
Maintaining State in
Propagation Solvers

Int'l Conference on Principles and Practice of Constraint Programming

September 20th, 2009, Lisbon, Portugal

Raphael M. Reischuk
IS&C, Saarland University, Germany

Christian Schulte
KTH - Royal Institute of Technology, Sweden

Peter J. Stuckey
NICTA VRL / University of Melbourne, Australia

Guido Tack
PS Lab, Saarland University, Germany

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

propagate

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

x=2
search

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

x=2

propagate

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

x=2

y=3
search

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

x=2

y=3

z=1

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

x=2

y=3

z=1

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

x=2

y=3

z=1

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state

backtrack

x=2

y=3

z=1

Overview

• Propagation + search
destructively
update state

• Backtracking
recovers previous
(or equivalent) state z≠1

x=2

y=3

z=1

Two Goals
• Survey

- what are the stateful data structures?
(domains, dependencies, internal propagator state)

- how is state managed during search?
(trailing, copying, recomputation, static/backtrack-safe state)

• Evaluation

- which state management is the best?

- how do trailing and recomputation compare?

- ...in a state-of-the-art system

Survey

Stateful Objects

Stateful Objects

Domain

Dependencies

Propagator

Control

Stateful Objects

Domain

Dependencies

Propagator

Control

allowed values for variables

which propagator to run
when domain changes

implements propagation
algorithm

queue, trail, search stack

Stateful Objects

Domain

Dependencies

Propagator

allowed values for variables

which propagator to run
when domain changes

implements propagation
algorithm

Stateful Objects

Domain

Dependencies

Propagator

allowed values for variables

which propagator to run
when domain changes

implements propagation
algorithm

always stateful

Stateful Objects

Domain

Dependencies

Propagator

allowed values for variables

which propagator to run
when domain changes

implements propagation
algorithm

always stateful

watched literals,
entailed propagators

Stateful Objects

Domain

Dependencies

Propagator

allowed values for variables

which propagator to run
when domain changes

implements propagation
algorithm

always stateful

watched literals,
entailed propagators

incrementality

Naive Search

• Copy state for both
children

• Naive because
copying takes time
and memory

• Goal:

get rid of copies

Naive Search

• Copy state for both
children

• Naive because
copying takes time
and memory

• Goal:

get rid of copies

Naive Search

• Copy state for both
children

• Naive because
copying takes time
and memory

• Goal:

get rid of copies

Naive Search

• Copy state for both
children

• Naive because
copying takes time
and memory

• Goal:

get rid of copies

Naive Search

continue
here

• Copy state for both
children

• Naive because
copying takes time
and memory

• Goal:

get rid of copies

Naive Search

continue
here

• Copy state for both
children

• Naive because
copying takes time
and memory

Naive Search

continue
here

• Copy state for both
children

• Naive because
copying takes time
and memory

• Goal:

get rid of copies

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}

untrail

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{1}

...

Global State

• One global state

• Maintained by trailing

 or static/backtrack-
safe

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{1}

...

Static / backtrack-safe State

• Static state: never modified during search

- e.g. DFA for regular constraint, tuple sets for
extensional constraints, arrays of coefficients
for linear constraints etc.

Static / backtrack-safe State

• Static state: never modified during search

- e.g. DFA for regular constraint, tuple sets for
extensional constraints, arrays of coefficients
for linear constraints etc.

• Backtrack-safe state: modifications must
be valid on path to root node

- strict DFS backtracking keeps state valid

- prime example: watched literals (backtrack-
safe dependencies)

Local State

• Independent state per node

• Maintained by copying and
recomputation

Local State

• Independent state per node

• Maintained by copying and
recomputation

copy

Local State

• Independent state per node

• Maintained by copying and
recomputation

x∉{1,3,4}

copy

Local State

• Independent state per node

• Maintained by copying and
recomputation

x∉{1,3,4}

y∉{0,2,5}

copy

Local State

• Independent state per node

• Maintained by copying and
recomputation

x∉{1,3,4}

y∉{0,2,5}

z∉{0,2,5}

copy

Local State

• Independent state per node

• Maintained by copying and
recomputation

x∉{1,3,4}

y∉{0,2,5}

copy

Local State

• Independent state per node

• Maintained by copying and
recomputation

x∉{1,3,4}

y∉{0,2,5}

copy

Local State

• Independent state per node

• Maintained by copying and
recomputation

x∉{1,3,4}

y∉{0,2,5}

copy

Local State

• Independent state per node

• Maintained by copying and
recomputation

x∉{1,3,4}

y∉{0,2,5}

z∉{1}

copy

Recomputing Propagator State

• Propagator state can only depend on domains

• Naive approach: always recompute

- no more incrementality

Recomputing Propagator State

• Propagator state can only depend on domains

• Naive approach: always recompute

- no more incrementality

• Better: recompute only after backtracking

- still have "forwards incrementality"

- far less recomputation

- needs neither trailing nor copying

Pros & Cons: Global State

Pros & Cons: Global State
+ Only invest (trail) for actual changes

Pros & Cons: Global State
+ Only invest (trail) for actual changes

+ Cheap backtracking if little changes

Pros & Cons: Global State
+ Only invest (trail) for actual changes

+ Cheap backtracking if little changes

+ Easy to share information between nodes (e.g.
objective value)

Pros & Cons: Global State
+ Only invest (trail) for actual changes

+ Cheap backtracking if little changes

+ Easy to share information between nodes (e.g.
objective value)

+ Watched literals

Pros & Cons: Global State
+ Only invest (trail) for actual changes

+ Cheap backtracking if little changes

+ Easy to share information between nodes (e.g.
objective value)

+ Watched literals

- Strictly DFS

Pros & Cons: Global State
+ Only invest (trail) for actual changes

+ Cheap backtracking if little changes

+ Easy to share information between nodes (e.g.
objective value)

+ Watched literals

- Strictly DFS

- Global state incompatible with shared-memory
parallelism

Pros & Cons: Local State

Pros & Cons: Local State
+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

Pros & Cons: Local State

• Essential for systems based on copying

• Control over memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

x=2

y=3

z=1 z≠1

thread 1

Pros & Cons: Local State

• Essential for systems based on copying

• Control over memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

x=2

y=3

z=1 z≠1

thread 2

thread 1

Pros & Cons: Local State

• Essential for systems based on copying

• Control over memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

x=2

y=3

z=1 z≠1

thread 2

thread 1

Pros & Cons: Local State

• Essential for systems based on copying

• Control over memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

x=2

y=3

z=1 z≠1

thread 2y≠3

thread 1

Pros & Cons: Local State

• Essential for systems based on copying

• Control over memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

x=2

y=3

z=1 z≠1

thread 2y≠3

thread 1

+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

Pros & Cons: Local State

+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

 Confidence-based Work Stealing
don't miss it this afternoon!

Pros & Cons: Local State

+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

 Confidence-based Work Stealing
don't miss it this afternoon!

+ Control memory consumption

Pros & Cons: Local State

+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

 Confidence-based Work Stealing
don't miss it this afternoon!

+ Control memory consumption

- Copying may be costly if little changes

Pros & Cons: Local State

+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

 Confidence-based Work Stealing
don't miss it this afternoon!

+ Control memory consumption

- Copying may be costly if little changes

- Backtracking may require more work

Pros & Cons: Local State

+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

 Confidence-based Work Stealing
don't miss it this afternoon!

+ Control memory consumption

- Copying may be costly if little changes

- Backtracking may require more work

Pros & Cons: Local State

architecture

+ Greatly simplifies involved search strategies:

- A*: jump between "open" nodes

- parallel: work stealing through recomputation

 Confidence-based Work Stealing
don't miss it this afternoon!

+ Control memory consumption

- Copying may be costly if little changes

- Backtracking may require more work

Pros & Cons: Local State

architecture

efficiency

A Hybrid System

• Best of both worlds

• Anything trailed can also
be copied / recomputed

• Realistic evaluation

• Same objects in trailed
and copied / recomputed
versions

architecture

efficiency

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

z∉{0,2,5}

x∉{2}

untrail

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
x∉{0,5}
y∉{1,6}
z∉{3}

y∉{0,2,5}

z∉{4}

untrail

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}
...

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

x∉{1,3,4}

y∉{0,2,5}

...

...

Hybrid State Restoration
• Copy part of the state

• Trail other part of the state

• On backtracking, untrail to
closest copy above common
ancestor, then recompute

z∉{1}

...

x∉{1,3,4}

y∉{0,2,5}

...

...

A Hybrid System
• Based on Gecode

- base system uses recomputation

- added global trail

- added propagators with trailed and backtrack-
safe state

- added trailed integer/Boolean variable domains
and dependencies

• First completely hybrid, state-of-the-art solver

Evaluation

Related Work

• Simulation of trailing in Mozart [Schulte 1999]

- no runtime evaluation

- memory performance just an estimate

• Integration of coarse-grained trailing and
recomputation in Figaro [Choi et al. 2001]

- prototype system, non-competitive runtime

Evaluation Scenarios

• Local:

local domains & propagators (standard Gecode)

• Hybrid:

local domains, global propagators

• Global:

global domains & propagators

Propagators (runtime)

• At most factor 3 apart

• Propagators without state should not be copied

-1,5

-1,0

-0,5

0

0,5

1,0

1,5

2,0

lo
ca

l
h

y
b

ri
d

stateless propagators

Domains (runtime)

• At most factor 2.4 apart, usually less

(except one example, not shown, factor 24)

• Most influential: percentage of updated domains

-1,50

-1,25

-1,00

-0,75

-0,50

-0,25

0

0,25

0,50

0,75

1,00

h
y
b

ri
d

gl
o

b
al

fewer updated domains

Memory

• Recomputation uses less memory than trailing

• On average 20% memory at distance 10

0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

full copying 5 10 15 20 25 30

copy distance

Summary
• Each strategy is best for some examples

• Trailing is more robust w.r.t. runtime

• Recomputation is more robust w.r.t. memory

• Future work:

parallel search using hybrid approach

Summary
• Each strategy is best for some examples

• Trailing is more robust w.r.t. runtime

• Recomputation is more robust w.r.t. memory

• Future work:

parallel search using hybrid approach

Thanks!

