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Beautiful model:
Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior, 
more constraints means less search
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- what does propagation compute?

- does recomputation work?

Propagators are monotonic!weakly
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Fixpoints
• given P, d: unique weakest mutual fixpoint of all 

p∈P stronger than d exists

• it can be computed in a finite number of steps:

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it does not depend on order of propagation

• idempotency is irrelevant

• monotonicity is crucial
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Non-monotonic propagators

• Some constraints are NP-hard to propagate

- Hamiltonian circuit, knapsack, scheduling

• Approximative propagation algorithms are often 
non-monotonic, e.g.

- consider some instead of all subsets

- consider only small domains

- randomize

- start graph algorithm at one instead of all nodes
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Constraints

a(x) ∈ VAssignments

Constraints

a ∈ Asn = X → V

c ⊆ Asn

X = {x, y, z}
V = {1, 2, 3, 4}
d = {x �→ V, y �→ V, z �→ V }

c1 = {a ∈ Asn | a(x) �= a(y) ∧
a(x) �= a(z) ∧
a(y) �= a(z)}

c2 = {a ∈ Asn | a(x) + a(y) = a(z)}

distinct(x, y, z)

x + y = z
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Propagators
• remove values that are inconsistent:

                         

• decide on assignment if constraint is satisfied:

                    

• induce a constraint (accepted assignments):

• must prune consistently:

cp = {a ∈ Asn | p({a}) = {a}}

p({a}) = ∅p({a}) = {a} (reject)(accept)

p(d) ⊆ d (contracting)

∀a ∈ d : a /∈ p(d) ⇒ a /∈ cp
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Consistent Pruning

• if p ever prunes an assignment from a domain, it 
must not belong to cp

• monotonicity guarantees consistent pruning:

• this is weak monotonicity

{a} ⊆ d⇒ p({a}) ⊆ p(d)

⇐⇒ a ∈ d ∧ p({a}) = {a}⇒ a ∈ p(d)

cp = {a ∈ Asn | p({a}) = {a}}
∀a ∈ d : a /∈ p(d) ⇒ a /∈ cp
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Knaster-Tarski ⇒  weakest mutual fixpoint exists

Propagation

Domains d(x) ⊆ V

Propagators

Variables x, y, z ∈ X Values

(revisited)

{a} ⊆ d⇒ p({a}) ⊆ p(d)

does not apply

p(d)(x) ⊆ d(x) (contracting)

V

(weakly m.)monotonic)
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Fixpoints (revisited)

• what does this compute now?

while (∃ p∈P such that p(d)≠d)

" d ← p(d)

• it still terminates with a mutual fixpoint

• "weaker than GAC but not weaker than FC"

• solution space is invariant
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Fixpoint Issues
• All depends on propagator order:

- individual fixpoints (may not even be comparable!)

- the shape of the search tree

- the order of solutions

• Adding constraints can yield bigger search trees!

• C'est la vie

(also happens with randomized heuristics, restarts, 
or parallel search)
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Any contracting function can be made weakly 
monotonic by composition with a checker!

Minimal model

{a} ⊆ d⇒ p({a}) ⊆ p(d)

p(d)(x) ⊆ d(x) (contracting)

(weakly monotonic)

Model is minimally restrictive
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Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

• Iteration possibly does not even compute 
fixpoints

• But: propagator still checks its constraint

• WMP guarantees correctness

Circuit: random vs. fixed 
heuristic

runtime in % (smaller=better)

Knights 18" " " "  17.0%
Knights 20" " " "  98.1%
Knights 22" " " "   1.1%
Knights 24" " " "   7.2%
TSP br17" " " " " 102.3%
TSP ftv33"" " " "  97.1%



Randomized Propagation

• What if a propagator prunes randomly?

• Propagators become relations

• Iteration possibly does not even compute 
fixpoints

• But: propagator still checks its constraint

• WMP guarantees correctness
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Why recomputation matters

• Essential for systems based on copying

• Control memory consumption

• Implement involved search strategies (e.g. A*)

• Greatly simplifies parallel search

- pass copies to different workers

- work stealing through recomputation

• More later in this session



Summary
• Monotonicity is unrealistic: prohibits 

approximative, heuristic, randomized algorithms

• Realistic model: 

contraction + weak monotonicity

• Minimal model that makes solver sound and 
complete

• Works with recomputation



Summary
• Monotonicity is unrealistic: prohibits 

approximative, heuristic, randomized algorithms

• Realistic model: 

contraction + weak monotonicity

• Minimal model that makes solver sound and 
complete

• Works with recomputation

Thanks!


