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Syntax with Binders
Church’s Lambda Calculus [Church ’32]

Binders are a key ingredient of Church’s λ-calculus:

s := x | s t | λx .s

I A function λ f . f , x binds a variable f
I (λf .f x) g reduces to (f x)[f /g ] where each occurrence of f is substituted by g

Proofs such as
I type safety

I weak/strong normalisation

⇒ Binders are inevitable when talking about formal systems
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Mechanising in Coq

Interactive proof assistants allow to develop proofs restricted to a small set of
reasoning principles in interplay with a computer:

I Verification that only the agreed-on rules are used

I Automation of easy/repetitive cases

I Adaption of changes

Here: The Coq Proof Assistant
I Based on the Calculus of Inductive Constructions [Coquand Huet ’86, Coquand and Paulin ’88]

I Proof checking is reduced to type checking via the Curry-Howard Correspondence [Howard ’80]

⇒ Everything in this thesis is mechanised in Coq
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Mechanising in Coq

Interactive proof assistants allow to develop proofs restricted to a small set of
reasoning principles in interplay with a computer:

I Verification that only the agreed-on rules are used

I Automation of easy/repetitive cases

I Adaption of changes

Here: The Coq Proof Assistant
I Based on the Calculus of Inductive Constructions [Coquand Huet ’86, Coquand and Paulin ’88]

I Proof checking is reduced to type checking via the Curry-Howard Correspondence [Howard ’80]

⇒ Everything in this thesis is mechanised in Coq

Why mechanising the meta-theory of formal systems?
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Call-By-Push-Value in Coq [Forster, Schäfer, Spies, Stark ’19]

Syntax

(value types) A,B ::= 1 | U C | A1 × A2 | 0 | A1 + A2

(computation types) C ,D ::= > | F A | A→ C | C1 & C2

(environments) Γ ::= x1 : A1, . . . , xn : An

Value typing Γ ` V : A

(x : A) ∈ Γ

Γ ` x : A Γ ` () : 1

Γ ` M : C

Γ ` {M} : U C

Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 × A2

Γ ` V : Ai

Γ ` inji V : A1 + A2

Computation typing Γ ` M : C

Γ ` 〈〉 : >
Γ ` V : A

Γ ` return V : F A

Γ ` M : F A Γ, x : A ` N : C

Γ ` let x ← M in N : C

Γ, x : A ` M : C

Γ ` λx.M : A→ C

Γ ` M : A→ C Γ ` V : A

Γ ` M V : C

Γ ` V : U C

Γ ` V ! : C

Γ ` V : A1 × A2 Γ, x1 : A1, x2 : A2 ` M : C

Γ ` split(V , x1.x2.M) : C

Γ ` V : 0

Γ ` case0(V ) : C

Γ ` V : A1 + A2 Γ, x1 : A1 ` M1 : C Γ, x2 : A2 ` M2 : C

Γ ` case(V , x1.M1, x2.M2) : C

Γ ` M1 : C1 Γ ` M2 : C2

Γ ` 〈M1,M2〉 : C1 & C2

Γ ` M : C1 & C2

Γ ` prji M : Ci
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Call-By-Push-Value in Coq [Forster, Schäfer, Spies, S ’19]

Mechanisation in 8000 lines of Coq code of

standard operational semantics for CBPV
I normalisation using logical relations
I adequacy of set/algebra semantics

unrestricted operational semantics for CBPV
I confluence
I strong normalisation using Kripke logical relations
I soundness of equational theory

translations of CBV/CBN into CBPV
I preservation of operational semantics
I confluence for full λ-calculus
I strong normalisation for strong CBV/CBN
I soundness of equational theories
I adequate type-theoretic algebra semantics for CBV/CBN

How to represent binders and substitution?

Binders, substitutions, and reasoning is automated
by Autosubst 2.
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Contribution

A practical appraoch to mechanising syntax with
binders in Coq for a wide range of syntactic systems.
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“We assume an understanding
of the operation of substituting a

given symbol or formula for a particular
occurrence of a given symbol or formula”

Church, ’32
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What Does an Understanding of Substitution Comprise in Coq?
Example: Strong Normalisation for Call-by-Push-Value[Forster et al., ’19]

c[0tm, γ ◦ 〈↑〉][v ..] = c[v , γ]?

Expressions

Instantiation

Reasoning

Automatically
generated
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Related Work

Various ways to represent binders . . .

named syntax

unnamed syntax [de Bruijn ’72]

locally nameless [Aydemir et al. ’08]

parametric HOAS [Chlipala ’08]

nominal logic [Pitts ’01]

HOAS [Pfenning et al. ’88]

contextual modal TT [Nanevski et al. ’08]

. . .



Parts of a practical solution:

Works in a general-purpose proof
assistant, i.e., Coq

As little overhead from the user’s
side as possible

. . . and no consensus, see e.g. solutions to [Aydemir et al. ’05].
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Binders Come With Boilerplate [Rossberg et al.]

“Our experience [...] was more painful than we had anticipated. [...] Out of a total of around 550

lemmas, approximately 400 were tedious ”infrastructure” lemmas; only the remainder had direct

relevance to the metatheory of Fω or elaboration.

Problem: We need a large number of technical lemmas to reason about substitutions.
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Three Aspects of a Practical Presentation of Binders

Theoretical
Justification

Automatic Realisation
and Best Practices

Practical Evaluation
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Representation of Binders in the Lambda Calculus

1 Expressions:
I De Bruijn indices [de Bruijn ’72]

I Binders are presented by references, i.e. represented by natural numbers or a finite type:

λx .x(λy .y x) 7→ λ.0(λ.0 1)

⇒ α-equivalence is built-in

2 Substitution:
I Parallel substitutions, first instantiation with renamings [Adams ’04]

I Primitives of the σ-calculus [Abadi et al. ’91]

3 Reasoning:
I By reducing to a normal form w.r.t. the reduction rules of the σSP -calculus
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A Representation of Binders in the Lambda Calculus
Reasoning via Reduction to Normal Forms

Goal: Prove substitutivity of reduction, i.e. that s � t implies s[σ] � t[σ].

s[σ][t[σ]..] = s[var 0 ·σ ◦ 〈↑〉][t[σ] · var]

= s[(var 0 ·σ ◦ 〈↑〉) ◦ [(t[σ] · var)]] compositionality

= s[(var 0)[t[σ] · var] ·(σ ◦ 〈↑〉) ◦ [(t[σ] · var)]] distributivity

= s[(var 0)[t[σ] · var] ·σ(〈↑〉 ◦ [t[σ] · var])] associativity

= s[(t[σ] · var) 0 ·(σ ◦ [↑ (t[σ] · var)])] compositionality

= s[t[σ] ·(σ ◦ [var])] ·, interaction

= s[t[σ] ·σ] right identity

= s[t[σ] ·(var ◦ [σ])] left identity

= s[(t · var) ◦ [σ]] distributivity

= s[t · var][σ]. compositionality
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Representation of Binders in the Lambda Calculus

1 Expressions:
I De Bruijn indices [de Bruijn ’72]

I Binders are presented by references, i.e. represented by natural numbers or a finite type:

λx .x(λy .y x) 7→ λ.0(λ.0 1)

⇒ α-equivalence is built-in

2 Substitution:
I Parallel substitutions, first instantiation with renamings [Adams ’04]

I Primitives of the σ-calculus [Abadi et al. ’91]

3 Reasoning:
I By reducing to a normal form w.r.t. the reduction rules of the σSP -calculus

F Reduction in the σSP -calculus is sound and complete w.r.t. equality on the de Bruijn
algebra [Schäfer, Smolka, Tebbi ’15]

F Reduction in the σSP -calculus is convergent [Curien et al. ’92]
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Mechansing Convergence of the Sigma SP Calculus

Goal: To find a normal form, we require confluence and termination of the σSP -calculus.

Deferred by [Schäfer et al. ’15]:
While the verification of our decision method is not difficult (even in Coq), a verification of the
rewriting method is surprisingly complex since the existing termination proof [...] is far from
straightforward. We did not succeed in simplifying this proof and think that a formalization
with a proof assistant is a substantial enterprise.

Difficulty: Not trivially terminating

Proved for related calculi has been proven in different manners [Hardin and Laville ’86, Curien et

al. ’92, Zantema ’92]

Proof for σ-calculus mechanised in ALF [Kamareddine, Qiao ’03]
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Mechanising Convergence of the Sigma SP Calculus

Here: Mechanised for the exact system

Simplified the proof significantly by building in intermediate reduction systems

Merely 700 lines of code for convergence (Comparison: 1000 lines of code for verification
of the rewriting method)

(Local) confluence very easy due to automation of Coq, no critical pair analysis [Huet ’77,

Baader and Nipkow ’99] required
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Three Aspects of a Practical Presentation of Binders

Theoretical
Justification

Automatic Realisation
and Best Practices

Practical Evaluation
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Best Practices and Automatic Realisation

1 What are the best practices for syntax with binders for more extended systems?

2 How to make this reusable and how to avoid boilerplate?
I Development of Autosubst 2 [Stark, Kaiser, Schäfer ’19], a compiler from HOAS-like syntax

[Pfenning, Elliot ’88] to de Bruijn algebras + reasoning on de Bruijn algebras
I Approach via code generation [Sewell et al. ’07, Keuchel et al. ’16]

I The extended expressivity requires a fundamentally different design from Autosubst 1 [Schäfer,

Tebbi, Smolka ’15]
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The Autosubst 2 Compiler [Stark, Kaiser, Schäfer ’19]

A High-Level View

Coq

σ-calculus
model of

HOAS-like Specification, e.g.
app : tm → tm → tm
abs : (tm → tm) → tm

External
Based on code generation

unscoped/scoped de Bruijn [de Bruijn ’72]

+ parallel substitutions [de Bruijn ’72]

+ laws of σSP -calculus [Abadi et al. ’91]

+ notations and tactics

specification

Autosubst 2

de Bruijn
algebra

mechanised
meta-theory
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A High-Level View

Coq

σ-calculus
model of

HOAS-like Specification, e.g.
app : tm → tm → tm
abs : (tm → tm) → tm

External
Based on code generation

unscoped/scoped de Bruijn [de Bruijn ’72]

+ parallel substitutions [de Bruijn ’72]

+ laws of σSP -calculus [Abadi et al. ’91]

+ notations and tactics

specification

Autosubst 2

de Bruijn
algebra

mechanised
meta-theory

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 22 / 43



The Autosubst 2 Compiler [Stark, Kaiser, Schäfer ’19]
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The Autosubst 2 Tool
Generation of Code

HOAS Input

Dependency Graph

Abstract Proof Terms

Coq Code

Parsing/Analysis

Proof Generation

Code Generation

arr : ty → ty → ty

all : (ty → ty) → ty

...

↓

ty∗[ty] tm[ty,vl] vl∗[ty,vl]

↓

[ SentenceInductive (Inductive
[ InductiveBody "ty" [("n", TermConst Nat)]

TermType [...]]), ...]

↓
Inductive ty (n : nat) : Type :=
| var_ty : fin n → ty n

| arr : ty n → ty n → ty n

| all : ty (1 + n) → ty n.
...
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The Autosubst 2 Tool
Generation of Code

HOAS Input

Dependency Graph

Abstract Proof Terms

Unscoped
Coq Code

Parsing/Analysis

Proof Generation

Code Generation

Scoped
Coq Code

...
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Best Practices and Automatic Realisation

1 What are the best practices for syntax with binders for more extended systems?
I Applicable to: unscoped and scoped syntax [Bird, Paterson ’99], polyadic binders, first-class

renamings, external sorts and sort constructors, many-sorted syntax, mutual inductive

syntax, variadic syntax, simplified definitions for first-order sorts, and modular syntax

2 How to make this reusable and how to avoid boilerplate?
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What Is Needed for an Extension?

Three parts:
I Expressions

I Instantiation with substitutions
I Reasoning

Important:
I Restricted set of substitution primitives
I These primitives are strong enough to express the whole scope change
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Vector Substitutions [Stark, Kaiser, Schäfer ’19]

Example: Call-by-Value System F (FCBV)

Expressions

A,B ∈ ty ::= X | A→ B | ∀X .A Types

s, t ∈ tm ::= s t | s A | v Terms

u, v ∈ vl ::= x | λ(x : A).s | ΛX .s Values

Substitutions Vectorise parallel substitutions:

[ ; ] : vl→ (N→ ty)→ (N→ vl)→ vl

Reasoning Lift reasoning principles
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Vector Substitutions [S., Kaiser, Schäfer ’19]

Why Vector Substitutions?

Autosubst 1: Separate instantiation, e.g.

[ ]ty : vl→ (N→ ty)→ vl

[ ]vl : vl→ (N→ vl)→ vl

Problems:

We might need instantiation on both sorts to go under binders
⇒ No mutual inductive syntax

How to get an elegant equational theory, e.g. how to commute the different kinds of
instantiation?

s[τ ]vl [σ]ty = s[σ]ty [σ ◦ [τ ]ty ]vl

Not all terms come with instantiation of all substitutions, e.g. for types:

[ ] : ty→ (N→ ty)→ ty
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Variadic Syntax

Variadic binders bind a variadic number of n variables at once, e.g. in a multivariate
λ-calculus [Pottinger, ’90]:

s, t ∈ tmk ::= x | sk{tk1 ..tkn } | λn.sn+k x ∈ N

Other examples: Pattern matching, recursive let-bindings

Goal: Omit arithmetic reasoning on indices
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Variadic Syntax
Lifting the Monadic Primitives from the Sigma Calculus [Abadi et al. ’91] to Variadic Primitives

1 Variadic shifting ↑m: fin n→ fin (m + n)

2 Variadic head, hdm : fin m→ fin (m + n)

3 Variadic extension ·m : (fin m→ X )→ (fin n→ X )→ (fin (m + n)→ X ), which
precedes an arbitrary stream τ : fin n→ X with a new stream σ : fin m→ X :

+ definition of instantiation + adaption of reasoning principles
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Modular Syntax [Forster, Stark ’20]

The Expression Problem[Wadler, 2003]

You start with the λ-calculus:

s, t ∈ tm ::= x | s t | λx .s

You give
I recursive functions on terms,
I proofs by induction on terms,
I and predicates and proofs over the terms.

. . . and then want to extend this calculus, e.g. by boolean expressions:

s, t ∈ tm ::= · · · | b | if s then t else u

True modularity: “[..] add new cases to the datatype [..] without recompiling existing
code.”
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Modular Syntax [Forster, Stark ’20]

A Practical Approach to Modular Syntax [Forster, Stark ’20]

Modular syntax via functors and variants with direct injections inspired by Data Types à
la Carte [Swierstra ’08]:

Inductive exp λ (exp : Type) :=
| var : nat → exp λ exp

| app : exp → exp → exp λ exp

| abs : exp → exp λ exp.

Inductive exp :=
| injλ : exp λ exp → exp

| injB : exp → exp.

Tool support:
I Boilerplate generation with an extension of Autosubst 2
I Assembling via MetaCoq [Sozeau et al., 2019]

Result:
I Practical modular developments
I Improvement from 1000 loc/feature to 125 loc/feature

Kathrin Stark Mechanising Syntax With Binders in Coq February 14 32 / 43



Modular Syntax [Forster, Stark ’20]

Modular Syntax with Binders

1 Expressions:
I Parameterised by full expressions

2 Substitution:
I Parallel substitutions, parameterised by instantiation for full expressions
I Same primitives of the σ-calculus

3 Reasoning:
I Substitution laws for features parameterised by substitution laws for full expressions
I Rewriting with substitution laws + equations for feature functions
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Three Aspects of a Practical Presentation of Binders

Theoretical
Justification

Automatic Realisation
and Best Practices

Practical Evaluation
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Practical Mechanisations of Meta-Theory

Goal: See the performance in actual developments on the meta-theory

Criteria:
I Substitution-heavy case studies such as type safety or normalisation
I Used in challenges, such as the POPLMark Challenge [Aydemir et al. ’05] or POPLMark

Reloaded Challenge [Abel, Allais, Hameer, Pientka, Momigliano, Schäfer, Stark 19]

Evaluation:
Concise, transparent, and accessible1 proofs of type safety, equivalence of algorithmic
and definitional equivalence, the meta-theory of call-by-push-value

I Competitive on case studies tested with native support for binders except for names
I Features of a general-purpose proof assistant were valuable
I Built in new features such as support for first-order renamings or first-order sorts due to case

studies

1[Aydemir et al. ’05]
Kathrin Stark Mechanising Syntax With Binders in Coq February 14 35 / 43



Case Studies for Autosubst 2
Contents Spec Proofs

POPLMark challenge, part A [Aydemir et al. ’05] 151 165

Scoped variant of the POPLMark
Reloaded Challenge, strong normalisation for
STLC + Sums [Abel et al. ’17]

248 312

Weak normalisation of call-by-value
System F

114 60

Equivalence of algorithmic
and definitional equivalence [Crary ’05, Cave and Pientka ’15]

88 135

Call-By-Push-Value [Levy ’99, Forster, Schäfer, Spies, Stark ’19] 3950 3750

Modular development of preservation/weak
head normalisation/strong normalisation
for a modular λ-calculus with boolean and arithmetic expressions[Forster and Stark ’20]

540 655

First-order syntax [Kirst et al. ’20]

Undecidability of higher-order unification [Spies and Forster ’20]
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Call-By-Push-Value in Coq [Forster, Schäfer, Spies, Stark ’19]

Syntax

(value types) A,B ::= 1 | U C | A1 × A2 | 0 | A1 + A2

(computation types) C ,D ::= > | F A | A→ C | C1 & C2

(environments) Γ ::= x1 : A1, . . . , xn : An

Value typing Γ ` V : A

(x : A) ∈ Γ

Γ ` x : A Γ ` () : 1

Γ ` M : C

Γ ` {M} : U C

Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 × A2

Γ ` V : Ai

Γ ` inj iV : A1 + A2

Computation typing Γ ` M : C

Γ ` 〈〉 : >
Γ ` V : A

Γ ` return V : F A

Γ ` M : F A Γ, x : A ` N : C

Γ ` let x ← M in N : C

Γ, x : A ` M : C

Γ ` λx.M : A→ C

Γ ` M : A→ C Γ ` V : A

Γ ` M V : C

Γ ` V : U C

Γ ` V ! : C

Γ ` V : A1 × A2 Γ, x1 : A1, x2 : A2 ` M : C

Γ ` split(V , x1.x2.M) : C

Γ ` V : 0

Γ ` case0(V ) : C

Γ ` V : A1 + A2 Γ, x1 : A1 ` M1 : C Γ, x2 : A2 ` M2 : C

Γ ` case(V , x1.M1, x2.M2) : C

Γ ` M1 : C1 Γ ` M2 : C2

Γ ` 〈M1,M2〉 : C1 & C2

Γ ` M : C1 & C2

Γ ` prji M : Ci
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Call-By-Push-Value in Coq [Forster, Schäfer, Spies, S ’19]

Mechanisation in 8000 lines of Coq code of

standard operational semantics for CBPV
I normalisation using logical relations
I adequacy of set/algebra semantics

unrestricted operational semantics for CBPV
I confluence
I strong normalisation using Kripke logical relations
I soundness of equational theory

translations of CBV/CBN into CBPV
I preservation of operational semantics
I confluence for full λ-calculus
I strong normalisation for strong CBV/CBN
I soundness of equational theories
I adequate type-theoretic algebra semantics for CBV/CBN

Binders, substitutions, and reasoning is automated by Autosubst 2.
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Conclusion
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Conclusion
Main Contributions

Mechanised proof that the σSP-calculus is confluent and terminating, following and
simplifying a previous proof by [Curien et al. ’92]

Development of Autosubst 2
I Introduction of EHOAS as specification language
I Handling of polyadic binders, first-class renamings, vector substitutions, with only first-order

binders, syntax with variadic binders

Combination of Autosubst and modular syntax with an approached based on functors
and direct injections

Mechanised meta-theory
I Concise, transparent, and accessible [Ayedemir et al. ’05] proofs of strong normalisation
I Solution to the substitution-relevant parts of the POPLMark Challenge and POPLMark

Reloaded Challenge
I First truly modular proof of type safety and strong normalisation
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Conclusion
Future Work

Calculi of Explicit Substitutions
I Formal justification for custom syntax, see e.g. [Keuchel et al. ’18]

I How do other variants of calculi of explicit substitutions, e.g. the shift calculus [Hardin and

Lévy, ’89] work?

Compiling syntactic specifications
I Extend the expressiveness even further, e.g. by dependent predicates [Keuchel et al. ’18]

I Support for recursive functions [Allais et al. ’17, Kaiser, Schäfer, Stark ’18]

I Support for switching to a named representation

Modular syntax
I Support for scoped syntax and dependent predicates
I Solutions to the POPLMark challenge [Ayedemir et al. ’05] and POPLMark Reloaded Challenge

[Abel et al. ’19]

I Support of more dimensions of modularity [Delaware et al. ’13]
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Conclusion
Main Contributions

Mechanised proof that the σSP-calculus is confluent and terminating, following and
simplifying a previous proof by [Curien et al. ’92]

Development of Autosubst 2
I Introduction of EHOAS as specification language
I Handling of polyadic binders, first-class renamings, vector substitutions, with only first-order

binders, syntax with variadic binders

Combination of Autosubst and modular syntax with an approached based on functors
and direct injections

Mechanised meta-theory
I Concise, transparent, and accessible [Ayedemir et al. ’05] proofs of strong normalisation
I Solution to the substitution-relevant parts of the POPLMark Challenge and POPLMark

Reloaded Challenge
I First truly modular proof of type safety and strong normalisation

Thank you for your attention!
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