# Weakly Monotonic Propagators

**Christian Schulte** KTH - Royal Institute of Technology, Sweden

**Guido Tack** PS Lab, Saarland University, Germany

**Int'l Conference on Principles and Practice of Constraint Programming** 

September 20th, 2009, Lisbon, Portugal

## Reality check



### **Beautiful model:**

#### Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior, more constraints means less search

[Saraswat et al, Benhamou et al, Van Hentenryck et al, Apt, ...]



### **Beautiful model:**

#### Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior, more constraints means less search

[Saraswat et al, Benhamou et al, Van Hentenryck et al, Apt, ...]

### Ugly reality:

#### Propagators are not monotonic!

approximate NP-hard constraints, use heuristics or randomization

[Baptiste et al, Menana/Demassey, Katriel, Stergiou, Mehta/Van Dongen...]



### **Beautiful model:**

### Propagators are monotonic!

closure operators, unique fixpoints, predictable behavior, more constraints means less search

[Saraswat et al, Benhamou et al, Van Hentenryck et al, Apt, ...]

### Ugly reality:

#### Propagators are not monotonic!

approximate NP-hard constraints, use heuristics or randomization

[Baptiste et al, Menana/Demassey, Katriel, Stergiou, Mehta/Van Dongen...]

## Reality check

### Propagators are not onototic!

- Realistic formal model
  - establish properties of propagators
  - minimally restrictive (maximally realistic)
- Consequences
  - what does propagation compute?
  - does recomputation work?

## Reality check

### Propagators are weakly monotonic!

- Realistic formal model
  - establish properties of propagators
  - minimally restrictive (maximally realistic)
- Consequences
  - what does propagation compute?
  - does recomputation work?

A Model







Propagators

 $p(d)(x) \subseteq d(x)$  (contracting)



Propagators

 $p(d) \subseteq d$  (contracting)

Propagation

Propagators

 $p(d) \subseteq d \quad \text{(contracting)}$  $d' \subseteq d \Rightarrow p(d') \subseteq p(d) \text{ (monotonic)}$ 

Propagation

Propagators

 $p(d) \subseteq d$ (contracting) $d' \subseteq d \Rightarrow p(d') \subseteq p(d)$ (monotonic)p(p(d)) = p(d)(idempotent)

Propagation

Propagators

 $p(d) \subseteq d$ (contracting) $d' \subseteq d \Rightarrow p(d') \subseteq p(d)$ (monotonic)closurep(p(d)) = p(d)(idempotent)operators

Propagation

Propagators

 $p(d) \subseteq d$ (contracting) $d' \subseteq d \Rightarrow p(d') \subseteq p(d)$ (monotonic)closurep(p(d)) = p(d)(idempotent)operators





• given P, d: unique weakest mutual fixpoint of all  $p \in P$  stronger than d exists



- given P, d: unique weakest mutual fixpoint of all p∈P stronger than d exists
- it can be computed in a finite number of steps:
  while (∃ p∈P such that p(d)≠d)
  d ← p(d)



- given P, d: unique weakest mutual fixpoint of all p∈P stronger than d exists
- it can be computed in a finite number of steps:
  while (∃ p∈P such that p(d)≠d)
  d ← p(d)
- it does not depend on order of propagation



- given P, d: unique weakest mutual fixpoint of all p∈P stronger than d exists
- it can be computed in a finite number of steps:
  while (∃ p∈P such that p(d)≠d)
  d ← p(d)
- it does not depend on order of propagation
- idempotency is irrelevant



- given P, d: unique weakest mutual fixpoint of all p∈P stronger than d exists
- it can be computed in a finite number of steps:
  while (∃ p∈P such that p(d)≠d)
  d ← p(d)
- it does not depend on order of propagation
- idempotency is irrelevant
- monotonicity is crucial

Propagation

Propagators

 $p(d)(x) \subseteq d(x)$ (contracting) $d' \subseteq d \Rightarrow p(d') \subseteq p(d)$ (monotonic)closurep(p(d)) = p(d)(idempotent)operators

Propagation

Propagators

 $p(d)(x) \subseteq d(x)$ (contracting) $d' \subseteq d \Rightarrow p(d') \subseteq p(d)$ (monotonic)closurep(p(d)) = p(d)(idempotent)operators

Propagation

Propagators

 $p(d)(x) \subseteq d(x) \qquad \text{(contracting)} \checkmark$   $d' \subseteq d \Rightarrow p(d') \subseteq p(d) \text{ (monotonic)} \qquad \begin{array}{c} \text{closure} \\ \text{operators} \\ p(p(d)) = p(d) \qquad \text{(idempotent)} \end{array}$ 

Propagation

Propagators

 $p(d)(x) \subseteq d(x) \quad \text{(contracting)} \checkmark$   $d' \subseteq d \rightarrow p(d') \subseteq p(d) \text{(monotonic)} \quad \text{closure}$   $p(p(d)) = p(d) \quad \text{(idempotent)}$ 

## Non-monotonic propagators

- Some constraints are NP-hard to propagate
  - Hamiltonian circuit, knapsack, scheduling
- Approximative propagation algorithms are often non-monotonic, e.g.
  - consider some instead of all subsets
  - consider only small domains
  - randomize
  - start graph algorithm at one instead of all nodes

 $circuit(x_1, \ldots, x_n)$ 

graph with edges  $i \rightarrow x_i$ has single cycle covering all nodes

 $circuit(x_1, \ldots, x_n)$ 

graph with edges  $i \rightarrow x_i$ has single cycle covering all nodes



check with DFS that graph has a single SCC

 $circuit(x_1, \ldots, x_n)$ 

graph with edges i→x<sub>i</sub> has single cycle covering all nodes



- check with DFS that graph has a single SCC
- prune edges between non-neighbor subtrees

 $circuit(x_1, \ldots, x_n)$ 

graph with edges  $i \rightarrow x_i$ has single cycle covering all nodes



- check with DFS that graph has a single SCC
- prune edges between non-neighbor subtrees
- fix edges if single neighbor-edge is left

 $circuit(x_1, \ldots, x_n)$ 

graph with edges i→x<sub>i</sub> has single cycle covering all nodes



- check with DFS that graph has a single SCC
- prune edges between non-neighbor subtrees
- fix edges if single neighbor-edge is left
- DFS start node arbitrary, thus **non-monotonic**



 $circuit(x_1, \ldots, x_n)$ 

graph with edges i→x<sub>i</sub> has single cycle covering all nodes



- check with DFS that graph has a single SCC
- prune edges between non-neighbor subtrees
- fix edges if single neighbor-edge is left
- DFS start node arbitrary, thus **non-monotonic**

## A Realistic Model

### Constraints

Assignments Constraints

$$a \in Asn = X \to V$$
  $a(x) \in V$ 

 $c \subseteq Asn$
#### Constraints

Assignments $a \in Asn = X \rightarrow V$  $a(x) \in V$ Constraints $c \subseteq Asn$ 

 $X = \{x, y, z\}$   $V = \{1, 2, 3, 4\}$   $d = \{x \mapsto V, y \mapsto V, z \mapsto V\}$   $c_1 = \{a \in Asn \mid a(x) \neq a(y) \land distinct(x, y, z) \land a(x) \neq a(z) \land a(y) \neq a(z)\}$   $c_2 = \{a \in Asn \mid a(x) + a(y) = a(z)\}$  x + y = z



 $p(d) \subseteq d$  (contracting)

Propagators

 $p(d) \subseteq d$  (contracting)

• decide on assignment if constraint is satisfied:

 $p(\{a\}) = \{a\}$  (accept)  $p(\{a\}) = \emptyset$  (reject)

Propagators

 $p(d) \subseteq d$  (contracting)

• decide on assignment if constraint is satisfied:

$$p(\{a\}) = \{a\}$$
 (accept)  $p(\{a\}) = \emptyset$  (reject)

• induce a constraint (accepted assignments):

 $c_p = \{a \in Asn \mid p(\{a\}) = \{a\}\}$ 

Propagators

 $p(d) \subseteq d$  (contracting)

• decide on assignment if constraint is satisfied:

$$p(\{a\}) = \{a\}$$
 (accept)  $p(\{a\}) = \emptyset$  (reject)

• induce a constraint (accepted assignments):

 $c_p = \{a \in Asn \mid p(\{a\}) = \{a\}\}$ 

• must prune consistently:  $\forall a \in d : a \notin p(d) \Rightarrow a \notin c_p$ 

### Consistent Pruning $c_p = \{a \in Asn \mid p(\{a\}) = \{a\}\}$ $\forall a \in d : a \notin p(d) \Rightarrow a \notin c_p$

### Consistent Pruning $c_p = \{a \in Asn \mid p(\{a\}) = \{a\}\}$ $\forall a \in d : a \notin p(d) \Rightarrow a \notin c_p$

 if p ever prunes an assignment from a domain, it must not belong to c<sub>p</sub>

Consistent Pruning  

$$c_p = \{a \in Asn \mid p(\{a\}) = \{a\}\}$$
  
 $\forall a \in d : a \notin p(d) \Rightarrow a \notin c_p$ 

- if p ever prunes an assignment from a domain, it must not belong to c<sub>p</sub>
- monotonicity guarantees consistent pruning:

$$\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d)$$
$$\iff a \in d \land p(\{a\}) = \{a\} \Rightarrow a \in p(d)$$

Consistent Pruning  

$$c_p = \{a \in Asn \mid p(\{a\}) = \{a\}\}$$
  
 $\forall a \in d : a \notin p(d) \Rightarrow a \notin c_p$ 

- if p ever prunes an assignment from a domain, it must not belong to  $c_p$
- monotonicity guarantees consistent pruning:

$$\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d)$$
$$\iff a \in d \land p(\{a\}) = \{a\} \Rightarrow a \in p(d)$$

• this is **weak** monotonicity

Propagation

Variables  $x, y, z \in X$ Values V**Domains**  $d(x) \subseteq V$  $\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d)$  (weakly m.) Propagators  $p(d)(x) \subseteq d(x)$  (contracting) closure  $d' \subseteq d \Rightarrow p(d') \subseteq p(d)$  (monotonic) operators p(p(d)) = p(d) (idempotent)

p(d) <u>Edom(cp)</u> d) (complete)

Propagation

Variables  $x, y, z \in X$ Values V**Domains**  $d(x) \subseteq V$  $\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d)$  (weakly m.) Propagators (contracting) 🗸  $p(d)(x) \subseteq d(x)$ closure  $d' \subseteq d \Rightarrow p(d') \subseteq p(d)$  (monotonic) operators p(p(d)) = p(d) (idempotent)

p(d) <u>Edom(cp)</u> d) (complete)

# Propagation (revisited)

Values V

Variables $x, y, z \in X$ Domains $d(x) \subseteq V$ 

Propagators

 $p(d)(x) \subseteq d(x) \qquad \text{(contracting)}$  $\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d) \qquad \text{(weakly m.)}$ 

# Propagation (revisited)

Variables $x, y, z \in X$ Domains $d(x) \subseteq V$ 

Values V

Propagators

 $p(d)(x) \subseteq d(x) \qquad \text{(contracting)}$  $\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d) \qquad \text{(weakly monotonic)}$ 

# Propagation (revisited)

Values V

Variables $x, y, z \in X$ Domains $d(x) \subseteq V$ 

Propagators

 $p(d)(x) \subseteq d(x) \qquad \text{(contracting)}$  $\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d) \qquad \text{(weakly monotonic)}$ 

#### Knaster-Tarski does not apply

# what does this compute now? while (∃ p∈P such that p(d)≠d) d ← p(d)

- what does this compute now?
   while (∃ p∈P such that p(d)≠d)
   d ← p(d)
- it still terminates with a mutual fixpoint

- what does this compute now?
   while (∃ p∈P such that p(d)≠d)
   d ← p(d)
- it still terminates with a mutual fixpoint
- "weaker than GAC but not weaker than FC"

- what does this compute now?
   while (∃ p∈P such that p(d)≠d)
   d ← p(d)
- it still terminates with a mutual fixpoint
- "weaker than GAC but not weaker than FC"
- solution space is invariant

# Fixpoint Issues

- All depends on propagator order:
  - individual fixpoints (may not even be comparable!)
  - the shape of the search tree
  - the order of solutions

# Fixpoint Issues

- All depends on propagator order:
  - individual fixpoints (may not even be comparable!)
  - the shape of the search tree
  - the order of solutions
- Adding constraints can yield bigger search trees!

# Fixpoint Issues

- All depends on propagator order:
  - individual fixpoints (may not even be comparable!)
  - the shape of the search tree
  - the order of solutions
- Adding constraints can yield bigger search trees!
- C'est la vie

(also happens with randomized heuristics, restarts, or parallel search)

## Minimal model

 $p(d)(x) \subseteq d(x)$  (contracting)  $\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d)$  (weakly monotonic)

# Any contracting function can be made weakly monotonic by composition with a **checker!**

## Minimal model

 $p(d)(x) \subseteq d(x)$  (contracting)  $\{a\} \subseteq d \Rightarrow p(\{a\}) \subseteq p(d)$  (weakly monotonic)

Any contracting function can be made weakly monotonic by composition with a checker!

#### Model is minimally restrictive

• What if a propagator prunes randomly?

- What if a propagator prunes randomly?
- Propagators become relations

- What if a propagator prunes randomly?
- Propagators become relations
- Iteration possibly does not even compute fixpoints

- What if a propagator prunes randomly?
- Propagators become relations
- Iteration possibly does not even compute fixpoints
- But: propagator still checks its constraint

- What if a propagator prunes randomly?
- Propagators become relations
- Iteration possibly does not even compute fixpoints
- But: propagator still checks its constraint
- WMP guarantees correctness

| • | W   | Circuit: random vs. fixed<br>heuristic |    |        |
|---|-----|----------------------------------------|----|--------|
|   | Pro | runtime in % (smaller=better)          |    |        |
| _ |     | Knights                                | 18 | 17.0%  |
|   | lte | Knights                                | 20 | 98.1%  |
|   | fix | Knights                                | 22 | 1.1%   |
|   | Bu  | Knights                                | 24 | 7.2%   |
|   |     | TSP br17                               | 7  | 102.3% |
|   | W   | TSP ftv3                               | 33 | 97.1%  |
|   |     |                                        |    |        |

- What if a propagator prunes randomly?
- Propagators become relations
- Iteration possibly does not even compute fixpoints
- But: propagator still checks its constraint
- WMP guarantees correctness

Non-monotonic search



- record undo information on a trail
- on backtrack, restore ancestor state using undos
- for every node in the tree, compute exactly one fixpoint
- supports nonmonotonic propagation without change



- record undo information on a trail
- on backtrack, restore ancestor state using undos
- for every node in the tree, compute exactly one fixpoint
- supports nonmonotonic propagation without change



- record undo information on a trail
- on backtrack, restore ancestor state using undos
- for every node in the tree, compute exactly one fixpoint
- supports nonmonotonic propagation without change



- record undo information on a trail
- on backtrack, restore ancestor state using undos
- for every node in the tree, compute exactly one fixpoint



- record undo information on a trail
- on backtrack, restore ancestor state using undos
- for every node in the tree, compute exactly one fixpoint
- supports nonmonotonic propagation without change


- store copies of some nodes
- upon backtrack, redo steps using path information (left, left, right)
- compute one fixpoint per step
- does not work with non-monotonic propagators!



- store copies of some nodes
- upon backtrack, redo steps using path information (left, left, right)
- compute one fixpoint per step
- does not work with non-monotonic propagators!



- store copies of some nodes
- upon backtrack, redo steps using path information (left, left, right)
- compute one fixpoint per step
- does not work with non-monotonic propagators!



- store copies of some nodes
- upon backtrack, redo steps using path information (left, left, right)
- compute one fixpoint per step
- does not work with non-monotonic propagators!



- store copies of some nodes
- upon backtrack, redo steps using path information (left, left, right)
- compute one fixpoint per step
- does not work with non-monotonic propagators!



- store copies of some nodes
- upon backtrack, redo steps using path information (left, left, right)
- compute one fixpoint per step



- store copies of some nodes
- upon backtrack, redo steps using path information (left, left, right)
- compute one fixpoint per step
- does not work with non-monotonic propagators!



- upon backtrack, redo steps using constraint information (x=2,y=3,z≠1)
- only one fixpoint per node
- fixpoint may differ from exploration
- But: same set of solutions!
- This works!



- upon backtrack, redo steps using constraint information (x=2,y=3,z≠1)
- only one fixpoint per node
- fixpoint may differ from exploration
- But: same set of solutions!
- This works!



- upon backtrack, redo steps using constraint information (x=2,y=3,z≠1)
- only one fixpoint per node
- fixpoint may differ from exploration
- But: same set of solutions!
- This works!



- upon backtrack, redo steps using constraint information (x=2,y=3,z≠1)
- only one fixpoint per node
- fixpoint may differ from exploration
- But: same set of solutions!
- This works!



- upon backtrack, redo steps using constraint information (x=2,y=3,z≠1)
- only one fixpoint per node
- fixpoint may differ from exploration



- upon backtrack, redo steps using constraint information (x=2,y=3,z≠1)
- only one fixpoint per node
- fixpoint may differ from exploration
- But: same set of solutions!



- upon backtrack, redo steps using constraint information (x=2,y=3,z≠1)
- only one fixpoint per node
- fixpoint may differ from exploration
- But: same set of solutions!
- This works!

# Why recomputation matters

- Essential for systems based on copying
- Control memory consumption
- Implement involved search strategies (e.g. A\*)

# Why recomputation matters

- Essential for systems based on copying
- Control memory consumption
- Implement involved search strategies (e.g. A\*)
- Greatly simplifies parallel search
  - pass copies to different workers
  - work stealing through recomputation

# Why recomputation matters

- Essential for systems based on copying
- Control memory consumption
- Implement involved search strategies (e.g. A\*)
- Greatly simplifies parallel search
  - pass copies to different workers
  - work stealing through recomputation
- More later in this session



- Monotonicity is unrealistic: prohibits approximative, heuristic, randomized algorithms
- Realistic model:

#### contraction + weak monotonicity

- Minimal model that makes solver sound and complete
- Works with recomputation



- Monotonicity is unrealistic: prohibits approximative, heuristic, randomized algorithms
- Realistic model:

#### contraction + weak monotonicity

- Minimal model that makes solver sound and complete
- Works with recomputation

#### Thanks!