
for
Mechanising Syntax with Binders in Coq

Kathrin Stark

Saarbrücken, February 14, 2020

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 1 / 43



Syntax with Binders
Church’s Lambda Calculus [Church ’32]

Binders are a key ingredient of Church’s λ-calculus:

s := x | s t | λx .s

I A function λ f . f , x binds a variable f
I (λf .f x) g reduces to (f x)[f /g ] where each occurrence of f is substituted by g

Proofs such as
I type safety

I weak/strong normalisation

⇒ Binders are inevitable when talking about formal systems

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 2 / 43



Mechanising in Coq

Interactive proof assistants allow to develop proofs restricted to a small set of
reasoning principles in interplay with a computer:

I Verification that only the agreed-on rules are used

I Automation of easy/repetitive cases

I Adaption of changes

Here: The Coq Proof Assistant
I Based on the Calculus of Inductive Constructions [Coquand Huet ’86, Coquand and Paulin ’88]

I Proof checking is reduced to type checking via the Curry-Howard Correspondence [Howard ’80]

⇒ Everything in this thesis is mechanised in Coq

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 3 / 43



Mechanising in Coq

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 4 / 43



Mechanising in Coq

Interactive proof assistants allow to develop proofs restricted to a small set of
reasoning principles in interplay with a computer:

I Verification that only the agreed-on rules are used

I Automation of easy/repetitive cases

I Adaption of changes

Here: The Coq Proof Assistant
I Based on the Calculus of Inductive Constructions [Coquand Huet ’86, Coquand and Paulin ’88]

I Proof checking is reduced to type checking via the Curry-Howard Correspondence [Howard ’80]

⇒ Everything in this thesis is mechanised in Coq

Why mechanising the meta-theory of formal systems?

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 5 / 43



Mechanising in Coq

Interactive proof assistants allow to develop proofs restricted to a small set of
reasoning principles in interplay with a computer:

I Verification that only the agreed-on rules are used

I Automation of easy/repetitive cases

I Adaption of changes

Here: The Coq Proof Assistant
I Based on the Calculus of Inductive Constructions [Coquand Huet ’86, Coquand and Paulin ’88]

I Proof checking is reduced to type checking via the Curry-Howard Correspondence [Howard ’80]

⇒ Everything in this thesis is mechanised in Coq

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 5 / 43



Call-By-Push-Value in Coq [Forster, Schäfer, Spies, Stark ’19]

Syntax

(value types) A,B ::= 1 | U C | A1 × A2 | 0 | A1 + A2

(computation types) C ,D ::= > | F A | A→ C | C1 & C2

(environments) Γ ::= x1 : A1, . . . , xn : An

Value typing Γ ` V : A

(x : A) ∈ Γ

Γ ` x : A Γ ` () : 1

Γ ` M : C

Γ ` {M} : U C

Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 × A2

Γ ` V : Ai

Γ ` inji V : A1 + A2

Computation typing Γ ` M : C

Γ ` 〈〉 : >
Γ ` V : A

Γ ` return V : F A

Γ ` M : F A Γ, x : A ` N : C

Γ ` let x ← M in N : C

Γ, x : A ` M : C

Γ ` λx.M : A→ C

Γ ` M : A→ C Γ ` V : A

Γ ` M V : C

Γ ` V : U C

Γ ` V ! : C

Γ ` V : A1 × A2 Γ, x1 : A1, x2 : A2 ` M : C

Γ ` split(V , x1.x2.M) : C

Γ ` V : 0

Γ ` case0(V ) : C

Γ ` V : A1 + A2 Γ, x1 : A1 ` M1 : C Γ, x2 : A2 ` M2 : C

Γ ` case(V , x1.M1, x2.M2) : C

Γ ` M1 : C1 Γ ` M2 : C2

Γ ` 〈M1,M2〉 : C1 & C2

Γ ` M : C1 & C2

Γ ` prji M : Ci

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 6 / 43



Call-By-Push-Value in Coq [Forster, Schäfer, Spies, S ’19]

Mechanisation in 8000 lines of Coq code of

standard operational semantics for CBPV
I normalisation using logical relations
I adequacy of set/algebra semantics

unrestricted operational semantics for CBPV
I confluence
I strong normalisation using Kripke logical relations
I soundness of equational theory

translations of CBV/CBN into CBPV
I preservation of operational semantics
I confluence for full λ-calculus
I strong normalisation for strong CBV/CBN
I soundness of equational theories
I adequate type-theoretic algebra semantics for CBV/CBN

How to represent binders and substitution?

Binders, substitutions, and reasoning is automated
by Autosubst 2.

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 7 / 43



Contribution

A practical appraoch to mechanising syntax with
binders in Coq for a wide range of syntactic systems.

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 8 / 43



“We assume an understanding
of the operation of substituting a

given symbol or formula for a particular
occurrence of a given symbol or formula”

Church, ’32

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 9 / 43



What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43



What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43



What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43



What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43



What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43



What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43



What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43



Related Work

Various ways to represent binders . . .

named syntax

unnamed syntax [de Bruijn ’72]

locally nameless [Aydemir et al. ’08]

parametric HOAS [Chlipala ’08]

nominal logic [Pitts ’01]

HOAS [Pfenning et al. ’88]

contextual modal TT [Nanevski et al. ’08]

. . .



Parts of a practical solution:

Works in a general-purpose proof
assistant, i.e., Coq

As little overhead from the user’s
side as possible

. . . and no consensus, see e.g. solutions to [Aydemir et al. ’05].

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 11 / 43



Binders Come With Boilerplate [Rossberg et al.]

“Our experience [...] was more painful than we had anticipated. [...] Out of a total of around 550

lemmas, approximately 400 were tedious ”infrastructure” lemmas; only the remainder had direct

relevance to the metatheory of Fω or elaboration.

Problem: We need a large number of technical lemmas to reason about substitutions.

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 12 / 43



Three Aspects of a Practical Presentation of Binders

Theoretical
Justification

Automatic Realisation
and Best Practices

Practical Evaluation

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 13 / 43



Representation of Binders in the Lambda Calculus

1 Expressions:
I De Bruijn indices [de Bruijn ’72]

I Binders are presented by references, i.e. represented by natural numbers or a finite type:

λx .x(λy .y x) 7→ λ.0(λ.0 1)

⇒ α-equivalence is built-in

2 Substitution:
I Parallel substitutions, first instantiation with renamings [Adams ’04]

I Primitives of the σ-calculus [Abadi et al. ’91]

3 Reasoning:
I By reducing to a normal form w.r.t. the reduction rules of the σSP -calculus

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 14 / 43



A Representation of Binders in the Lambda Calculus
Reasoning via Reduction to Normal Forms

Goal: Prove substitutivity of reduction, i.e. that s � t implies s[σ] � t[σ].

s[σ][t[σ]..] = s[var 0 ·σ ◦ 〈↑〉][t[σ] · var]

= s[(var 0 ·σ ◦ 〈↑〉) ◦ [(t[σ] · var)]] compositionality

= s[(var 0)[t[σ] · var] ·(σ ◦ 〈↑〉) ◦ [(t[σ] · var)]] distributivity

= s[(var 0)[t[σ] · var] ·σ(〈↑〉 ◦ [t[σ] · var])] associativity

= s[(t[σ] · var) 0 ·(σ ◦ [↑ (t[σ] · var)])] compositionality

= s[t[σ] ·(σ ◦ [var])] ·, interaction

= s[t[σ] ·σ] right identity

= s[t[σ] ·(var ◦ [σ])] left identity

= s[(t · var) ◦ [σ]] distributivity

= s[t · var][σ]. compositionality
Kathrin Stark Mechanising Syntax With Binders in Coq February 14 15 / 43



Kathrin Stark Mechanising Syntax With Binders in Coq February 14 16 / 43



Kathrin Stark Mechanising Syntax With Binders in Coq February 14 16 / 43



Representation of Binders in the Lambda Calculus

1 Expressions:
I De Bruijn indices [de Bruijn ’72]

I Binders are presented by references, i.e. represented by natural numbers or a finite type:

λx .x(λy .y x) 7→ λ.0(λ.0 1)

⇒ α-equivalence is built-in

2 Substitution:
I Parallel substitutions, first instantiation with renamings [Adams ’04]

I Primitives of the σ-calculus [Abadi et al. ’91]

3 Reasoning:
I By reducing to a normal form w.r.t. the reduction rules of the σSP -calculus

F Reduction in the σSP -calculus is sound and complete w.r.t. equality on the de Bruijn
algebra [Schäfer, Smolka, Tebbi ’15]

F Reduction in the σSP -calculus is convergent [Curien et al. ’92]

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 17 / 43



Mechansing Convergence of the Sigma SP Calculus

Goal: To find a normal form, we require confluence and termination of the σSP -calculus.

Deferred by [Schäfer et al. ’15]:
While the verification of our decision method is not difficult (even in Coq), a verification of the
rewriting method is surprisingly complex since the existing termination proof [...] is far from
straightforward. We did not succeed in simplifying this proof and think that a formalization
with a proof assistant is a substantial enterprise.

Difficulty: Not trivially terminating

Proved for related calculi has been proven in different manners [Hardin and Laville ’86, Curien et

al. ’92, Zantema ’92]

Proof for σ-calculus mechanised in ALF [Kamareddine, Qiao ’03]

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 18 / 43



Mechanising Convergence of the Sigma SP Calculus

Here: Mechanised for the exact system

Simplified the proof significantly by building in intermediate reduction systems

Merely 700 lines of code for convergence (Comparison: 1000 lines of code for verification
of the rewriting method)

(Local) confluence very easy due to automation of Coq, no critical pair analysis [Huet ’77,

Baader and Nipkow ’99] required

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 19 / 43



Three Aspects of a Practical Presentation of Binders

Theoretical
Justification

Automatic Realisation
and Best Practices

Practical Evaluation

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 20 / 43



Best Practices and Automatic Realisation

1 What are the best practices for syntax with binders for more extended systems?

2 How to make this reusable and how to avoid boilerplate?
I Development of Autosubst 2 [Stark, Kaiser, Schäfer ’19], a compiler from HOAS-like syntax

[Pfenning, Elliot ’88] to de Bruijn algebras + reasoning on de Bruijn algebras
I Approach via code generation [Sewell et al. ’07, Keuchel et al. ’16]

I The extended expressivity requires a fundamentally different design from Autosubst 1 [Schäfer,

Tebbi, Smolka ’15]

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 21 / 43



The Autosubst 2 Compiler [Stark, Kaiser, Schäfer ’19]

A High-Level View

Coq

σ-calculus
model of

HOAS-like Specification, e.g.
app : tm → tm → tm
abs : (tm → tm) → tm

External
Based on code generation

unscoped/scoped de Bruijn [de Bruijn ’72]

+ parallel substitutions [de Bruijn ’72]

+ laws of σSP -calculus [Abadi et al. ’91]

+ notations and tactics

specification

Autosubst 2

de Bruijn
algebra

mechanised
meta-theory

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 22 / 43



The Autosubst 2 Compiler [Stark, Kaiser, Schäfer ’19]

A High-Level View

Coq

σ-calculus
model ofHOAS-like Specification, e.g.

app : tm → tm → tm
abs : (tm → tm) → tm

External
Based on code generation

unscoped/scoped de Bruijn [de Bruijn ’72]

+ parallel substitutions [de Bruijn ’72]

+ laws of σSP -calculus [Abadi et al. ’91]

+ notations and tactics

specification

Autosubst 2

de Bruijn
algebra

mechanised
meta-theory

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 22 / 43



The Autosubst 2 Compiler [Stark, Kaiser, Schäfer ’19]

A High-Level View

Coq

σ-calculus
model of

HOAS-like Specification, e.g.
app : tm → tm → tm
abs : (tm → tm) → tm

External
Based on code generation

unscoped/scoped de Bruijn [de Bruijn ’72]

+ parallel substitutions [de Bruijn ’72]

+ laws of σSP -calculus [Abadi et al. ’91]

+ notations and tactics

specification

Autosubst 2

de Bruijn
algebra

mechanised
meta-theory

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 22 / 43



The Autosubst 2 Compiler [Stark, Kaiser, Schäfer ’19]

A High-Level View

Coq

σ-calculus
model of

HOAS-like Specification, e.g.
app : tm → tm → tm
abs : (tm → tm) → tm

External
Based on code generation

unscoped/scoped de Bruijn [de Bruijn ’72]

+ parallel substitutions [de Bruijn ’72]

+ laws of σSP -calculus [Abadi et al. ’91]

+ notations and tactics

specification

Autosubst 2

de Bruijn
algebra

mechanised
meta-theory

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 22 / 43



The Autosubst 2 Compiler [Stark, Kaiser, Schäfer ’19]

A High-Level View

Coq

σ-calculus
model of

HOAS-like Specification, e.g.
app : tm → tm → tm
abs : (tm → tm) → tm

External
Based on code generation

unscoped/scoped de Bruijn [de Bruijn ’72]

+ parallel substitutions [de Bruijn ’72]

+ laws of σSP -calculus [Abadi et al. ’91]

+ notations and tactics

specification

Autosubst 2

de Bruijn
algebra

mechanised
meta-theory

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 22 / 43



The Autosubst 2 Tool
Generation of Code

HOAS Input

Dependency Graph

Abstract Proof Terms

Coq Code

Parsing/Analysis

Proof Generation

Code Generation

arr : ty → ty → ty

all : (ty → ty) → ty

...

↓

ty∗[ty] tm[ty,vl] vl∗[ty,vl]

↓

[ SentenceInductive (Inductive
[ InductiveBody "ty" [("n", TermConst Nat)]

TermType [...]]), ...]

↓
Inductive ty (n : nat) : Type :=
| var_ty : fin n → ty n

| arr : ty n → ty n → ty n

| all : ty (1 + n) → ty n.
...

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 23 / 43



The Autosubst 2 Tool
Generation of Code

HOAS Input

Dependency Graph

Abstract Proof Terms

Unscoped
Coq Code

Parsing/Analysis

Proof Generation

Code Generation

Scoped
Coq Code

...

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 24 / 43



Best Practices and Automatic Realisation

1 What are the best practices for syntax with binders for more extended systems?
I Applicable to: unscoped and scoped syntax [Bird, Paterson ’99], polyadic binders, first-class

renamings, external sorts and sort constructors, many-sorted syntax, mutual inductive

syntax, variadic syntax, simplified definitions for first-order sorts, and modular syntax

2 How to make this reusable and how to avoid boilerplate?

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 25 / 43



What Is Needed for an Extension?

Three parts:
I Expressions

I Instantiation with substitutions
I Reasoning

Important:
I Restricted set of substitution primitives
I These primitives are strong enough to express the whole scope change

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 26 / 43



Vector Substitutions [Stark, Kaiser, Schäfer ’19]

Example: Call-by-Value System F (FCBV)

Expressions

A,B ∈ ty ::= X | A→ B | ∀X .A Types

s, t ∈ tm ::= s t | s A | v Terms

u, v ∈ vl ::= x | λ(x : A).s | ΛX .s Values

Substitutions Vectorise parallel substitutions:

[ ; ] : vl→ (N→ ty)→ (N→ vl)→ vl

Reasoning Lift reasoning principles

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 27 / 43



Vector Substitutions [S., Kaiser, Schäfer ’19]

Why Vector Substitutions?

Autosubst 1: Separate instantiation, e.g.

[ ]ty : vl→ (N→ ty)→ vl

[ ]vl : vl→ (N→ vl)→ vl

Problems:

We might need instantiation on both sorts to go under binders
⇒ No mutual inductive syntax

How to get an elegant equational theory, e.g. how to commute the different kinds of
instantiation?

s[τ ]vl [σ]ty = s[σ]ty [σ ◦ [τ ]ty ]vl

Not all terms come with instantiation of all substitutions, e.g. for types:

[ ] : ty→ (N→ ty)→ ty

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 28 / 43



Variadic Syntax

Variadic binders bind a variadic number of n variables at once, e.g. in a multivariate
λ-calculus [Pottinger, ’90]:

s, t ∈ tmk ::= x | sk{tk1 ..tkn } | λn.sn+k x ∈ N

Other examples: Pattern matching, recursive let-bindings

Goal: Omit arithmetic reasoning on indices

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 29 / 43



Variadic Syntax
Lifting the Monadic Primitives from the Sigma Calculus [Abadi et al. ’91] to Variadic Primitives

1 Variadic shifting ↑m: fin n→ fin (m + n)

2 Variadic head, hdm : fin m→ fin (m + n)

3 Variadic extension ·m : (fin m→ X )→ (fin n→ X )→ (fin (m + n)→ X ), which
precedes an arbitrary stream τ : fin n→ X with a new stream σ : fin m→ X :

+ definition of instantiation + adaption of reasoning principles

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 30 / 43



Modular Syntax [Forster, Stark ’20]

The Expression Problem[Wadler, 2003]

You start with the λ-calculus:

s, t ∈ tm ::= x | s t | λx .s

You give
I recursive functions on terms,
I proofs by induction on terms,
I and predicates and proofs over the terms.

. . . and then want to extend this calculus, e.g. by boolean expressions:

s, t ∈ tm ::= · · · | b | if s then t else u

True modularity: “[..] add new cases to the datatype [..] without recompiling existing
code.”

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 31 / 43



Modular Syntax [Forster, Stark ’20]

A Practical Approach to Modular Syntax [Forster, Stark ’20]

Modular syntax via functors and variants with direct injections inspired by Data Types à
la Carte [Swierstra ’08]:

Inductive exp λ (exp : Type) :=
| var : nat → exp λ exp

| app : exp → exp → exp λ exp

| abs : exp → exp λ exp.

Inductive exp :=
| injλ : exp λ exp → exp

| injB : exp → exp.

Tool support:
I Boilerplate generation with an extension of Autosubst 2
I Assembling via MetaCoq [Sozeau et al., 2019]

Result:
I Practical modular developments
I Improvement from 1000 loc/feature to 125 loc/feature

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 32 / 43



Modular Syntax [Forster, Stark ’20]

Modular Syntax with Binders

1 Expressions:
I Parameterised by full expressions

2 Substitution:
I Parallel substitutions, parameterised by instantiation for full expressions
I Same primitives of the σ-calculus

3 Reasoning:
I Substitution laws for features parameterised by substitution laws for full expressions
I Rewriting with substitution laws + equations for feature functions

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 33 / 43



Three Aspects of a Practical Presentation of Binders

Theoretical
Justification

Automatic Realisation
and Best Practices

Practical Evaluation

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 34 / 43



Practical Mechanisations of Meta-Theory

Goal: See the performance in actual developments on the meta-theory

Criteria:
I Substitution-heavy case studies such as type safety or normalisation
I Used in challenges, such as the POPLMark Challenge [Aydemir et al. ’05] or POPLMark

Reloaded Challenge [Abel, Allais, Hameer, Pientka, Momigliano, Schäfer, Stark 19]

Evaluation:
Concise, transparent, and accessible1 proofs of type safety, equivalence of algorithmic
and definitional equivalence, the meta-theory of call-by-push-value

I Competitive on case studies tested with native support for binders except for names
I Features of a general-purpose proof assistant were valuable
I Built in new features such as support for first-order renamings or first-order sorts due to case

studies

1[Aydemir et al. ’05]
Kathrin Stark Mechanising Syntax With Binders in Coq February 14 35 / 43



Case Studies for Autosubst 2
Contents Spec Proofs

POPLMark challenge, part A [Aydemir et al. ’05] 151 165

Scoped variant of the POPLMark
Reloaded Challenge, strong normalisation for
STLC + Sums [Abel et al. ’17]

248 312

Weak normalisation of call-by-value
System F

114 60

Equivalence of algorithmic
and definitional equivalence [Crary ’05, Cave and Pientka ’15]

88 135

Call-By-Push-Value [Levy ’99, Forster, Schäfer, Spies, Stark ’19] 3950 3750

Modular development of preservation/weak
head normalisation/strong normalisation
for a modular λ-calculus with boolean and arithmetic expressions[Forster and Stark ’20]

540 655

First-order syntax [Kirst et al. ’20]

Undecidability of higher-order unification [Spies and Forster ’20]

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 36 / 43



Call-By-Push-Value in Coq [Forster, Schäfer, Spies, Stark ’19]

Syntax

(value types) A,B ::= 1 | U C | A1 × A2 | 0 | A1 + A2

(computation types) C ,D ::= > | F A | A→ C | C1 & C2

(environments) Γ ::= x1 : A1, . . . , xn : An

Value typing Γ ` V : A

(x : A) ∈ Γ

Γ ` x : A Γ ` () : 1

Γ ` M : C

Γ ` {M} : U C

Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 × A2

Γ ` V : Ai

Γ ` inj iV : A1 + A2

Computation typing Γ ` M : C

Γ ` 〈〉 : >
Γ ` V : A

Γ ` return V : F A

Γ ` M : F A Γ, x : A ` N : C

Γ ` let x ← M in N : C

Γ, x : A ` M : C

Γ ` λx.M : A→ C

Γ ` M : A→ C Γ ` V : A

Γ ` M V : C

Γ ` V : U C

Γ ` V ! : C

Γ ` V : A1 × A2 Γ, x1 : A1, x2 : A2 ` M : C

Γ ` split(V , x1.x2.M) : C

Γ ` V : 0

Γ ` case0(V ) : C

Γ ` V : A1 + A2 Γ, x1 : A1 ` M1 : C Γ, x2 : A2 ` M2 : C

Γ ` case(V , x1.M1, x2.M2) : C

Γ ` M1 : C1 Γ ` M2 : C2

Γ ` 〈M1,M2〉 : C1 & C2

Γ ` M : C1 & C2

Γ ` prji M : Ci

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 37 / 43



Call-By-Push-Value in Coq [Forster, Schäfer, Spies, S ’19]

Mechanisation in 8000 lines of Coq code of

standard operational semantics for CBPV
I normalisation using logical relations
I adequacy of set/algebra semantics

unrestricted operational semantics for CBPV
I confluence
I strong normalisation using Kripke logical relations
I soundness of equational theory

translations of CBV/CBN into CBPV
I preservation of operational semantics
I confluence for full λ-calculus
I strong normalisation for strong CBV/CBN
I soundness of equational theories
I adequate type-theoretic algebra semantics for CBV/CBN

Binders, substitutions, and reasoning is automated by Autosubst 2.

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 38 / 43



Conclusion

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 39 / 43



Conclusion
Main Contributions

Mechanised proof that the σSP-calculus is confluent and terminating, following and
simplifying a previous proof by [Curien et al. ’92]

Development of Autosubst 2
I Introduction of EHOAS as specification language
I Handling of polyadic binders, first-class renamings, vector substitutions, with only first-order

binders, syntax with variadic binders

Combination of Autosubst and modular syntax with an approached based on functors
and direct injections

Mechanised meta-theory
I Concise, transparent, and accessible [Ayedemir et al. ’05] proofs of strong normalisation
I Solution to the substitution-relevant parts of the POPLMark Challenge and POPLMark

Reloaded Challenge
I First truly modular proof of type safety and strong normalisation

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 40 / 43



Conclusion
Future Work

Calculi of Explicit Substitutions
I Formal justification for custom syntax, see e.g. [Keuchel et al. ’18]

I How do other variants of calculi of explicit substitutions, e.g. the shift calculus [Hardin and

Lévy, ’89] work?

Compiling syntactic specifications
I Extend the expressiveness even further, e.g. by dependent predicates [Keuchel et al. ’18]

I Support for recursive functions [Allais et al. ’17, Kaiser, Schäfer, Stark ’18]

I Support for switching to a named representation

Modular syntax
I Support for scoped syntax and dependent predicates
I Solutions to the POPLMark challenge [Ayedemir et al. ’05] and POPLMark Reloaded Challenge

[Abel et al. ’19]

I Support of more dimensions of modularity [Delaware et al. ’13]

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 41 / 43



Conclusion
Main Contributions

Mechanised proof that the σSP-calculus is confluent and terminating, following and
simplifying a previous proof by [Curien et al. ’92]

Development of Autosubst 2
I Introduction of EHOAS as specification language
I Handling of polyadic binders, first-class renamings, vector substitutions, with only first-order

binders, syntax with variadic binders

Combination of Autosubst and modular syntax with an approached based on functors
and direct injections

Mechanised meta-theory
I Concise, transparent, and accessible [Ayedemir et al. ’05] proofs of strong normalisation
I Solution to the substitution-relevant parts of the POPLMark Challenge and POPLMark

Reloaded Challenge
I First truly modular proof of type safety and strong normalisation

Thank you for your attention!
Kathrin Stark Mechanising Syntax With Binders in Coq February 14 42 / 43



Publications
Jonas Kaiser, Steven Schafer, and Kathrin Stark. Autosubst 2: Towards reasoning with multi-sorted de Bruijn
terms and vector substitutions. In Proceedings of the Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice, LFMTP ’17, pages 10–14. ACM, 2017

Jonas Kaiser, Steven Schafer, and Kathrin Stark. Binder aware recursion over well- scoped de Bruijn syntax. In
Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los
Angeles, CA, USA, January 8-9, 2018, pages 293–306, 2018

Steven Schafer and Kathrin Stark.Embedding higher-order abstract syntax in type theory. In Abstract for Types
Workshop, June 18 – 21 2018

Kathrin Stark, Steven Schafer, and Jonas Kaiser. Autosubst 2 :reasoning with multi- sorted de Bruijn terms and
vector substitutions. In Proceedings of the 8th ACM SIG- PLAN International Conference on Certified Programs
and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 166–180, 2019

Yannick Forster, Steven Schafer, Simon Spies, and Kathrin Stark. Call-by-push- value in Coq: operational,
equational, and denotational theory. In Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 118–131, 2019

Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano, Steven Schafer, and Kathrin
Stark. POPLMark Reloaded: Mechanizing proofs by logical relations. Journal of Functional Programming, 29:e19,
2019

Yannick Forster and Kathrin Stark. Coq a la carte- a practical approach to modular syntax with binders. In
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New
Orleans, USA, January 20–21, 2020, January 2020

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 43 / 43


	Appendix

