed during search?
(trailing, copying, recomputation, static/backtrack-safe state)

• Evaluation

- which state management is the best?

- how do trailing and recomputation compare?

- ...in a state-of-the-art system
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Domain

Dependencies

Propagator

allowed values for variables

which propagator to run 
when domain changes

implements propagation 
algorithm

always stateful

watched literals, 
entailed propagators

incrementality
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Static / backtrack-safe State

• Static state: never modified during search

- e.g. DFA for regular constraint, tuple sets for 
extensional constraints, arrays of coefficients 
for linear constraints etc.

• Backtrack-safe state: modifications must 
be valid on path to root node

- strict DFS backtracking keeps state valid

- prime example: watched literals (backtrack-
safe dependencies)
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Recomputing Propagator State

• Propagator state can only depend on domains

• Naive approach: always recompute

- no more incrementality

• Better: recompute only after backtracking

- still have "forwards incrementality"

- far less recomputation

- needs neither trailing nor copying
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Pros & Cons: Global State
+ Only invest (trail) for actual changes

+ Cheap backtracking if little changes

+ Easy to share information between nodes (e.g. 
objective value)

+ Watched literals

- Strictly DFS

- Global state incompatible with shared-memory 
parallelism
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+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

 Confidence-based Work Stealing             
don't miss it this afternoon!

+ Control memory consumption

- Copying may be costly if little changes

- Backtracking may require more work
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A Hybrid System

• Best of both worlds

• Anything trailed can also 
be copied / recomputed

• Realistic evaluation

• Same objects in trailed 
and copied / recomputed 
versions

architecture

efficiency



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}

untrail



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

untrail



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}
...



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

x∉{1,3,4}

y∉{0,2,5}

...

...



Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to 
closest copy above common 
ancestor, then recompute

z∉{1}

...

x∉{1,3,4}

y∉{0,2,5}

...

...



A Hybrid System
• Based on Gecode

- base system uses recomputation

- added global trail

- added propagators with trailed and backtrack-
safe state

- added trailed integer/Boolean variable domains 
and dependencies

• First completely hybrid, state-of-the-art solver
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Related Work

• Simulation of trailing in Mozart [Schulte 1999]

- no runtime evaluation

- memory performance just an estimate

• Integration of coarse-grained trailing and 
recomputation in Figaro [Choi et al. 2001]

- prototype system, non-competitive runtime



Evaluation Scenarios

• Local:

local domains & propagators (standard Gecode)

• Hybrid:

local domains, global propagators

• Global:

global domains & propagators



Propagators (runtime)

• At most factor 3 apart

• Propagators without state should not be copied
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Domains (runtime)

• At most factor 2.4 apart, usually less

(except one example, not shown, factor 24)

• Most influential: percentage of updated domains
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Memory

• Recomputation uses less memory than trailing

• On average 20% memory at distance 10
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• Recomputation is more robust w.r.t. memory

• Future work: 

parallel search using hybrid approach



Summary
• Each strategy is best for some examples

• Trailing is more robust w.r.t. runtime

• Recomputation is more robust w.r.t. memory

• Future work: 

parallel search using hybrid approach

Thanks!


