Mechanising Syntax with Binders in Coq

Kathrin Stark

SI Saarland Informatics
Campus

SAARLAND
UNIVERSITY L
— —

Saarbriicken, February 14, 2020

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 1/43

Syntax with Binders
Church’s Lambda Calculus [Church '32]

m Binders are a key ingredient of Church’s A-calculus:
s:=x|st|Axs

» Afunction Af.f,x binds a variable f
» (Mf.fx) g reduces to (f x)[f/g] where each occurrence of f is substituted by g

m Proofs such as
> type safety

» weak/strong normalisation

= Binders are inevitable when talking about formal systems

Kathrin Stark Mechanising Syntax With Binders in Coq

Mechanising in Coq

m Interactive proof assistants allow to develop proofs restricted to a small set of
reasoning principles in interplay with a computer:

» Verification that only the agreed-on rules are used
» Automation of easy/repetitive cases
» Adaption of changes

m Here: The Coq Proof Assistant ¥

» Based on the Calculus of Inductive Constructions [Coquand Huet '86, Coquand and Paulin '88]
» Proof checking is reduced to type checking via the Curry-Howard Correspondence [Howard '80]
= Everything in this thesis is mechanised in Coq

Kathrin Stark Mechanising Syntax With Binders in Coq

Outline Hide, nippet Help

Use o '\ Home

emacs25@kathrin-HP-EliteBook-820-G3

Lemma compat_force v:
Fv::UB-TFEUV!
Proof.

intros Hy m y H. asimpl. apply compat_force_E. now apply Hi.

Qed.

Lemma compat_caseZ v:
111 zero » [| caseZ v :

B.

intros Hy m y H. asimpl. apply compat_caseZ_E. now apply Hi.

Qed.

Lemna compat_caseS v ¢ Cp:

[
Ay i T Ecq i
A i TEC

I caseS v ¢1 ¢
Proof.

intros H' Hy Hp m Yy H; specialize (H' my H). asimpl.
apply (compat_caseS_E (Ay := Ag) (Ay := Ap)).

- assumption.

intros v' W'. affimpl. apply Hy

r=3
®
i

Lemma compat_caseP v c:
Ev AL *Ap -
Ay i (A i) EcC
[= caseP v c::: B,
Proof.

specialize (Hy _ _ (G_ext _ H)).
specialize (Hp _ _ (G_ext _ H)).

asimpl in Hy. eapply close_sn, Hy.
asimpl in Hp. eapply close_sn, Hp.

. now apply G_scons.
intros v' W'. asimpl. apply Hp.

now apply G_scons.

intros H' Hy m y H; specialize (H' m y H). asimpl.

apply (compat_caseP_E (A
Kathrin Stark

A1) (Ay ¢

A2)).
Mechanisi

#rind (Dinfo
1 subgoal (ID 2045)
=n:N
-l :ctxn
- A, Ag, Ay : valtype
- B, By, By : comptype

- v :value n
- ¢q, ¢ : comp (S n)
=m:N

-y : finn - valuen
S H' 2 W (T Ag Ap) vIY]

“Hy A, TEcp:B
SHy i A, TEC B
SH:GT
- v' :value m
S W't WAV
EBcylv', vl
|
| uy *goals* ALL L18

Syntax With Binders in Coq

(Coq_Goals Utoks)

Why 'mechanising the meta-theory of formal systems?

Kathrin Stark Mechanising Syntax With Binders in Coq

Mechanising in Coq

m Interactive proof assistants allow to develop proofs restricted to a small set of
reasoning principles in interplay with a computer:

» Verification that only the agreed-on rules are used
» Automation of easy/repetitive cases
» Adaption of changes

m Here: The Coq Proof Assistant ¥

» Based on the Calculus of Inductive Constructions [Coquand Huet '86, Coquand and Paulin '88]
» Proof checking is reduced to type checking via the Curry-Howard Correspondence [Howard '80]
= Everything in this thesis is mechanised in Coq

Kathrin Stark Mechanising Syntax With Binders in Coq

Ca||—By—Push—Va|ue in Coq [Forster, Schifer, Spies, Stark '19]

Syntax
(value types) AB :=1|UC|A1 XA |0] AL+ A
(computation types) C,D =T |FA|A=C|G& G
(environments) Moo= A, Xn : An
Value typing
(x:A)eT T-M:C TEViiA THV:iA T V:A
ThHx:A T-0:1 r-{M}:UC T (Vi, Vo) 1 AL X A T Hinj; V: A+ Ay
Computation typing
T-V:A TFM:FA T,x:AFN:C M x:AFM:C TFM:ASC THV:A
TE(:T T return V : FA THletx« MinN:C TEAM:A— C T-MV:C
r-v:uc Fr=Vv:A; x A Mxg i Al,xo A EM:C r=v:o
r=vi:c I Esplit(V, x;.00.M) : C I+ caseg(V): C
THV:iAL+A [.xq AlFEM:C [Ak M:C MG THM:G TEM:CG &G
I+ case(V, x; .My, x0.Mp) : C FrE (M, My) : G & G rEprj; M: G

Kathrin Stark Mechanising Syntax With Binders in Coq

Call—By—Push—Va|ue in Coq [Forster, Schifer, Spies, S '19]
Mechanisation in 8000 lines of Coq code of
m standard operational semantics for CBPV
» normalisation using logical relations
» adequacy of set/algebra semantics
m unrestricted operational semantics for CBPV

» confluence
» strong normalisation using Kripke logical relations
» soundness of equational theory

m translations of CBV/CEN into CBPV

» preservation of operational semantics
» confluence for full A-calculus

» strong normalisation for strong CBV/CBN

» soundness of equational theories

» adequate type-theoretic algebra semantics for CBV/CBN
How to represent binders and substitution?

Kathrin Stark Mechanising Syntax With Binders in Coq

Contribution

A practical appraoch to mechanising syntax with
binders in Coq for a wide range of syntactic systems.

Mechanising Syntax With Binders in Coq

“We assume an understanding
of the operation of substituting a
given symbol or formula for a particular
occurrence of a given symbol or formula”
Church, '32

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 9 /43

What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., '19]

Mechanising Syntax With Binders in Coq =

What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., '19]

r

q
Kathrin Stark Mechanising Syntax With Binders in Coq

What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., '19]

1tV)
P . v, x1-Mu X2 MY~ M
Instantiation Case“lnh { M\V [:ﬂ
. >
} Expressions £ x — ret\lfﬂ V 1“_ V, > M‘V fﬂ

et X x M i
Kathrin Stark Mechanising Syntax With Binders in Coq

What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., '19]

Cl4
\)C]:{IIX_MIVV LAY
ClG &] (€ VI4j, My /]
= M s
S1 M)[Ml € &c, " [c])
Mantie TJ’Ping » My g 8[(?2 i
[C) =
G[ry .- N e
Tl e Cleyy
Instantiation ey ‘4= V}' € [r e rV[A]}
} Expressions Ik M. C . " V[J’] S ’V[A]

Kathrin Stark

Mechanising Syntax With Binders in Coq

What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., '19]

(4%
Reasoning C[Cl &CE’] ={(V 1. M[V/ 5
PM) M ¢ o
Semaflti»
S[C] = {3 wmghﬂ\d " Y
* phe o { form® v O
Instantiation w‘a A"\' \C\ ‘nS Y\Q“ma \'.“e-“ M
e OV et g\ CY
} Expressions A. C\ G“* G.“'é € 'V[A]

~ il
Kathrin Stark Mechanising Syntax With Binders in Coq February 14 10 / 43

What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., '19]

Reasoning

il
Mechanising Syntax With Binders in Coq

February 14 10 / 43

What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., '19]

Cl4
=)= {Ax. vy (A
C[C1 Ao € (V[AI AATF¥>
Reasoning
c[Otm, y o (D][v..] = c[v,~]?
Instantiation
} Expressions . A. C\ C\G \.‘)’ A Qﬂé“ . W (Jq’l’d

Kathrin Stark : Mechanising Syntax With Bmders in Coq February 14

10 / 43

Related Work

Various ways to represent binders ...

named syntax

unnamed syntax [de Bruijn '72]
locally nameless [Aydemir et al. '08]
parametric HOAS [Chlipala '08]
nominal logic [Pitts '01]

HOAS [Pfenning et al. '88]

contextual modal TT [Nanevski et al. '08]

Parts of a practical solution:

m Works in a general-purpose proof
assistant, i.e., Coq

m As little overhead from the user's
side as possible

...and no consensus, see e.g. solutions to [Aydemir et al. "05].

Kathrin Stark Mechanising Syntax With Binders in Coq

Binders Come With BO”erplate [Rossberg et al.]

“Our experience [...] was more painful than we had anticipated. [...] Out of a total of around 550

lemmas, approximately 400 were tedious ”infrastructure” lemmas; only the remainder had direct
relevance to the metatheory of Fw or elaboration.

Problem: We need a large number of technical lemmas to reason about substitutions.

Kathrin Stark Mechanising Syntax With Binders in Coq

Three Aspects of a Practical Presentation of Binders

Automatic Realisation
and Best Practices

Theoretical
Justification

Practical Evaluation

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 13 / 43

Representation of Binders in the Lambda Calculus

Expressions:
» De Bruijn indices [de Bruijn '72]
» Binders are presented by references, i.e. represented by natural numbers or a finite type:

Ax.x(Ay.y x) — A.0(A.01)

= a-equivalence is built-in
Substitution:

> Parallel substitutions, first instantiation with renamings [Adams '04]
> Primitives of the o-calculus [Abadi et al. '91]

Reasoning:

» By reducing to a normal form w.r.t. the reduction rules of the osp-calculus

Kathrin Stark Mechanising Syntax With Binders in Coq

A Representation of Binders in the Lambda Calculus
Reasoning via Reduction to Normal Forms
Goal: Prove substitutivity of reduction, i.e. that s = t implies s[o] > t[o].

s[o][t[o]..] = s[var0-c o (1)][t[o] - var]

= s[(var0-o o (1)) o[(t[o] - var)]] compositionality
= s[(var0)[t[o] - var] (o o (1)) o [(t[o] - var)]] distributivity
= s[(var 0)[t[o] - var] - o((1) o [t[o]-var])] associativity
= s[(t[o] - var)0-(c o [T (t[o] - var)])] compositionality
= s[t[o] (o o [var])] -, interaction
= s[t[o] - o] right identity
= s[t[o] -(var o [o])] left identity
= s[(t-var) o [o]] distributivity

compositionality

echanising Syntax With Binders in Coq

emacs25@kathrin-HP-EliteBook-820-G3

File Edit

Lemma mstep_lam n A (s t : tm (S n)) :
star step s t = star step (lam A s) (lam A t).
proof. induction 1; eauto. Qed.

Lemma mstep_app n (sq sz : tmn) (t; ty : tmn) :

star step sq sp - star step ty tp - star step (app =
ssq tq1) (app sz t2).
Proof with eauto.

intros ms. induction 1. induction ms... auto...
Qed.

(** **x Substitutivity *)

Lemma step_inst {m n} (O : finm = tn n) (s t : tm m)2
L
step s t - step (subst_tm O s) (subst_tm O t).
Proof.
intros st. revert n 0. 1induction st as [mb s t #
sIm A by by _ ih|m sq s t _ ih|m s t1 tz _ ih]; intro:
ss n O0; cbn.
apply step_B'. -
apply step_abs. eapply ih.
apply step_appL, ih.
apply step_appR, ih.

f=1
]
(=N RN N

Lemma mstep_inst mn (f : finm = tmn) (s t : tmm) =2

subg

m
b
s
t
n
o

s[t.

YASnippet Help

™ Hom

oal (ID 297)

HLY

ty

tm (S m
tm m

Y

finm - tmnn

—

-1[0]

s[1p O1L(EI0])..]

goals All

thrin Stark Mechanising Syntax With Binders in Coq

(Coq Goals Utoks)

emacs25@kathrin-HP-EliteBook-820-G3

File Edit O 5 s To 00 era s Ho YASnippet Help

™ Hom

Lemma mstep_lam n A (s t : tm (S n)) :
star step s t = star step (lam A s) (lam A t).

subgoal (ID 721)

pProof. induction 1; eauto. Qed. -m: N
- bty
Lemma mstep_app n (sq sz : tmn) (t; ty : tmn) : - s : tm (S m)
star step sq S» — star step tq tp — star step (app = - T ! &m m
-0
ssq t1) (app sz ta). Do finmatnn
Proof with eauto. :
intros ms. induction 1. induction ms... auto...
Qed. s[t[0] .: O] = s[t[O] .: O]

(** **x Substitutivity *)

Lemma step_inst {m n} (O : finm = tn n) (s t : tm m)2
L
step s t - step (subst_tm O s) (subst_tm O t).
Proof.
intros st. revert n 0. 1induction st as [mb s t #
sIm A by by _ ih|m sq s t _ ih|m s t1 tz _ ih]; intro:
ss n O0; cbn.
apply step_B'. asimfjl.
apply step_abs. eapply ih.
apply step_appL, ih.
apply step_appR, ih.

f=1
]
(=N RN N

Lemma mstep_inst mn (f : finm = tmn) (s t : tmm) =2

- *goals¥ All

thrin Stark Mechanising Syntax With Binders in Coq

(Coq Goals Utoks)

Representation of Binders in the Lambda Calculus

Expressions:
» De Bruijn indices [de Bruijn '72]
» Binders are presented by references, i.e. represented by natural numbers or a finite type:

Ax.x(Ay.y x) — A.0(A.01)
= a-equivalence is built-in

Substitution:

» Parallel substitutions, first instantiation with renamings [Adams '04]
» Primitives of the o-calculus [Abadi et al. '91]

Reasoning:
» By reducing to a normal form w.r.t. the reduction rules of the osp-calculus

* Reduction in the osp-calculus is sound and complete w.r.t. equality on the de Bruijn
algebra [Schafer, Smolka, Tebbi '15]
* Reduction in the osp-calculus is convergent [Curien et al. '92]

Kathrin Stark Mechanising Syntax With Binders in Coq

Mechansing Convergence of the Sigma SP Calculus

Goal: To find a normal form, we require confluence and termination of the ogp-calculus.

Deferred by [Schifer et al. "15]:

While the verification of our decision method is not difficult (even in Coq), a verification of the
rewriting method is surprisingly complex since the existing termination proof [...] is far from
straightforward. We did not succeed in simplifying this proof and think that a formalization
with a proof assistant is a substantial enterprise.

m Difficulty: Not trivially terminating

m Proved for related calculi has been proven in different manners [Hardin and Laville '86, Curien et
al. '92, Zantema '92]

m Proof for o-calculus mechanised in ALF [Kamareddine, Qiao '03]

Kathrin Stark Mechanising Syntax With Binders in Coq

Mechanising Convergence of the Sigma SP Calculus

Here: Mechanised for the exact system
m Simplified the proof significantly by building in intermediate reduction systems

m Merely 700 lines of code for convergence (Comparison: 1000 lines of code for verification
of the rewriting method)

m (Local) confluence very easy due to automation of Coq, no critical pair analysis [Huet '77,
Baader and Nipkow '99] required

Kathrin Stark Mechanising Syntax With Binders in Coq

Three Aspects of a Practical Presentation of Binders

Automatic Realisation
and Best Practices

Theoretical
Justification

Practical Evaluation

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 20 / 43

Best Practices and Automatic Realisation

What are the best practices for syntax with binders for more extended systems?

How to make this reusable and how to avoid boilerplate?
» Development of Autosubst 2 [Stark, Kaiser, Schifer '19], a compiler from HOAS-like syntax
[Pfenning, Elliot '88] to de Bruijn algebras + reasoning on de Bruijn algebras

» Approach via code generation [Sewell et al. '07, Keuchel et al. '16]
» The extended expressivity requires a fundamentally different design from Autosubst 1 [Schifer,

Tebbi, Smolka '15]

Kathrin Stark Mechanising Syntax With Binders in Coq

The Autosubst 2 Compiler [stark, Kaiser, Schifer '19]

A High-Level View

Kathrin Stark

B

specification

Autosubst 2

de Bruijn model of
L o-calculus
algebra
D mechanised
D D meta-theory
Coq
Mechanising Syntax With Binders in Coq February 14

22 /43

The Autosubst 2 Compiler [stark, Kaiser, Schifer '19]

A High-Level View

B

specification

HOAS-like Specification, e.g.

app : tm — tm — tm
abs: (tm — tm) — tm

Kathrin Stark

Autosubst 2

de Bruijn model of
L o-calculus
algebra
D mechanised
D D meta-theory
Coq
Mechanising Syntax With Binders in Coq February 14

22 /43

The Autosubst 2 Compiler [stark, Kaiser, Schifer '19]

A High-Level View

specification

External
Based on code generation

Kathrin Stark

Autosubst 2

de Bruijn model of
L o-calculus
algebra
D mechanised
D D meta-theory
Coq
Mechanising Syntax With Binders in Coq February 14

22 /43

The Autosubst 2 Compiler [stark, Kaiser, Schifer '19]

A High-Level View

specification

unscoped/scoped de Bruijn [de Bruijn '72]
+ parallel substitutions [de Bruijn '72]

+ laws of ogp-calculus [Abadi et al. '91]
+ notations and tactics

Autosubst 2

. model of
de Bruijn - » o-calculus
algebra
D mechanised
D D meta-theory
Coq
February 14

Kathrin Stark Mechanising Syntax With Binders in Coq

22 /43

The Autosubst 2 Compiler [stark, Kaiser, Schifer '19]

A High-Level View

Kathrin Stark

B

specification

Autosubst 2

de Bruijn model of
L o-calculus
algebra
D mechanised
D D meta-theory
Coq
Mechanising Syntax With Binders in Coq February 14

22 /43

The Autosubst 2 Tool

Generation of Code

arr : ty — ty — ty
all : (ty = ty) — ty

0

HOAS Input /_\
Parsing/Analysis
Dependency Graph U T i v

Proof Generation

Ab Proof T [SentenceInductive (Inductive
stract Froot ferms [InductiveBody "ty" [("n", TermConst Nat)]
Code Generation TermType [...]]), ..]

Coq Code

Inductive ty (n : nat) : Type :=
| var_ty: finn — tyn
| arr: tyn > tyn —tyn
Kathrin Stark Mechanising Syntax With Binders in Coq February 14 23 /43

The Autosubst 2 Tool

Generation of Code

HOAS Input
\1, Parsing/Analysis

Dependency Graph
\l/ Proof Generation
Abstract Proof Terms

/ \L Ne Generation

Scoped Unscoped
Coq Code Coq Code

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 24 / 43

Best Practices and Automatic Realisation

What are the best practices for syntax with binders for more extended systems?

» Applicable to: unscoped and scoped syntax [Bird, Paterson '99], polyadic binders, first-class
renamings, external sorts and sort constructors, many-sorted syntax, mutual inductive

syntax, variadic syntax, simplified definitions for first-order sorts, and modular syntax

How to make this reusable and how to avoid boilerplate?

Kathrin Stark Mechanising Syntax With Binders in Coq

What Is Needed for an Extension?

m Three parts:
» Expressions
» Instantiation with substitutions

» Reasoning

m Important:

» Restricted set of substitution primitives
» These primitives are strong enough to express the whole scope change

Kathrin Stark Mechanising Syntax With Binders in Coq

Vector Substitutions [stark, Kaiser, Schifer '19]
Example: Call-by-Value System F (Fcgv)

Expressions
ABety := X|A—->B|VX.A Types
s,tetm = st|sA|v Terms
u,vevl m= x| Ax:A)s|AX.s Values

Substitutions Vectorise parallel substitutions:
1] :vl=(N—=ty) > (N—vl) — vl

Reasoning Lift reasoning principles

Kathrin Stark Mechanising Syntax With Binders in Coq

Vector SUbStitUtions [S., Kaiser, Schafer '19]
Why Vector Substitutions?
Autosubst 1: Separate instantiation, e.g.

ey vl = (N = ty) — vl
L ivl= (N—=vl) = vl

Problems:

m We might need instantiation on both sorts to go under binders
= No mutual inductive syntax

m How to get an elegant equational theory, e.g. how to commute the different kinds of
instantiation?

slrluloly = slolylo o [Tlylw
Not all terms come with instantiation of all substitutions, e.g. for types:

1]ty = (N—=ty) >ty

Variadic Syntax

m Variadic binders bind a variadic number of n variables at once, e.g. in a multivariate
A-calculus [Pottinger, '90]:

s, t € tmy = x | sK{th..th} | X,.s"K xeN

m Other examples: Pattern matching, recursive let-bindings
m Goal: Omit arithmetic reasoning on indices

Kathrin Stark Mechanising Syntax With Binders in Coq

Variadic Syntax

Lifting the Monadic Primitives from the Sigma Calculus [Abadi et al. '91] to Variadic Primitives

Variadic shifting 1™: finn — fin (m + n)
Variadic head, hd, : finm — fin (m + n)

Variadic extension _-p, _: (finm — X) — (finn — X) — (fin(m + n) — X), which
precedes an arbitrary stream 7 : finn — X with a new stream o : finm — X:

+ definition of instantiation + adaption of reasoning principles

Kathrin Stark Mechanising Syntax With Binders in Coq

Modular Syntax [Forster, Stark '20]
The Expression Problem[Wadler, 2003]

m You start with the A-calculus:

s,tEtm = x|st]|Ax.s

You give
» recursive functions on terms,
» proofs by induction on terms,
» and predicates and proofs over the terms.

m ...and then want to extend this calculus, e.g. by boolean expressions:

s,tetm == ---| b|ifsthen telseu

m True modularity: “[..] add new cases to the datatype [..] without recompiling existing

code.”

Kathrin Stark Mechanising Syntax With Binders in Coq

Modular Syntax [Forster, Stark '20]
A Practical Approach to Modular Syntax [Forster, Stark '20]
m Modular syntax via functors and variants with direct injections inspired by Data Types a
la Carte [Swierstra '08]:

Inductive exp , (exp : Type) =
| var : nat — exp, exp
| app : exp — exp — exp , exp
| abs : exp — exp, exp.

Inductive exp :=
| injy :exp, exp — exp
| injg : exp — exp.

m Tool support:
> Boilerplate generation with an extension of Autosubst 2
» Assembling via MetaCoq [Sozeau et al., 2019]
m Result:
» Practical modular developments
» Improvement from 1000 loc/feature to 125 loc/feature

Kathrin Stark Mechanising Syntax With Binders in Coq

Modular Syntax [Forster, Stark '20]
Modular Syntax with Binders

Expressions:
» Parameterised by full expressions
Substitution:

» Parallel substitutions, parameterised by instantiation for full expressions
» Same primitives of the o-calculus

Reasoning:

» Substitution laws for features parameterised by substitution laws for full expressions
» Rewriting with substitution laws 4 equations for feature functions

Kathrin Stark Mechanising Syntax With Binders in Coq

Three Aspects of a Practical Presentation of Binders

Automatic Realisation
and Best Practices

Theoretical
Justification

Practical Evaluation

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 34 /43

Practical Mechanisations of Meta-Theory

m Goal: See the performance in actual developments on the meta-theory
m Criteria:
» Substitution-heavy case studies such as type safety or normalisation
» Used in challenges, such as the POPLMark Challenge [Aydemir et al. '05] or POPLMark
Reloaded Challenge [Abel, Allais, Hameer, Pientka, Momigliano, Schifer, Stark 19]
m Evaluation:
Concise, transparent, and accessible! proofs of type safety, equivalence of algorithmic
and definitional equivalence, the meta-theory of call-by-push-value

» Competitive on case studies tested with native support for binders except for names

» Features of a general-purpose proof assistant were valuable

> Built in new features such as support for first-order renamings or first-order sorts due to case
studies

![Aydemir et al. '05]
Kathrin Stark Mechanising Syntax With Binders in Coq

Case Studies for Autosubst 2

Contents Spec Proofs
POPLMark challenge, part A [Aydemir et al. '05] 151 165
Scoped variant of the POPLMark

Reloaded Challenge, strong normalisation for 248 312
STLC 4+ Sums [Abel et al. '17]

Weak normalisation of call-by-value 114 60
System F

Equivalence of algorithmic 88 135
and definitional equivalence [Crary '05, Cave and Pientka '15]

Call-By-Push-Value [Levy '99, Forster, Schifer, Spies, Stark '19] 3950 3750
Modular development of preservation/weak

head normalisation/strong normalisation 540 655

for a modular A-calculus with boolean and arithmetic expressions[Forster and Stark '20]

First-order syntax [Kirst et al. '20]

Undecidability of higher-order unification [Spies and Forster '20]

Kathrin Stark Mechanising Syntax With Binders in Coq

Call—By—Push—Va|ue in Coq [Forster, Schifer, Spies, Stark '19]

Syntax
(value types) AB :=1|UC|A1 XA |0] AL+ A
(computation types) C,D =T |FA|A=C|G& G
(environments) Moo= A, Xn : An
Value typing
(x:A)er T-M:C TEViiA THV:iA THV:A
THx:A r-0:1 r-{M}:UC TH (Vi Vo) 1 A X Ay THinjiV: A + Ay
Computation typing
T-V:A TFM:FA T,x:AFN:C M x:AFM:C TFM:ASC THV:A
TH(:T T return V : FA THletx« MinN:C TEAM:A— C T-MV:C
r-v:uc Fr=Vv:A; x A Mxg i Al,xo A EM:C r=v:o
r=vi:c I Esplit(V, x;.00.M) : C I+ caseg(V): C
THV:iAL+A [.xq AlFEM:C [Ak M:C MG THM:G TEM:CG &G
I+ case(V, x; .My, x0.Mp) : C FrE (M, My) : G & G rEprj; M: G

Kathrin Stark Mechanising Syntax With Binders in Coq

Call—By—Push—Va|ue in Coq [Forster, Schifer, Spies, S '19]

Mechanisation in 8000 lines of Coq code of
m standard operational semantics for CBPV
» normalisation using logical relations
» adequacy of set/algebra semantics
m unrestricted operational semantics for CBPV

» confluence
» strong normalisation using Kripke logical relations
» soundness of equational theory

m translations of CBV/CEN into CBPV

» preservation of operational semantics

» confluence for full A-calculus

» strong normalisation for strong CBV/CBN

» soundness of equational theories

» adequate type-theoretic algebra semantics for CBV/CBN

Binders, substitutions, and reasoning is automated by Autosubst 2.

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 38 /43

Conclusion

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 39 /43

Conclusion

Main Contributions

m Mechanised proof that the ogp-calculus is confluent and terminating, following and
simplifying a previous proof by [Curien et al. '92]
m Development of Autosubst 2
» Introduction of EHOAS as specification language
» Handling of polyadic binders, first-class renamings, vector substitutions, with only first-order
binders, syntax with variadic binders
m Combination of Autosubst and modular syntax with an approached based on functors
and direct injections
m Mechanised meta-theory

» Concise, transparent, and accessible [Ayedemir et al. '05] proofs of strong normalisation

» Solution to the substitution-relevant parts of the POPLMark Challenge and POPLMark
Reloaded Challenge

» First truly modular proof of type safety and strong normalisation

Kathrin Stark Mechanising Syntax With Binders in Coq

Conclusion
Future Work

m Calculi of Explicit Substitutions
» Formal justification for custom syntax, see e.g. [Keuchel et al. '18]
» How do other variants of calculi of explicit substitutions, e.g. the shift calculus [Hardin and
Lévy, '89] work?
m Compiling syntactic specifications
» Extend the expressiveness even further, e.g. by dependent predicates [Keuchel et al. '18]
» Support for recursive functions [Allais et al. '17, Kaiser, Schifer, Stark '18]
» Support for switching to a named representation
m Modular syntax
» Support for scoped syntax and dependent predicates
» Solutions to the POPLMark challenge [Ayedemir et al. '05] and POPLMark Reloaded Challenge
[Abel et al. '19]
» Support of more dimensions of modularity [Delaware et al. '13]

Kathrin Stark Mechanising Syntax With Binders in Coq

Conclusion
Main Contributions
m Mechanised proof that the ogp-calculus is confluent and terminating, following and
simplifying a previous proof by [Curien et al. '92]
m Development of Autosubst 2
» Introduction of EHOAS as specification language
» Handling of polyadic binders, first-class renamings, vector substitutions, with only first-order
binders, syntax with variadic binders
m Combination of Autosubst and modular syntax with an approached based on functors
and direct injections
m Mechanised meta-theory

» Concise, transparent, and accessible [Ayedemir et al. '05] proofs of strong normalisation

» Solution to the substitution-relevant parts of the POPLMark Challenge and POPLMark
Reloaded Challenge

» First truly modular proof of type safety and strong normalisation

Thank you for your attention!

Publications

m Jonas Kaiser, Steven Schafer, and Kathrin Stark. Autosubst 2: Towards reasoning with multi-sorted de Bruijn
terms and vector substitutions. In Proceedings of the Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice, LFMTP '17, pages 10-14. ACM, 2017

m Jonas Kaiser, Steven Schafer, and Kathrin Stark. Binder aware recursion over well- scoped de Bruijn syntax. In
Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los
Angeles, CA, USA, January 8-9, 2018, pages 293-306, 2018

m Steven Schafer and Kathrin Stark.Embedding higher-order abstract syntax in type theory. In Abstract for Types
Workshop, June 18 — 21 2018

m Kathrin Stark, Steven Schafer, and Jonas Kaiser. Autosubst 2 :reasoning with multi- sorted de Bruijn terms and
vector substitutions. In Proceedings of the 8th ACM SIG- PLAN International Conference on Certified Programs
and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 166-180, 2019

m Yannick Forster, Steven Schafer, Simon Spies, and Kathrin Stark. Call-by-push- value in Coq: operational,
equational, and denotational theory. In Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 118-131, 2019

m Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano, Steven Schafer, and Kathrin
Stark. POPLMark Reloaded: Mechanizing proofs by logical relations. Journal of Functional Programming, 29:e19,
2019

m Yannick Forster and Kathrin Stark. Coq a la carte- a practical approach to modular syntax with binders. In
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New
Orleans, USA, January 20-21, 2020, January 2020

Kathrin Stark Mechanising Syntax With Binders in Coq

	Appendix

