
Weakly Monotonic
Propagators

Int'l Conference on Principles and Practice of Constraint Programming

September 20th, 2009, Lisbon, Portugal

Christian Schulte
KTH - Royal Institute of Technology, Sweden

Guido Tack
PS Lab, Saarland University, Germany

Reality check

Beautiful model:
Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior,
more constraints means less search

[Saraswat et al, Benhamou et al, Van Hentenryck et al, Apt, ...]

Reality check

Ugly reality:
Propagators are not monotonic!

approximate NP-hard constraints, use heuristics or
randomization

[Baptiste et al, Menana/Demassey, Katriel, Stergiou, Mehta/Van Dongen...]

Beautiful model:
Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior,
more constraints means less search

[Saraswat et al, Benhamou et al, Van Hentenryck et al, Apt, ...]

Reality check

Ugly reality:
Propagators are not monotonic!

approximate NP-hard constraints, use heuristics or
randomization

[Baptiste et al, Menana/Demassey, Katriel, Stergiou, Mehta/Van Dongen...]

Beautiful model:
Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior,
more constraints means less search

[Saraswat et al, Benhamou et al, Van Hentenryck et al, Apt, ...]

Reality check

Propagators are

Propagators are not monotonic!

monotonic!

Reality check

• Realistic formal model

- establish properties of propagators

- minimally restrictive (maximally realistic)

• Consequences

- what does propagation compute?

- does recomputation work?

Propagators are Propagators are not monotonic!monotonic!

Reality check

• Realistic formal model

- establish properties of propagators

- minimally restrictive (maximally realistic)

• Consequences

- what does propagation compute?

- does recomputation work?

Propagators are monotonic!weakly

A Model

Propagation

Domains d(x) ⊆ V

Variables x, y, z ∈ X Values V

Propagation

Domains d(x) ⊆ V

Variables x, y, z ∈ X Values V

all finite

Propagation

Domains d(x) ⊆ V

Propagators

p(d)(x) ⊆ d(x) (contracting)

Variables x, y, z ∈ X Values V

all finite

Propagation

Domains d(x) ⊆ V

Propagators

p(d)(x) ⊆ d(x) (contracting)

Variables x, y, z ∈ X Values V

all finite

Propagation

Domains d(x) ⊆ V

Propagators

p(d)(x) ⊆ d(x) (contracting)

Variables x, y, z ∈ X Values

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

V

all finite

Propagation

Domains d(x) ⊆ V

Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

Variables x, y, z ∈ X Values

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

V

all finite

Propagation

Domains d(x) ⊆ V

Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

closure
operators

Variables x, y, z ∈ X Values

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

V

all finite

Propagation

Domains d(x) ⊆ V

Knaster-Tarski ⇒ weakest mutual fixpoint exists

Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

closure
operators

Variables x, y, z ∈ X Values

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

V

all finite

Fixpoints

Fixpoints
• given P, d: unique weakest mutual fixpoint of all

p∈P stronger than d exists

Fixpoints
• given P, d: unique weakest mutual fixpoint of all

p∈P stronger than d exists

• it can be computed in a finite number of steps:

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

Fixpoints
• given P, d: unique weakest mutual fixpoint of all

p∈P stronger than d exists

• it can be computed in a finite number of steps:

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it does not depend on order of propagation

Fixpoints
• given P, d: unique weakest mutual fixpoint of all

p∈P stronger than d exists

• it can be computed in a finite number of steps:

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it does not depend on order of propagation

• idempotency is irrelevant

Fixpoints
• given P, d: unique weakest mutual fixpoint of all

p∈P stronger than d exists

• it can be computed in a finite number of steps:

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it does not depend on order of propagation

• idempotency is irrelevant

• monotonicity is crucial

Propagation

Domains d(x) ⊆ V

closure
operators

Variables x, y, z ∈ X Values V

Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

Knaster-Tarski ⇒ weakst mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

closure
operators

Variables x, y, z ∈ X Values

✔

V

Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

Knaster-Tarski ⇒ weakst mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

closure
operators

Variables x, y, z ∈ X Values

✔

V

Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

Knaster-Tarski ⇒ weakst mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

closure
operators

Variables x, y, z ∈ X Values

?
✔

V

Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

Knaster-Tarski ⇒ weakst mutual fixpoint exists

Non-monotonic propagators

• Some constraints are NP-hard to propagate

- Hamiltonian circuit, knapsack, scheduling

• Approximative propagation algorithms are often
non-monotonic, e.g.

- consider some instead of all subsets

- consider only small domains

- randomize

- start graph algorithm at one instead of all nodes

Example: Hamiltonian circuit
circuit(x1,...,xn)

graph with edges i!xi
has single cycle
covering all nodes

Example: Hamiltonian circuit

• check with DFS that graph has a single SCC

circuit(x1,...,xn)

graph with edges i!xi
has single cycle
covering all nodes

Example: Hamiltonian circuit

• check with DFS that graph has a single SCC

• prune edges between non-neighbor subtrees

circuit(x1,...,xn)

graph with edges i!xi
has single cycle
covering all nodes

Example: Hamiltonian circuit

• check with DFS that graph has a single SCC

• prune edges between non-neighbor subtrees

• fix edges if single neighbor-edge is left

circuit(x1,...,xn)

graph with edges i!xi
has single cycle
covering all nodes

Example: Hamiltonian circuit

• check with DFS that graph has a single SCC

• prune edges between non-neighbor subtrees

• fix edges if single neighbor-edge is left

• DFS start node arbitrary, thus non-monotonic

circuit(x1,...,xn)

graph with edges i!xi
has single cycle
covering all nodes

Example: Hamiltonian circuit

• check with DFS that graph has a single SCC

• prune edges between non-neighbor subtrees

• fix edges if single neighbor-edge is left

• DFS start node arbitrary, thus non-monotonic

circuit(x1,...,xn)

graph with edges i!xi
has single cycle
covering all nodes

x1 ∈ {2, 3, 4}

x4 ∈ {2, 3}

x2 ∈ {1, 5} x3 ∈ {1, 2, 5}

x5 ∈ {1, 2}

x1

x2 x3 x4

x5

x1

x2

x3

x4

x5

prune edge

no pruning

Example: Hamiltonian circuit

• check with DFS that graph has a single SCC

• prune edges between non-neighbor subtrees

• fix edges if single neighbor-edge is left

• DFS start node arbitrary, thus non-monotonic

circuit(x1,...,xn)

graph with edges i!xi
has single cycle
covering all nodes

A Realistic Model

Constraints

a(x) ∈ VAssignments

Constraints

a ∈ Asn = X → V

c ⊆ Asn

Constraints

a(x) ∈ VAssignments

Constraints

a ∈ Asn = X → V

c ⊆ Asn

X = {x, y, z}
V = {1, 2, 3, 4}
d = {x �→ V, y �→ V, z �→ V }

c1 = {a ∈ Asn | a(x) �= a(y) ∧
a(x) �= a(z) ∧
a(y) �= a(z)}

c2 = {a ∈ Asn | a(x) + a(y) = a(z)}

distinct(x, y, z)

x + y = z

Propagators
• remove values that are inconsistent:

 p(d) ⊆ d (contracting)

Propagators
• remove values that are inconsistent:

• decide on assignment if constraint is satisfied:

 p({a}) = ∅p({a}) = {a} (reject)(accept)

p(d) ⊆ d (contracting)

Propagators
• remove values that are inconsistent:

• decide on assignment if constraint is satisfied:

• induce a constraint (accepted assignments):

cp = {a ∈ Asn | p({a}) = {a}}

p({a}) = ∅p({a}) = {a} (reject)(accept)

p(d) ⊆ d (contracting)

Propagators
• remove values that are inconsistent:

• decide on assignment if constraint is satisfied:

• induce a constraint (accepted assignments):

• must prune consistently:

cp = {a ∈ Asn | p({a}) = {a}}

p({a}) = ∅p({a}) = {a} (reject)(accept)

p(d) ⊆ d (contracting)

∀a ∈ d : a /∈ p(d) ⇒ a /∈ cp

Consistent Pruning
cp = {a ∈ Asn | p({a}) = {a}}
∀a ∈ d : a /∈ p(d) ⇒ a /∈ cp

Consistent Pruning

• if p ever prunes an assignment from a domain, it
must not belong to cp

cp = {a ∈ Asn | p({a}) = {a}}
∀a ∈ d : a /∈ p(d) ⇒ a /∈ cp

Consistent Pruning

• if p ever prunes an assignment from a domain, it
must not belong to cp

• monotonicity guarantees consistent pruning:

{a} ⊆ d⇒ p({a}) ⊆ p(d)

⇐⇒ a ∈ d ∧ p({a}) = {a}⇒ a ∈ p(d)

cp = {a ∈ Asn | p({a}) = {a}}
∀a ∈ d : a /∈ p(d) ⇒ a /∈ cp

Consistent Pruning

• if p ever prunes an assignment from a domain, it
must not belong to cp

• monotonicity guarantees consistent pruning:

• this is weak monotonicity

{a} ⊆ d⇒ p({a}) ⊆ p(d)

⇐⇒ a ∈ d ∧ p({a}) = {a}⇒ a ∈ p(d)

cp = {a ∈ Asn | p({a}) = {a}}
∀a ∈ d : a /∈ p(d) ⇒ a /∈ cp

Propagation

Domains d(x) ⊆ V

closure
operators

(complete)p(d) ⊆ dom(cp ∩ d)

Variables x, y, z ∈ X Values

✔

{a} ⊆ d⇒ p({a}) ⊆ p(d) (weakly m.)Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

V

Knaster-Tarski ⇒ weakest mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

closure
operators

(complete)p(d) ⊆ dom(cp ∩ d)

Variables x, y, z ∈ X Values

✔

{a} ⊆ d⇒ p({a}) ⊆ p(d) (weakly m.)Propagators

p(d)(x) ⊆ d(x) (contracting)

p(p(d)) = p(d) (idempotent)

(monotonic)d� ⊆ d⇒ p(d�) ⊆ p(d)

V

Knaster-Tarski ⇒ weakest mutual fixpoint exists

Knaster-Tarski ⇒ weakest mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

Propagators

Variables x, y, z ∈ X Values

(revisited)

{a} ⊆ d⇒ p({a}) ⊆ p(d)

p(d)(x) ⊆ d(x) (contracting)

V

(weakly m.)

Knaster-Tarski ⇒ weakest mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

Propagators

Variables x, y, z ∈ X Values

(revisited)

{a} ⊆ d⇒ p({a}) ⊆ p(d)

p(d)(x) ⊆ d(x) (contracting)

V

(weakly m.)monotonic)

Knaster-Tarski ⇒ weakest mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

Propagators

Variables x, y, z ∈ X Values

(revisited)

{a} ⊆ d⇒ p({a}) ⊆ p(d)

does not apply

p(d)(x) ⊆ d(x) (contracting)

V

(weakly m.)monotonic)

Fixpoints (revisited)

• what does this compute now?

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

Fixpoints (revisited)

• what does this compute now?

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it still terminates with a mutual fixpoint

Fixpoints (revisited)

• what does this compute now?

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it still terminates with a mutual fixpoint

• "weaker than GAC but not weaker than FC"

Fixpoints (revisited)

• what does this compute now?

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it still terminates with a mutual fixpoint

• "weaker than GAC but not weaker than FC"

• solution space is invariant

Fixpoint Issues
• All depends on propagator order:

- individual fixpoints (may not even be comparable!)

- the shape of the search tree

- the order of solutions

Fixpoint Issues
• All depends on propagator order:

- individual fixpoints (may not even be comparable!)

- the shape of the search tree

- the order of solutions

• Adding constraints can yield bigger search trees!

Fixpoint Issues
• All depends on propagator order:

- individual fixpoints (may not even be comparable!)

- the shape of the search tree

- the order of solutions

• Adding constraints can yield bigger search trees!

• C'est la vie

(also happens with randomized heuristics, restarts,
or parallel search)

Any contracting function can be made weakly
monotonic by composition with a checker!

Minimal model

{a} ⊆ d⇒ p({a}) ⊆ p(d)

p(d)(x) ⊆ d(x) (contracting)

(weakly monotonic)

Any contracting function can be made weakly
monotonic by composition with a checker!

Minimal model

{a} ⊆ d⇒ p({a}) ⊆ p(d)

p(d)(x) ⊆ d(x) (contracting)

(weakly monotonic)

Model is minimally restrictive

Randomized Propagation

• What if a propagator prunes randomly?

Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

• Iteration possibly does not even compute
fixpoints

Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

• Iteration possibly does not even compute
fixpoints

• But: propagator still checks its constraint

Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

• Iteration possibly does not even compute
fixpoints

• But: propagator still checks its constraint

• WMP guarantees correctness

Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

• Iteration possibly does not even compute
fixpoints

• But: propagator still checks its constraint

• WMP guarantees correctness

Circuit: random vs. fixed
heuristic

runtime in % (smaller=better)

Knights 18" " " " 17.0%
Knights 20" " " " 98.1%
Knights 22" " " " 1.1%
Knights 24" " " " 7.2%
TSP br17" " " " " 102.3%
TSP ftv33"" " " " 97.1%

Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

• Iteration possibly does not even compute
fixpoints

• But: propagator still checks its constraint

• WMP guarantees correctness

Non-monotonic search

Trailing

• record undo information on a
trail

• on backtrack, restore
ancestor state using undos

• for every node in the tree,
compute exactly one fixpoint

• supports non-
monotonic propagation
without change

x=2

y=3

z=1

Trailing

• record undo information on a
trail

• on backtrack, restore
ancestor state using undos

• for every node in the tree,
compute exactly one fixpoint

• supports non-
monotonic propagation
without change

x=2

y=3

z=1

undo

Trailing

• record undo information on a
trail

• on backtrack, restore
ancestor state using undos

• for every node in the tree,
compute exactly one fixpoint

• supports non-
monotonic propagation
without change

x=2

y=3

z=1 z≠1

undo

fixpoint

Trailing

• record undo information on a
trail

• on backtrack, restore
ancestor state using undos

• for every node in the tree,
compute exactly one fixpoint

x=2

y=3

z=1 z≠1

undo

fixpoint

Trailing

• record undo information on a
trail

• on backtrack, restore
ancestor state using undos

• for every node in the tree,
compute exactly one fixpoint

• supports non-
monotonic propagation
without change

x=2

y=3

z=1 z≠1

undo

fixpoint

RecomputationFixpoint

• store copies of some nodes

• upon backtrack, redo steps
using path information (left,
left, right)

• compute one fixpoint per
step

• does not work with
non-monotonic
propagators!

x=2

y=3

z=1

(naive)

RecomputationFixpoint

• store copies of some nodes

• upon backtrack, redo steps
using path information (left,
left, right)

• compute one fixpoint per
step

• does not work with
non-monotonic
propagators!

x=2

y=3

z=1

(naive)
copy

RecomputationFixpoint

• store copies of some nodes

• upon backtrack, redo steps
using path information (left,
left, right)

• compute one fixpoint per
step

• does not work with
non-monotonic
propagators!

fixpoint
y=3

z=1

(naive)

left

copy

RecomputationFixpoint

• store copies of some nodes

• upon backtrack, redo steps
using path information (left,
left, right)

• compute one fixpoint per
step

• does not work with
non-monotonic
propagators!

fixpoint

fixpoint
z=1

(naive)

left

left

copy

RecomputationFixpoint

• store copies of some nodes

• upon backtrack, redo steps
using path information (left,
left, right)

• compute one fixpoint per
step

• does not work with
non-monotonic
propagators!

fixpoint

fixpoint

fixpoint

z=1 z≠1

(naive)

left

left

copy

RecomputationFixpoint

• store copies of some nodes

• upon backtrack, redo steps
using path information (left,
left, right)

• compute one fixpoint per
step

fixpoint

fixpoint

fixpoint

z=1 z≠1

(naive)

left

left

copy

RecomputationFixpoint

• store copies of some nodes

• upon backtrack, redo steps
using path information (left,
left, right)

• compute one fixpoint per
step

• does not work with
non-monotonic
propagators!

fixpoint

fixpoint

fixpoint

z=1 z≠1

(naive)

left

left

copy

RecomputationPath

• upon backtrack, redo steps
using constraint information
(x=2,y=3,z≠1)

• only one fixpoint per node

• fixpoint may differ from
exploration

• But: same set of solutions!

• This works!

x=2

y=3

z=1

[Choi et al 2001, Michel/Van Hentenryck 2004]

RecomputationPath

• upon backtrack, redo steps
using constraint information
(x=2,y=3,z≠1)

• only one fixpoint per node

• fixpoint may differ from
exploration

• But: same set of solutions!

• This works!

x=2

y=3

z=1

[Choi et al 2001, Michel/Van Hentenryck 2004]

RecomputationPath

• upon backtrack, redo steps
using constraint information
(x=2,y=3,z≠1)

• only one fixpoint per node

• fixpoint may differ from
exploration

• But: same set of solutions!

• This works!

x=2

y=3

z=1

[Choi et al 2001, Michel/Van Hentenryck 2004]

RecomputationPath

• upon backtrack, redo steps
using constraint information
(x=2,y=3,z≠1)

• only one fixpoint per node

• fixpoint may differ from
exploration

• But: same set of solutions!

• This works!

fixpoint

x=2

y=3

z=1 z≠1

[Choi et al 2001, Michel/Van Hentenryck 2004]

RecomputationPath

• upon backtrack, redo steps
using constraint information
(x=2,y=3,z≠1)

• only one fixpoint per node

• fixpoint may differ from
explorationfixpoint

x=2

y=3

z=1 z≠1

[Choi et al 2001, Michel/Van Hentenryck 2004]

RecomputationPath

• upon backtrack, redo steps
using constraint information
(x=2,y=3,z≠1)

• only one fixpoint per node

• fixpoint may differ from
exploration

• But: same set of solutions!

fixpoint

x=2

y=3

z=1 z≠1

[Choi et al 2001, Michel/Van Hentenryck 2004]

RecomputationPath

• upon backtrack, redo steps
using constraint information
(x=2,y=3,z≠1)

• only one fixpoint per node

• fixpoint may differ from
exploration

• But: same set of solutions!

• This works!

fixpoint

x=2

y=3

z=1 z≠1

[Choi et al 2001, Michel/Van Hentenryck 2004]

Why recomputation matters

• Essential for systems based on copying

• Control memory consumption

• Implement involved search strategies (e.g. A*)

Why recomputation matters

• Essential for systems based on copying

• Control memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

Why recomputation matters

• Essential for systems based on copying

• Control memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

• More later in this session

Summary
• Monotonicity is unrealistic: prohibits

approximative, heuristic, randomized algorithms

• Realistic model:

contraction + weak monotonicity

• Minimal model that makes solver sound and
complete

• Works with recomputation

Summary
• Monotonicity is unrealistic: prohibits

approximative, heuristic, randomized algorithms

• Realistic model:

contraction + weak monotonicity

• Minimal model that makes solver sound and
complete

• Works with recomputation

Thanks!

