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Fixpoints

given P, d: unique weakest mutual fixpoint of all
peP stronger than d exists

it can be computed in a finite number of steps:
while (3 peP such that p(d)=d)

d < p(d)
it does not depend on order of propagation

idempotency is irrelevant

mohotonicity is crucial
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Non-monotonic propagators

® Some constraints are NP-hard to propagate
- Hamiltonian circuit, knapsack, scheduling

® Approximative propagation algorithms are often
non-monotonic, e.g.

- consider some instead of all subsets
- consider only small domains
- randomize

- start graph algorithm at one instead of all nodes
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Constraints

Assignments acAsn=X —V a(x) €V

Constraints c C Asn

X = {z,y,2}

Vi = {1,2,3,4}

d = {v—V,y—V,z—V}

cp = {ae€Asn|a(z)#aly) A distinct(z, y, z)
a(x) # a(z) A
a(y) # a(z)}

co = {acAsn]alz)+aly) =alz)} r+y=2
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Consistent Pruning

p = {a € Asn | p({a}) = {a}}
Vaed: a¢p(d) =a¢c,

® if p ever prunes an assighment from a domain, it
must not belong to ¢,

® monotonicity guarantees consistent pruning:
1) € d=p(ay) € p(d)
<— acdAp{a})={a} = a € p(d)

® this is weak monotonicity
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Propagation (revisited)
Variables z,y,2 € X Values V
Domains d(z) CV
Propagators

p(d)(x) C d(x) (contracting)

{a} Cd=p({a}) Cp(d) (weakly monotonic)

Knaster-Tarski does not apply
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Fixpoints (revisited)

what does this compute now!

while (3 peP such that p(d)#d)
d < p(d)

it still terminates with a mutual fixpoint
"weaker than GAC but not weaker than FC"

solution space is invariant
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Fixpoint Issues

® All depends on propagator order:
- individual fixpoints (may not even be comparable!)
- the shape of the search tree

- the order of solutions

® Adding constraints can yield bigger search trees!

® C'est la vie

(also happens with randomized heuristics, restarts,
or parallel search)
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Minimal model

p(d)(x) C d(x) (contracting)

{a} Cd=p({a}) Cp(d) (weakly monotonic)

Any contracting function can be made weakly
monotonic by composition with a checker?

Model is minimally restrictive
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Randomized Propagation

Circuit: random vs. fixed
o W heuristic
runtime in % (smaller=better)

[ PI"
Knights 18 17.0%
® Itel kKnights 20 98.1%
fiX| kKnights 22 1.1%

e Bu Knights 24 71.2%
TSP brl7 102.3%
® TSP ftv33 97.1%




Randomized Propagation

® What if a propagator prunes randomly?
® Propagators become relations

® |teration possibly does not even compute
fixpoints

® But: propagator still checks its constraint

e WMP guarantees correctness
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compute exactly one fixpoint

® supports non-
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® But: same set of solutions!

® This works!




[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

® upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
® only one fixpoint per node

® fixpoint may differ from
exploration

® But: same set of solutions!

® This works!




[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

® upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
® only one fixpoint per node

® fixpoint may differ from
exploration

® But: same set of solutions!

® This works!




[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

fixpoint

upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
only one fixpoint per node

fixpoint may differ from
exploration

But: same set of solutions!

This works!



[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

® upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)

® only one fixpoint per node

® fixpoint may differ from
fixpoint exploration




[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

fixpoint

upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
only one fixpoint per node

fixpoint may differ from
exploration

But: same set of solutions!



[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

fixpoint

upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
only one fixpoint per node

fixpoint may differ from
exploration

But: same set of solutions!

This works!



VWWhy recomputation matters

® Essential for systems based on copying
® Control memory consumption

® Implement involved search strategies (e.g.A")



VVhy recomputation matters

® Essential for systems based on copying
® Control memory consumption
® Implement involved search strategies (e.g.A")
® Greatly simplifies parallel search
- pass copies to different workers

- work stealing through recomputation



VVhy recomputation matters

® Essential for systems based on copying
® Control memory consumption
® Implement involved search strategies (e.g.A")
® Greatly simplifies parallel search
- pass copies to different workers
- work stealing through recomputation

® More later in this session



Summary

Monotonicity is unrealistic: prohibits
approximative, heuristic, randomized algorithms

Realistic model:
contraction + weak monotonicity

Minimal model that makes solver sound and
complete

Works with recomputation



Summary

Monotonicity is unrealistic: prohibits
approximative, heuristic, randomized algorithms

Realistic model:
contraction + weak monotonicity

Minimal model that makes solver sound and
complete

Works with recomputation

Thanks!



