VVeakly Monotonic
Propagators

Christian Schulte
KTH - Royal Institute of Technology, Sweden

Guido Tack
PS Lab, Saarland University, Germany

Int’l Conference on Principles and Practice of Constraint Programming

September 20th, 2009, Lisbon, Portugal

Reality check

Reality check

Beautiful model:
Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior,
more constraints means less search
[Saraswat et al, Benhamou et al,Van Hentenryck et al, Apt, ...]

Reality check

Beautiful model:

Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior,
more constraints means less search
[Saraswat et al, Benhamou et al,Van Hentenryck et al, Apt, ...]

Ugly reality:
Propagators are nhot monotonic!

approximate NP-hard constraints, use heuristics or
randomization

[Baptiste et al, Menana/Demassey, Katriel, Stergiou, Mehta/Van Dongen...]

Reality check

Beautiful model:

Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior,
more constraints means less search
[Saraswat et al, Benhamou et al,Van Hentenryck et al, Apt, ...]

Ugly reality:
Propagators are not monotonic!

approximate NP-hard constraints, use heuristics or
randomization

[Baptiste et al, Menana/Demassey, Katriel, Stergiou, Mehta/Van Dongen...]

Reality check

PropaPaopegaters are nowonothoboiic!
® Realistic formal model

- establish properties of propagators

- minimally restrictive (maximally realistic)
® Consequences

- what does propagation compute!

- does recomputation work?

Reality check

Propagators are weakly monotonic!
® Realistic formal model

- establish properties of propagators

- minimally restrictive (maximally realistic)
® Consequences

- what does propagation compute!

- does recomputation work?

A Model

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV all finite

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV all finite
Propagators

p(d)(x) C d(x) (contracting)

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV all finite
Propagators

p(d) Cd (contracting)

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV all finite
Propagators

p(d) Cd (contracting)

d Cd=p(d) C p(d) (monotonic)

Propagation

Variables z,y,2 € X
dlx) CV

Domains

Propagators

X
M
S
|
=
X
M

p(d

Values V
all finite

(contracting)

) (monotonic)

(idempotent)

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV all finite
Propagators
p(d) Cd (contracting)
closure
" Cd d") C p(d toni
d Cd=p(d) C p(d) (monotonic) operators

(idempotent)

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV all finite
Propagators
p(d) Cd (contracting)
. closure
d Cd= p(d) C p(d) (monotonic) operators
p(p(d)) = p(d) (idempotent)

Knaster-Tarski = weakest mutual fixpoint exists

Fixpoints

Fixpoints

® given P, d: unique weakest mutual fixpoint of all
peP stronger than d exists

Fixpoints

® given P, d: unique weakest mutual fixpoint of all
peP stronger than d exists

® it can be computed in a finite number of steps:

while (3 peP such that p(d)=d)
d < p(d)

Fixpoints

® given P, d: unique weakest mutual fixpoint of all
peP stronger than d exists

® it can be computed in a finite number of steps:

while (3 peP such that p(d)=d)
d < p(d)

® it does not depend on order of propagation

Fixpoints

given P, d: unique weakest mutual fixpoint of all
peP stronger than d exists

it can be computed in a finite number of steps:

while (3 peP such that p(d)=d)
d < p(d)

it does not depend on order of propagation

idempotency is irrelevant

Fixpoints

given P, d: unique weakest mutual fixpoint of all
peP stronger than d exists

it can be computed in a finite number of steps:
while (3 peP such that p(d)=d)

d < p(d)
it does not depend on order of propagation

idempotency is irrelevant

mohotonicity is crucial

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV

Propagators
p(d)(x) C d(x) (contracting)
d Cd= p(d) C p(d) (monotonic) O;Ieorsa‘::frs
p(p(d)) = p(d) (idempotent)

Knaster-Tarski = weakst mutual fixpoint exists

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV

Propagators
p(d)(z) C d(x) (contracting) ¢/
d Cd= p(d) C p(d) (monotonic) O;Ieorsa‘::frs
p(p(d)) = p(d) (idempotent)

Knaster-Tarski = weakst mutual fixpoint exists

Propagation

Variables z,y,2 € X Values V
Domains d(z) CV

Propagators
p(d)(z) C d(x) (contracting) ¢/
| / , closure
¥ € = pld) € pld) (monotonic) TS

Knaster-Tarski = weakst mutual fixpoint exists

Propagation
Variables z,y,2 € X Values V
Domains d(z) CV
Propagators

p(d)(z) C d(x) (contracting) ¢/
7 N TS A AU closure
s bl i A A ROEGRIC) operators

Knaster-Tarski = weakst mutual fixpoint exists

Non-monotonic propagators

® Some constraints are NP-hard to propagate
- Hamiltonian circuit, knapsack, scheduling

® Approximative propagation algorithms are often
non-monotonic, e.g.

- consider some instead of all subsets
- consider only small domains
- randomize

- start graph algorithm at one instead of all nodes

Example: Hamiltonian circuit

circult(Xi, ... ,Xn)

graph with edges 1-»x;
has single cycle
covering all nodes

Example: Hamiltonian circuit

circult(Xi, ... ,Xn)

graph with edges 1-»x;
has single cycle
covering all nodes

~
~ ”~

N P
-y -

® check with DFS that graph has a single SCC

Example: Hamiltonian circuit

circult(Xi, ... ,Xn)

graph with edges 1-»x;
has single cycle
covering all nodes

~
~ 4
N P
-y -

® check with DFS that graph has a single SCC

® prune edges between non-neighbor subtrees

Example: Hamiltonian circuit

circult(Xi, ... ,Xn)

graph with edges 1-»x;
has single cycle
covering all nodes

~
~ ”~

N P
-y -

® check with DFS that graph has a single SCC
® prune edges between non-neighbor subtrees

® fix edges if single neighbor-edge is left

Example: Hamiltonian circuit

circult(Xi, ... ,Xn)

graph with edges 1-»x;
has single cycle
covering all nodes

~
~ ”~

N P
-y -

® check with DFS that graph has a single SCC
® prune edges between non-neighbor subtrees
® fix edges if single neighbor-edge is left

® DFS start node arbitrary, thus non-monotonic

Example: Hamiltonian circuit

circ r1 € {2,3,4} x5 €{1,5} x3¢€{1,2,5}

graph s € {2,3} x5 € {1,2}
has sing
coveri

L2 e—L3e—T4 :
l‘ . no pruning
N ”

[

5 prune edge

Example: Hamiltonian circuit

circult(Xi, ... ,Xn)

graph with edges 1-»x;
has single cycle
covering all nodes

~
~ ”~

N P
-y -

® check with DFS that graph has a single SCC
® prune edges between non-neighbor subtrees
® fix edges if single neighbor-edge is left

® DFS start node arbitrary, thus non-monotonic

A Realistic Model

Constraints

Assignments acAsn=X —V a(x) €V

Constraints c C Asn

Constraints

Assignments acAsn=X —V a(x) €V

Constraints c C Asn

X = {z,y,2}

Vi = {1,2,3,4}

d = {v—V,y—V,z—V}

cp = {ae€Asn|a(z)#aly) A distinct(z, y, z)
a(x) # a(z) A
a(y) # a(z)}

co = {acAsn]alz)+aly) =alz)} r+y=2

Propagators

® remove values that are inconsistent:

p(d) Cd (contracting)

Propagators

® remove values that are inconsistent:
p(d) Cd (contracting)

® decide on assignment if constraint is satisfied:

p({a}) = {a} (accept) p({a}) =0 (reject)

Propagators

® remove values that are inconsistent:
p(d) Cd (contracting)

® decide on assignment if constraint is satisfied:
p({a}) = {a} (accept) p({a}) =0 (reject)

® induce a constraint (accepted assignments):

cp = {a € Asn | p({a}) = {a}}

Propagators

remove values that are inconsistent:
p(d) Cd (contracting)
decide on assignment if constraint is satisfied:
p({a}) = {a} (accept) p({a}) =0 (reject)
induce a constraint (accepted assignments):

cp = {a € Asn | p({a}) = {a}}

must prune consistently:
Vaed: aé¢p(d) =a¢c,

Consistent Pruning

cp = {a € Asn [p({a}) = {a}}
Vaed: a¢p(d) =a¢c,

Consistent Pruning

p = {a € Asn | p({a}) = {a}}
Vaed: a¢p(d) =a¢c,

® if p ever prunes an assighment from a domain, it
must not belong to ¢,

Consistent Pruning

p = {a € Asn | p({a}) = {a}}
Vaed: a¢p(d) =a¢c,

® if p ever prunes an assighment from a domain, it
must not belong to ¢,

® monotonicity guarantees consistent pruning:
1y ©d=p({ay) € p(d)

<— acdAp{a})={a} = a € p(d)

Consistent Pruning

p = {a € Asn | p({a}) = {a}}
Vaed: a¢p(d) =a¢c,

® if p ever prunes an assighment from a domain, it
must not belong to ¢,

® monotonicity guarantees consistent pruning:
1) € d=p(ay) € p(d)
<— acdAp{a})={a} = a € p(d)

® this is weak monotonicity

Propagation
Variables z,y,2 € X Values V
Domains d(z) CV
Propagators {a} Cd = p({a}) Cp(d) (weakly m.)

p(d)(x) C d(x) (contracting) v/
closure
operators

d Cd= p(d) C p(d) (monotonic)

Propagation
Variables z,y,2 € X Values V
Domains d(z) CV
Propagators {a} Cd = p({a}) Cp(d) (weakly m.)

p(d)(x) C d(x) (contracting) v/
closure
operators

Propagation (revisited)
Variables z,y,2 € X Values V
Domains d(z) CV
Propagators

p(d)(x) C d(x) (contracting)
{a} Cd=p({a}) Cp(d) (weakly m.)

Knaster-Tarski = weakest mutual fixpoint exists

Propagation (revisited)
Variables z,y,2 € X Values V
Domains d(z) CV
Propagators

p(d)(x) C d(x) (contracting)

{a} Cd=p({a}) Cp(d) (weakly monotonic)

Knaster-Tarski = weakest mutual fixpoint exists

Propagation (revisited)
Variables z,y,2 € X Values V
Domains d(z) CV
Propagators

p(d)(x) C d(x) (contracting)

{a} Cd=p({a}) Cp(d) (weakly monotonic)

Knaster-Tarski does not apply

Fixpoints (revisited)

® what does this compute now!?

while (3 peP such that p(d)#d)
d < p(d)

Fixpoints (revisited)

® what does this compute now!?

while (3 peP such that p(d)#d)
d < p(d)

® it still terminates with a mutual fixpoint

Fixpoints (revisited)

® what does this compute now!?

while (3 peP such that p(d)#d)
d < p(d)

® it still terminates with a mutual fixpoint

® "weaker than GAC but not weaker than FC"

Fixpoints (revisited)

what does this compute now!

while (3 peP such that p(d)#d)
d < p(d)

it still terminates with a mutual fixpoint
"weaker than GAC but not weaker than FC"

solution space is invariant

Fixpoint Issues

® All depends on propagator order:
- individual fixpoints (may not even be comparable!)
- the shape of the search tree

- the order of solutions

Fixpoint Issues

® All depends on propagator order:
- individual fixpoints (may not even be comparable!)
- the shape of the search tree
- the order of solutions

® Adding constraints can yield bigger search trees!

Fixpoint Issues

® All depends on propagator order:
- individual fixpoints (may not even be comparable!)
- the shape of the search tree

- the order of solutions

® Adding constraints can yield bigger search trees!

® C'est la vie

(also happens with randomized heuristics, restarts,
or parallel search)

Minimal model

p(d)(x) C d(x) (contracting)

{a} Cd=p({a}) Cp(d) (weakly monotonic)

Any contracting function can be made weakly
monotonic by composition with a checker?

Minimal model

p(d)(x) C d(x) (contracting)

{a} Cd=p({a}) Cp(d) (weakly monotonic)

Any contracting function can be made weakly
monotonic by composition with a checker?

Model is minimally restrictive

Randomized Propagation

® What if a propagator prunes randomly?

Randomized Propagation

® What if a propagator prunes randomly?

® Propagators become relations

Randomized Propagation

® What if a propagator prunes randomly?
® Propagators become relations

® |teration possibly does not even compute
fixpoints

Randomized Propagation

® What if a propagator prunes randomly?
® Propagators become relations

® |teration possibly does not even compute
fixpoints

® But: propagator still checks its constraint

Randomized Propagation

® What if a propagator prunes randomly?
® Propagators become relations

® |teration possibly does not even compute
fixpoints

® But: propagator still checks its constraint

e WMP guarantees correctness

Randomized Propagation

Circuit: random vs. fixed
o W heuristic
runtime in % (smaller=better)

[PI"
Knights 18 17.0%
® Itel kKnights 20 98.1%
fiX| kKnights 22 1.1%

e Bu Knights 24 71.2%
TSP brl7 102.3%
® TSP ftv33 97.1%

Randomized Propagation

® What if a propagator prunes randomly?
® Propagators become relations

® |teration possibly does not even compute
fixpoints

® But: propagator still checks its constraint

e WMP guarantees correctness

Non-monotonic search

Trailing

® record undo information on a
trail

® on backtrack, restore
ancestor state using undos

® for every node in the tree,
compute exactly one fixpoint

® supports non-
mohotonic propagation
without change

Trailing

® record undo information on a
trail

® on backtrack, restore
ancestor state using undos

® for every node in the tree,
compute exactly one fixpoint

® supports non-
mohotonic propagation
without change

Trailing

® record undo information on a
trail

® on backtrack, restore
ancestor state using undos

® for every node in the tree,
compute exactly one fixpoint

® supports non-
mohotonic propagation
without change

Trailing

® record undo information on a
trail

® on backtrack, restore
ancestor state using undos

® for every node in the tree,
fixpoint compute exactly one fixpoint

Trailing

® record undo information on a
trail

® on backtrack, restore
ancestor state using undos

® for every node in the tree,
compute exactly one fixpoint

® supports non-
mohotonic propagation
without change

Fixpoint Recomputation (naive)

® store copies of some nodes

® upon backtrack, redo steps
using path information (left,
left, right)

® compute one fixpoint per
step

e does not work with
non-monotonic
propagators!

Fixpoint Recomputation (naive)

copy—_,

® store copies of some nodes

® upon backtrack, redo steps
using path information (left,
left, right)

® compute one fixpoint per
step

e does not work with
non-monotonic
propagators!

Fixpoint Recomputation (naive)

® store copies of some nodes

® upon backtrack, redo steps
using path information (left,
left, right)

fixpoint

® compute one fixpoint per
step

e does not work with
non-monotonic
propagators!

Fixpoint Recomputation (naive)

® store copies of some nodes

® upon backtrack, redo steps
using path information (left,
left, right)

fixpoint

fixpoint

® compute one fixpoint per
step

e does not work with
non-monotonic
propagators!

Fixpoint Recomputation (naive)

® store copies of some nodes

® upon backtrack, redo steps

fixpoint : : :
pol using path information (left,

left
fixpoint left, right)
z# | ® compute one fixpoint per
fixpoint step

e does not work with
non-monotonic
propagators!

Fixpoint Recomputation (naive)

® store copies of some nodes

® upon backtrack, redo steps
using path information (left,
left, right)

fixpoint

fixpoint
z# | ® compute one fixpoint per
fixpoint step

Fixpoint Recomputation (naive)

® store copies of some nodes

® upon backtrack, redo steps

fixpoint : : :
pol using path information (left,

left
fixpoint left, right)
z# | ® compute one fixpoint per
fixpoint step

e does not work with
non-monotonic
propagators!

[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

® upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
® only one fixpoint per node

® fixpoint may differ from
exploration

® But: same set of solutions!

® This works!

[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

® upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
® only one fixpoint per node

® fixpoint may differ from
exploration

® But: same set of solutions!

® This works!

[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

® upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
® only one fixpoint per node

® fixpoint may differ from
exploration

® But: same set of solutions!

® This works!

[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

fixpoint

upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
only one fixpoint per node

fixpoint may differ from
exploration

But: same set of solutions!

This works!

[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

® upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)

® only one fixpoint per node

® fixpoint may differ from
fixpoint exploration

[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

fixpoint

upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
only one fixpoint per node

fixpoint may differ from
exploration

But: same set of solutions!

[Choi et al 2001, Michel/Van Hentenryck 2004]

Path Recomputation

fixpoint

upon backtrack, redo steps
using constraint information

(x=2,y=3,z#|)
only one fixpoint per node

fixpoint may differ from
exploration

But: same set of solutions!

This works!

VWWhy recomputation matters

® Essential for systems based on copying
® Control memory consumption

® Implement involved search strategies (e.g.A")

VVhy recomputation matters

® Essential for systems based on copying
® Control memory consumption
® Implement involved search strategies (e.g.A")
® Greatly simplifies parallel search
- pass copies to different workers

- work stealing through recomputation

VVhy recomputation matters

® Essential for systems based on copying
® Control memory consumption
® Implement involved search strategies (e.g.A")
® Greatly simplifies parallel search
- pass copies to different workers
- work stealing through recomputation

® More later in this session

Summary

Monotonicity is unrealistic: prohibits
approximative, heuristic, randomized algorithms

Realistic model:
contraction + weak monotonicity

Minimal model that makes solver sound and
complete

Works with recomputation

Summary

Monotonicity is unrealistic: prohibits
approximative, heuristic, randomized algorithms

Realistic model:
contraction + weak monotonicity

Minimal model that makes solver sound and
complete

Works with recomputation

Thanks!

