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AbstractThis thesis consists of two parts. In the �rst part we present propagation al-gorithms, which are used for solving constraint satisfaction problems (CSP).One approach to solve a CSP is based on interleaving constraint propagationand search. The task of a propagation algorithm is to prune portions of thesearch space which do not contain a solution so that the search does nothave to explore them. We present propagation algorithms for the followingconstraints: Sortedness, Alldi�, WeightedPartialAlldi� and NonOverlapping(of two convex polygons).The second part deals with a tree processing problem, which is repre-sented as a dominance graph. The task is to assemble a collection of treefragments into a tree T such that the ancestor relation of T satis�es somegiven constraints. We discuss eÆcient algorithms for deciding whether adominance graph D has a solved form and for enumerating all (minimal)solved forms of D.
ZusammenfassungDiese Arbeit besteht aus zwei Teilen. Im ersten Teil behandeln wir Propagier-ungsalgorithmen zum L�osen von Constraint-Problemen. Ein L�osungsansatzbasiert darauf, Constraint-Propagierung und Suche abzuwechseln. Durchdie Propagierung werden Teile des Suchraumes eliminiert, die keine L�osungenthalten. Dadurch verringert sich der Raum, der von der Suche exploriertwerden mu�, und die L�osung(en) werden oftmals schneller gefunden als durchSuche alleine. Wir beschreiben Propagierungsalgorithmen f�ur folgende Con-straints: Sortedness, Alldi�, WeightedPartialAlldi� und NonOverlapping.Der zweite Teil behandelt ein Baumverarbeitungsproblem, das durch einenDominanzgraphen beschrieben wird. Das Problem besteht darin, Baumfrag-mente so zu einem Baum zusammen zu setzen, da� bestimmte Anforderun-gen an die Vorfahr-Relation des Baumes erf�ullt sind. Wir entwickeln einenLinearzeit L�osbarkeitstest und eÆziente Algorithmen zum Aufz�ahlen aller(minimalen) gel�osten Formen eines Dominanzgraphen.
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Chapter 1Road mapThe purpose of this chapter is to give the reader an overview of the organisa-tion of this thesis. The thesis is divided in two parts: The �rst part discussespropagation algorithms for some constraints. The second part deals withdominance graphs, these graphs can be used to represent and solve sometree processing problems arising in computational linguistics.The �rst part has the following structure: In Chapter 2, we discuss someprerequisites. Then we present propagation algorithms for the following con-straints:� Sortedness and Alldi� in Chapter 3:The constraint Sortedness(X1; : : : ; Xn;Y1; : : : ; Yn) holds i� sorting thesequence [X1; : : : ; Xn] (in non-descending order) yields the sequence[Y1; : : : ; Yn]. The constraint Alldi�(X1; : : : ; Xn) holds i� X1; : : : ; Xnare pairwise di�erent. The two constraints are discussed in one chapterbecause the corresponding propagation algorithms are closely related.� WeightedPartialAlldi� (abbreviated as WPA) in Chapter 4:The constraint WPA(X1; : : : ; Xn; undef ;T ;W ) is a generalization ofAlldi�. Not all assignment variables X1; : : : ; Xn have to take di�erentvalues; the special value undef may be assigned to several variables.Only those assignment variables which are not equal to undef have totake pairwise distinct values. Moreover, with every value di�erent fromundef that occurs in one of the domains Dom(X1), . . . , Dom(Xn) weassociate a weight that is determined by the value-weight table T . Theconstraint states that Pni=1 weight(Xi) = W , where W is the weightvariable.� NonOverlapping in Chapter 5:This constraint states that two objects in the two-dimensional plane1



2 CHAPTER 1. ROAD MAPR2 should not overlap. The shape of each object is determined by aconvex polygon Shp and the position of each object is speci�ed by twovariables X and Y . The actual object is obtained by applying thetranslation vector (X; Y ) to Shp.Each of these chapters is roughly organized as follows: First we describethe constraint in an informal way, then we de�ne it formally. After that wepresent and analyse a propagation algorithm. We conclude with a discussionof related work. The fact that we talk about related work at the end of eachpresentation does not mean that we consider this work as unimportant. Itjust turns out that it easier to compare this work with our work after wehave presented our algorithms.The second part deals with dominance graphs. Informally, such a graphconsists of a collection of tree fragments which have to be assembled into atree T such that some given constraints are satis�ed. These constraints havethe form \node u should dominate node v", which means that u should bean ancestor of v in T .The second part has the following structure: In Chapter 6 we brieydiscuss a problem from computational linguistics (called scope underspeci�-cation) as a motivation for the subsequent work. We proceed with some basicde�nitions: We de�ne (among other notions) dominance graphs and solvedforms. In Chapter 7 we describe a linear time algorithm that can decidewhether a given dominance graph is solvable or not. In Chapter 8 we showhow the (minimal) solved forms of a dominance graph can enumerated eÆ-ciently. Chapter 9 concludes the second part of the thesis with a discussionof related work.



Chapter 2PrerequisitesIn this chapter we introduce some fundamental concepts that are used in the�rst part of this thesis, which presents propagation algorithms for severalconstraints.In the �rst section of this chapter we introduce constraint programmingbriey. We discuss what a constraint satisfaction problem (CSP) is and howit can be solved. The presentation is focused on the properties of propaga-tion algorithms and how these algorithms participate in solving a CSP. Thesecond section gives an overview of basic notions related to graphs and multi-graphs. (This section is also relevant for the second part this thesis.) Finally,the third section describes some fundamental concepts from (computational)geometry.2.1 Constraint ProgrammingWe give a short introduction to the �eld of constraint programming which isbased on a textbook by Apt [Apt03]. Before we formally introduce the basicnotions, we give a brief historical overview on the development of the �eldand name some application areas.The notion of a constraint was already used by Sutherland in 1963 inhis work on an interactive drawing system called SKETCHPAD. The con-cept of a constraint satisfaction problem was studied by researchers in thearti�cial intelligence (AI) community in the seventies. From their work theconstraint programming paradigm emerged: The basic idea is to combine ex-isting search methods like backtracking or branch-and-bound with constraintpropagation techniques (methods to prune the search space). As the applica-tion areas for constraint programming grew in the course of time, new typesconstraints were identi�ed and new propagation algorithms for them were3



4 CHAPTER 2. PREREQUISITESdeveloped. Often, progress was made by using and combining techniquesfrom di�erent �elds like AI, operations research, combinatorial optimizationor computer algebra. This made constraint programming an attractive areafor researchers outside the AI community.In the �eld of constraint programming, practice and theory are closely re-lated. The constraints arising in practical applications often drive the theo-retical work, and in turn the applications bene�t from the theoretical results.We enumerate some examples where constraint programming has beensuccessfully used:� operations research problems (various optimization problems, in par-ticular scheduling)� molecular biology (DNA sequencing, construction of 3D models of pro-teins)� business applications (option trading)� electrical engineering (location of faults in circuits, computing the cir-cuit layouts, testing and veri�cation of design)� numerical computation (solving polynomial constraints with guaran-teed precision)� natural language processing (construction of eÆcient parsers)� computer algebra (solving and/or simplifying equations of various al-gebraic structures)In the sequel we formally de�ne the notion of a constraint satisfactionproblem and related concepts. A variable X is an object that is associatedwith a set Dom(X), called the domain ofX. The domain consists of all valuesthat can be assigned to X. Suppose we have a �nite sequence of variablesX = [X1; : : : ; Xk] (with k � 1). (The order of the variables is important,and we allow that a variable appears more than once.) A constraint C on Xis a tuple (X ;R) such that R � Dom(X1)� : : :� Dom(Xk). We call X thevariable sequence of C and denote it by Vars(C), and R is called the relationof C and denoted by Rel(C). We say that a tuple (d1; : : : ; dk) satis�es C if(d1; : : : ; dk) 2 Rel(C).Now we are ready to de�ne what a constraint satisfaction problem is:De�nition 2.1 (CSP) A constraint satisfaction problem (CSP) P is a tu-ple (V; C) such that V = fX1; : : : ; Xng is a �nite set of variables, C is a �niteset of constraints and each constraint C in C is a constraint on a sequence



2.1. CONSTRAINT PROGRAMMING 5of variables in V. We write P as hX1 2 Dom(X1); : : : ; Xn 2 Dom(Xn) ; Ci.A variable assignment for P is a mapping � : V ! Sni=1Dom(Xi) such that�(Xi) 2 Dom(Xi) for i = 1; : : : ; n. For a sequence X = [Xi1 ; : : : ; Xik ] ofvariables of V we de�ne �[X ] := (�(Xi1); : : : ; �(Xik)). We say that � satis-�es a constraint C in C if �[Vars(C)] 2 Rel(C). � is a solution of P if itsatis�es all constraints in C. We write � as [X1 = �(X1); : : : ; Xn = �(Xn)].P is called consistent if it has a solution and inconsistent otherwise.The search space of P is de�ned as the set of all variable assignments for Pand denoted by S(P).In many applications a constraint is not speci�ed as a tuple (X ;R) butrather in a symbolic way. E.g., \X < Y " denotes the constraint ([X; Y ];R)with R = f(x; y) j x 2 Dom(X) ^ y 2 Dom(Y ) ^ x < yg. Thus the interpre-tation of a symbolic constraint depends on the domains of its variables andon the semantics associated with the constraint.Example. It is now time to give an example for a constraint satisfactionproblem. We consider the famous puzzleS E N D+ M O R EM O N E YThe task is to replace each letter by a di�erent digit such that the summationabove becomes correct. As we shall see, the puzzle has a unique solutionwhich is depicted below: 9 5 6 7+ 1 0 8 51 0 6 5 2We will now model this puzzle as a CSP. We use the variables S, E, N ,D, M , O, R and Y . Since S and M represent leading digits, we choosethe integer interval [1::9] as their domains. The domain of each remainingvariable is [0::9]. The puzzle can be formulated as follows:1000 � S + 100 � E + 10 �N + D+ 1000 �M + 100 �O + 10 �R + E= 10000 �M + 1000 �O + 100 �N + 10 � E + YThis condition can be modelled by the linear equality constraint CLE whereVars (CLE) = [S;E;N;D;M;O;R; Y ] and Rel(CLE) consists of all tuples(s; e; n; d;m; o; r; y) 2 Dom(S)� : : :� Dom(Y ) that satisfy9000 �m + 900 � o+ 90 � n+ y � 1000 � s� 91 � e� 10 � r � d = 0



6 CHAPTER 2. PREREQUISITESWe still have to express the requirement that the 8 digits are pairwisedi�erent. We could do this with an inequality constraint of the form \A 6= B"for each pair of variables, this would yield �82� = 28 inequality constraintsin total. But we can also use a single constraint which expresses all theseinequalities at once:CA = Alldi�(S;E;N;D;M;O;R; Y )We have Vars(CA) = Vars(CLE), and Rel(CA) consists of all the tuples inDom(S)� : : :� Dom(Y ) where the components are pairwise di�erent.This may look a little bit like cheating and the reader may wonder why we donot express the whole problem as a single constraint, which is of course alsopossible. The answer is that many constraint programming systems o�erthe Alldi� -constraint to the user and can handle it eÆciently. In fact, inChapter 3 we will discuss this constraint in more detail.In the sequel we describe a generic procedure1 which can compute allsolutions of a constraint satisfaction problem (see Algorithm 2.1). The algo-rithm uses two main ingredients: constraint propagation, which prunes partsof the search space that do not contain a solution, and search, which exploresthe remaining parts.The procedure SolveCSP(P) starts by applying constraint propagationto P. This step transforms P into an equivalent and (hopefully) simpler CSPP 0. By equivalent we mean that P and P 0 have exactly the same variables andthe same solutions, only the domains of the variables and the constraints maybe di�erent. We require that the domains in P 0 are subsets of the domainsin P, i.e. constraint propagation can only shrink the search space.Let us call a variable determined if its domain is a singleton. A CSP iscalled ground if all its variables are determined. For many CSPs it is hardto decide whether they are consistent or not. As long as the function callPropagateConstraints(P) returns a CSP P 0 which is not ground, we onlyrequire that P 0 and P are equivalent. But if P 0 is ground, then it must beconsistent, i.e. the only assignment � for P 0 must be a solution. Hence, whilethe input P is not ground, the function PropagateConstraints may returnP itself. But if P is ground, constraint propagation must check whether Pis consistent, and if not reduce a variable domain to the empty set.In many cases, constraint propagation can simplify P even if it is not ground,we will discuss this in detail later.Now we continue with the description of Algorithm 2.1. The algorithmdistinguishes three cases for P 0:1There are approaches which are more generic than ours (see [Apt03]), but this isbeyond the scope of this short introduction.



2.1. CONSTRAINT PROGRAMMING 7� P 0 is ground:Then there is only one possible assignment � for P 0. Since our as-sumptions about the function PropagateConstraints imply that P isconsistent, we conclude that � is the unique solution of P 0. We report �and terminate. As P 0 and P are equivalent, � is also the only solutionof P.� At least one domain of P 0 is empty:Then there is no possible assignment, i.e. P 0 is inconsistent and weterminate. Observe that constraint propagation can reduce a variabledomain to the empty set, if the input CSP P is inconsistent.� There is no empty domain, and at least one domain contains more thanone element:Then we call the procedure SplitOneDomain. This procedure choosesa variable X with jDom(X)j � 2 and splits it into two non-empty dis-joint sets D1 and D2. Suppose P 0 = hX 2 Dom(X);D ; Ci, where Ddescribes the domains of the variables di�erent from X. Then the pro-cedure generates the CSP Pi = hX 2 Di;D ; Cii for i = 1; 2. Ci consistsof the constraints of C where the relations are restricted according tothe new domain of X. So SplitOneDomain also splits the search space:S(P 0) = S(P1) _[S(P2). (In particular, every solution of P 0 is a solutionof either P1 or P2, and vice versa.) Thus this function determines howthe search space of P 0 is explored. The CSPs P1 and P2 are solvedrecursively.From the discussion above it should be clear that the algorithm is correct,if the constraint propagation and the domain splitting satisfy the conditionsmentioned above. If all domains of P are �nite, then termination is guaran-teed.Algorithm 2.1 Solving a constraint satisfaction problemProcedure: SolveCSP(P)1: P 0  PropagateConstraints(P)2: case 1: P 0 is ground (i.e. every variable domain is a singleton)3: report the unique variable assignment for P 0 as solution4: case 2: some variable domain of P 0 is empty5: terminate // P 0 and P are inconsistent6: otherwise7: (P1;P2) SplitOneDomain(P 0) // implements the search strategy8: SolveCSP(P1); SolveCSP(P2)



8 CHAPTER 2. PREREQUISITESOne can easily imagine some variations of this algorithm. If the domainsof the variables are intervals of real numbers, one might stop as soon as thefollowing holds: the size of all intervals is smaller than a certain threshold� > 0 and all assignments for P are solutions. (Clearly, the latter conditionis in general not easy to check, but in some cases it is possible.) If only onesolution of P is needed, one can terminate all recursive calls as soon as the�rst solution is found.To put it in a nutshell, in order to solve a CSP we interleave constraintpropagation and search (i.e. domain splitting) until we �nd a solution orwe have generated an inconsistent instance. The two main ingredients forSolveCSP, namely PropagateConstraints and SplitOneDomain, will be dis-cussed in the next two sections.2.1.1 Constraint propagationThis section explains some details about constraint propagation and lays thefoundation for the remaining chapters of the �rst part of this thesis. Recallthat we are given a CSP P and we want to transform it into an equivalentbut simpler CSP P 0. The term \simpler" means that the variable domainsand the relations of the constraints become smaller. An important goal ofconstraint propagation is to increase the overall performance of a constraintsolver: Narrowing domains shrinks the search space that has to be exploredby domain splitting. Thus constraint propagation usually saves more timethan it costs.Let us examine a small example that demonstrates what domain narrow-ing (also called pruning) is all about: P = hX 2 [3::7]; Y 2 [2::6] ; X < Y i.Since Y can be at most 6, we conclude that X is at most 5, hence we canshrink its domain to [3::5]. As X is at least 3, Y must be at least 4 andwe can narrow the domain of Y to [4::6]. Thus we obtain the programP 0 = hX 2 [3::5]; Y 2 [4::6] ; X < Y i. This program cannot be simpli�edfurther, because [X = 3; Y = 4], [X = 4; Y = 5] and [X = 5; Y = 6] aresolutions of the two CSPs.Observe that this reduction also works if the CSP contains additionalconstraints di�erent from \X < Y " like in the following example:Q = hX 2 [3::7]; Y 2 [2::6]; Z 2 [3::6] ; X < Y; Y < ZiBy the arguments above we can narrow the domains of X and Y as follows:Q0 = hX 2 [3::5]; Y 2 [4::6]; Z 2 [3::6] ; X < Y; Y < ZiNow we do an analogous narrowing step for \Y < Z":Q00 = hX 2 [3::5]; Y 2 [4::5]; Z 2 [5::6] ; X < Y; Y < ZiThis enables us to prune the domain of X once more:



2.1. CONSTRAINT PROGRAMMING 9Q000 = hX 2 [3::4]; Y 2 [4::5]; Z 2 [5::6] ; X < Y; Y < ZiAfter that no further simpli�cation is possible. We invite the reader tocheck that three steps would also have been necessary if we had startedthe propagation with the constraint \Y < Z".From the examples above we can learn two important facts about con-straint propagation:� Each constraint can be propagated independently from all other con-straints.� In order to achieve the maximum amount of pruning, it may be neces-sary to propagate the same constraint more than once.Therefore many constraint solvers (like e.g. Oz [SS03]) have the followingarchitecture (see Figure 2.1): There is a domain store, which contains thevariables of the CSP and their respective domains. For every constraint2 C ofthe CSP there is a propagator attached to the store. Whenever the domainof a variable in Vars(C) has changed (because a propagator has narrowedit or due to SplitOneDomain), the constraint solver invokes the propagatorcorresponding to C. The propagator reads the current domains of Vars(C)from the store and runs an appropriate propagation algorithm which tries toprune the domains. When the propagation algorithm returns, the narrowedvariable domains are written to the domain store.
Propagators:

Domain store:

Y < ZX < YX 2 [3::7]; Y 2 [2::6]; Z 2 [3::6]Figure 2.1: The domain store and the attached propagators for Q.The constraint solver invokes the propagators for the di�erent constraintsuntil one variable domain becomes empty or the domain store becomes stable,which means that no propagator is able to reduce a domain anymore. In somecases the propagator for a constraint C can discover that the domain storeentails C, which means that any possible assignment satis�es C. Consider2In the Oz model the terminology is slightly di�erent: a domain requirement of theform X 2 Dom(X) is called a basic constraint, and what we call a \constraint" is called acomplex constraint, because it requires a propagator.



10 CHAPTER 2. PREREQUISITESe.g. R = hX 2 [3::5]; Y 2 [8::9] ; X < Y i. Any assignment for R satis�es\X < Y ", thus this constraint can be removed.We want to point out that the relations of the constraints are usually notstored explicitly because the constraints are given to the constraint solver ina symbolic (i.e. implicit) way. The user would write for instance \X < Y "instead of entering every tuple in the corresponding relation. Thus the prop-agator \knows" the semantics of its constraint and it can call a propagationalgorithm which enforces this particular semantics. We will clarify this inthe next section.Propagation algorithmWe will now discuss the concept of a propagation algorithm. The propa-gation algorithms that will be considered in this thesis do not apply to anarbitrary constraint, but rather to a class of constraints like the class ofAlldi�-constraints.3 The actual constraint is determined by the variables(with their respective domains) and the semantics of the constraint class.E.g., the relation of the constraint A := Alldi�(X1; X2; X3) is uniquely de-termined by the variable domains and the semantics of Alldi�:Rel(A) = f(d1; d2; d3) j d1 2 Dom(X1) ^ d2 2 Dom(X2) ^ d3 2 Dom(X3)^ d1 6= d2 6= d3 6= d1gA formal de�nition of the notion \constraint class" follows:De�nition 2.2 (constraint class) A set K of constraints is called a con-straint class if it satis�es the following properties:� For every sequence D1; : : : ; Dk of domains there is exactly one con-straint C 2 K of arity k, i.e. Vars(C) = [X1; : : : ; Xk], such thatDom(Xi) = Di for i = 1; : : : ; k.� Let D1; : : : ; Dk and D01; : : : ; D0k be two sequences of domains and letC and C 0 denote the corresponding constraints in K. If Di � D0i fori 2 [1::k], then Rel(C 0) = Rel(C) \ (D01 � : : :�D0k).The input of a propagation algorithm that applies to a particular classK of constraints does not contain the constraint itself. The input consistsonly of the variable domains D1; : : : ; Dk. This determines a constraint Cwith Rel(C) � D1 � : : :�Dk in K. In the following de�nition we de�ne therequirements for a propagation algorithm:3However, it is common practice to talk about a \propagation algorithm for the Alldi� -constraint" when one actually refers to an algorithm for the Alldi� -class. We adopt thispractice later, too.



2.1. CONSTRAINT PROGRAMMING 11De�nition 2.3 (propagation algorithm) A propagation algorithmA fora class K of constraints takes as input a sequence D1; : : : ; Dk of domains andcomputes a sequence D01; : : : ; D0k of domains and a status value. Let C be theconstraint in K determined by D1; : : : ; Dk (that is Vars(C) = [X1; : : : ; Xk]and Dom(Xi) = Di for i = 1; : : : ; k).We require that the following holds:1. Rel(C) � D01 � : : :�D0k (i.e. no solution of C is pruned).2. D0i � Di for i = 1; : : : ; k (i.e. domains can only shrink).3. status 2 ffailure; entailment; successg and if status equals� failure, then D0i = ; for some i.� entailment, then D01 � : : :�D0k � Rel(C), and D0i 6= ; for all i.� success, then jD0ij � 2 for some i, and D0j 6= ; for all j.We call A idempotent if applying A to its output domains always yields thesame output domains again.We want to make some comments. Assume that C is a constraint in aCSP P and that A is a propagation algorithm that applies to the class of C.Let Vars(C) = [X1; : : : ; Xk] and suppose that P has the formP = hX1 2 D1; : : : ; Xk 2 Dk;D ; fCg [ Ciwhere D describes the domains of the variables in P that are not in Vars(C)and C is a set of constraints. Let D01; : : : ; D0k be the domains obtained byinvoking A on D1; : : : ; Dk. Property 1 from the de�nition above ensures thatP is equivalent to the CSP P 0 with the narrowed domains:P 0 = hX1 2 D01; : : : ; Xk 2 D0k;D ; fCg [ C 0iwhere C 0 is obtained by restricting the relations of the constraints in C to thenarrowed domains. Hence, the pruning done for C does not a�ect Rel(C)but possibly the relations of other constraints in P.If A returns failure, then Rel(C) = ; (see Property 1) and P is inconsistent.If entailment is returned, then we have Rel(C) = D01� : : :�D0k. In that caseP is equivalent to P 00 = hX1 2 D01; : : : ; Xk 2 D0k;D ; C 0ii.e. C can be removed.



12 CHAPTER 2. PREREQUISITESObserve that our requirements for a propagation algorithm are not verydemanding. As long as there is an undetermined variable, the algorithmmay return the input domains and report success. Only if all domains aresingletons, the algorithm has to check whether the corresponding tuple is asolution of C and return failure or entailment.The function PropagateConstraintsWe consider now a CSP P = hX1 2 D1; : : : ; Xn 2 Dn ; Ci, where the domainsD1; : : : ; Dn are �nite. We discuss a possible implementation of the functionPropagateConstraints(P) from above. It uses propagation algorithms topropagate all the constraints of P. Our algorithm is based on an algorithmcalled Arc by Apt [Apt03, page 273]. We assume that for each constraintC of P we have a propagation algorithm propagateC for the class of C.Our algorithm computes a sequence D01; : : : ; D0n of domains such that P 0 =hX1 2 D01; : : : ; Xn 2 D0n ; C 0i is equivalent to P. Every constraint C 0 2 C 0corresponds to a constraint C 2 C for which entailment has not been detected.We have Vars(C 0) = Vars(C) = [Xi1 ; : : : ; Xik ] and Rel(C 0) = Rel(C)\ (D0i1�: : :�D0ik).Suppose that all propagation algorithms are deterministic. Thus each ofthem can be interpreted (mathematically) as a function that maps a tuple ofdomains to a tuple of domains (if we ignore the status value for the moment).Unless P is inconsistent, the algorithm �nds a common �xpoint of thesefunctions, which is de�ned as follows: Let C be a constraint with Vars(C) =[Xi1 ; : : : ; Xik ]. We say that D01 � : : : � D0n is a �xpoint of propagateC ifpropagateC maps (D0i1 ; : : : ; D0ik) to (D0i1 ; : : : ; D0ik) itself.Algorithm 2.2 is straightforward: It applies the propagation algorithmsexhaustively until failure is reported or a �xpoint is reached. The algorithmmaintains two sets of constraints S0 and S. S0 consists of all constraints ofP for which entailment has not been detected. An invariant of the algorithmwill be that the set S contains (at least) all the constraints for which thecurrent variable domains are not a �xpoint. At the beginning both S0 andS contain all constraints of P and the invariant holds.Now we describe the main loop of the algorithm. As long as S is notempty, the algorithm chooses a constraint C in S. Let Xi1 ; : : : ; Xik be thevariables of C with their respective current domains E1; : : : ; Ek. The prop-agation algorithm propagateC is applied to E1; : : : ; Ek; it returns narroweddomains E 01; : : : ; E 0k and a status value. For j = 1; : : : ; k we replace the cur-rent domain Dom(Xij ) by Dom(Xij ) \ E 0j. (We do not replace the domainsimply by E 0j because Xij might occur more than once in Vars(C).)Now we distinguish three cases: If failure has occurred (i.e. one variable do-



2.1. CONSTRAINT PROGRAMMING 13main has become empty), we terminate and return a CSP where at least onevariable domain is empty, namely a domain of a variable in Vars(C). If thereturned status is entailment, we remove C from both S0 and S. (Observethat the variable domains will always be a �xpoint of propagateC from nowon, because the domains can only shrink.) If the propagation algorithm re-turns success and the output domains are the same as the input domains,then these domains are a �xpoint of C and we remove C from S. (Notethat we do not require that propagateC is idempotent; otherwise we couldremove it, even if the domains have changed.)If no failure has occurred, we update S: We insert every constraint C 0 2 S0such that Vars(C 0) contains a variable Xij whose domain has changed duringthis iteration, for the new domains may not be a �xpoint of these constraintsanymore. This establishes the invariant again: All constraints of P for whichthe current domains are not a �xpoint are contained in S.Algorithm 2.2 Constraint propagationFunction: PropagateConstraints(P)1: S0  fC j C is a constraint of Pg2: S  S03: while S 6= ; do4: choose C 2 S; suppose Vars(C) = [Xi1 ; : : : ; Xik ]5: Ej  Dom(Xij) for j = 1; : : : ; k6: (E 01; : : : ; E 0k; status) propagateC(E1; : : : ; Ek)7: Dom(Xij ) Dom(Xij) \ E 0j for j = 1; : : : ; k8: case 1: Dom(Xij) = ; for some j 2 [1::k] // failure9: break from while-loop10: case 2: status = entailment11: remove C from S0 and from S12: case 3: status = success13: if E 01 = E1 ^ : : : ^ E 0k = Ek then remove C from S14: for all j in [1::k] s.th. E 0j 6= Ej do15: S  S [ fC 0 2 S0 j Xij 2 Vars(C 0)g16: end while17: return the CSP P 0 containing the current variable domains and the con-straints in S0 (restricted to those domains)When the main loop of the algorithm terminates because S has becomeempty, the invariant implies that a �xpoint has been found. We return theCSP P 0 that reects the current variable domains. The constraints of P 0 arethe constraints in S0 (restricted to the current domains).



14 CHAPTER 2. PREREQUISITESTheorem 2.1 Let P be a �nite domain CSP. If we apply Algorithm 2.2 toP, then the algorithm terminates and returns a CSP P 0 equivalent to P. If P 0is ground, then P 0 and hence P are consistent. Moreover, if all propagationalgorithms are deterministic and no failure occurs, then the domains in P 0are a common �xpoint of all propagation algorithms.Proof. We show that the algorithm terminates. Let d be the sum of thecardinalities of all domains in P, and let c denote the number of constraintsin P. Clearly, we always have jSj � jS0j � c. Let us assume that no failureoccurs, otherwise the algorithm terminates and there is nothing to show.Then in each iteration of the main loop the cardinality of S or the cardinalityof a variable domain decreases. Between two reductions of a variable domainthere can be at most c iterations (otherwise S would become empty), andhence there can be at most c � d iterations in total.We come to the equivalence of P and P 0. An easy induction shows thatthe following holds, whenever line 3 is executed: The CSP induced by thecurrent variable domains and the constraints in S0 is equivalent to P.Suppose now that P 0 is ground. Let X1; : : : ; Xn be the variables of P 0and let D01 = fd1g; : : : ; D0n = fdng be their respective domains. Considera constraint C 0 of P 0. It corresponds to a constraint C which belonged toS0 upon termination of the algorithm. Assume Vars(C) = [Xi1 ; : : : ; Xik ].We show that there has been a call to propagateC(fdi1g; : : : ; fdikg). If theinitial domains of Xi1; : : : ; Xik were already singletons, this claim is obvious,because C belongs to the initial set S. Otherwise, C is inserted into S afterthe last domain of a variable in Vars(C) has become a singleton. SincepropagateC has not reported failure when applied to the singleton domains,we conclude that (di1; : : : ; dik) satis�es C and hence C 0. Thus the variableassignment [X1 = d1; : : : ; Xn = dn] is a solution of P 0 and of P.The last statement about the �xpoint follows immediately from the dis-cussion above.We want to make a comment that relates our presentation to the workof Apt [Apt03, Chapter 7]. Apt requires that the propagation algorithmssatisfy a property called monotonicity. This means the following. Supposewe have a propagation algorithm which takes as input k domains. Assumethat applied to E1; : : : ; Ek it returns E 01; : : : ; E 0k. Suppose we choose domainsF1; : : : ; Fk such that F1 � E1; : : : ; Fk � Ek, run the algorithm on thesedomains and obtain F 01; : : : ; F 0k. If the algorithm is monotonic, then we haveF 01 � E 01; : : : ; F 0k � E 0k.Apt shows that the �xpoint D01� : : :�D0n computed by the algorithm abovedoes not depend on how the constraint C 2 S is chosen in line 4, if allinvoked propagation algorithms are monotonic (see Lemma 7.5 in [Apt03]).



2.1. CONSTRAINT PROGRAMMING 15It will turn out that all propagation algorithms presented in this thesis aremonotonic.Global constraints and local consistencyIn the approach that we have described above, the propagators for the con-straints are independent. They communicate with each other through thedomains of the variables, which are held in the domain store. This ap-proach makes it easy to integrate new propagation algorithms into a con-straint solver because the old propagation algorithms do not have to bechanged. But the fact that a propagator for a constraint C is not aware ofthe constraints di�erent from C also has some drawbacks. Consider e.g. theCSP P = hX 2 f1; 2g; Y 2 f1; 2g; Z 2 f1; 2g ; X 6= Y; Y 6= Z;Z 6= Xi,which is clearly inconsistent. But since the relation of each of the inequalityconstraints is f(1; 2); (2; 1)g, a propagation algorithm that only takes intoaccount one of these constraints cannot reduce any variable domain.In order to overcome this limitation, so-called global constraints were in-troduced. There is no formal de�nition for this notion, but a global constraintis usually a \high-level" constraint that combines a set of \low-level" con-straints (that are somehow related to each other) into a single constraint. Inour example above we could replace the three constraints by a single Alldi� -constraint and obtain an equivalent CSP P 0 = hX 2 f1; 2g; Y 2 f1; 2g; Z 2f1; 2g ; Alldi�(X; Y; Z)i.Using global constraints has the following advantages: A propagationalgorithm for the global constraint can usually do more pruning than thealgorithms for the low-level constraints together. (In our example, the prop-agation algorithm for Alldi� could recognize that there are 3 variables butonly 2 values. Hence, it could immediately report failure.) Moreover, it of-ten requires less space to store the global constraint. (An Alldi� -constraintwith n variables replaces �n2� inequality constraints.) Finally, it is easier andless error-prone for the user of the constraint solver to state a single globalconstraint than to enter all the corresponding low-level constraints.When we talk about a propagation algorithm we often want to charac-terize the amount of pruning that it achieves. (Recall that a propagationalgorithm is not required to do any pruning unless all the domains are sin-gletons.) In order to do so we discuss some types of \local consistency".Local consistency means that some \parts" of a CSP have a desired form. Inthis presentation we only describe local consistency notions which are rele-vant for this thesis, these are notions which apply to a single constraint of aCSP.



16 CHAPTER 2. PREREQUISITESWe begin with a discussion of arc-consistency. Informally, a constraintC is arc-consistent4 if every value in the domain of each variable in Vars(C)participates in at least one solution of C.De�nition 2.4 (arc-consistency) Let C be a constraint on the variablesequence [X1; : : : ; Xk] with respective domains D1; : : : ; Dk. We say that C isarc-consistent if Rel(C) 6= ; and the following holds: For all i 2 [1::k] andevery value d 2 Di there is a tuple (d1; : : : ; dk) 2 Rel(C) with d = di.Let A be a propagation algorithm for (the class of) C. Let D01; : : : ; D0k bethe domains that are obtained by running A on D1; : : : ; Dk. We say that Aachieves arc-consistency for C if� either Rel(C) 6= ; and the constraint C 0 with Rel(C 0) = Rel(C) and thedomains D01; : : : ; D0k is arc-consistent� or Rel(C) = ; and A returns failure.We call A an arc-consistency algorithm if it achieves arc-consistency on alladmissible inputs.Since we require that Rel(C) � D01 � : : : � D0k (cf. Property 1 in De�-nition 2.3), there can be no propagation algorithm that does more pruning.Thus arc-consistency characterizes the maximum amount of pruning thatcan be achieved for a single constraint. However, a CSP does not have tobe consistent even if all its constraints are arc-consistent, as the example Pwith the three inequalities shows.Sometimes we consider only domains that are (closed) intervals containedin a linearly ordered set (U;�). For two elements a and b in U we de�ne theinterval [a; b] as fu 2 U j a � u � bg. We call a the lower and b the upperendpoint of the interval I = [a; b], and we use I to denote a and I to denoteb. One reason for using intervals is that they can be stored more eÆcientlythan arbitrary sets, in particular if U = R. The local consistency notion thatis usually used with respect to interval domains is bound-consistency.Informally, a constraint C over interval domains is called bound-consistentif every endpoint of the domain of each variable in Vars(C) participates in asolution of C. A formal de�nition follows:De�nition 2.5 (bound-consistency) Let C be a constraint on the vari-able sequence [X1; : : : ; Xk] with respective domains [l1; h1]; : : : ; [lk; hk]. Wesay that C is bound-consistent if Rel(C) 6= ; and the following holds: For4Some people use the term \arc-consistency" only for binary constraints, they call ournotion of arc-consistency \generalized arc-consistency" or \hyper-arc-consistency".



2.1. CONSTRAINT PROGRAMMING 17all i 2 [1::k] there is a tuple (d1; : : : ; dk) 2 Rel(C) with li = di and a tuple(d01; : : : ; d0k) 2 Rel(C) with hi = d0i.The de�nition of a bound-consistency algorithm is analogous to the de�ni-tion of an arc-consistency algorithm (cf. De�nition 2.4). Under the restrictionthat all domains must be intervals, bound-consistency is the strongest possi-ble local consistency for a single constraint. (One cannot narrow the intervalsany further without pruning solutions of the constraint.)We will show now that an arc-consistency or bound-consistency algorithmis always monotonic and idempotent. To do so we study an equivalent for-mulation for arc- and for bound-consistency. For a set S � S1� : : :�Sk andi 2 [1::k] we de�ne the projection �i of S onto its i-th component as follows:�i(S) := fs 2 Si j 9(s1; : : : ; sk) 2 S with s = sigLet C be a constraint with Vars(C) = [X1; : : : ; Xk] and Rel(C) 6= ;. ThenC is arc-consistent i� Dom(Xi) = �i(Rel(C)) for i = 1; : : : ; k. Thus an arc-consistency algorithm computes the projection of Rel(C) onto all its compo-nents.C is bound-consistent i� li = min�i(Rel(C)) and hi = max�i(Rel(C)) ex-ist and Dom(Xi) = [li; hi] for i = 1; : : : ; k. Hence, a bound-consistencyalgorithm computes the minimum and the maximum element in all the pro-jections of Rel(C).Therefore, the output of an arc-consistency or bound-consistency algo-rithm A is uniquely determined by the relation of the constraint. Since A isnot allowed to change this relation (see Properties 1 and 2 of De�nition 2.3),it is idempotent. Monotonicity follows immediately from the fact that theprojections are monotonic. This proves the following lemma:Lemma 2.1 Every arc-consistency and every bound-consistency algorithmis monotonic and idempotent.We conclude this section with the discussion of range-consistency. To thebest of our knowledge this local consistency notion has only been used for theAlldi� -constraint. We introduce it here, because we need it in Section 3.2.3.De�nition 2.6 (range-consistency) Let C be a constraint in a class K ofconstraints with Vars(C) = [X1; : : : ; Xk] and respective domains D1; : : : ; Dk.Assume that Di is contained in some linearly ordered set Ui and that li =minDi and hi = maxDi exist for i = 1; : : : ; k. Let C 0 denote the constraintin K determined by the domains [l1; h1]; : : : ; [lk; hk].We say that C is range-consistent if Rel(C 0) 6= ; and the following holds: Forall i 2 [1::k] and every value d 2 Di there is a tuple (d1; : : : ; dk) 2 Rel(C 0)with d = di.



18 CHAPTER 2. PREREQUISITESLet us look at the example A := Alldi�(X1; X2; X3) with Dom(X1) =Dom(X2) = Dom(X3) = f1; 3g � Z. In order to check whether A is range-consistent we consider the constraint A0 := Alldi�(X 01; X 02; X 03) where all do-mains are the interval [1::3]. For i = 1; 2; 3 we have �i(Rel(A0)) = [1::3] �Dom(Xi). Hence, A is range-consistent, but it is not arc-consistent, becauseRel(A) = ;. So range-consistency is strictly weaker than arc-consistency.We discuss an example with integer interval domains: Alldi�(X; Y; Z)with Dom(X) = [1::4];Dom(Y ) = Dom(Z) = [2::3]. The constraint is bound-consistent, but a range-consistency algorithm narrows the domain of X tof1; 4g.Example. SEND+MORE = MONEYTo conclude this section on constraint propagation, we pick up the puzzlefrom the beginning (page 5). Recall that we modelled it by the following twoconstraints:� a linear equality constraint:9000 �M + 900 �O + 90 �N + Y � 1000 � S � 91 � E � 10 �R�D = 0� an Alldi� -constraint: Alldi�(S;E;N;D;M;O;R; Y )For each of the two constraint classes we will discuss a simple propaga-tion algorithm (which does not achieve any of the local consistency notionsmentioned above). After that we will apply these algorithms to the puzzle.We begin with an algorithm for Alldi�, because it is the simpler one. Ifsome variable domain is a singleton fdg, the algorithm iterates over all otherdomains and removes the value d from those domains. If one of the domainsbecomes empty, it returns failure. If all output domains are singletons, itreports entailment, otherwise it returns success.Now we sketch a propagation algorithm for linear equality constraintsof the form Pki=1 aiXi = b with ai 6= 0 for i = 1; : : : ; k. We assume thatthe input domains are integer intervals, i.e. Di = [li::hi] for i = 1; : : : ; k.For i 2 [1::k] we compute the output domain D0i as follows: We rewrite theconstraint as Xi = bai +Pj2[1::k]nfig�ajai �Xj. We partition the indices in thesummation above into two sets depending on the sign of �j := �ajai :J+ := fj 2 [1::k] n fig j �j > 0g and J� := fj 2 [1::k] n fig j �j < 0gFor j 2 J+, we have �jlj � �jXj � �jhj; and for j 2 J�, we have �jhj ��jXj � �jlj. Using the fact that Xi is an integer, we obtain2666 bai + Xj2J+ �jlj + Xj2J� �jhj3777| {z }=: l0i � Xi � 6664 bai + Xj2J+ �jhj + Xj2J� �jlj7775| {z }=: h0i



2.1. CONSTRAINT PROGRAMMING 19Thus the narrowed domain D0i becomes Di \ [l0i::h0i]. As above we reportfailure, if one domain becomes empty, and entailment, if all output domainsare singletons. In all other cases we return success.Recall that the initial domains of the leading digits S and M are [1::9]and the other domains are [0::9]. Applying the propagation algorithm forlinear equality constraints narrows the domains toS = 9; E 2 [0::9]; N 2 [0::9]; D 2 [0::9];M = 1; O 2 [0::1]; R 2 [0::9]; Y 2 [0::9]After three iterations of the Alldi� algorithm the domains look as follows:S = 9; E 2 [2::8]; N 2 [2::8]; D 2 [2::8];M = 1; O = 0; R 2 [2::8]; Y 2 [2::8]Five successive applications of the algorithm for the linear equality reducethe domain of E to [4::7] and the domain of N to [5::8]. After that thedomain store becomes stable and the constraint propagation ends.2.1.2 SearchRecall that the search space S(P) of a CSP P is the set of all possible variableassignments for P. Note that we do not require that the variable assignmentsin S(P) are solutions of P. As the example above shows, constraint propa-gation often yields a CSP P 0 with a considerably smaller search space, butin general it is not able to produce a ground CSP (i.e. a solution) or to proveinconsistency. In that case the search space of P 0 has to be explored.The function SplitOneDomain (used in Algorithm 2.1) controls how thisexploration is carried out. Recall that this function chooses a variable X inP 0 with jDom(X)j � 2 and partitions Dom(X) it into two non-empty disjointdomains D1 and D2. These domains give rise to two CSPs P1 and P2 (seepage 7) which are solved recursively.There are several strategies how to select the variable for splitting andhow to split its domain. The search strategy often has a great inuence onthe overall performance of a constraint solver, but a deep discussion of thistopic is beyond the scope of this chapter (more information can be found forinstance in [Apt03, Chapter 8]). A selection strategy that often yields goodresults in practice is the so-called �rst fail strategy, which always chooses anundetermined variable with a domain of minimum cardinality. A commontechnique for splitting a domain D is to chose an element d 2 D (for instanced = minD) and to set D1 = fdg and D2 = D n d. If D is an integer interval



20 CHAPTER 2. PREREQUISITES[l::h], one often uses bisection, i.e. D1 = [l::m] and D2 = [m::h], wherem = b l+m2 c.Example. SEND+MORE = MONEYWe show how constraint propagation and search solve the puzzle. We usea fairly naive search strategy: We select the �rst undetermined variable inthe sequence [S;E;N;D;M;O;R; Y ]; and we split its domain D into D1 =fminDg and D2 = D nD1. Recall that applying constraint propagation tothe original CSP P produces the following domains:S = 9; E 2 [4::7]; N 2 [5::8]; D 2 [2::8];M = 1; O = 0; R 2 [2::8]; Y 2 [2::8]Eliminating the determined variables S, M and O from the linear equalityconstraint yields 90 �N + Y � 91 � E � 10 �R�D = 0According to our search strategy we split the domain of E into f4g and[5::7]. Let us consider �rst the CSP P1 induced by E = 4. Applying thepropagation algorithm for linear equality exhaustively, we obtain N = 5,R = 8, D = 8 and Y = 2, which causes the Alldi� -propagator to reportfailure.So we come to the second CSP P2, which is induced by E 2 [5::7]. Con-straint propagation reduces the domain of N to [6::8]. Hence, we split thedomain of E once more, namely into f5g and [6::7]. Propagation for theprogram P21 induced by E = 5 yields the following solutionS = 9; E = 5; N = 6; D = 7;M = 1; O = 0; R = 8; Y = 2The program P22 induced by the domain [6::7] for E has no solutions, whichis detected after one more split.Observe how much constraint propagation contributes to solving this ex-ample. The search space of the original CSP P has 92 �106 elements. By usingconstraint propagation we could prune it considerably. Thus we were ableto �nd the solution of P and prove its uniqueness after only three domainsplittings.2.2 Multigraphs and graphsIn this section we introduce some basic notions and results from graph theorywhich are needed in the sequel of the thesis. A multigraph is a fundamental



2.2. MULTIGRAPHS AND GRAPHS 21concept which can model binary relationships between objects. Each objectcorresponds to a node in the multigraph and the relationships are modelledby edges, which can be directed or undirected. The formal de�nition is asfollows:De�nition 2.7 (multigraph) An undirected multigraphM is de�ned as atriple (V;E; inc) such that V and E are two �nite sets and inc is a mappingfrom E to �V2�.5 The elements of V are called the nodes of M, and theelements of E are the edges of M. We call inc the incidence mapping ofM. Let e 2 E be an edge with inc(e) = fu; vg. Then we say that u and vare incident to e, and u and v are adjacent via e. The degree of v is thenumber of edges incident to v. The set of all nodes that are adjacent to v iscalled the neighbours of v.A directed multigraph ~M is a triple (V;E; inc) such that V and E are two�nite sets and inc is a mapping from E to V � V . As before, V and E arethe nodes and the edges of ~M and inc is called the incidence mapping of~M. Let e 2 E be an edge with inc(e) = (u; v). Then u is called the sourcenode and v is the target node of e. We say that e is directed from u to v,and we call e an outgoing edge of u and an incoming edge of v. Both nodesare said to be incident to e and they are adjacent via e.We continue with some more de�nitions. A (directed or undirected)multigraph M0 = (V 0; E 0; inc0) is called a subgraph of a multigraph M =(V;E; inc) if V 0 � V , E 0 � E and inc 0(e) = inc(e) for all e 2 E 0. A set ofnodes ~V � V induces the subgraph ~M = (~V ; ~E; ~inc) where ~E consists of alledges incident to two nodes in ~V and ~inc = incj ~E. A set of edges Ê � Einduces a subgraph M̂ = (V̂ ; Ê; ^inc), where V̂ is the set of all nodes incidentto an edge in Ê and ^inc = incjÊ.When we visualize a multigraph like in Figure 2.2, we draw a node asa circle or a box and an edge as a line connecting its incident nodes. Weintroduce an important notion to talk about multigraphs: paths. A pathp of length k (with k � 0) from a node v0 to a node vk is a sequence[v0; e1; v1; : : : ; vk�1; ek; vk] such that v0; : : : ; vk are nodes and e1; : : : ; ek areedges of the multigraph, and the following holds: If the multigraph is undi-rected, we require inc(ei) = fvi�1; vig for i = 1; : : : ; k. And if it is directed,then inc(ei) = (vi�1; vi) must hold for all i. (Observe that we allow paths oflength 0, these are called empty.) We say that p visits the nodes v0; : : : ; vkand uses the edges e1; : : : ; ek. We call v0 the start node and vk the endnode of p, the nodes v1; : : : ; vk�1 are called inner nodes of p. Very often p is5�V2� := ffu; vg ju; v 2 V ^ u 6= vg, i.e. �V2� consists of all subsets of V with twoelements.



22 CHAPTER 2. PREREQUISITESuniquely determined by the sequence of its nodes or by the sequence of itsedges6. Then we also write p = [v0; v1; : : : ; vk] or p = e1 Æ : : : Æ ek to simplifynotation.p is called a simple path if vi 6= vj for 0 � i < j � k and ei 6= ej for1 � i < j � k. Informally, this means that p visits no node twice and useseach of its edges only once.In an undirected multigraph the reversed sequence [vk; ek; vk�1; : : : ; v1; e1; v0]is a path from vk to v0, we call it the reversal of p and denote it by prev.If the end node of a path p is equal to the start node of a path q, wecan concatenate them to a single path which we denote by p Æ q. Moreprecisely, if p = [v0; e1; v1; : : : ; ek; vk] and q = [vk; ek; vk+1; : : : ; el; vl], thenp Æ q = [v0; e1; v1; : : : ; ek; vk; ek+1; vk+1; : : : ; el; vl].A cycle is a path C = [v0; e1; v1; : : : ; vk�1; ek; vk] such that v0 = vk, k > 0and ei 6= ei+1 for i = 1; : : : ; k� 1, i.e. C is a non-empty path where the startand the end node are identical and any two consecutive edges are distinct.Observe that C cannot be a simple path, but we can make an analogousde�nition: We say that C is a simple cycle if vi 6= vj for 0 � i < j < k andei 6= ej for 1 � i < j � k.
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Figure 2.2: An undirected and a directed multigraph.Example. Observe that the multigraph M in on the left-hand side ofFigure 2.2 contains two edges, namely b and c, that are incident to samenodes, this explains the pre�x \multi" in the word \multigraph". Observethat the directed multigraph ~M on the right-hand side contains two edges(a and b) with identical source and target nodes.M contains the path p1 = [u; e; v; d; y; b; x; c; y; f; z] from u to z. This path isnot simple because y is visited twice. p2 = [u; e; v; d; y; f; z] is a simple path6Every path of length at least two in an undirected multigraph is determined by thesequence of its edges. The same holds for every non-empty path in a directed multigraph.



2.2. MULTIGRAPHS AND GRAPHS 23from u to z. C1 = [x; b; y; c; x] is a cycle, but [u; a; x; a; u] is not, because theedge a is used twice consecutively. The cycles C1 and C2 = [u; a; x; c; y; d; v; e]are simple.~p = [r; a; s; c; t] is a simple path in ~M, but [t; c; s; a; r] is not a path becausethe edges are traversed in the wrong direction. The path ~c = ~pÆd is a simplecycle.Closely related to paths and cycles is the notion of reachability. We saythat a node u can reach a node v if there is a (possibly empty) path from uto v. The reachability relation of a (directed or undirected) multigraphMis de�ned as follows:Reach(M) := f(u; v) 2 V � V j 9 a non-empty path from u to v inMgThe reader may wonder why we exclude empty paths in the de�nition above.The answer is that we want Reach(M) to contain a tuple (u; u) only if thereis cycle inM which visits u.Another basic notion that is also related to paths is connectivity. Consideran undirected multigraph M. A subgraph M0 is called connected if anynode u inM0 can reach any node v inM0. We say thatM0 is a connectedcomponent of M if M0 is a maximal connected subgraph of M. Observethat every node and every edge ofM belongs to exactly one of its connectedcomponents.For a directed multigraph ~M we have a similar notion: A subgraph ~M0is called strongly connected if any node u in ~M0 can reach any node v in~M0 (by a directed path). A strongly connected component (SCC) of ~M isa maximal strongly connected subgraph. Every node belongs to exactly oneSCC, but there may be edges which do not belong to any SCC. Hence, theSCCs partition the node set of ~M. Since every set in this partition P inducesan SCC of ~M, we can identify the SCCs of ~M with the node sets in P. Itis easy to see that two nodes u and v belong to the same SCC i� there is acycle which visits both of them.In order to de�ne the connected components of a directed multigraph~M = (V;E; ~inc), we de�ne its underlying undirected multigraph U( ~M) :=(V;E; inc), where inc(e) := fu; vg i� ~inc(e) = (u; v). Informally, we obtainU( ~M) by removing the arrowheads of all edges. A subgraph ~M0 is a con-nected component of ~M if U( ~M0) is a connected component of U( ~M). Wesay that a (directed or undirected) multigraph is connected if it has only oneconnected component.Example. The multigraphM in Figure 2.2 has two connected componentsM1 andM2, whereM1 is the subgraph induced by the nodes fu; v; x; y; zgand M2 is the subgraph induced by the edge g. ~M has two SCCs whichare induced by fr; s; tg and fu; v; w; xg, but only one connected component.



24 CHAPTER 2. PREREQUISITESObserve that e and f do not belong to any SCC of ~M.We conclude this section with some remarks about the representation ofmultigraphs in memory. We assume that adding and removing a node oran edge can be done in time O(1). Moreover, iterating over all incident,outgoing or incoming edges of a given node should take linear time in thenumber of these edges. The size of a representation of a multigraph with nnodes and m edges should be O(n+m). These assumptions are ful�lled bya so-called adjacency list representation (see for example [MN99]).2.2.1 Graphs, DAGs, trees and forestsOne could de�ne a graph as a multigraph where the incidence mapping isinjective. In order to simplify notation we choose the following de�nition:De�nition 2.8 (graph) An undirected graph G is a tuple (V;E) such thatV is a �nite set and E � �V2�. A directed graph ~G is a tuple (V;E) suchthat V is a �nite set and E � V � V . In both cases V and E contain thenodes and the edges of G, respectively.It is easy to see that a (directed or undirected) graph (V;E) correspondsto the multigraph (V;E; idE), where idE(e) = e for all e 2 E. Thus allde�nitions from above carry over to graphs.A directed graph ~G which does not contain a cycle is called a directedacyclic graph (DAG). If u and v are two nodes in a DAG ~G such that thereis a path p from u to v, then u is called an ancestor of v and v is called adescendant of u. If p is not empty, then the relation is called proper. If pconsists of the single edge (u; v), then we say that u is a father of v, andv is a child of u. Observe that a node x cannot be proper ancestor and adescendant of a node y, because ~G is acyclic.
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Figure 2.3: Two DAGs ~G and ~T . ~T is a tree, ~G is not.A DAG ~T is called a rooted tree, if it contains one node r without incomingedges and every node di�erent from r has exactly one incoming edge. We say



2.2. MULTIGRAPHS AND GRAPHS 25that r is the root of ~T . A node in ~T which has no outgoing edges is called aleaf. Observe that a tree is always connected.Two nodes u and v in ~T always have a common ancestor, namely the rootr. We say that a node w is the lowest common ancestor of u and v if w isa common ancestor of u and v and there is no proper descendant w0 of wwhich is also a common ancestor of u and v. The node w is the node wherethe two paths pu from r to u and pv from r to v separate, i.e. the longestcommon pre�x of pu and pv ends in w.An undirected graph T is called a tree if any two nodes of T are connectedby a unique path. A (directed or undirected) graph is said to be a forest ifeach of its connected components is a tree.Example. The proper ancestors of the node y in the graph ~G in Figure 2.3are its fathers u and v. The descendants of y are y itself and its child z.~G is not a tree because y has two incoming edges (and there are two nodeswithout incoming edges). The graph ~T in the �gure is a tree with the root rand the leaves x, y and z. The lowest common ancestor of y and z is t. Thelowest common ancestor of x and z is the root r.2.2.2 Matchings and bipartite graphsAs an introductory example consider the following problem: You are givenan even-sized set of football teams and you are supposed to devise a schedulesuch that each team plays exactly one match. Let us assume that not anychoice of two teams is an admissible pairing, but you are provided with a setof admissible pairings. This problem can be modelled as a graph problem:For each team there is a node, and two nodes are adjacent i� the respectiveteams may be paired. The problem is to �nd a set of edgesM such that eachnode is incident to exactly one edge. (M is called a perfect matching.) ThenM encodes a feasible schedule.This motivates the following de�nition:De�nition 2.9 (matching) Let G = (V;E) be a graph. A set M � E iscalled a matching in G if every node v 2 V is incident to at most one edgein M . A node v 2 V is called matched in M if it is incident to an edge inM ; otherwise v is said to be free with respect to M . M is called perfect ifall nodes in V are matched. Let V 0 be a subset of V , we call M a V 0-perfectmatching (or V 0-matching for short) if all nodes in V 0 are matched.Very often the objects that have to be paired can be partitioned in twosets A and B, and in all admissible pairings one object belongs to A and



26 CHAPTER 2. PREREQUISITESthe other belongs to B. Consider e.g. the problem of assigning students touniversities. Such a problem corresponds to a bipartite graph:De�nition 2.10 (bipartite graph) A graph G = (V;E) is called a bipar-tite graph with partition (A;B) if V = A _[B and every edge e 2 E is incidentto a node in A and a node in B.From now on we consider only undirected bipartite graphs. Most of thefollowing theory also applies to arbitrary graphs, but in this thesis we willonly deal with matchings in bipartite graphs. Let M and M 0 be two match-ings in a graph G = (V;E). In matching theory one often studies the sym-metric di�erence M �M 0 := (M nM 0) [ (M 0 nM). So M �M 0 consists ofthe edges that belong to exactly one of the two matchings. Informally, onecould say thatM�M 0 is the set of edges on which M and M 0 \disagree"; allother edges in E either belong to both matchings or to neither one of them.Consider the example in Figure 2.4. The graph Ĝ induced byM�M 0, whichis shown on the right-hand side, contains a cycle c = [a; u; b; v; a] and a pathp = [d; x; e; y; f; z]. Since both c and p alternately use an edge in M and anedge in M 0, we call them alternating paths. The precise de�nition follows:De�nition 2.11 (alternating path) Let M be a matching in a graph G =(V;E). A path p = [v0; e1; v1; : : : ; vk�1; ek; vk] in G is called an alternatingpath with respect to M if the following holds:� p alternately uses an edge in M and an edge that is not in M .� If v0 6= vk, then p is a simple path and{ if v0 is matched in M , then e1 2M and{ if vk is matched in M , then ek 2M .If v0 = vk, then p is a simple cycle, k is even and exactly one of theedges e1 and ek belongs to M . In this case, p is called an alternatingcycle.
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� =Figure 2.4: The symmetric di�erence of two matchings.We can prove the following basic lemma about alternating paths:



2.2. MULTIGRAPHS AND GRAPHS 27Lemma 2.2 Let M and M 0 be two matchings in a graph G = (V;E) and letp be a an alternating path with respect to M . Then the following holds:1. Every connected component of the graph induced by M �M 0 consistsof an alternating path (with respect to either matching).2. M � p is a matching in G (see Figure 2.5). Here M � p denotes thesymmetric di�erence of M and the set of edges used by p.Proof. Every node v in the graph Ĝ induced by M �M 0 is incident to atmost one edge of M and at most one edge of M 0. Hence, its degree is eitherone or two. So each connected component is either a simple cycle or a simplepath.Consider a cycle c in Ĝ. Each of its nodes is incident to exactly one edge inM nM 0 and exactly one edge in M 0 nM . So its an alternating cycle withrespect to both matchings.Let q be a path in Ĝ that corresponds to an acyclic component. Each of itsinner nodes is incident to exactly one edge in M nM 0 and exactly one edgein M 0 nM . Therefore, q alternately uses edges in M and edges not in M .Let u denote the start node of q. If u is incident to an edge e 2 M , then qstarts with e because u and e belong to the same connected component ofĜ. An analogous argument can be made for the end node of q. So q is analternating path wrt. M . The argument for M 0 is symmetric.We come to the second statement. Let ~V denote the set of nodes visitedby p. By the de�nition of an alternating path M n p is a matching where allnodes in ~V are free. Moreover, every node in ~V is incident to at most oneedge in p nM . So M � p = (M n p) _[ (p nM) is a matching.
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� =Figure 2.5: The symmetric di�erence of a matching and an alternating path.The acyclic alternating path p = [d; x; e; y; f; z] in Figure 2.5 starts andends in a free node wrt. M . We call such a path an augmenting path becausethe cardinality of M � p is greater than that of M . If the cardinality of M isnot maximal, then we can always �nd an augmenting path, as the followinglemma shows:



28 CHAPTER 2. PREREQUISITESLemma 2.3 IfM is a matching in a graph G which does not have maximumcardinality, then there is an augmenting path p with respect to M .Proof. Let M 0 be a maximum cardinality matching in G. We consider analternating path q from u to v in M �M 0 and distinguish four cases:1. q is an alternating cycle. Then M and M � q match exactly the samenodes. Hence, the two matchings have the same cardinality.2. q is acyclic and exactly one of the nodes u and v is matched in M .Then jM � qj = jM j.3. q is acyclic and both u and v are matched inM . Then jM�qj = jM j�1.4. q is acyclic and both u and v are free in M , i.e. q is augmenting. ThenjM � qj = jM j+ 1.Let q1; : : : ; qk denote the alternating paths in M � M 0. Since M 0 = M �q1� q2� : : :� qk and jM 0j > jM j, we conclude that at least one of the pathsq1; : : : ; qk is augmenting.Suppose we have a matching M in a bipartite graph G = (V;E) withpartition (A;B) and we want to search for an augmenting path wrt. M .Then it is often useful to construct the directed graph ~GM = (V; ~E) asfollows (cf. Figure 2.6):� We direct the edges in E from A to B:For every edge fa; bg 2 E with a 2 A and b 2 B, we put the edge (a; b)into ~E.� We add the reversal for every edge in M :For every edge fa; bg 2 M with a 2 A and b 2 B, we insert the edge(b; a) into ~E.
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Figure 2.6: Constructing the directed graph ~GM from G and a matching M .Observe how the augmenting path p = [d; x; e; y; f; z] in G translates tothe directed simple path ~p in ~GM from a free node d to a free node z, and



2.2. MULTIGRAPHS AND GRAPHS 29vice versa. So in order to �nd an augmenting path in G we can look for asimple path in ~GM that starts in a free node in A and ends in a free node inB. Assume now that we have an A-perfect matching M in G, which impliesthatM has maximum cardinality. We can use ~GM to decide whether a givenedge e in G can belong to some A-perfect matching in G. We will need thecriterion below in Chapter 3:Lemma 2.4 Let G be a bipartite graph with partition (A;B) and M be anA-perfect matching in G. Let e = fa; bg be an edge in G with a 2 A andb 2 B. Then the following holds1. If jAj = jBj, then e can belong to some perfect matching in G i� a andb belong to the same SCC of ~GM .2. If jAj � jBj, then e can belong to some A-perfect matching in G i� aand b are in the same SCC of ~GM or there is a simple path in ~GM thatstarts with (a; b) and ends in a free node.Proof. The �rst statement follows immediately from the second statement,because there are no free nodes if jAj = jBj. So we only have to prove thesecond one.Suppose that e belongs to some A-perfect matching M 0 in G. If e 2 M ,then we have the cycle (a; b) Æ (b; a) in ~GM . So assume that e =2 M . Then ebelongs to some alternating path p in M �M 0. If p is an alternating cycle,then it translates to a simple directed cycle in ~GM , which implies that a andb belong to the same SCC.Suppose now that p is acyclic. Since M and M � p match all nodes in A,we conclude that both the start node and the end node of p are in B andexactly one of them is matched. Translating p to ~GM yields a directed simplepath that ends in a free node in B, because a free node in B has no outgoingedges.Now we prove the converse. If a and b belong to the same SCC of ~GM ,then there is a simple cycle ~c which uses the edge (a; b). Since G is bipartite,we conclude that the length k of ~c is even. If k = 2, then ~c = (a; b) Æ (b; a),which implies e 2 M . Otherwise ~c corresponds to an alternating cycle c inG. Thus M � c is an A-perfect matching containing e.Assume now that there is a simple path ~p 0 = (a; b) Æ ~p 00 in ~GM that endsin a free node in B. Let ea denote the matching edge in M incident to a.Moreover, let p0 denote the undirected path in G that corresponds to ~p 0.Then p = ea Æ p0 is an alternating path wrt. M and M � p is an A-perfectmatching containing e.



30 CHAPTER 2. PREREQUISITES2.3 GeometryWe discuss some geometrical notions that are used in the presentation of theNonOverlapping-constraint in Chapter 5.Convexity and TopologyIn this section we deal with the vector space Rd for some �xed dimensiond and discuss convexity and some fundamental notions from topology. Fortwo points p and q in Rd the straight line segment between p and q is theset pq = fp + �(q � p) j� 2 [0; 1]g. A set S 2 Rd is called convex if forany two points p; q 2 S, the straight line segment pq is also contained inS. Geometrically, this means that S has no recess and no protuberance (seeFigure 2.7).
Figure 2.7: A convex and a non-convex setThe convex hull of a set S of points is denoted by CH(S) and de�ned asthe intersection of all convex sets that contain S. Since the intersection ofconvex sets is convex, CH(S) is the smallest convex set which contains S.A visual way to obtain the convex hull is as follows: Place a nail into everypoint of S, put an elastic rubber band around all the nails, and let it snaparound the nails. The convex hull of S is the area enclosed by the rubberband.Now we discuss some notions from topology. For a point p = (p1; : : : ; pd) 2Rd the (Euclidean) norm of p is kpk :=pp21 + : : :+ p2d. For � > 0 and p 2 Rdwe de�ne B�(p) := fq 2 Rd j kq � pk < �g, i.e. B�(p) is the ball with radius �centred at p. For every � > 0 we call B�(p) a neighbourhood of p.Consider a set S � Rd and a point p 2 Rd . We say that p is an interiorpoint of S if there is a neighbourhood of p which is completely contained inS. The set of all interior points of S is called the interior of S and denotedby int(S). We call S open if S = int(S), and we say that S is closed if itscomplement Rd n S is open. The point p lies on the boundary of S (denotedby @S) if any neighbourhood of p contains both a point in S and a pointin Rd n S. (Note that p does not have to belong to S.) The closure of S isde�ned as S = S [ @S; it is easy to see that S is the smallest closed set that



2.3. GEOMETRY 31contains S. Finally, we say that S is bounded if S is contained in some ballwith �nite radius.Minkowski sumsMinkowski sums will become an important tool in Chapter 5. The formalde�nition is as follows:De�nition 2.12 (Minkowski Sum) Let P;Q 2 R2 be two sets of points.The Minkowski sum P �Q is the point set fp+ q j p 2 P ^ q 2 Qg.In the sequel we discuss some properties of Minkowski sums. We beginwith a statement about the interior points of a Minkowski sum of two convexpoint sets:Lemma 2.5 Let P and Q be two convex sets in R2 with non-empty interior.Then int(P )� int(Q) = int(P �Q).In order to prove this lemma, we need a claim, which we will show �rst:Claim 2.1 Let P be a convex set in R2 , p 2 P and pi 2 int(P ), and let Sbe the line segment ppi. Then S n fpg � int(P ).Proof. Since pi 2 int(P ), there is � > 0 with B�(pi) � P . Let L be theline through pi which is perpendicular to pi � p. Denote by q and r theintersection of L with @B�(pi), and let � be the triangle spanned by p; q; r(see left-hand side of Figure 2.8). By convexity we have � � P . The claimfollows from S n fp; pig � int(�).L
r@Pp piq @B� @Pp pi~rp�Figure 2.8: Visualization of the situations in the proofs of the Claim 2.1 andLemma 2.5. All points in the shaded regions belong to int(P ).



32 CHAPTER 2. PREREQUISITESNow we are ready to give the proof of the lemma:Proof of Lemma 2.5. First we show int(P )� int(Q) � int(P � Q). Fixp 2 int(P ); q 2 int(Q). Then there is � > 0 such that B�(p) � P . ThusP �Q � B�(p)� q = B�(p+ q).Now we prove int(P ) � int(Q) � int(P � Q). Fix a point s = p + q 2int(P � Q) with p 2 P and q 2 Q. Observe that p and q could lie on theboundary of P and Q respectively. Our goal is to �nd a direction ~r with thefollowing property: If we walk from p in direction ~r, then we immediately hitinterior points of P . And if we walk from q in the direction �~r, then we donot leave Q immediately. Thus there is some � > 0 such that p+�~r 2 int(P )and q � �~r 2 Q.Let pi 2 int(P ) and ~di = pi � p. By Claim 2.1, ~di points from p to theinterior of P , however �~di might point from q to the outside of Q. Sincep+ q 2 int(P �Q), we can �nd � 2]0; 1[, p0 2 P and q0 2 Q with p+ q� �~di =p0+q0. And hence, q0�q = �(p0�p+ �~di) =: �~r. The convexity of Q impliesthat q � �~r 2 Q for 0 � � � 1.What remains to show is that ~r leads from p to the interior of P . By convexityof P , p� := p+ �~di 2 P . Thus the whole triangle � spanned by p, pi and p� iscontained in P (see right-hand side of Figure 2.8). We distinguish two cases:� If � is non-degenerate, i.e. its vertices are not collinear, then we are inthe situation shown on the right-hand side of Figure 2.8. So ~r is onediagonal of the parallelogram induced by the vertices of �, and henceit leads from p to the interior of �.� In the case that � is degenerate, the vectors ~di and d := p0 � p arelinearly dependent, i.e. d = �~di for some � 2 R. If � < 0, then p 6= p0and p lies on the segment p0pi. Claim 2.1 implies that p 2 int(P ). Soassume � � 0. Since ~r = p0 � p + �~di = (� + �)~di, ~r has the samedirection as ~di, which has been chosen to point from p into the interiorof P .In any case we can �nd � 2]0; 1[ with p00 = p + �~r 2 int(P ). We haveq00 = q � �~r 2 Q and p00 + q00 = s.We choose qi 2 int(Q), and let ~ei = qi� q00. By Claim 2.1, we have q00+~ei 2int(Q) for 0 <  � 1. Since p 2 int(P ), we conclude that ~p := p00 � Æ~ei 2int(P ) for some Æ with 0 < Æ � 1. Thus ~q := q00 + Æ~ei 2 int(Q), and we have~p+ ~q = s.We want to point out that both conditions of Lemma 2.5 are necessary.The Minkowski sum of a line segment S and box B is a box again, see left-hand side of Figure 2.9. So int(S � B) 6= ;, but int(S) = ;, which implies



2.3. GEOMETRY 33int(S)� int(B) = ;.The right-hand side of the �gure shows a non-convex polygon P , a convexpolygon Q and their sum P � Q, which contains the interior point s (seemarker). We observe that s cannot be represented as the sum of two interiorpoints of P and Q (only as sum of two points on the boundaries of P andQ). And hence, int(P )� int(Q) 6= int(P �Q).� =BS =�P Q s
Figure 2.9: Examples showing that both conditions of Lemma 2.5 are neces-sary.We conclude this section with a statement about convex combinationsand Minkowski sums:Lemma 2.6 Let Q � R2 be convex and p 2 R2 be a convex combination ofp1; : : : ; pn 2 R2 , i.e. p =Pni=1 �ipi with �1; : : : ; �n 2 [0; 1] and Pni=1 �i = 1.Then the following holds: p�Q = nMi=1 �i(pi �Q)Proof.� Fix q 2 Q. As Pni=1 �i = 1, we have p+ q =Pni=1 �ipi + (Pni=1 �i)q =Pni=1 �i(pi + q) 2Lni=1 �i(pi �Q).� Fix s 2 Lni=1 �i(pi � Q). By the de�nition of a Minkowski sum, wehave s = Pni=1 �i(pi + qi) with q1; : : : ; qn 2 Q. As Q is convex, q =Pni=1 �iqi 2 Q. And hence, s =Pni=1 �i(pi + qi) = p+ q 2 p�Q.
Polygons and polytopesA polygonal chain is a sequence C = hp1; : : : ; pni of points in the planeR2 such that segments s1 = p1p2; s2 = p2p3; : : : ; sn�1 = pn�1pn; sn = pnp1



34 CHAPTER 2. PREREQUISITESare disjoint except for common endpoints of consecutive segments. We callp1; : : : ; pn the vertices and s1; : : : ; sn the edges of the chain. We use jCj todenote the number of vertices of C. C describes a set of points, namely theunion of all its edges. In order to simplify notation, we denote this pointset also by C. R2 n C consists of two (connected) open sets, one of whichis bounded. Thus C splits the plane in a bounded region B(C) and anunbounded region U(C).We can model C as a cyclic directed graph: The nodes of this graphare the vertices of C, and for i = 1; : : : ; n the edge si = pipi+1 of the chaincorresponds to an edge ei = (pi; pi+1) in the graph, where pn+1 := p1. Thuswe obtain an orientation for the edges of C. It is easy to see that B(C) iseither locally to the left of each edge or locally to the right of each edge. Inthe former case we say that C has a positive orientation, and in the lattercase C has a negative orientation. An example is depicted in Figure 2.10,we see that a chain has positive orientation if the vertices in the sequencehp1; : : : ; pni are in counter-clockwise order.B(C)p2p3 p4 p5 p6p1 C p7U(C)
Figure 2.10: A positively oriented polygonal chain.A positively oriented polygonal chain C de�nes a polygon P : P is thepoint set C [ B(C). Hence, @P = C and int(P ) = B(C). Sometimes weidentify P and its de�ning polygonal chain. In particular, we use jP j todenote the number of vertices of P .Now we restrict our attention to convex polygons. A convex polygon P isuniquely de�ned by the (unordered) set V of its vertices, we have P = CH(V ).P can also be written as the intersection of jP j half-planes: Every edge pq ofP corresponds to one half-planeHpq, namely all points which lie to the left ofthe oriented line through p and q. In order to determine Hpq, we consider theouter normal vector ~n(p; q) of the edge. This vector is perpendicular to pqand points to the outside of P , thus ~n(p; q) = (qy�py; px�qx). Hpq is the setof all points (x; y) that satisfy the inequality h~n(p; q); (x; y)i�h~n(p; q); pi � 0.Here h�; �i denotes the scalar product, which is de�ned as h(x1; y1); (x2; y2)i :=x1 � x2 + y1 � y2.Consider for example the triangle with the corner points a = (1; 1), b =(5; 1), c = (1; 4). The corresponding normal vectors are ~n(a; b) = (0;�4),



2.3. GEOMETRY 35~n(b; c) = (3; 4) and ~n(c; a) = (�3; 0), which give rise to the half-planesHab : y � 1, Hbc : 3x + 4y � 19 and Hca : x � 1.Polygons are point sets in the two-dimensional plane. There exists a gen-eralization for higher dimensions called polytopes. We restrict our attentionto convex polytopes: A d-dimensional convex polytope P is the convex hullof a �nite set of points S � Rd which contains at least three non-collinearpoints7. In the sequel we only talk about three-dimensional convex polytopes,i.e. we �x d = 3. The boundary of such a polytope P can be decomposed in(non-disjoint) features of lower dimension (see left-hand side of Figure 2.11):A facet of P is maximal subset of coplanar points on @P . Thus a facet of Pis a convex polygon (embedded into R3). An edge of P is an edge of one ofits facets, and a vertex of P is a vertex of one of its facets. It is easy to seethat P is the convex hull of its vertices.
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Figure 2.11: A polytope and a combinatorial representation as planar graph.There are several ways to represent a polytope P . The choice depends onthe computation which one wants to perform on P .� pure vertex representation:As we have seen above, P is uniquely determined by the (unordered)set of its vertices.� intersection of half-spaces:Suppose �rst that P is not planar, i.e. P is not contained in a plane.Each facet f of P gives rise to one half-space Hf (similar to the two-dimensional case, where every edge gave rise to a half-plane). Hf isuniquely characterized by the following properties: P � Hf , and theboundary of Hf is the plane containing f . Let f1; : : : ; fk denote the7The requirement that S contains at least three non-collinear points is non-standard,but convenient for us.



36 CHAPTER 2. PREREQUISITESfacets of P . Then P = Ski=1Hfi .If P is planar, then P can be written as the intersection of n+ 2 half-spaces where n is the number of edges of P : The plane p containing Pis the intersection of two half-spaces, and every edge e of P gives riseto a half-space He such that P � He and @He is perpendicular to pand contains e.� combinatorial representation:We represent P as a planar graph8 G: Each vertex/edge of P gives riseto a node/edge in G (like in the two dimensional case). Each facet ofP corresponds to a face in the planar embedding of P . We will notde�ne the notion of a face formally (for details see [MN99, Chapter 8]).In our example in Figure 2.11, the planar drawing of G splits the planeinto four regions { three bounded ones and one unbounded one. Thenodes and edges that bound a face of G correspond to the vertices andedges on the boundary of a facet of P , and vice versa.We show now that the size of these representations is linear in the numberof vertices of P . Here we assume that a point in R3 can be represented inconstant size. (We want to point out that this result does not for higherdimensions, even if we need only constant size for a point.) We follow thepresentation of de Berg et al. (see Theorem 11.1 in [dBvKOS00]).Lemma 2.7 Let P be a three-dimensional convex polytope with n vertices.The number ne of edges of P is at most 3n � 6 and the number nf of facesof P is at most 2n� 4. If P is not planar, then nf � 12n+ 2. Hence, any ofthe three representations above for P has size �(n).Proof. We use Euler's formula which states:n� ne � nf = 2Since every facet has at least three edges and every edge bounds exactly twofacets, we have 3nf � 2ne. Plugging this into Euler's formula we obtainn+nf � 2 � 32nf , which implies nf � 2n� 4. Applying Euler's formula oncemore we get ne � 3n� 6.If P not planar, then every vertex is incident to at least three edges. Thus3n � 2ne, which implies (by Euler's formula) nf � 2+ 32n�n = 12n+2. (Forthe example in Figure 2.11 our bounds are tight.)The claim on the size of the representations of P follows immediatelyfrom the discussion above. (Observe that nf = �(n), if P is non-planar, andthat ne = n, if P is planar).8A graph is called planar if it can be drawn in the plane without edge crossings.



2.3. GEOMETRY 37The three representations of a polytope P can be converted into eachother in time O(jP j log jP j): From the combinatorial representation we canobtain the other representations in linear time. In order to convert the purelyvertex representation into a combinatorial representation we can use an al-gorithm for computing the convex hull of a point set S, which runs in timeO(jSj log jSj) (see [dBvKOS00, Chapter 11]). Moreover, the intersection of nhalf-spaces in R3 can be computed in time O(n logn) (cf. again [dBvKOS00,Chapter 11]).
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Chapter 3Sortedness and Alldi�In this chapter we study two constraints: Sortedness and Alldi�. The con-straint Sortedness(X1; : : : ; Xn;Y1; : : : ; Yn) takes as input two sequences of nvariables and states that the second sequence Y1; : : : ; Yn is obtained by sort-ing the elements of the �rst sequence X1; : : : ; Xn in non-decreasing order.The constraint Alldi�(X1; : : : ; Xn) takes as input n variables and holds if theelements in the sequence X1; : : : ; Xn are pairwise di�erent.Let us look at some variable assignments for which the two constraintshold and some which violate the constraint.SortednessSortedness(1,3,1;1,1,3) holdsSortedness(2,1,3;1,2,4) violatedSortedness(5,2,3;3,2,5) violated Alldi�Alldi� (3,4,2) holdsAlldi� (2,1,2) violatedIn the �rst example on the left-hand side Sortedness holds because sorting thesequence 1; 3; 1 yields 1; 1; 3; note that the same element may occur severaltimes in a sequence. In the second example the constraint is violated becausethe second sequence is not a permutation of the �rst one. And in the lastexample the second sequence is not sorted.Now we consider the examples for the Alldi� on the right-hand side. Whilein the �rst example the constraint clearly holds, we have a violation in thesecond one because the element 2 appears twice in the sequence.For each of the two constraints we will develop a propagation algorithmthat achieves bound-consistency, i.e. we assume that all variable domains areintervals and we show how to narrow them to the smallest possible inter-vals. For both constraints the best previous result was O(n logn). For theSortedness-constraint it was obtained by Bleuzen-Guernalec and Colmerauer[BGC00], the algorithm for the Alldi� -constraint was given by Puget [Pug98].The running time of our algorithms [MT00] will be O(n) plus the time for39



40 CHAPTER 3. SORTEDNESS AND ALLDIFFsorting the interval endpoints of the variable domains. For the Sortedness-constraint we can show that this is optimal. Let us compare our results tothe previous results. Of course, we are never worse because we can alwayssort the interval endpoints in time O(n logn) (see for example [Meh84, Chap-ter II.1]), assuming that two endpoints can be compared in constant time.But we improve upon the previous results whenever we can sort the intervalendpoints in linear time. This is for example the case when the interval end-points are \small" integer numbers, i.e. when they are drawn from the range[0::nk � 1] for some �xed k (see [Meh84, Chapter II.2])1.Although the two constraints have quite di�erent semantics we treatthem in a single chapter because our propagation algorithms for them arevery similar. In both cases we have to deal with a matching problem ina bipartite graph. A connection between the two constraints was alreadypointed out in [BGC00]. If the Alldi� -constraint encodes a permutation,which means Dom(Xi) � [1::n], then Alldi�(X1; : : : ; Xn) is equivalent toSortedness(X1; : : : ; Xn; f1g; f2g; : : : ; fng).The work which we present in this chapter is based on the paper [MT00],which is joint work with Kurt Mehlhorn. We will be able to give simpler al-gorithms for the Alldi� -constraint and the presentation of both propagationalgorithms should be clearer than in the paper. The chapter is divided intwo parts, one for each constraint. We start with the Sortedness-constraint,for the matching problem that occurs here is easier to solve than the one forthe Alldi� -constraint.3.1 The Sortedness-ConstraintIn this section we discuss the Sortedness-constraint. After giving an examplewhich demonstrates the usefulness of this constraint, we provide a formalde�nition. Then we develop the our propagation algorithm. The sectionconcludes with a discussion of related work.3.1.1 MotivationWe describe an application of the Sortedness-constraint to a job-shop schedul-ing problem. This application was found by Older et al. [OSvE95]. We haveto schedule n jobs on k identical machines. Each machine can execute any ofthe jobs, but only one at a time. Each job has a positive duration and maynot be interrupted. For every machine m with m 2 [1::k] we may specify1We take the n-nary representation of every number and interpret it as a string oflength k over the alphabet 0; 1; : : : ; n� 1. The strings can be sorted in linear time.



3.1. THE SORTEDNESS-CONSTRAINT 41an availability time Am, every job on this machine must start after Am. Aschedule assigns to every job a starting time and the machine on which it isexecuted. It is called feasible if no two jobs that overlap in time are sched-uled on the same machine and no job starts before its respective machine isavailable. In the sequel we will show how the Sortedness-constraint can beused to model this problem such that the solutions of the constraint programcorrespond one-to-one to the feasible schedules of the problem. In order tomake the following presentation easier, we will neglect additional constraintslike precedence constraints.For modelling the problem it will turn out useful to introduce for m 2[1::k] a dummy job jm which is scheduled to be the �rst job on machinem and has its completion time set to Am. Thus jm occupies this machineuntil the �rst real job can be executed. The n real jobs are denoted byjk+1; : : : ; jk+n. We consider a schedule for the k + n jobs and discuss how todecide whether it is feasible or not. Older et al. gave a very elegant answerto this question which involves sorting the starting and completion times ofthe jobs. Let �k+1; : : : ; �k+n denote the start times of the real jobs sorted inascending order, i.e. �k+1 � : : : � �k+n. Note that �k+i is in general not thestart time of job jk+i. Denote by �1; : : : ; �k+n the sorted completion times ofall jobs.The crucial observation is that all completion times can be treated asmachineavailabilities: Whenever a job completes at time �i on some machine m, thenthis machine is available again until the next job begins which is scheduledfor machine m.Let us examine a schedule that is feasible. Consider the point in time �k+i(for some i in [1::n]). At this time k + i jobs have been started (includingdummy jobs). Since there are only k machines, at least i out of these k + ijobs must have been completed at this time. And hence, we have �i � �k+i.We will show that the converse is also true: If �i � �k+i for all i 2 [1::n],then the schedule is feasible. Let � and  denote sorting permutations of thejobs according to the start and completion times. To be more precise, � isa permutation of [k + 1::k + n] such that ��(k+i) is the starting time of jobjk+i, for i = 1; : : : ; n. And  is a permutation of [1::k+ n] such that job jl iscompleted at time � (l) for l = 1; : : : ; k + n. We describe how to construct afeasible schedule. Since the dummy jobs are scheduled to be the �rst job ontheir machine, the schedule is uniquely determined if we know for each job jlits successor jsucc(l) (in case there is one). For l 2 [1::k+ n] we de�ne succ(l)as follows: succ(l) := � ��1(k +  (l)); if  (l) 2 [1::n]none; otherwise



42 CHAPTER 3. SORTEDNESS AND ALLDIFFIf succ(l) 6= none, then jsucc(l) is a real job and � (l) � ��(succ(l)), i.e. jlends before jsucc(l) starts. (The latter follows immediately from the condition�i � �k+i.) Since every real job has a positive duration, the starting timesof the jobs in the sequence jsucc(l); jsucc2(l); : : : strictly increase, hence thesequence contains no repetitions. Moreover, as � and  are permutations,we see that every real job is the successor of exactly one job.For m = 1; : : : ; k we schedule the jobs jm; jsucc(m); jsucc2(m); : : : on machine min that order. Thus the jobs on machine m do not overlap. Since every realjob is placed on exactly one machine, we obtain a feasible schedule.We �nish this section with the constraint program which encodes thefeasible schedules for the problem. We use the following variables:� For every real job jk+i we have a variable Si for the start time, a variableTi for the completion time, and the duration is stored in a variable Di.� We have variables �k+1; : : : ; �k+n for the sorted start times of the realjobs and variables �1; : : : ; �k+n for the completion times of all jobs.� For m = 1; : : : ; k the availability times of machine m is given by Am.The program looks as follows:Sortedness(S1; : : : ; Sn; �k+1; : : : ; �k+n)Sortedness(A1; : : : ; Ak; T1; : : : ; Tn; �1; : : : ; �k+n)Ti = Si +Di for all i 2 [1::n]�i � �k+i for all i 2 [1::n]3.1.2 De�nitionConsider a Sortedness-constraint on the variablesX1; : : : ; Xn; Y1; : : : ; Yn. Fori = 1; : : : ; n let Di denote Dom(Xi) and Ei denote Dom(Yi). As we have saidabove, we require that all domains are intervals, but we restrict ourselvesneither to �nite nor to integer intervals. We only assume that all domainsare drawn from a linearly ordered universe (U;�) such that jU j � 2 and twoelements of U can be compared in constant time. For two elements a; b in Uwe de�ne the interval I = [a; b] to be the set fu 2 U j a � u � bg. Note thatI may be empty. We denote by I the lower endpoint a and by I the upperendpoint b.Before we de�ne the relation of the constraint, we introduce the map-ping sort which maps every n-tuple over U to its sorted version, i.e. for(d1; : : : ; dn) 2 Un we have sort(d1; : : : ; dn) = (e1; : : : ; en) with e1 � : : : � enand there is a permutation � of [1::n] s.th. di = e�(i) for i = 1; : : : ; n. Now weare ready to de�ne the relation S := Rel(Sortedness(X1; : : : ; Xn;Y1; : : : ; Yn)).



3.1. THE SORTEDNESS-CONSTRAINT 43It consists of all 2n-tuples (d1; : : : ; dn; e1; : : : ; en) such that (e1; : : : ; en) =sort(d1; : : : ; dn) and di 2 Di, ei 2 Ei for all i. Our task is to decide whetherS is non-empty and, if so, to compute the minimal and maximal elements inthe projection of S on each of its 2n components.3.1.3 Propagation AlgorithmSince the last n components of any 2n-tuple in S are sorted in non-decreasingorder, we may assume from now on that Ei � Ei+1 and Ei � Ei+1 fori = 1; : : : ; n�1. If this holds, we say that the domains of the Y -variables arenormalized. Normalization can be achieved algorithmically by setting Ei tomax(Ei�1; Ei) for i from 2 to n and Ei to min(Ei; Ei+1) for i from n� 1 to1.Example. We use the following running example:Sortedness(X1; : : : ; X5;Y1; : : : ; Y5)with the respective variable domains:D1 = [7; 10] D2 = [1; 13] D3 = [13; 15] D4 = [3; 17] D5 = [5; 6]E1 = [2; 4] E2 = [4; 7] E3 = [2; 13] E4 = [12; 19] E5 = [14; 18]We observe that the domains of the Y -variables are not normalized. Nor-malization changes E3 to the value 4 and E4 to 18.Our algorithm works on a bipartite graph G which we call the intersectiongraph. For every variable of the constraint we have a corresponding node inG, so the nodes are fxi j 1 � i � ng and fyj j 1 � j � ng. There is an edgefxi; yjg i� Di \ Ej 6= ;. Given a tuple (d1; : : : ; dn; e1; : : : ; en) 2 S, one canalways construct a perfect matching in G as follows. If � denotes a permuta-tion such that di = e�(i) for i = 1; : : : ; n, then the set ffxi; y�(i)g j 1 � i � ngis a perfect matching. A partial converse also holds, a perfect matchingin G implies the existence of certain tuples in S, as we shall see below inLemma 3.1. But let us revisit our running example �rst.Example.On the right-hand side we show the in-tersection graph for our running example.The bold edges indicate a perfect matchingthat corresponds to the following tuple in S:( 8X1 ; 3X2 ; 14X3 ; 15X4 ; 6X5 ; 3Y1 ; 6Y2 ; 8Y3 ; 14Y4 ; 15Y5 )
x1 x2 x3 x4 x5

y2 y3 y4 y5y1As one can see in the example, the graph G tends to be dense, in fact itmay have n2 edges. So our algorithm will not create G explicitly.



44 CHAPTER 3. SORTEDNESS AND ALLDIFFWe now come back to the correspondence between perfect matchings inG and tuples in S. The lemma below shows how to construct tuples in S ifone has a perfect matching. It will allow us to determine the projection of Sonto its �rst n components.Lemma 3.1 Fix a perfect matching ffxi; y�(i)g j 1 � i � ng in the intersec-tion graph. For each i let di be an arbitrary element in Di \ E�(i). Then(d1; : : : ; dn; e1; : : : ; en) 2 S, where (e1; : : : ; en) = sort(d1; : : : ; dn).Proof. Let � = ��1 and consider the sequence d�(1); : : : ; d�(n). If this se-quence is sorted, then ej = d�(j) for all j, and we are done, because d�(j) 2 Ej,by the choice of the d's. So assume the sequence is not sorted, then there is asmallest index k with d�(k) > d�(k+1). We get the following chain of inequal-ities Ek 1� Ek+1 2� d�(k+1) < d�(k) 3� Ek 4� Ek+1. Here the inequalities 1 and4 follow from the assumption that the E's are normalized. The inequalities 2and 3 are implied by d�(k+1) 2 Ek+1 and d�(k) 2 Ek respectively. And hence,we have d�(k) 2 Ek+1 and d�(k+1) 2 Ek so that we can swap the two elements.We construct a new permutation �0 with �0(k) = �(k + 1), �0(k + 1) = �(k),and �0(j) = �(j) for all j =2 fk; k + 1g. Again we have d�0(j) 2 Ej for all j.And d�0(1);� : : : � d�0(k) � d�0(k+1). By applying the argument above untilwe obtain a sorting permutation of the d's, we can prove the claim.Before we explain how to narrow the domains of X1; : : : ; Xn in the corol-lary below, we introduce the reduced intersection graph: This graph is ob-tained by removing all edges from the intersection graph which cannot belongto any perfect matching.Corollary 3.1 (Narrowing of X-domains) Fix i 2 [1::n] and let Si bethe projection of S onto the i-th component. Let H denote the reducedintersection graph. Then Si = Di \ Sfxi;yjg2H Ej. In particular, we getSi = max(Di; El) and Si = min(Di; Eh) where yl and yh are the y-nodesadjacent to xi in H with minimal and maximal index respectively.Proof. It suÆces to show that Si = Di \Sfxi;yjg2H Ej.�: For any element di 2 Si we �nd a tuple in S whose i-th componentequals di. This tuple corresponds to a perfect matching M in H. Letfxi; yjg 2 M denote the matching edge incident to xi. Then di 2Di \ Ej.�: Consider an edge e = fxi; yjg in H. Then there is a perfect matching inthe intersection graph containing e. By Lemma 3.1 we have Di \Ej �Si.



3.1. THE SORTEDNESS-CONSTRAINT 45We want to point out that we cannot use a similar strategy for narrowingthe Y -domains2. We will show this with the aid of our running example. Ifone exchanges the mates of x1 and x5, one obtains a perfect matching Mthat contains the edge fx1; y2g. But there is no solution of the constraintwhere Y2 is assigned the value 7, although this value is in D1 \ E2. Thiscan be seen as follows. Consider a tuple (d1; : : : ; d5; e1; : : : ; e5) which satis�esthe example constraint. By inspecting the domains of the variables, we �nde1 < d5 < d1 < e4 � e5. (The last inequality follows from the fact that thee's are sorted.) Since the e's are a permutation of the d's, we obtain e2 = d5.This means that in any solution Y2 can only take a value in D5.In the sequel we will show how to �nd the edges that can belong to someperfect matching in the intersection graph. First we compute a certain perfectmatching, and then we can determine for any edge whether it can belong toany perfect matching or not. In order to do this eÆciently we exploit a crucialproperty of the intersection graph. Let us look at our running example. Inthe table below we list for any x-node its neighbours (i.e. its adjacent nodes)on the y-side:x1 x2 x3 x4 x5y2; y3 y1; y2; y3; y4 y3; y4; y5 y1; y2; y3; y4; y5 y2; y3We see that the neighbours of an x-node form an \interval" in the y-nodes.Or more formally, if yl and yh are two neighbours of a node xi with l � h,then for all j 2 [l::h] the node yj is adjacent to xi. This property of theintersection graph follows directly from the normality of the domains of theY -variables. (We have Ej � Eh � Di and Di � El � Ej, and henceDi \ Ej 6= ;.)Glover called bipartite graphs with this property convex and gave a simplematching algorithm for them (see [Glo67] and [Law76, Section 6.6.6]): Fora node v let N(v) denote the set of its neighbours. For j = 1; : : : ; n wedetermine for every node yj its matching mate x�(j). Assume that y1; : : : ; yj�1are already matched. Then the candidates for yj are all its free neighbours,i.e. the nodes in N(yj) n fx�(1); : : : ; x�(j�1)g. From the set of candidateswe choose the node xi such that Di is minimal, and de�ne �(j) := i. InFigure 3.1, we give an intuitive explanation for this choice of xi. Consideranother candidate xc, i.e Di � Dc. Since the interval of xc on the y-sideends later than that of xi, we see the following: All currently free nodes onthe y-side that can be matched by xi can also be matched by xc, but xc can(possibly) match some nodes which xi cannot match. So it is reasonable touse xi now and save xc for later.2Actual reason: Not every perfect matching corresponds to a \sorting permutation".



46 CHAPTER 3. SORTEDNESS AND ALLDIFF
free nodesmatched nodes

y1 yh
xcxi
yl ynyj�1 yj yj+1Figure 3.1: The nodes yj; : : : ; yl can be matched with both xi and xc, thenodes yl+1; : : : ; yh only with xc. So we match yj with xi keeping xc for later.Example. Let us look how Glover's algorithm constructs a perfect match-ing in our running example. We give a table which shows for yj the set ofcandidates (sorted according to D) and the choice of �(j).yj N(yj) n fx�(1); : : : ; x�(j�1)g �(j)y1 x2; x4 2y2 x5; x1; x4 5y3 x1; x3; x4 1y4 x3; x4 3y5 x4 4So we obtain exactly the matching shown in the drawing of the intersectiongraph on page 43.Lemma 3.2 (Glover) If the intersection graph has a perfect matching, thealgorithm above constructs one.Proof. Assume that the intersection graph has a perfect matching M . Weuse induction on j to show that there is a perfect matchingMj which matchesyk with x�(k) for k = 1; : : : ; j. The claim holds for j = 0 with M0 = M . Soassume j > 0. If Mj�1 matches yj with x�(j), we set Mj = Mj�1 and aredone. Otherwise Mj�1 matches yj with some other node xc and x�(j) withsome node yr. From the de�nition of �(j) we conclude D�(j) � Dc. Since thenodes y1; : : : ; yj�1 are matched with x�(1); : : : ; x�(j�1), we have r > j. As yrlies to the right of yj and the interval of xc ends later than that of x�(j), weget yr 2 N(xc). Thus we can exchange the mates of yj and yr to constructMj from Mj�1, i.e. we match yj with x�(j) and yr with xc.We discuss how to implement Glover's algorithm eÆciently. An im-portant observation is the following. Suppose that the intersection graph



3.1. THE SORTEDNESS-CONSTRAINT 47contains a perfect matching, and consider the iteration j of the algorithm.All free neighbours of the nodes y1; : : : ; yj�1 are also neighbours of yj. Inother words, as soon as an x-node becomes a candidate, it remains oneuntil it is matched. Formally this means that all nodes in the set Sj =N(y1; : : : ; yj�1)nfx�(1); : : : ; x�(j�1)g are contained in N(yj). This can be seenas follows. Assume the observation is false, i.e. there is a node xi 2 SjnN(yj).Since xi is a neighbour of some yk with k < j but not of yj, its interval in they-nodes ends before the interval of yj, i.e. Di < Ej. So xi is not a neighbourof yj; : : : ; yn. After Glover's algorithm has matched y1; : : : ; yj�1, there are atmost n� j candidates for the remaining n� j + 1 nodes on the y-side, andhence it will get stuck. By Lemma 3.2 this cannot happen if the intersectiongraph has a perfect matching.The implementation of Glover's algorithm which is probably most sug-gesting maintains a priority queue P . After iteration j � 1, the queue Pcontains the set Sj�1 sorted according to the upper interval endpoint D ofthe corresponding domains. In iteration j we insert into P those neighboursof yj which are not neighbours of y1; : : : ; yj�1, these are the nodes xi withEj�1 < Di � Ej. Now, P contains all candidates for yj, and { if G has noperfect matching { maybe some x-nodes which are not neighbours of yj. IfP is not empty, we extract a node xi from P with smallest Di. If P is emptyor Di < Ej, we detect that the intersection graph has no perfect matching,which implies that S is empty. Otherwise we set �(j) = i and continue.Since every operation on P takes time O(logn), this implementation, whichis shown in Algorithm 3.1, has complexity O(n logn).Now we show how the algorithm can be implemented in linear time, ifone knows the sorting of the X-variables according to both the lower and theupper endpoints of their domains. Let �; � denote permutations of [1::n] withD�(1) � : : : � D�(n) and D�(1) � : : : � D�(n). We replace the priority queueby an instance of the o�ine-min problem [AHU74, Chapter 4.8], which can besolved in linear time using the union-�nd data structure by Gabow and Tarjan[GT85]. The o�ine-min problem can be described as follows: one is given asequence of the priority queue operations insert and extractmin, and one hasa sorting permutation of the elements inserted by the insert operations. Thegoal is to check whether the sequence is valid, i.e. no extractmin is performedon an empty queue, and { if so { to compute the pairs of correspondingextractmin and insert operations in the sequence.Since in Algorithm 3.1 the sequence does not depend on the outcome ofthe extractmin operations (if it runs to completion), we can easily constructthe whole sequence o�ine. If we simply delete lines 8 { 10 and 12 { 15 inAlgorithm 3.1, we obtain an algorithm which computes the desired sequencein linear time. Of course, we have to check that the sequence is valid and



48 CHAPTER 3. SORTEDNESS AND ALLDIFFAlgorithm 3.1 Finding a perfect matching in the intersection graph GProcedure: GloverWithPQ(D1; : : : ; Dn, E1; : : : ; En, �)Require: � is a permutation of [1::n] s.th. D�(1) � : : : � D�(n).1: P  [ ] // PQ stores x-indices [i1; : : : ; ik] s.th. Di1 � : : : � Dik2: s 13: for j = 1 to n do4: while s � n and D�(s) � Ej do5: insert �(s) into P6: s s+ 17: end while8: if P is empty then9: report \no perfect matching in G" and terminate10: end if11: extract the �rst element i from P , i.e. one with smallest Di12: if Di < Ej then13: report \no perfect matching in G" and terminate14: end if15: �(j) i16: end for17: return �that for j = 1; : : : ; n the j-th extractmin corresponds to an insert(i) withDi � Ej, otherwise no perfect matching exists. Altogether, we get a lineartime algorithm that can decide the existence of a perfect matching in theintersection graph and if possible compute one.We have computed a distinguished perfect matching in G. In order tocompute the reduced intersection graphH, we have to �nd all edges of G thatcan belong to some perfect matching. These edges are easy to �nd, we usethe same characterization that was employed by R�egin in his arc-consistencyalgorithm for the Alldi� -constraint. It is based upon the strongly connectedcomponents of a directed graph. Let u; v be two nodes in a directed graph,we say that u can reach v if there is a directed path from u to v. A set C ofnodes is called strongly connected if any two nodes u; v 2 C can reach eachother. And C is a strongly connected component (SCC) if it is a maximalstrongly connected set of nodes. Now we can formulate the characterization:Lemma 3.3 Assume that M is a perfect matching in G. Let us constructthe oriented intersection graph ~G by directing all edges in G from their x-endpoint to their y-endpoint and adding the reverse edge for all edges in M .



3.1. THE SORTEDNESS-CONSTRAINT 49An edge fxi; yjg belongs to some perfect matching of G i� xi and yj lie inthe same strongly connected component of ~G.Proof. See Lemma 2.4.Example. We revisit our running example:On the right-hand side we have drawn theoriented intersection graph. The x-nodeshave been sorted such that every node islocated above its matching mate on they-side. Every bold edge corresponds to amatching edge, it has two arrow heads be-cause it represents two directed edges in ~G. C1C2

x4
y5

x5
y2y1

x2 x1
y3

x3
y4The edges in dashed style connect nodes in di�erent SCCs, and hence theydo not belong to any perfect matching. Or in other words, these are exactlythe edges that have to be deleted in order to obtain the reduced intersectiongraph.As we have indicated, there are two SCCs C1 = [y2; x5; y3; x1] and C2 =[y1; x2; y4; x3; y5; x4]. We see that C1 is \nested" in C2, this shows that they-nodes of an SCC do not have to form an interval.We develop an algorithm that computes the strongly connected compo-nents of ~G in time O(n), which is not trivial since ~G may have up to 
(n2)edges. We use the algorithm of Cheriyan and Mehlhorn [CM96] as a basisand adapt it to the special structure of our graph.We observe that a node yj and its matching mate x�(j) always belongto the same SCC because of the edges (yj; x�(j)) and (x�(j); yj) in ~G. Werepresent a component C as a list [yj1; x�(j1); : : : ; yjk; x�(jk)] such that j1 <: : : < jk. We use left y(C) to denote j1 and right y(C) for jk. Moreover, wesay that a component C1 can reach a component C2 if some node in C1 canreach some node in C2. (This implies that every node in C1 can reach everynode in C2.)Algorithm 3.2 explores the graph ~G from left to right3 and maintains theSCCs of the currently explored graph. To be more precise, it computes theSCCs of the graphs ~G0; : : : ; ~Gn where ~Gj is the subgraph of ~G induced bythe nodes y1; : : : ; yj and their matching mates on the x-side. Note that ~G0is empty and ~Gn = ~G. The components are stored in two data structures:a stack CS and a list SCCs. In CS we store tentative components whichare strongly connected but may grow as the exploration of ~G goes on. Incontrast to this, the components in SCCs are completed, i.e. they are SCCsof the �nal graph ~G.3This means the nodes are scanned in the order y1; x�(1); y2; x�(2); : : : ; yn; x�(n).



50 CHAPTER 3. SORTEDNESS AND ALLDIFFAlgorithm 3.2 Computing the SCCs of the oriented intersection graph ~GFunction: ComputeSCCs(D1; : : : ; Dn, E1; : : : ; En, �)1: SCCs  empty list2: CS  empty stack3: for j=1 to n do4: while CS not empty and D�(right y(top(CS))) < Ej do// i.e. top(CS ) cannot reach yj or a node to the right of it5: pop C 0 from CS6: append C 0 to SCCs7: end while8: i �(j)9: C  [yj; xi]10: while CS not empty and Di � Eright y(top(CS )) do// i.e. C can reach top(CS )11: pop C 0 from CS12: C  C 0 Æ C // merge components13: end while14: push C onto CS15: end for16: while CS not empty do17: pop C 0 from CS18: append C 0 to SCCs19: end while20: return SCCsWe will now explain the details of the algorithm and prove its correctnessbased on the invariants below. When line 15 is executed the following holds:I1: Every component C in the list SCCs is a strongly connected componentof ~G. In particular, C cannot reach yj; : : : ; yn.I2: The union SCCs [ CS consists of the SCCs of the currently exploredgraph ~Gj.I3: Let CS = hC1; C2; : : : ; Cti (where Ct is the top element). If l < h thenCl can reach Ch but not vice versa and right y(Cl) < left y(Ch).I4: Let C denote a component in SCCs [ CS and let ir be �(right y(C)),i.e. xir is the mate of the rightmost y-node of C. Then for all xi 2 Cwe have Di � Dir.



3.1. THE SORTEDNESS-CONSTRAINT 51When Algorithm 3.2 enters the for-loop (line 3) for the �rst time theinvariants clearly hold with j = 0. So let us now consider an iteration jwith j > 0 and assume that the invariants hold for j � 1 at the beginning.First we identify some components on CS that can be declared completedand move them to SCCs (lines 4{7). When is the topmost component C 0of CS not completed? We will see that this can only be the case if yj is aneighbour of xir , where ir = �(right y(C 0)). We know by invariant I2 that C 0is an SCC of ~Gj�1. So if it is not an SCC of ~G, then it must be able to reachone of the nodes yj; : : : ; yn. By invariant I3, C 0 cannot reach nodes in othercomponents on CS ; and by invariant I1, the components in SCCs cannotreach any of the nodes yj; : : : ; yn. And hence, there must be a node xl in C 0itself such that xl is a neighbour of some yk with j � k � n. Recalling thatthe neighbours of xl form an interval and the mate of xl lies to the left of yj,we can conclude that xl is incident to yj. By invariant I4 this implies thatxir is also a neighbour of yj. So after the while-loop in line 4 has �nished,invariant I1 holds.When the algorithm reaches line 8, CS is either empty or its topmostcomponent can reach yj. By invariant I3, this implies that all componentson CS can reach C = [yj; xi], where xi is the mate of yj. So the SCC ofyj in ~Gj is the union of C with all components on CS that C can reach.From invariant I3 we infer that C can reach a component C 0 on CS i� xiis a neighbour of some y-node in C 0. Since the neighbours of xi form aninterval, this is equivalent to Di � Eright y(C0). Invariant I3 implies that thecomponents with this property are a suÆx of CS . After merging them withC and pushing C on CS , invariant I3 holds again. Clearly, the �nal C is theSCC of yj in ~Gj. Invariant I2 follows from the fact that every other SCC of~Gj is also an SCC of ~Gj�1.We have to show that invariant I4 holds for C after merging it with C 0 inline 12. Let j 0 = right y(C 0) and i0 = �(j 0). Then what we have to proveis Di0 � Di. Observe that xi is a neighbour of yj0 because C and C 0 aremerged. Consider the point in time when Glover's algorithm matched thenode yj0 with xi0 . Since xi is a neighbour of yj0 and was free at that time,our claim follows.After the termination of the for-loop, all remaining components on CSare SCCs of the �nal graph because of invariant I2 and ~Gn = ~G. Thus, thesecomponents can be moved to SCCs.We want to say a few words about the implementation of the algorithm.First it is clear that we only have to store the indices of the y-nodes ina component C, for the x-nodes are the matching mates of the y-nodes.If we keep the indices in a list in ascending order, then we can determine



52 CHAPTER 3. SORTEDNESS AND ALLDIFFright y(C) and merge components in constant time. Moreover, the numberof push operations as well as the number of pop operations is bounded by n.And hence, the whole algorithm runs in time O(n).Example. We show how the algorithm computes the SCCs of our runningexample. In Table 3.1 we give a trace of its computation. The �rst twocolumns contain the value of the loop variable j and the line of the pseudo-code. The next two columns give the state of the data structures CS and Cafter the algorithm has executed the respective line. We do not list the stateof SCCs, but we indicate the completion of a component by a comment inthe last column.j line CS C comment1 3 hi [y1; x2] new component2 3 h[y1; x2]i -2 9 h[y1; x2]i [y2; x5] new component3 3 h[y1; x2]; [y2; x5]i -3 9 h[y1; x2]; [y2; x5]i [y3; x1] new component3 12 h[y1; x2]i [y2; x5; y3; x1] merge4 3 h[y1; x2]; [y2; x5; y3; x1]i -4 6 h[y1; x2]i - SCC [y2; x5; y3; x1]4 9 h[y1; x2]i [y4; x3] new component5 3 h[y1; x2]; [y4; x3]i -5 9 h[y1; x2]; [y4; x3]i [y5; x4] new component5 12 h[y1; x2]i [y4; x3; y5; x4] merge5 12 hi [y1; x2; y4; x3; y5; x4] merge5 15 h[y1; x2; y4; x3; y5; x4]i -5 19 - - SCC [y1; : : : ; x4]Table 3.1: Computation of the SCCs of the running exampleNow we discuss the task of narrowing the domains of the X-variables.Let us consider a variable Xi and let Si denote the projection of S onto thei-th component. Suppose we want to determine Si. By Corollary 3.1 andLemma 3.3, we have to do the following. Let C = [x�(j1); yj1; : : : ; x�(jk); yjk ] bethe SCC of xi in ~G such that j1 < : : : < jk. We look at j1; : : : ; jk in that orderuntil we �nd the �rst node yj� which is a neighbour of xi in G. So j� is the�rst index in the sequence with Di � Ej�. And we get Si = max(Di; Ej�).Assume now that we have an ordering xi1 ; : : : ; xik of the x-nodes in Csuch that Di1 � : : : � Dik . Then we can determine S for all the x-nodes inC in time O(k). All we have to do is to merge the sequence Di1 : : :Dik with



3.1. THE SORTEDNESS-CONSTRAINT 53Ej1 : : : Ejk . Note that the latter sequence is also non-decreasing due to thenormalization of the Y -domains.The question is now how we can �nd the sorting of the x-nodes of C. Wemay assume that we have a global sorting of all x-nodes of ~G such thatD�(1) � : : : � D�(n). So we can compute the order for each component withbucket sort: First we generate a bucket (i.e. a list) for every SCC, then welabel every x-node with the respective bucket. Finally we consider the nodesin the order x�(1); : : : ; x�(n) and append every node at the end of its bucket.We show now that the ordered sequence of x-nodes does not have to begenerated explicitly for each SCC: Suppose that every component is rep-resented by the sequence of the indices of the y-nodes sorted in increasingorder, i.e. C = hj1; : : : ; jki. For every component we maintain an iteratoriter. This is a data structure which is similar to a pointer. It references anitem of the sequence and supports two operations: iter.YIdx returns the ref-erenced item, and iter.advance makes iter reference the next element in thesequence. With this data structure we can compute S1; : : : ; Sn as shown inAlgorithm 3.3. A symmetric procedure can be used to determine S1; : : : ; Sn.Algorithm 3.3 Narrowing of the X-domains (lower endpoints)Procedure: NarrowXDomsLE(D1; : : : ; Dn, E1; : : : ; En, �, �, SCCs)Require: � is a permutation of [1::n] s.th. D�(1) � : : : � D�(n).1: for all C = hj1; : : : ; jki 2 SCCs do2: generate iterator iter and make it reference the �rst element of C3: for � = 1 to k do4: label x�(j�) with iter5: end for6: end for7: for i = 1 to n do8: iter  iterator of x�(i)9: while Eiter :YIdx < D�(i) do10: iter.advance11: end while12: // yiter:YIdx is leftmost neighbour of x�(i) in its SCC13: S�(i)  max(D�(i); Eiter :YIdx)14: end for15: return S1; : : : ; SnExample. We illustrate the computation of the S-values for the runningexample. The table below is self-explanatory, we only want to point out thatthe position of the iterator for the respective SCC is marked by underlining



54 CHAPTER 3. SORTEDNESS AND ALLDIFFthe corresponding j-index:i x�(i) relevant SCC D�(i) EYIdx S�(i)1 x2 h1; 4; 5i [1; 13] [2; 4] 22 x4 h1; 4; 5i [3; 17] [2; 4] 33 x5 h2; 3i [5; 6] [4; 7] 54 x1 h2; 3i [7; 10] [4; 7] 75 x3 h1; 4; 5i [13; 15] [12; 19] 13As we can see there is not much narrowing, only the lower endpoint of thedomain of X2 increases. One can check that the upper endpoints are notchanged at all. So the narrowed X-domains of our running example areS1 = [7; 10]; S2 = [2; 13]; S3 = [13; 15]; S4 = [3; 17]; S5 = [5; 6].We describe how to narrow the domains of the Y -variables. In the fol-lowing lemma we show that the upper endpoints of the narrowed domainscan be easily read o� given the matching computed by Glover's algorithm:Lemma 3.4 (Narrowing of Y -domains) Let T1; : : : ; Tn denote the pro-jections of S onto the last n components. And let � be the bijection computedby Algorithm 3.1 (Glover). Then T j = min(Ej; D�(j)) for j = 1; : : : ; n.Proof. By the choice of �, we have Ej \ D�(j) 6= ; for all j. So let�j := max(Ej \D�(j)) = min(Ej; D�(j)) for j = 1; : : : ; n. We will prove thatS contains the tuple (���1(1); : : : ; ���1(n); �1; : : : ; �n). Clearly, ���1(i) 2 Di forall i, and �j 2 Ej for all j. So what remains to show is �1 � : : : � �n. Supposeotherwise, i.e. �j < �j�1 for some j. Since Ej � Ej�1 by the assumption ofnormalization, this implies D�(j) = �j < �j�1 � D�(j�1). And hence, if x�(j)had been a candidate for yj�1 in Glover's algorithm, it would have beenpreferred to x�(j�1). So it was not a candidate, although it was free, whichimplies Ej�1 < D�(j). Thus we get Ej�1 < D�(j) � D�(j) < �j�1 � Ej�1, acontradiction.Consider now a tuple t = (d1; : : : ; dn; e1; : : : ; en) 2 S. What remains toshow is that ej � �j for all j. Assume this is wrong, i.e. there is an indexk with ek > D�(k). For j = k; : : : ; n we replace the lower endpoint of Ej bymax(Ej; ek), which gives us a new set of normalized Y -domains and inducesan intersection graph G0. Clearly, t is a solution of the new constraint, andhence G0 contains a perfect matching.Suppose we run Glover's algorithm on the new domains. As E1; : : : ; Ek�1 andthe upper endpoint of Ek are the same as before, the algorithm will performexactly the same computation until it extracts �(k) from the priority queuein iteration k. Then it cannot match yk with x�(k) again, and it will reportthat no perfect matching exists in G0, a contradiction.



3.1. THE SORTEDNESS-CONSTRAINT 55In order to determine T 1; : : : ; T n, we have to compute a new matching�0, which is obtained as follows. We match yn; : : : ; y1 in that order. Whenwe match yj, we choose among all candidates in N(yj) n fx�0(n); : : : ; x�0(n�1)gthe node xi such that Di is maximal and set �0(j) = i. Then we get T j =max(Ej; D�0(j)) for j = 1; : : : ; n.Example. We complete our running example by computing the narrowedY -domains. The following table shows the function �0 obtained with the\reverse Glover" algorithm: j 1 2 3 4 5�0(j) 2 5 1 4 3And we get T1 = [2; 4]; T2 = [5; 6]; T3 = [7; 10]; T4 = [12; 15]; T5 = [14; 17].(The endpoints which have been adjusted are typeset in bold.)We give a summary of the full algorithm:1. Sort the domains of the X-variables according to their lower and upperendpoints.2. Normalize the domains of the Y -variables.3. Compute the matchings � and �0 with Glover's algorithm.4. Compute the strongly connected components of the oriented intersec-tion graph.5. Narrow the domains of the variables.Except for the �rst step, all steps take linear time. Thus the complexity ofthe whole propagation algorithm is asymptotically the same as for sorting thelower and upper endpoints of the X-domains. This is O(n logn) in general,but is O(n) if interval endpoints are integers drawn from a range of size O(nk)for some �xed k.Our algorithm is optimal in all models of sorting: Bleuzen-Guernalec andColmerauer [BGC00] observed that a propagation algorithm A for the Sort-edness-constraint which achieves bound-consistency can be used for sortingn elements d1; : : : ; dn of the universe U in time O(n) plus the running timeof A. This can be done as follows. We compute the minimum value d andthe maximum value d of the n elements. Then we call A with the domainsDi = [di; di] and Ei = [d; d] for i = 1; : : : ; n. The algorithm will shrink theE-domains to singletons such that the element of Ei equals the i-th elementof sort(d1; : : : ; dn).



56 CHAPTER 3. SORTEDNESS AND ALLDIFF3.1.4 Comparison with related workThe Sortedness-constraint was introduced by Older et al. in [OSvE95], wherethey gave the application to the job-shop scheduling problem that we havediscussed in Section 3.1.1. But they do not introduce Sortedness as a globalconstraint. They use a general Prolog sorting algorithm (namely quicksort)where they plug in constraint variables instead of ground terms. Thus theconstraint is broken down into elementary constraints of the form X � Y .Later Zhou [Zho97] used a variant of the Sortedness-constraint to solvesome hard job-shop scheduling problems that had been open before. Zhouextended the argument list of the constraint by n extra variables that encodethe sorting permutation. The constraintSortednessPerm(X1; : : : ; Xn;Y1; : : : ; Yn;P1; : : : ; Pn)is semantically equivalent to the following constraints:Y1 � : : : � Yn ^ Alldi�(P1; : : : ; Pn) ^ 8i 2 [1::n] : Xi = YPiThe advantage of this formulation is that Zhou can use a global propagationalgorithm for the Alldi� constraint, the constraints of the form \Xi = YPi"are still transformed into elementary constraints. Moreover, he can use theP -variables to guide the search process.We have thought about dealing with the P -variables in our algorithm.Although the straightforward approach does not yield a bound-consistencyalgorithm, we have decided to discuss it briey, for it achieves at least thesame pruning as the formulation by Zhou. Denote the domains of the vari-ables by D1; : : : ; Dn, E1; : : : ; En and F1; : : : ; Fn. We change the de�nition ofthe intersection graph G slightly in order to take into account the permuta-tion variables: An edge fxi; yjg is in G i� Di \ Yj 6= ; and j 2 Fi. In orderto narrow the domains of the X- and the Y -variables, we would do the sameas before. Recall that we compute for every node xi the leftmost node yl andthe rightmost node yr that can be matched with xi. The narrowed domainof Pi is simply [l::r]. It is clear that this still yields a narrowing algorithmfor the SortednessPerm-constraint, because every tuple in the relation of theconstraint corresponds to a perfect matching.Moreover, one can observe that Lemma 3.4 still holds, which means thatour approach achieves bound-consistency on the Y -domains. But for the do-mains of the X- and the P -variables this is not the case, one can see thatLemma 3.1 breaks down. (In the proof we start with an initial matching andtransform until it corresponds to a sorting permutation. This constructiondoes not work anymore.)



3.1. THE SORTEDNESS-CONSTRAINT 57We make another observation: A perfect matching ffxi; y�ig j i 2 [1::n]g inG corresponds to the tuple (�1; : : : ; �n) in the relation of Alldi�(P1; : : : ; Pn).Thus applying a bound-consistency propagation algorithm for the Alldi� -constraint to the domains of P1; : : : ; Pn would not give more propagationthan our algorithm.Let us look at an example where our algorithm does not achieve bound-consistency on the domains of the permutation variables. We consider aSortednessPerm-constraint of arity 3 � 4 with the following variable domains:D1 = [1; 2] D2 = [1; 1] D3 = [2; 2] D4 = [1; 2]E1 = [1; 1] E2 = [1; 2] E3 = [1; 2] E4 = [2; 2]F1 = [1; 2] F2 = [1; 3] F3 = [2; 4] F4 = [3; 4]One can verify that the domains D1; : : : ; D4 of the X-variables and the do-mains E1; : : : ; E4 of the Y -variables are bound-consistent. But there is nosolution to the constraint where P3 is assigned the value 2: Assume other-wise. If P3 equals 2, then P1 must be set to 1. And hence, P2 must take thevalue 3. This cannot be, because we have X2 < X3 and YP2 = Y3 � Y2 = YP3.But it is easy to see that all edges in the intersection graph can belong to aperfect matching.Finally, we want to talk about the work of Bleuzen-Guernalec and Colmer-auer [BGC00]. They describe the �rst propagation algorithm for the Sort-edness-constraint as a single global constraint. In the previous work theconstraint was always decomposed into elementary constraints. AlthoughBleuzen-Guernalec and Colmerauer do not use the language of graph theoryat all in their paper, one can identify some similarities with our work. Theircentral objects are bijections between the indices of the input variables andthe output variables. Clearly, there is a one-to-one correspondence betweenthese bijections and the perfect matchings in the bipartite graphs, which weconsider. (In fact, in our implementation of Glover's algorithm we encodethe computed matching as a bijection.) In the sequel we will summarizetheir approach and express it in the language of graph theory which makesit { as we feel { easier to understand and facilitates the comparison with ourapproach. They achieve a running time of O(n logn), which is in some casesslightly worse than our result.We consider the constraint Sortedness(X1; : : : ; Xn;Y1; : : : ; Yn) and the do-mains D1; : : : ; Dn and E1; : : : ; En. Let G denote the corresponding intersec-tion graph. Let us �rst discuss the narrowing of the upper endpoints of theY -domains. Our way to do this is as follows (cf. Lemma 3.4): With Glover'salgorithm we compute a certain matching ffx�(j); yjg : 1 � j � ng andthen the narrowed endpoint of Dom(Yj) is simply min(Ej; D�(j)). Bleuzen-Guernalec and Colmerauer compute the bijection ��1 (see Complexity 3 in



58 CHAPTER 3. SORTEDNESS AND ALLDIFF[BGC00])4. But in the remaining algorithm they use �. For the narrowingstep they apply the same rule as we do (see Theorem 2 in [BGC00]).Now we deal with narrowing the lower endpoints of the X-domains. Ourapproach is based on identifying the edges of G that can belong to some per-fect matching (see Corollary 3.1). Property 4 of [BGC00] expresses the samestatement but with di�erent words. In order to �nd the matchable edges, wedecompose the oriented intersection graph ~G into strongly connected com-ponents as it is done in standard matching theory. Bleuzen-Guernalec andColmerauer do something di�erent. They decompose G in what we will call\zig-zag" components (they call them blocks of type I). A zig-zag componentis a bipartite graph which contains the skeleton shown on the left-hand sidein Figure 3.2. Formally, a zig-zag graph Z is a bipartite graph which has 2nnodes x1; : : : ; xn and y1; : : : ; yn and contains (at least) the edges fxi; yig fori = 1; : : : ; n and fxi; yi+1g for i = 1; : : : ; n� 1. The crucial property of Z isthat any edge fxi; yjg with j � i can belong to a perfect matching of Z (seeFigure 3.2). x1 x2 x3 x4 x5y2 y3 y4 y5y1 x1 x2 x3 x4 x5y2 y3 y4 y5y1Figure 3.2: The left-hand side shows a zig-zag graph, which consists of theskeleton (bold edges) and one additional edge e = fx4; y2g. The bold edgeson the right-hand side form a perfect matching containing e.Let us consider the intersection graph G again. Assume that the layoutof G is as follows: at the bottom we have the nodes y1; : : : ; yn and aboveevery node yj we draw its mate x�(j). With this sorting of the x-nodes,G is in general not a zig-zag graph. But Bleuzen-Guernalec and Colmer-auer were able to show that G can be decomposed into zig-zag componentsZ1; : : : ; Zk such that the following holds: If there is an edge which connectsan x-node in a component Zl with a y-node in a di�erent component Zh,then l < h (see Figure 3.3).5 The meaning of this property becomes clearwhen we look at the oriented intersection graph ~G and its decomposition:The property ensures that edges between di�erent zig-zag components aredirected from top-left to bottom-right. So there can be no directed cycle that4The bijection which is denoted by \'" in [BGC00] corresponds to ��1.5Their algorithm for computing this decomposition exploits certain properties of �.



3.2. THE ALLDIFF-CONSTRAINT 59visits more than one component, which implies that nodes lying in di�erentzig-zag components also belong to di�erent strongly connected componentsof ~G. Therefore an edge between di�erent zig-zag components cannot belongto a perfect matching of G. And hence, it can be ignored in the narrowingprocess. x2 x5 x1 x3 x4y2 y3 y4 y5y1 x2 x3 x4y4 y5y1 x5 x1y2 y3Figure 3.3: On the left-hand side we show the intersection graph G for therunning example from the previous section. On the right-hand side G isdecomposed into two zig-zag components.We want to mention that the zig-zag components of G and the SCCs of~G do not have to coincide as they do in the example in Figure 3.3, but ingeneral a zig-zag component may span several SCCs.With the zig-zag decomposition at hand, narrowing the lower endpointsof the X-domains is easy. For every node xi its leftmost neighbour yl in itszig-zag component is computed, and then we have Si = max(Di; El).We want to point out that the decomposition into zig-zag components whichis based on � can only be used to narrow the lower endpoints of the X-domains. For the upper endpoints one has to compute a second decompo-sition that is based on the bijection �0 (see page 55). In contrast to this,decomposing ~G into strongly connected components can be used to narrowboth endpoints of the X-domains, which is an advantage of our approach.3.2 The Alldi�-ConstraintThe following section deals with the Alldi� -constraint. It arises in manyapplications, and several propagation algorithms have been developed for it,which achieve di�erent degrees of consistency, see [vH01a] for a survey. Aftergiving a formal de�nition of the constraint, we will describe our propagationalgorithm. At the end of this section we will discuss related work.



60 CHAPTER 3. SORTEDNESS AND ALLDIFF3.2.1 De�nitionWe consider an Alldi� -constraint on the variablesX1; : : : ; Xn with respectivedomains D1; : : : ; Dn. For this constraint we allow only �nite integer intervalsas variable domains6. The Alldi� -relation A := Rel(Alldi�(X1; : : : ; Xn)) isde�ned as the set of all tuples (d1; : : : ; dn) such that for i; j 2 [1::n] with i 6= jwe have di 6= dj and di 2 Di. Our task is to decide whether A is not empty,and, if so, to compute the smallest and the largest element in the projectionof A on each of its n components.3.2.2 Propagation algorithmOur approach is based on the same ideas as R�egin's arc-consistency algorithm[R�eg94] for the Alldi� -constraint. He considers the value graph G which isan undirected bipartite graph de�ned as follows: For every variable Xi wehave a node xi, and for every value j that occurs in some domain Di we havea node yj. There is an edge fxi; yjg i� j 2 Di. Let m denote the numberof edges of G. Clearly, m is the sum of the cardinalities of the domains,and hence it does not depend on n. Since R�egin's algorithm has runningtime O(pnm) and we want to achieve a running time which only dependson n, we cannot use his algorithm directly. We will adapt his ideas and takeadvantage of the special structure of our graph. From the de�nition of thevalue graph, we can see that the neighbours of an x-node form an interval inthe y-nodes. So it has the same nice property as the intersection graph fromthe previous section.But in general, there are more values than variables, which means thatthere are more y-nodes than x-nodes. (If there are less values than vari-ables, the constraint has no solution.) And hence, there is usually no per-fect matching in the value graph. So we are interested in matchings whichcover all x-nodes, but may leave some y-nodes free, we call them x-perfectmatchings. There is a one-to-one correspondence between the solutions ofthe constraint and the x-perfect matchings of G. An x-perfect matchingffxi; yjig j i 2 [1::n]g corresponds to the tuple (j1; : : : ; jn) in A and viceversa.Example. We use the following running example:Alldi�(X1; : : : ; X6)with the respective variable domains:6What we actually need is a linearly ordered universe such that all intervals contain�nitely many elements. And for an element u we must be able to compute its predecessoru� 1 and its successor u+ 1 in constant time.



3.2. THE ALLDIFF-CONSTRAINT 61D1 = [5::7] D2 = [2::3] D3 = [2::6] D4 = [2::3] D5 = [1::3] D6 = [5::6]On the right-hand side we showthe value graph for our example.The bold edges indicate an x-perfectmatching that corresponds to the tu-ple ( 6X1 ; 2X2 ; 4X3 ; 3X4 ; 1X5 ; 5X6 ) in A, thenode y7 is free.
x1 x2 x3 x4

y2 y3 y4y1
x5 x6
y5 y6 y7In order to narrow the variable domains, we have to �nd all edges of Gthat can belong to some x-perfect matching. The characterization of thematchable edges is slightly more complicated than in the previous section,because we have to take into account the free nodes. The characterizationgiven in the lemma below was already used by R�egin [R�eg94, Proposition1]:Lemma 3.5 Let M be an x-perfect matching in G. Construct the orientedvalue graph ~G by directing all edges in G from the x-nodes to the y-nodesand adding the reverse edge for all edges in M . An edge fxi; yjg belongs tosome x-perfect matching of G i� one of the following holds:1. xi and yj lie in the same strongly connected component of ~G.2. There is a path in ~G that starts with (xi; yj) and ends in a free y-node.Proof. See Lemma 2.4.So our �rst task is to compute an arbitrary x-perfect matching in G.Glover's algorithm, which was presented in the previous section, can be usedto compute perfect matchings in convex bipartite graphs. Since G is alsoconvex, we can modify the algorithm such that it computes x-perfect match-ings. Let us recall the basic idea of the algorithm. We scan the y-nodesfrom left to right. In order to match yj we look at all candidates, i.e. allfree neighbours on the x-side, and choose the one where the correspondingdomain ends earliest. When there is no candidate, we report failure andterminate. This is exactly the point which we have to change: When wehave no candidate for yj, then yj remains free and we go to the next y-node.(Failure can only occur when we discover a free x-node where all neighbourson the y-side are matched.)Before we develop an eÆcient implementation of the algorithm, we showits correctness:Lemma 3.6 If the value graph G contains an x-perfect matching, the mod-i�ed Glover algorithm will construct one.



62 CHAPTER 3. SORTEDNESS AND ALLDIFFProof. The idea of the proof is as follows. First we present an algorithmwhose correctness is obvious and then we argue that our modi�ed algorithmabove does the same computations.Consider the following algorithm A:1. Construct a new graph G0 from G as follows. Let n0 denote the numberof y-nodes in G, and denote by h the greatest value that occurs insome variable domain. (We may assume n0 � n, otherwise there is nox-perfect matching.) Add new nodes xn+1; : : : ; xn0+1 on the x-side andyh+1 on the y-side. Connect each of the nodes xn+1; : : : ; xn0 with everyy-node by an edge, and add an edge between xn0+1 and yh+1.2. Run Glover's original algorithm on G0 and obtain (if possible) a perfectmatching M 0.3. Construct M from M 0 by deleting all edges that are incident to a newnode.It is clear that G0 contains a perfect matching i� G has an x-perfect one.And hence, the correctness of algorithm A follows directly from Lemma 3.2.Now we observe that for every added x-node the interval of y-neighboursends strictly later than the interval of every original node, because everynew x-node is connected to yh+1 but all old ones are not. Thus, A matchesa node yj with one of the new nodes only if there is no candidate amongthe original nodes. This is exactly the situation when the modi�ed Gloveralgorithm (applied to G) declares yj as free. So we conclude, that A and themodi�ed Glover algorithm compute the same x-perfect matching M .Now we discuss the implementation of the modi�ed algorithm (see Algo-rithm 3.4). We represent an x-perfect matching ffxik ; yjkg j k 2 [1::n]g bytwo arrays XMate and YMate such that XMate[k] = ik and YMate[k] = jkfor all k. Thus free y-nodes are not stored explicitly. In the next paragraphwe describe an O(n logn) implementation that uses a priority queue P . As itwas the case for Algorithm 3.1, the queue can be replaced by an o�ine-mindata structure. This yields a running time of O(n), if one has a sorting ofthe variables according to upper and lower endpoints of their domains.The algorithm scans the y-nodes from left to right and maintains a priorityqueue P which stores the indices of the possible matching candidates on thex-side. We assume that we have a sorting permutation � such that D�(1) �: : : � D�(n). The indices are inserted into P in the order �(1); : : : ; �(n).Suppose that the algorithm is scanning yj. After yj�1 has been processed,P contains the indices of all free nodes xi with Di � j � 1. Let �(s) be thenext index that is to be inserted into P , i.e. we have D�(1) � : : : � D�(s�1) <



3.2. THE ALLDIFF-CONSTRAINT 63j � D�(s). If P is empty and j < D�(s), then all the nodes yj; : : : ; yD�(s)�1cannot be matched, because there is no candidate for them. Thus we canskip these nodes by assigning D�(s) to j, and we continue the scan with thecorresponding y-node. This is important for achieving the desired runningtime of O(n logn).The rest of the algorithm remains basically the same as in Algorithm 3.1. Weadd all indices i to P where Di = j. Then we extract the element i such thatDi is minimal. If Di < j, this means that all neighbours of xi are matchedand no x-perfect matching exists; we report this and terminate. Otherwisewe match xi and yj and continue our scan.Note that we have to verify after the scan that P is empty to make sure thatevery x-node has been matched (see line 18).Algorithm 3.4 Finding a perfect matching in the value graph GFunction: GloverAlldi�(D1; : : : ; Dn, �)Require: � is a permutation of [1::n] s.th. D�(1) � : : : � D�(n).1: P  [ ] // PQ stores x-indices [i1; : : : ; ik] s.th. Di1 � : : : � Dik2: s 13: for k = 1 to n do4: if P is empty then5: j  D�(s) // (possibly) skip free nodes6: end if7: while s � n and D�(s) = j do8: insert �(s) into P9: s s+ 110: end while11: extract the �rst element i from P , i.e. one with smallest Di12: if Di < j then13: report \no x-perfect matching in G" and terminate14: end if15: XMate[k] i; YMate [k] j16: j  j + 117: end for18: if P is empty then19: return XMate;YMate20: else21: report \no x-perfect matching in G" and terminate22: end ifWe want to make some observations about Algorithm 3.4. If P is empty



64 CHAPTER 3. SORTEDNESS AND ALLDIFFin line 4, then s � n, which means that the assignment to j in the next lineis valid. This can be seen as follows. The number of insertions into P iss� 1 and the number of extractions equals k � 1. So if P is empty, we haves = k � n. Thus whenever P is empty in line 4, there will be an insertion inline 8, and hence P can never be empty in line 11.Example. For our running example the algorithm computes the followingx-perfect matching: k 1 2 3 4 5 6XMate 5 2 4 3 6 1YMate 1 2 3 4 5 6Assume that we have an x-perfect matching M in G. By Lemma 3.5, anedge fxi; yjg can belong to some x-perfect matching i� xi and yj belong tothe same SCC or yj can reach a free y-node in ~G. We will show that we cansolve the problem with a single SCC computation if we extend ~G slightly. Theidea is based on R�egin's arc-consistency algorithm for the global cardinalityconstraint [R�eg96], and it di�ers from the algorithm in the paper [MT00].7The extended oriented value graph ~G? is constructed by adding a special nodes to ~G, for every y-node we have an edge (s; y) and for every free y-node wealso have the opposite edge (y; s). Before we prove in Lemma 3.7 that theSCC of s in ~G? consists exactly of those nodes that can reach a free y-nodein ~G, let us visualize the construction with the aid of our running example.Example.On the right-hand side we show theextended oriented value graph ~G?that corresponds to the previouslycomputed matching. We have rear-ranged the x-nodes such that everyx-node is located directly above itsy-mate. The SCCs are indicated bythe three dashed boxes. y1x5 x2 x4 x3 x6 x1y2 y4 y5y3 y7y6sThe dashed xy-edges cannot belong to any x-perfect matching, because theycross components. Observe that all nodes in the SCC of s can reach the freenode y7.Now we prove that ~G? has indeed the desired properties:7This idea can also be used to simplify R�egin's arc-consistency algorithm for the Alldi� -constraint [R�eg94].



3.2. THE ALLDIFF-CONSTRAINT 65Lemma 3.7 An edge fxi; yjg can belong to some x-perfect matching in thevalue graph G i� xi and yj lie in the same SCC of the extended oriented valuegraph ~G?.Proof. Suppose �rst that fxi; yjg can belong to some x-perfect matching.By Lemma 3.5, this implies that xi and yj lie in the same SCC of ~G (case1), or there is a path p in ~G that starts with (xi; yj) and ends in a freenode yf (case 2). For case 1 there is nothing to show, so assume that case 2holds. Let ym denote the matching mate of xi. Then ~G? contains the cycle(s; ym) Æ (ym; xi) Æ p Æ (yf ; s). So xi and yj are in the same SCC in ~G?.For the other direction, suppose that xi and yj lie in the same SCC in ~G?.Thus there is a cycle c in ~G? with (xi; yj) as its �rst edge. If c does not visits, then xi and yj are in the same SCC of ~G, and we are done. Otherwise, wedecompose c as c = p Æ (yf ; s) Æ q, where p is a path from xi to a free node yfand p starts with the edge (xi; yj). Since p is a path in ~G, this proves thatfxi; yjg can belong to some x-perfect matching by Lemma 3.5.In the sequel we discuss how to compute the SCCs of ~G? in linear time. Itwill turn out that we can use a slightly modi�ed version of the algorithm thatcomputes the SCCs of ~G (see Algorithm 3.2), which we have developed for theSortedness-constraint. Both algorithms maintain a list SCCs of completedcomponents and a stack CS of tentative components. In its k-th iterationAlgorithm 3.5 computes the components of the graph ~G?k, which is a subgraphof ~G? and de�ned as follows. Let YMate [n+1] := maxfD1; : : : ; Dng+1. Fork 2 [0::n], ~G?k is the subgraph induced by s, all nodes yj with j < YMate[k+1]and the matching mates of these y-nodes on the x-side. We want to point outthat ~G?n = ~G? and that ~G?0 consists only of the node s, because the leftmosty-node is always matched. So [s] is the only SCC of ~G?0, which explains theinitialization steps in the algorithm.The �rst part of the for-loop (lines 5 { 11) is the same as in the algorithmfor Sortedness. It computes the SCCs of the subgraph of ~G? that is inducedby the nodes of ~G?k�1 and the two nodes xi, yj, where i = XMate[k] andj = YMate[k]. By right x (C) and right y(C) we denote the indices of therightmost x- and y-node of the component C, where right y([s]) is de�ned as�1. Observe that s can reach any y-node in ~G?, and hence, its componentcannot be completed and popped from CS until the for-loop is �nished. Soit will remain the bottom-most component on CS all the time.In the second part of the for-loop (lines 12 { 20) the algorithm deals withthe free nodes between yj and the next matched y-node, which has the indexYMate[k + 1]. This part was not necessary for the Sortedness-constraint,



66 CHAPTER 3. SORTEDNESS AND ALLDIFFAlgorithm 3.5 Computing the SCCs of ~G?Function: ComputeSCCs(D1; : : : ; Dn, XMate, YMate)1: SCCs  empty list2: CS  [s]3: YMate[n + 1] maxfD1; : : : ; Dng+ 14: for k=1 to n do5: i XMate[k]; j  YMate[k]6: while jCS j > 1 and Dright x(top(CS )) < j do7: pop C 0 from CS ; append C 0 to SCCs8: C  [yj; xi]9: while CS not empty and Di � right y(top(CS )) do10: pop C 0 from CS ; C  C 0 Æ C11: push C onto CS12: // deal with free nodes btw. yj and the next matched y (if any)13: if j + 1 < YMate[k + 1] then14: C  [yj+1; : : : ; yYMate[k+1]�1] // (store only yj+1 and yYMate[k+1]�1)15: while jCS j > 1 and Dright x(top(CS)) � j do16: pop C 0 from CS ; append C 0 to SCCs17: while CS not empty do18: pop C 0 from CS ; C  C 0 Æ C19: push C onto CS20: end if21: end for22: while CS not empty do23: pop C 0 from CS ; append C 0 to SCCs24: return SCCsbecause there were no free nodes. If free nodes exist, i.e. j+1 < YMate[k+1],we put them in a tentative component C. Clearly, C will eventually bemerged with the component of s, but before we come to the merging step,we can complete any component on CS that is not able to reach yj+1. Whenthe algorithm reaches line 17, the topmost component on CS can reach yj+1.The bottom-most component contains s, and hence there is a path from s toyj+1 that visits at least one node in every component on CS (cf. invariant I3below). By construction of ~G? there is an edge from the free node yj+1 to s.Thus C and all components on CS are merged into a single SCC of ~G?k.It is clear that the algorithm runs in time O(n). Concerning correctnesswe have essentially the same invariants as for the previous algorithm (seepage 50). Whenever the algorithm reaches line 21 the following holds:



3.2. THE ALLDIFF-CONSTRAINT 67I1: Every component C in SCCs is an SCC of ~G. In particular, C cannotreach any yl with l � YMate[k].I2: SCCs [ CS contains the SCCs of the ~G?k.I3: Let CS = hC1; C2; : : :i (ordered from bottom to top). If l < h then Clcan reach Ch but not vice versa and right y(Cl) < left y(Ch).I4: Let C denote a component in SCCs [ CS and let ir = right x (C).Then for all xi 2 C we have Di � Dir.These invariants can be proven in the same way as for the Sortedness-constraint.Narrowing the variable domains is now easy. Suppose we want to computethe narrowed domain Si of a variable Xi. Then we determine the leftmostneighbour yl and the rightmost neighbour yr of xi such that yl and yr belongto same SCC as xi. By Lemma 3.7, we have Si = [l::r]. The narrowing stepcan be done in time O(n) with a similar algorithm as for the Sortedness-constraint (cf. Algorithm 3.3).Example. We give the narrowed domains S1; : : : ; S6 for our running exam-ple: S1 = [5::7], S2 = [2::3], S3 = [4::6], S4 = [2::3], S5 = [1::1], S6 = [5::6].We conclude this section with a summary of the full narrowing algorithm:1. Sort the variable domains according to their lower and upper intervalendpoints.2. Compute an x-perfect matching with a modi�ed version of Glover'salgorithm.3. Compute the strongly connected components of the extended orientedvalue graph.4. Narrow the domains of the variables.Except for the �rst step, all steps run in linear time. Thus the complexityof the whole algorithm is asymptotically the same as for the sorting step. Thisis O(n logn) in general, but it can go down to O(n) if the endpoints of thedomains are integers drawn from a range of size O(nk). We want to pointan interesting special case: When we have n variables and all domains arecontained in [1::n], i.e. the variables encode a permutation of [1::n], then thewhole algorithm runs in linear time.



68 CHAPTER 3. SORTEDNESS AND ALLDIFF3.2.3 Comparison with related workWe conclude this section by comparing our algorithms with related work.Of course, one can decompose the constraint Alldi�(X1; : : : ; Xn) into �n2�binary constraints of the form Xi 6= Xj. As Puget [Pug98] points out thisis suitable for simple problems, but leads to very poor propagation. Thisbecomes obvious in the following example:X1; X2; X3 2 [1::2] ^ X1 6= X2 ^ X2 6= X3 ^ X3 6= X1The decomposition into inequality constraints does not detect infeasibility.R�egin [R�eg94] used exactly the same graph theoretic approach as wedid in order to develop an arc-consistency algorithm for the case where thevariable domains are not intervals but can be arbitrary sets of values. Thealgorithm works as follows. First it builds the variable-value graph G. Notethat G is in general not convex, but it can be any bipartite graph. Thenthe matchable edges of G are identi�ed, which requires the same steps asin our algorithm: Determine some x-perfect matching in G and orient G.Compute the SCCs of ~G and the edges that lie on a path to a free node. Letm denote the number of edges of G. The computation of the matching takestime O(pn �m), and the other steps can be done in O(n+m). We want topoint out that m = Pni=1 jDom(Xi)j. Thus m cannot be bounded above bya function in n. If all domains are for example the interval [1::n], then wehave m = n2. This shows that R�egin's algorithm, which is good for generaldomains, is not suitable for interval domains.Leconte [Lec96] proposed an O(nm) algorithm which achieves range-consistency (see De�nition 2.6). It is a stronger notion of consistency thanbound-consistency but weaker than arc-consistency. Leconte's algorithm isbased on the Hall interval approach that we will sketch later.In their paper about the Sortedness-constraint, Bleuzen-Guernalec andColmerauer [BGC00] make an interesting observation. In order to encode apermutation on the variables X1; : : : ; Xn, one can write the following con-straint: Sortedness(X1; : : : ; Xn; 1; : : : ; n). And hence, their algorithm canbe used to achieve bound-consistency for permutation constraints in timeO(n logn). But their algorithm cannot be applied to the general Alldi� -constraint.Puget [Pug98] was able to give a bound-consistency algorithm with arunning time of O(n logn) for the general Alldi� -constraint. His approachis also based on matching theory but it is very di�erent from ours, it doesnot rely on graphs or alternating paths at all. His reasoning is based directlyon intervals. Consider the constraint Alldi�(X1; : : : ; Xn). For an intervalI let Vars(I) denote the set of all variables such that Dom(Xi) � I. We



3.2. THE ALLDIFF-CONSTRAINT 69can make some observations: If jVars(I)j > jIj, then the constraint has nosolution, because every variable in Vars(I) has to be assigned a di�erentvalue in I, but we have more variables than values. We call such an intervalover-constrained. Puget states as a corollary of Hall's Theorem [Hal35] thatthe constraint is solvable if and only if there is no over-constrained interval.In order to derive his narrowing algorithm, Puget considers an intervalH with jVars(H)j = H, which he calls a Hall interval. In any solution ofthe constraint, every value in H is taken by exactly one variable in Vars(H)and vice versa. Now let Xi denote a variable that is not in Vars(H) and letDi = Dom(Xi). If Di 2 H, then the constraint cannot be bound-consistent,for there can be no solution where Xi takes the value Di. In fact, one canmove the lower endpoint of the domain of Xi to H + 1 without loosing anysolution to the constraint. A similar argument holds for the upper end-point. Puget observed that this actually is a bound-consistency narrowingalgorithm:while there is an interval I with jVars(I)j � jIj doif jVars(I)j > jIj thenreport failureelsefor all Xi =2 Vars(I) with Di 2 I doincrease Di to I + 1for all Xi =2 Vars(I) with Di 2 I dodecrease Di to I � 1In order to make this algorithm run in time O(n logn), Puget made somemore observations. For example, it suÆces to examine only intervals of theform [Di::Dj], where Di and Dj are variable domains.Example. Let us examine how the algorithm processes our running exam-ple with 6 variables and the domainsD1 = [5::7] D2 = [2::3] D3 = [2::6] D4 = [2::3] D5 = [1::3] D6 = [5::6]We observe that H = [2::3] is a hall interval, because its size is two and itcontains the domains D2 and D4. So we can move the upper endpoint ofX5 from 3 to 1, and the lower endpoint of X3 to 4. And we obtain the nar-rowed domains. We want to point out that there is not much correspondencebetween Hall intervals and the strongly connected components of ~G. In theexample above H 0 = [1::3] is also a Hall interval, but the nodes correspondingto Vars(H 0) = fX5; X2; X4g belong to di�erent SCCs.Recently, L�opez-Ortiz et al. [LOQTvB03] described an algorithm that isalso based on the Hall interval approach and achieves bound-consistency inthe same asymptotic running time as our algorithm.



70 CHAPTER 3. SORTEDNESS AND ALLDIFFFinally, we discuss briey the global cardinality constraint (GCC ), whichwas introduced by R�egin [R�eg96]. This constraint is a generalization ofAlldi�. In addition to the n assignment variables X1; : : : ; Xn, its input con-tains for each value v a lower and an upper capacity bound lv and uv. Theconstraint holds, if each value v is assigned to at least lv and at most uvvariables. (If all lower bounds are zero and all upper bounds are one, weobtain the Alldi� -constraint.) R�egin gave an arc-consistency algorithm forthis constraint, which runs in time O(n3=2 � d), where d is the number ofdistinct values in the variable domains.For the case, where all the variable domains are intervals Katriel andThiel [KT03] were able to generalize the ideas of this chapter. They ob-tained a bound-consistency algorithm which runs in time O(n+ d) plus thetime for sorting the interval endpoints. Interestingly, applying the Hall inter-val approach to this problem yields an algorithm with the same asymptoticrunning time (see [QvBLO+03]).



Chapter 4Weighted Partial Alldi�In this chapter we discuss a constraint called WeightedPartialAlldi� (abbre-viated as WPA). The constraint WPA(X1; : : : ; Xn; undef ;T ;W ) encodes apartial assignment to the variables X1; : : : ; Xn, where unde�ned variablesare represented by assigning the value undef to them. All variables whichare de�ned must have pairwise distinct values. With every value v that oc-curs in the domain of some variable we associate a weight which is de�nedby the value-weight table T . The constraint states that W must be equal tothe sum of the weights of the values that are assigned to the variables. Weassume that the weight of the value undef is always equal to zero.We give some examples, which will use the following value-weight table T :value: 0 1 2 4 5 6weight: 0 2 -1 7 -8 2The constraint WPA(4; 0; 1; 2; 0; 0;T ; 8) holds, because no value except forundef = 0 is used more than once, and weight(4)+weight(1)+weight(2) = 8.But WPA(5; 2; 5; 0; 0;T ; 2) does not hold, for the value 5, which is di�er-ent from the undef -value, is assigned twice. And WPA(1; 6; 2; 0;T ; 5) doesnot hold either, because of the weight condition: weight(1) + weight(6) +weight(2) = 3 6= 5.We discuss some possible scenarios where the constraint can be applied:1. In the �rst scenario the weights are costs which one has to pay if acertain resource (i.e. a value) is used. Every resource can be used atmost once. And the cost of a resource is independent from the consumer(i.e. the variable) to which it is assigned. In this case the constraintwill probably be employed together with additional constraints thatimpose an upper bound on the weight variable W , because one wantsto minimize the costs. 71



72 CHAPTER 4. WEIGHTED PARTIAL ALLDIFF2. In the second scenario the weights describe pro�ts which can be madeby accepting certain o�ers. The o�er can be accepted at most once andthe pro�t does not depend on the acceptor. In these circumstances oneis interested in maximizing the total pro�t. So it is likely that WPAis used with additional constraints that impose lower bounds on theweight variable.3. In the previous two scenarios the constraint was used for optimizationpurposes. We will now deal with an application to an over-constraintproblem. Suppose the constraint model of a problem uses { amongother constraints { an Alldi� -constraint. And assume further thatthere is no solution where all variables take pairwise di�erent values. Soone may want to relax the problem a little bit, allowing some variablesto be \unde�ned". By setting the weights of all values di�erent fromundef equal to 1, the number of de�ned variables can be controlled viathe weight variable W .The work presented in this chapter is partly based on joint work withNicolas Beldiceanu and Mats Carlsson [BCT02]. The chapter is organized asfollows. First we give a formal de�nition of the constraint, then we derive apropagation algorithm, and �nally we discuss some related work.4.1 De�nitionWe consider the constraint WPA(X1; : : : ; Xn; undef ;T ;W ). The domainsof the assignment variables X1; : : : ; Xn can be arbitrary �nite sets. Let Ddenote the union of all variable domains. We require that T is a set of pairswhich contains for every value v 2 D exactly one pair in which the �rstcomponent is equal to v. The second component must be a number, whichwe will denote by weight(v). The parameter W is a number variable. Itsdomain must be an interval, and we assume that the number type matchesthe type of the weights. Moreover, we suppose that the arithmetic operations\+" and \�" as well as comparisons can be done in constant time.Now we can de�ne Rel(WPA(X1; : : : ; Xn; undef ;T ;W )) to be the set ofall (n+ 1)-tuples (v1; : : : ; vn; w) with the following properties: We have w 2Dom(W ) and vi 2 Dom(Xi), for i = 1; : : : ; n. Moreover, for 1 � i < j � n,we have vi 6= vj or vi = vj = undef . And �nally, w =Pni=1 weight(vi).



4.2. PROPAGATION ALGORITHM 734.2 Propagation algorithmIn this section we develop a propagation algorithm for the WPA-constraint.The worst-case running time will be O((n + p)m), where m is the sum ofthe cardinalities of the domains of X1; : : : ; Xn and p is the number of prunedvariable-value pairs. But for the three scenarios given in the introduction,we will be able to upper bound the running time by O(nm), and we willshow that we achieve arc-consistency for the assignment variables. In thethird scenario, where all weights are equal to 1, we will also have bound-consistency for the weight variable W . The algorithm integrates well intoframeworks where incrementality is important, and its best case runningtime is �(m).Our propagation algorithm computes the following quantities:� We determine the minimum and the maximum weight that can beachieved. These values can be used to detect failure and to narrow thebounds of the weight variable W .� We compute for every variable Xi and every value v 2 Dom(Xi) theminimum and the maximum weight (wmin and wmax) which can beachieved, ifXi is �xed to v and all other domains remain the same. Thiscan be used for pruning the domain of Xi: If wmin > W or wmax < W ,we can remove v from the domain of Xi.We want to point out that it suÆces to restrict our attention to maximumweights, because the respective minima can be obtained as follows: Multiplyall weights by �1, compute the maxima, and multiply these by �1.4.2.1 A connection to matching theoryIn Section 3.2.2 about the Alldi� -constraint we have seen that variable as-signments, where every variable takes a di�erent value, correspond in a nat-ural way to perfect matchings in the value graph G. Since our new problemdeals with weighted assignments, we consider the weighted value graph G.It is an undirected bipartite graph. On one side we have a node for eachassignment variable and on the other side we have a node for each value thatoccurs in the domain of some assignment variable. Thus we can identifyvariables and values with the corresponding nodes in G. In the sequel wewill denote a variable node by Var and a value node by val . There is an edgefVar ; valg in G i� val 2 Dom(Var). We assign a weight to every node asfollows: Every variable node Var gets weight zero, and the weight of a valuenode val is given by the value-weight table T .



74 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFThe weight of a matching M in G is de�ned as the sum of the weights ofall matched nodes. Note that this di�ers from standard matching theorywhere one assigns weights to the edges, but not to the nodes. As usual Mis called a maximum weight matching if there is no matching M 0 in G withweight(M 0) > weight(M). Since there may be non-positive weights, a maxi-mum weight matching is in general not a maximum cardinality matching.In order to �nd the connection between the solutions of the constraint andweighted matchings in G, we make one observation. We can partition thevariables in the constraint in two sets depending on whether the respectivevariable domain contains the value undef . If undef =2 Dom(Var), then weshould require that Var must be matched in G, otherwise it can be matched,but it does not have to be. This motivates the following de�nition: Let Sdenote a set of nodes and M a matching in G, we call M an S-matching ifall nodes in S are matched in M .Now we can make the connection between solutions and matchings:Lemma 4.1 Consider the constraint WPA(X1; : : : ; Xn; undef ;T ;W ), andlet G be its weighted value graph. Let R denote fXi j undef =2 Dom(Xi)g.Any solution (v1; : : : ; vn; w) of the constraint corresponds to an R-matchingin G of weight w. And for anyR-matchingM of weight w with w 2 Dom(W ),we can construct a solution of weight w.Proof. Let (v1; : : : ; vn; w) be a solution. We construct an R-matching Mof weight w as follows: For i = 1; : : : ; n, we put the edge fXi; vig into M , ifvi 6= undef . Since all values di�erent from undef are pairwise distinct, M isa matching, and it covers all nodes in R. As weight(undef ) = 0, the weightof M is equal to w.For the other direction we consider an R-matchingM in G. Let w denotethe weight of M , and for i = 1; : : : ; n de�ne vi as follows: If Xi is matched inM , then vi is the matching mate of Xi, otherwise set vi = undef . It is easyto verify that (v1; : : : ; vn; w) is a solution.So we have transformed our problem into a matching problem. We wantto compute a maximum weight R-matching in G eÆciently. There are wellknown algorithms that compute a maximum weight matching in a bipartitenetwork where the edges have weights, but the nodes do not. These algo-rithms run in time O(n(m+ k log k)) (see [AMO93]), where n is the numberof variable nodes, k is the number of nodes and m is the number of edges inG. We could easily transform our weighted value graph into such a network{ we would only have to assign to every edge the weight of its incident valuenode { but we develop a new algorithm, which takes advantage of the spe-cial properties of our weights to be more eÆcient. The new algorithm has a



4.2. PROPAGATION ALGORITHM 75slightly better asymptotic running time of O(nm), and it uses only simpledata structures like arrays and lists, while the algorithms for networks withedge weights employ elaborate data structures like Fibonacci heaps.A very important property of our algorithm is that we can run it withoutconstructing G explicitly. In addition, it is incremental, which means thatone can start with an arbitrary matching Minit . If Minit has nearly optimalweight the running time may be much better: It can go down to �(m).4.2.2 Constructing an R-matchingThis section deals with the following problem: We have an arbitrary matchingM in the weighted value graph G. Let R denote the set of all variables whichare not adjacent to the value undef . How can we construct an R-matching,i.e. a matching which covers all variables in R? We will not care aboutweights in this section, we defer this problem to the next section. We needtwo important facts from standard matching theory (see Lemma 2.2):� If M 0 is another matching in G, then M �M 0 is a collection of node-disjoint alternating paths and cycles.� If p is an alternating path or cycle with respect to M , then M � p is amatching again.Suppose M 0 is an R-matching, but M is not. So there is a node x 2 Rwhich is free in M , but matched in M 0. And hence, M �M 0 contains an(acyclic) alternating path p that starts in x and ends in some node y. Aswe can see in Figure 4.1, there are two possibilities for y. Either y is a valuewhich is free in M ; or y is a variable that is matched in M and free in M 0,which implies y =2 R.
x

y

x y

Figure 4.1: The two possibilities for the alternating path starting in x 2 R.(Variables are drawn as squares and values are drawn as circles. The dot inthe square of x indicates that the variable is in R, and the cross in the squareof y means that y is not in R.)Without loss of generality we may assume that the value undef is free inM , and in this case we say that M is an undef-free matching. So if y is a



76 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFvariable not in R, then we can replace p by p0 = p Æ fy; undef g, and obtainan alternating path wrt. M which starts in x and ends in a free value.This motivates the following de�nition:De�nition 4.1 Let M denote an undef-free matching in G. An alternatingpath p wrt. M is called R-augmenting if one end node of p is a free variablein R and the other end node is a free value.By the discussion above we can construct an R-matching from an arbi-trary matchingM as follows. As long as M is not an R-matching, we ensurethat the value undef is free, look for an R-augmenting path p wrt. M andreplace M by M � p.4.2.3 Weight-augmenting pathsIn this section, we assume that we have an R-matchingM , and we solve theproblem of maximizing its weight. Suppose there is an R-matching M 0 withweight(M 0) > weight(M). Then M �M 0 is a set of alternating paths andcycles. Since any node Var 2 R is matched in both M and M 0, the degreeof Var in M �M 0 is either 0 or 2. And hence, any (acyclic) alternating pathin this set can neither start nor end in Var .Let us consider an alternating path or cycle p in M �M 0 and comparethe weights of M and M � p. If p is a cycle, then M and M � p matchexactly the same nodes, and hence they have the same weight (see case 1 ofFigure 4.2).Otherwise, denote by x and y the �rst and the last node of the (acyclic) pathp. If both x and y are variable nodes, M and M � p match the same valuenodes, and then they also have the same weight, because variable nodes haveweight zero (cf. case 2 of Figure 4.2).Now we come to the case that both x and y are value nodes. Then one ofthe two nodes (let us say x) is matched and the other one (in our case y) isfree. And we have weight(M � p) = weight(M)�weight(x) +weight(y) (seecase 3 of Figure 4.2).Finally, we have the case that x is a variable node and y is a value node. Ei-ther both nodes are matched inM and we have weight(M�p) = weight(M)�weight(y), because weight(x) = 0. Or both nodes are free, and we getweight(M � p) = weight(M) + weight(y) (cf. case 4 in Figure 4.2).So we have three possible constellations for p such that weight(M � p) >weight(M):1. One end node is a matched value x and the other one is a free value ywith weight(y) > weight(x).
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Case 1
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Figure 4.2: Comparing the weights of the matchingsM andM�p. (Variablesare drawn as squares and values are drawn as circles.)2. One end node is a free variable x (not in R) and the other one is a freevalue y with weight(y) > 0 = weight(x).3. One end node is a matched variable x (not in R) and the other endnode is a matched value y with weight(y) < 0 = weight(x).We can simplify things and eliminate the third case by a similar obser-vation as in the previous section: Let us suppose that M is an undef-freematching. So if x is a matched variable which does not belong to R and yis a matched value, then we can replace p by p0 = fundef ; xg Æ p. And weobtain an alternating path such that weight(M � p0) = weight(M � p). Weobserve that the �rst case applies to p0.Now we can state the de�nition of a weight-augmenting path:De�nition 4.2 Let M be an undef-free R-matching in G. An alternatingpath p wrt. M is said to be weight-augmenting if one of the �rst two casesfrom above holds for p.So if we want to build a maximum weight R-matching from an arbitraryR-matching M , we proceed as follows: We ensure that M is undef-free, wesearch a weight-augmenting path p wrt. M , and replace M by M � p. Werepeat this process until there is no weight-augmenting path anymore.4.2.4 The oriented value graphConstructing a maximum weight R-matching requires to search repeatedlyfor R-augmenting and weight-augmenting paths in the value graph G =(V;E) with respect to the current matchingM . In order to make this search



78 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFeasier, we introduce the oriented value graph ~GM = (V; ~E). The de�nition isthe same as in the propagation algorithm for the Sortedness- and the Alldi� -constraint. We direct all the edges in E from the variable nodes to the valuenodes, and for every edge fVar ; valg in M we add the edge (val ;Var) whichis directed in the opposite direction. An example is shown in Figure 4.3.
a b c

X Y Z

cba

X Y Z

Figure 4.3: The left-hand side shows a value graph G and a matching M(bold edges). On the right-hand side the corresponding graph ~GM is drawn.Every simple path ~p in ~GM from a node x to a di�erent node y correspondsto a path p in G from x to y which alternately uses edges inM and in E nM .Of course, there is also a correspondence in the opposite direction, so we canidentify the alternating paths in G with certain simple directed paths in ~GM .In the �gure above, the alternating path p = [Y; a; Z; b] in G corresponds tothe path ~p = [b; Z; a; Y ] in ~GM . Thus the directed path visits exactly thesame nodes as the undirected one, but maybe in reverse order.We are interested now, how R-augmenting and weight-augmenting pathstranslate to ~GM . We begin with an R-augmenting path p (see left-hand sideof Figure 4.4). The start node x of ~p is a free variable x 2 R, which willbecome matched by the augmentation. And the end node y of ~p is a freevalue.If ~p is the translation of a weight-augmenting path, then the start nodex is either a free variable or a matched value, and the end node y is a freevalue with weight(y) > weight(x). So there are two possibilities, which areshown on the right-hand side of Figure 4.4.weight-augmenting paths:R-augmenting paths:weight(end) arbitrary condition: weight(start) < weight(end)Figure 4.4: Possible directed augmenting paths.We observe that R-augmenting and weight-augmenting paths are very



4.2. PROPAGATION ALGORITHM 79similar, in particular the possible end nodes are always free values. Moreover,for both kinds of augmenting paths we have weight(M � p) = weight(M)�weight(x) + weight(y). So if we look for an augmenting path that startsin a certain node x, we should choose a path ~p where the end node y hasmaximum weight, for this gives us the maximum weight increase (or theminimum weight decrease if we are searching an R-augmenting path and allpossible end nodes have negative weight). We call ~p an optimal augmentingpath for x. And we de�ne weight(y) to be the potential of x. The formalde�nition is as follows:De�nition 4.3 (potential �) Let M be a matching and x be a node in thevalue graph G. Denote by RM (x) the set of all nodes y such that there is apath from x to y in ~GM . Then the potential of x with respect toM is de�nedas �M (x) := supfweight(y) j y 2 RM(x) ^ y is free wrt. Mg.1We want to make some remarks. If we have �M(u) = �1 for a nodeu, then there can be no R-augmenting path that starts in u. If �M(u) �weight(u), then u cannot be the source of a weight-augmenting path. In thelemma below we state another reason for using optimal paths to augmenta matching: This guarantees that the potential of all nodes in the graphcan only decrease. In other words, this cannot introduce new sources foraugmenting paths, but it can remove existing ones.Lemma 4.2 Let ~p be an R-augmenting or weight-augmenting path in ~GM ,and let x and y be the start and the end node, respectively. If p is optimal forx (i.e. �M (x) = weight(y)), then we have �M�p(u) � �M(u) for every nodeu of G.Proof. Let M 0 = M � p, and consider a node u with �M 0(u) > �1.Thus there is a path ~q in ~GM 0 from u to a node v such that v is a free valuewrt. M 0 and weight(v) = �M 0(u). If ~p and ~q are node disjoint, then ~q is apath in ~GM , and the claim clearly holds.Otherwise the two paths have a common node. Let w be the �rst nodeon ~q that also lies on ~p. The pre�x of ~q from u to w is a path in ~GM , andhence there is a path from u to y in ~GM . This implies �M (u) � weight(y).In order to prove the claim we will show weight(v) � weight(y). Firstwe convince ourselves that v 2 RM (x). Since w is visited by ~p, we havew 2 RM(x). As all nodes on ~p are in RM(x), there is no edge in ~GM 0 that isdirected from a node in RM(x) to a node outside of RM(x). Thus there is no1Here \supS" denotes the supremum of S, which is equal to max(S [ f�1g) if S is�nite.



80 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFpath in ~GM 0 which leads from w to a node outside of RM(x). In particular,v 2 RM(x).If x 6= v 6= y, then v is free with respect to both matchings, and henceweight(y) = �M(x) � weight(v). For v = y, there is nothing to show. Sothe only remaining case is v = x. Since v =2 R and the start node of anR-augmenting path is always a variable in R, we conclude that ~p is weight-augmenting. This implies weight(v) = weight(x) < weight(y).4.2.5 Computation of a maximum weight matchingIn this section we discuss an algorithm for computing a maximum weightR-matching in the value graph G. It takes as input an arbitrary matchingMinit , which may be empty. The algorithm works as sketched above: It setsM = Minit , and as long as there is an augmenting path wrt. M , it selectsan optimal augmenting path p and replaces M by M � p. The algorithmoperates in two phases. In the �rst phase it searches for R-augmentingpaths and turns M into an R-matching. In the second phase it constructs amaximum weight R-matching with the aid of weight-augmenting paths.Recalling the similarity of R-augmenting and weight-augmenting pathsin ~GM (see Figure 4.4), it is no surprise that we can use a single function for�nding both types of paths. We use breadth-�rst-search as strategy, becauseit �nds shortest augmenting paths. The function BFS(x,w,M,mark) (seeAlgorithm 4.1) takes as input four parameters: a start node x, a weightthreshold w, a matching M and a node array mark . The function searchesfor an optimal augmenting path p for x and returns a boolean value indicatingwhether such a path exists. If so, it replaces M by M � p. An alternatingpath p is only accepted to be augmenting if the weight of its end node isgreater than the threshold w. So when we look for an R-augmenting path,we set w = �1; and for �nding weight-augmenting paths we choose w =weight(x). The array mark stores for every value a ag which can be reachedor unreached . More details will be given later, but for now we may assumethat if a node u is marked reached , then its potential �M(u) is not greaterthan w, and hence it does not have to be explored.BFS grows a tree of alternating paths with x at the root, for every othernode u in the tree we store its father in an array father , and we set father [x] =none. Moreover, we maintain a list tree values that contains all values in thetree. We use a �rst-in, �rst-out queue Q to store every variable that has beendiscovered but not explored yet. At the beginning, we initialize Q with x.Since we are looking for an optimal augmenting path, we maintain a variableopt end . As long as we have not found an augmenting path, its value is



4.2. PROPAGATION ALGORITHM 81none. Afterwards it stores the end node of the best augmenting path thatwe have discovered so far.We describe the main loop of the function (starting in line 8). As longas Q is not empty, we extract the �rst variable node Var from Q and scanits outgoing edges, i.e. we enumerate the domain of Var . We explore everyvalue val 2 Dom(Var) which is not marked reached. After marking val asreached, we add it to the BFS tree by updating the data structures fatherand tree values. If val is matched, we append its mate M [val ] to Q and addit to the tree. (As we have visited val for the �rst time, the same holds forM [val ], which explains why we do not store marks for the variables.) If valis free in M , then we may have found an augmenting path from x to val .This is the case i� weight(val) > w. Whenever we �nd a new augmentingpath, we update opt end , if necessary. If the main loop terminates withopt end 6= none, we have an optimal augmenting path p from x to opt endand we replace M by M � p.It is now time to discuss the maintenance of the mark -array in moredetail. We will see that it is not always necessary to reset the marks ofthe values in tree values when a BFS-call terminates. Before the �rst callto BFS all marks are initialized to unreached , and we will make sure in themain algorithm that the weight threshold can only increase from call to call.Under these circumstances we can maintain the following invariant: Considera BFS call with threshold w and let M 0 denote the matching after the call,then �M 0(u) � w for all nodes u which are marked reached after the call. Inorder to establish the invariant when the function terminates we distinguishthree cases:� num augmenting paths = 0:Thus �M (u) � w for all nodes in the tree, and we do not have to resetany marks.� num augmenting paths = 1:So before the augmentation, y is the only free value in RM(x) withweight greater than w. And hence, after the augmentation all free val-ues in RM(x) have weight at most w (see also the proof of Lemma 4.2).Thus we do not have to reset the marks in this case either.� num augmenting paths > 1:In this case we reset the marks of all variables in the tree (see line 25).Afterwards the invariant clearly holds again.The implementation of the matching algorithm (see Algorithm 4.2) isnow straightforward. It takes as input a matching Minit and the set R of



82 CHAPTER 4. WEIGHTED PARTIAL ALLDIFF
Algorithm 4.1 Searching an optimal augmenting path starting in xFunction: BFS(x,w,M ,mark ,R)1: Q []; opt end  none; num augmenting paths  02: if x is a variable then3: Q [x]; father [x] none; tree values  ;4: else if mark [x] = unreached then5: mark [x] reached ; father [x] none; tree values  fxg6: Q [M [x]]; father [M [x]] x7: end if8: while Q not empty do9: extract �rst node Var from Q10: for all values val 2 Dom(Var) with mark [val ] = unreached do11: mark [val ] reached ; father [val ] Var ;tree values  tree values [ fvalg12: if M [val ] 6= none then13: append M [val ] to Q; father [M [val ]] val14: else if weight(val) > w then15: num augmenting paths  num augmenting paths + 116: if opt end = none or weight(val) > weight(opt end) then17: opt end  val18: end if19: end for20: end while21: if opt end 6= none then22: augment M with path from x to opt end (with the aid of father)23: M [undef ] none24: if num augmenting paths > 1 then25: for all val 2 tree values reset mark [val ] to unreached26: return true27: else28: return false29: end if



4.2. PROPAGATION ALGORITHM 83variables that are required to be matched. It starts with M = Minit , andin the �rst phase it tries to turn M into an R-matching. We observe thatonce a variable from R is matched in the current matchingM , it will remainmatched till the end of the algorithm. So the source for an R-augmentingpath can only be a variable that is free inMinit . If the algorithm cannot �ndan R-augmenting path for a free variable in R, then it reports failure andterminates.If the �rst phase succeeds, M is an R-matching, and it will remain onetill the end. In the second phase we maximize the weight of M . It will turnout that we only have to consider the values which are matched in Minit andthe variables which are free in Minit and not in R. Note that an end nodeof an augmenting path is always a free value. And hence, every value thatis matched in Minit will remain matched until it is considered in the secondphase, but the matching mate may change. A similar argument shows thatvariables which are free in Minit remain free until they are processed.Since we have to make sure that the weight threshold does not decreasefrom one BFS call to the next, we split the second phase into three steps.First we consider all values with negative weights in weight increasing order.Then we process the variables, which all have weight zero. And �nally, wedeal with the values with non-negative weights in increasing order.Algorithm 4.2 Computation of a maximum weight R-matching in GFunction: ComputeMaxWeightRMatching(Minit ,R)Require: Minit [val ] stores for every value val its matching mate or the valuenone if val is free.1: M  Minit ; M [undef ] none2: for all values val set mark [val ] to unreached3: // phase 1: turn M into an R-matching4: for all variables Var 2 R which are free in Minit do5: found  BFS(Var , �1, M , mark)6: if not found then report failure and terminate7: // phase 2: maximize the weight of M8: for all values val matched in Minit with weight < 0 in incr. order do9: BFS(val , weight(val), M , mark)10: for all variables Var =2 R which are free in Minit do11: BFS(Var , 0, M , mark)12: for all values val matched in Minit with weight � 0 in incr. order do13: BFS(val , weight(val), M , mark)14: return MWe will prove the correctness of the algorithm. We have already explained



84 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFwhy BFS will always �nd an optimal augmenting path if one exists. Moreover,it is easy to see that the algorithm constructs an R-matching if G containsone. What remains to show is that there is no weight-augmenting path whenthe algorithm terminates. This will be done in the proof of the followingtheorem.Theorem 4.1 When Algorithm 4.2 is applied to an arbitrary matchingMinitand a set R of variables, it computes a maximum weight R-matching M inthe value graph G, if one exists. If no R-matching exists, it reports failure.Proof. Suppose the statement is false, i.e. the algorithm terminates withan R-matchingM that does not have maximum weight. Then there exists aweight-augmenting path ~p in ~GM . Let x and y denote the start and the endnode of ~p, respectively. We have �M (x) � weight(y) > weight(x), we willderive a contradiction by showing �M (x) � weight(x).Assume �rst that x is a value. Then it is matched in M (see right-hand side of Figure 4.4). We show that x is also matched in Minit and staysmatched till the end of the algorithm. Suppose otherwise, i.e. at some point intime x is free in the current matchingM 0. As x has no outgoing edge in GM 0 ,we have �M 0(x) = weight(x). By Lemma 4.2 this implies �M(x) � weight(x),a contradiction.Since x is matched inMinit , it is considered as a start node for an augmentingpath in the second phase (see lines 8 and 12), but none is found. (Otherwisex would be free after the augmentation.) Thus we can conclude �M(x) �weight(x), again a contradiction.So x must be a variable not inR, and x is free inM . This can only be thecase if x is free in Minit and stays free till the end: Suppose otherwise, i.e. atsome point in time x is matched in the current matching M 0 and becomesfree as M 0 is augmented with a path q. If we view q as a directed path ~qin ~GM 0, then (x; undef ) is the last edge of ~q; let z denote the start node.Since q is chosen optimal for z, we have �M 0(z) = 0 = weight(x). From x 2RM 0(z) we conclude �M 0(x) � �M 0(z). So we can infer �M(x) � weight(x), acontradiction.Thus x is free in Minit , and hence it has been the start node of a BFS duringthe second phase (see line 10). As it has not become matched then, we canconclude again that �M(x) � 0 = weight(x), a contradiction.Example. It is now time to give an example which illustrates the algorithm.We have 5 variablesX1; : : : ; X5 with the following domains: Dom(X1) = f2g,Dom(X2) = f0; 2; 3g, Dom(X3) = f0; 1; 5; 6g, Dom(X4) = f0; 4; 5; 6g andDom(X5) = f�1; 4g. In order to make the descriptions easier, we de�ne



4.2. PROPAGATION ALGORITHM 85the weight of each value to be equal to the value itself. And we assumeundef = 0. Thus the variables X1 and X5 cannot be unde�ned, and henceR = fX1; X5g. Let us suppose that we apply the algorithm to the initialmatching Minit = ffX2; 2g; fX4; 5g; fX5;�1gg. The corresponding orientedvalue graph is shown in Figure 4.5.
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−15Figure 4.5: The oriented value graph ~GMinit for the example.We see that R contains only one variable (namely X1) which is free inMinit so that the �rst phase consists of a single BFS call. We grow a tree withroot X1 (see Figure 4.6), and we discover two R-augmenting paths, one endsin the value 3 and the other one in the value 0. Since the �rst path yieldsthe bigger weight increase, we use this path to augment the matching andobtain the graph shown on the right-hand side of the �gure. After that ourcurrent matching M is an R-matching.
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Figure 4.6: On the left-hand side the BFS tree with root X1 is depicted. Theright-hand side shows the oriented value graph after the augmentation.Now we come to the second phase of the algorithm. First we build a BFStree with the value �1 at the root (see Figure 4.7), because this value ismatched in Minit . We �nd one weight-augmenting path ending in the value4, and update the current matching M accordingly.Finally, we have to process the variable X3, for it is free in Minit andnot contained in R. The function BFS constructs the tree which is shown
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Figure 4.7: The BFS tree for the value �1, and the graph after the augmen-tation.in Figure 4.8. Observe that the value 4 does not belong to the tree, al-though it is adjacent to X4. This is because the previous BFS found onlyone augmenting path, and hence the marks were not reset. After the aug-mentation with the path ending in the value 6, we are done. Our match-ing M = ffX1; 2g; fX2; 3g; fX3; 6g; fX4; 5g; fX5; 4gg is a maximum weightR-matching.
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Figure 4.8: The BFS tree for X3 and the �nal oriented value graph.We conclude this section with an analysis of the running time of thealgorithm. Let us recall some notation. We denote by m the sum of thecardinalities of all variable domains, i.e. m =Pni=1 jDom(Xi)j. Observe thatm is equal to the number of edges in the value graph G. Furthermore, letD = Sni=1Dom(Xi) and d = jDj be the number of distinct values in thedomains.For our analysis we need to set up some assumptions on the environmentin which the algorithm is embedded. The constraint programming systemmust allow the algorithm to scan the domain of a given variable. We supposethat the time needed to enumerate all values in a domain is linear in the sizeof the domain. Observe that we did not impose any restrictions on the typesof the values in the domains. However, we must be able to associate some



4.2. PROPAGATION ALGORITHM 87constant size information with every value in D (like the current matchingmate for example). We assume that accessing such an information takesconstant time. One possibility to meet these requirements is to restrict thedomains to sets of integers drawn from the range [1::d]. If one wants to allowarbitrary integers, one may consider perfect hashing [FKS84].In the second phase of the algorithm, we process the matched values ofMinit in increasing weight order. We assume that the algorithm is given a listLinit that contains these values in sorted order. Provided that two weights canbe compared in constant time, we can build Linit in timeO(jMinit j�log jMinit j).We will discuss later how Linit can be maintained in an incremental settingsuch that this sorting step can be avoided.We will show now that the total running time of the algorithm is boundedby O(nm) (apart from the sorting step). The time for a single BFS is at mostO(m), because the domain of every variable is scanned at most once. Nowwe have to bound the total number of BFS calls. We make exactly one callfor every value that is matched inMinit (in steps one and three of phase two),and one call for every variable that is free in Minit (in phase one and steptwo of phase two). As the number of matched values is equal to the numberof matched variables, the total number of BFS calls is equal to the numberof variables. This proves the following theorem:Theorem 4.2 Let G be the weighted value graph which is constructed fromthe domains of the assignment variables X1; : : : ; Xn and the value-weighttable. Set m =Pni=1 jDom(Xi)j and d = jSni=1Dom(Xi)j. Then a maximumweight matching M in G can be computed in time O(nm). And the spacerequirement is O(n+ d) (plus the space for storing the variable domains).Proof. Run the algorithm with Minit = ;, thus no sorting is necessary.The analysis above is quite pessimistic. We can observe that the mark ofa value node can only be reset from reached to unreached when an augmen-tation occurs. So the time between two successive augmentations is boundedby O(m), no matter how many unsuccessful BFS calls we make in between.Thus if a denotes the total number of augmentations, the total running timeis O((a+ 1)m).This observation will play an important role in the next section, wherewe deal with some aspects of integrating the algorithm in a constraint pro-gramming framework. We can record the following: If our initial matchingMinit is nearly optimal, i.e. if there are not many augmentations necessary,then the algorithm is quite fast. In particular, ifMinit is already a maximumweight R-matching, the running time of the algorithm is �(m).



88 CHAPTER 4. WEIGHTED PARTIAL ALLDIFF4.2.6 Integration of the algorithm into a CP frame-workWe discuss some issues concerning the integration of the algorithm into aconstraint programming system. The situation is the following. Suppose anew WPA-constraint is posted, then the propagation computes a maximumweight R-matching in the corresponding initial weighted value graph. Dur-ing search and upon backtracking the domains of the variables involved inthe constraint may be updated, which implicitly changes the weighted valuegraph as well. Because of the domain change the CP system wakes up theconstraint again and reruns the propagation algorithm, which computes amatching in the current weighted value graph G. In most cases, G does notchange much between two successive invocations of the matching algorithm.And hence, we expect that the corresponding matchings should be similar.Thus using the old matching as a starting point for the new matching shouldbe more eÆcient than computing the new matching from scratch.So the propagation algorithm proceeds as follows: When it is called for the�rst time, it computes R and invokes the matching algorithm with Minit = ;to obtain a maximum weight R-matching M?, which is stored for futureuse. When the propagation algorithm is called again later, it recomputes Rand uses M? to construct a new initial matching Minit for Algorithm 4.2:For every edge fVar ; valg in M?, we check whether val is still contained inthe current domain of Var . If so, we put the edge into Minit . The timefor constructing Minit is O(m).2 Since we assume that the domains of thevariables do not change too much between two successive invocations of thepropagation algorithm, this should yield a good initial matching.Incremental maintenance of LinitIn the second phase of Algorithm 4.2 we process the values matched in Minitin increasing weight order. We show how we can maintain these values in asorted list Linit without increasing the asymptotic running time of O((a +1) �m), where a is the number of augmentations. For the �rst run there isno problem, because Minit and hence Linit are empty. So let us assume thatwe have Minit and Linit . We show how to modify the algorithm such that itdoes not only compute a maximum weight matching M? but also a list L?that contains the matched values of M? in increasing weight order.As before, the algorithm maintains a current matching M which is aug-mented until it is optimal. In addition, we have a list L in which we store2We still suppose that the time for enumerating a variable domain is linear in itscardinality.



4.2. PROPAGATION ALGORITHM 89all values that are matched in M but free in Minit . At the beginning L isempty. Whenever an augmentations occurs (see line 22 in Algorithm 4.1)such that opt end is a (free) value di�erent from undef , we append opt endto L. And if the root x of the BFS tree is a (matched) value, then x is alsomatched in Minit but is free after the augmentation, and hence we remove3x from Linit . Thus at any time Linit [L contains exactly the matched valuesof M . When phase two terminates with the matching M?, we construct L?as follows. First we sort the values in L according to their weight, and thenwe merge the two sorted lists Linit and L.Let us analyse the running time for this computation. Maintaining L andLinit requires only constant time per augmentation. Sorting L takes timeO(jLj log jLj), and merging can be done in time O(jLj + jLinit j). Since thecardinality of L is bounded by a and by m, the modi�ed algorithm still runsin time O((a+ 1)m).Tailoring the algorithm for edge deletionsWhen the CP system searches a solution for a constraint program, it triesto narrow the variable domains until some propagation algorithm reports afailure or all domains have become singletons. Only if a failure occurs, whichforces the system to backtrack, the domains can grow again. But in most ofthe cases the variable domains shrink between successive invocations of thematching algorithms. This means that edges are deleted from the weightedvalue graph, but no new edges are inserted.So we study the following problem: Suppose that we have computed anundef-free maximum weight R?-matching M? in the weighted value graphG?. Then we prune a set P of edges from G? and obtain a new graph Gand possibly a new set R. Our goal is to determine a maximum weightR-matching in G. We show that we can modify Algorithm 4.2 such that itsrunning time is O(m min(jP j; n)) when it is applied to the initial matchingMinit = M? n P . (The modi�ed algorithm still works for arbitrary initialmatchings in arbitrary weighted value graphs in the same asymptotic runningtime as the original algorithm.)Let us consider an R-augmenting or weight-augmenting path ~p from anode x to a node y in ~GMinit . Since ~p is also a path in ~G?M?, but not anaugmenting one, we conclude that some properties of x or y have changeddue to the deletion. To be more precise, at least one of the following threestatements holds:3Linit and L are doubly linked lists, and for every matched value we store the addressof the corresponding list-item, so we can delete an item in constant time.



90 CHAPTER 4. WEIGHTED PARTIAL ALLDIFF1. x is in R but not in R?, which is the case i� fx; undef g 2 P .2. x is a variable and free in Minit , but matched in M?.3. The value y is free in Minit , but matched in M?.So we say that a node z has been a�ected by the pruning i� z is inRnR? orz is matched in M? and free in Minit . In the sequel we modify the matchingalgorithm to make sure that the following holds: Whenever we augmentthe current matching with a path p, then at least one end node of p hasbeen a�ected by the pruning. This will allow us to bound the number ofaugmentations and obtain the claimed running time.Let us make an important observation. If we look at the proof of Theo-rem 4.1, we see that the order of the BFS calls is not essential for the correct-ness of the algorithm. We could use another order as long as we make sureto reset the marks of all values if the weight threshold decreases between twosuccessive calls. What matters for correctness is that BFS is called for the setS that contains every free variable and every matched value wrt. Minit . Itwill turn out useful to partition S in two sets A and �A such that A containsthose nodes in S which have been a�ected by the pruning. The modi�edalgorithm processes S in two phases:� Phase I: Process �A:�A contains every value that is matched inMinit and every variable thatis not R and free in both Minit and M?. We consider these nodes inweight increasing order, and hence, we have to reset the marks of thevalues only once at the beginning of the phase. Note that this phase isvery similar to phase 2 of the original algorithm.� Phase II: Process A:A can be decomposed in two sets again. In A1, we have all variablesin R which are free in Minit . Into A2 we put all variables that are notin R and that are free in Minit and matched in M?. Observe that wemust match the nodes in A1 in order to turnMinit into an R-matching,so that the weight threshold for the corresponding BFS calls is �1.For the nodes in A2 the threshold is 0, because we are not required tomatch them. So if we process the nodes in A1 before those in A2, itsuÆces to reset the marks of the values at the beginning of the phase.The following lemma analyses the running time of the modi�ed algorithm:Lemma 4.3 Let P be a set of edges in a weighted value graph G?. If we havea maximum weight matching M? in G?, then we can compute a maximum



4.2. PROPAGATION ALGORITHM 91weight matchingM in the graph G = G?nP in time O(m min(jP j; n)), wheren is the number of variables and m is the number of edges in G.Proof. It suÆces to show that the number of augmentations in each phaseof the modi�ed algorithm is at most jP j. The number of augmentations inphase II is bounded by jAj, because every augmenting path considered inthis phase starts in a di�erent node in A. Since every node in A has beena�ected by the pruning and each edge in P can a�ect at most one variable,we have jAj � jP j.We may assume that M? is undef-free, so undef is not a�ected by thepruning. For any matchingM that is computed in phase I, we will prove thefollowing invariant by induction: If q is a weight-augmenting path wrt. Min G, then at least one end node of q has been a�ected by the pruning. Thebase case M =Minit has already been discussed.So let us suppose thatM 0 =M�p, where p is an augmenting path computedin phase I, and M is a matching for which the invariant holds. Consider aweight-augmenting path q wrt. M 0. If p and q are node-disjoint there isnothing to show. Otherwise we translate p to a directed path ~p from x to yin ~GM and q to a path ~q in ~GM 0 from u to v. If u has been a�ected by thepruning there is nothing to show. So let us assume it is not, which impliesu 2 �A (by similar arguments as in the proof of Lemma 4.1). Since q isweight-augmenting, we have �M (u) � weight(v) > weight(u), and hence uhas not been processed yet. Thus weight(x) � weight(u), and we concludeweight(x) < weight(v). The same argument as in the proof of Lemma 4.2shows v 2 RM(x). So there exists a weight-augmenting path q0 wrt. M fromx to v. Observing x 2 �A and applying the induction hypothesis, we concludethat v is a�ected by the pruning.So every augmentation in phase I is made with the aid of a path p thatends in a free value y which is matched inM? and free inMinit . As y 6= undef ,y is matched again after the augmentation and remains matched till the endof the algorithm. Therefore the number of augmentations in this phase isbounded by jP \M?j.We conclude these considerations with an example which demonstratesthat the original algorithm may introduce augmenting paths where both endnodes have not been a�ected by pruning. This shows that the argumentsabove only hold for the modi�ed algorithm. On the left-hand side of Fig-ure 4.9 we have depicted a graph ~G?M? for a maximum weight matching M?.Suppose we prune the edges e and f and obtain the graph G and a match-ing Minit . Then the optimal augmenting path p for the variable X1 ends inthe (now) free value 5. After the augmentation M = Minit � p, we havethe situation shown on the right-hand side of the �gure. There are three



92 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFweight-augmenting paths, where both end nodes have not been a�ected bythe pruning: from 2 to 3, from X4 to 3 and from X4 to 1.
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Figure 4.9: Example showing why Algorithm 4.2 is modi�ed.4.2.7 Computation of the upper regretIf we are given some variables X1; : : : ; Xn with their respective domains anda value-weight table T , we know how to compute the maximum weight w ofa variable assignment. Suppose now, we pick one variable Var and a valueval 2 Dom(Var), and we allow only assignments where Var is assigned thevalue val . We want to determine the maximum weight w0 of such a restrictedassignment. (If no such assignment exists, we set w0 = �1.) We de�ne theupper regret for the variable-value pair (Var ; val) to be the di�erence w�w0and denote it by regret(Var ; val). So the upper regret tells us by whichamount the maximum weight decreases, if we force the assignment of val toVar . This number is interesting because it allows us to prune the domain ofVar with respect to the weight variable W : If w� regret(Var ; val) < W , wecan remove val from Dom(Var).We translate the problem to a matching problem in the value graph G.By Lemma 4.1, w is the weight of a maximum weight R-matching M in G.And w0 is the weight of a matching M 0 that has maximum weight amongall R-matchings containing the edge e = fVar ; valg. It will turn out thatwe do not have to compute M 0 explicitly, but we are able to determine theupper regret with the aid of ~GM . We have to distinguish whether Var andval belong to the same SCCs of ~GM or not.Assume �rst that Var and val are in the same component, which impliesthat there is a simple cycle ~c in ~GM that uses the edge (Var ; val). If ~cconsists only of two edges, then ~c = (Var ; val) Æ (val ;Var), which impliese 2 M and regret(Var ; val) = 0. Otherwise ~c translates to an alternating



4.2. PROPAGATION ALGORITHM 93cycle c in G wrt.M . SinceM andM�c match the same nodes, we concluderegret(Var ; val) = 0.We come to the second case: Var and val belong to di�erent SCCs of ~GM .This implies that e =2 M and that M �M 0 contains an acyclic alternatingpath p which uses e. The path p translates to a path ~p in ~GM from a nodex to a node y. Each of the two nodes is free in exactly one of the twoR-matchings M and M 0, and hence x; y =2 R. With respect to M , x is afree variable or a matched value, and y is a matched variable or a free value(cf. Figure 4.10). Recalling that the weight of a variable is zero, we obtainweight(M�p) = weight(M)�weight(x)+weight(y). An analogous argumentshows weight(M 0) = weight(M 0 � p)� weight(x) + weight(y). (Observe that~p is also a path in ~GM 0�p.) Since M is a maximum weight R-matching, wehave weight(M 0 � p) � weight(M) and we can inferweight(M 0) = weight(M 0 � p)� weight(x) + weight(y)� weight(M)� weight(x) + weight(y)= weight(M � p) � weight(M 0)Thus weight(M 0) = weight(M � p), which means that we can assume M 0 =M � p from now on. In addition, we see regret(Var ; val) = weight(M) �weight(M�p) = weight(x)�weight(y), i.e. the upper regret depends only onthe start and the end node of ~p. We can decompose ~p = ~pVar Æ(Var ; val)Æ~pval ,where ~pVar is a (possibly empty) path from x to Var and ~pval is a (possiblyempty) path from val to y. valVarpVar pvalFigure 4.10: Possible start and end nodes for the path ~p.Let us assume that M is undef-free . We show that weight(y) = �M (val).Assume otherwise. If �M (val) > weight(y), then there is a path ~q in ~GMfrom val to a free node ~y with weight(~y) = �M (val) (see De�nition 4.3).Translating the path ~pVar Æ(Var ; val)Æ~q back to G, we obtain a path ~p. M� ~pis a matching containing e with weight(M � ~p) = weight(M) � weight(x) +weight(~y) > weight(M 0), which is a contradiction.So �M (val) � weight(y). If y is a value node, we have �M(val) � weight(y) bythe de�nition of �M . Otherwise y is a variable and y is not inR, which means



94 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFthat y is incident to the free value undef . Hence, �M(val) � weight(undef ) =0 = weight(y).We will now de�ne a function �M such that �M(Var) = weight(x). We�-values say that a node u is a possible start node wrt. M if u is a free variable or amatched value wrt. M . Note that this implies u =2 R. For a node v we set�M(v) := inffweight(u) j v 2 RM(u) ^ u is a possible start node wrt. Mg.4We show that �M(Var) is indeed equal to weight(x). From this de�nitionwe conclude �M (Var) � weight(x). Assume �M(Var) < weight(x). Thenthere is a path ~r in ~GM from a node x̂ to Var with weight(x̂) = �M(Var) <weight(x). The path ~r Æ (Var ; val) Æ ~pval translates to an alternating pathp̂ in G. M � p̂ contains e and weight(M � p̂) = weight(M) � weight(x̂) +weight(y) > weight(M 0), a contradiction.The results from above can be summarized as follows: If Var and valbelong to di�erent SCCs of ~GM , then regret(Var ; val) = �M(Var)��M(val).If they belong to the same SCC, we have regret(Var ; val) = 0.Now we are ready to outline an algorithm for computing the upper regret forany variable-value pair:1. Compute the strongly connected components of ~GM :We assign a component number to every node such that two nodesreceive the same number i� they belong to the same SCC.2. Label every variable node Var with l[Var ] = �M(Var).3. Label every value node val with l[val ] = �M(Var).4. Compute the upper regret:For every pair (Var ; val) with val 2 Dom(Var) we compute the upperregret as follows:regret(Var ; val) = � 0; if Var , val belong to same SCCl[Var ]� l[val ]; otherwiseWe will now discuss how to implement the algorithm in time O(m), wherem is the sum of the cardinalities of the variable domains as in the previoussection. We assume that we have a sorting of the matched values accord-ing to their weights; recall that our extended maximum matching algorithmprovides such a sorting. Computing the strongly connected components ofa directed graph can be done in linear time. Some of these algorithms onlyscan the outgoing edges of a node, but not the incoming ones (see for example[CM96]).4Here \inf S" denotes the in�mum of S, which is equal to min(S [ f1g) if S is �nite.



4.2. PROPAGATION ALGORITHM 95So the critical steps are the node labellings. We begin with the compu-tation of the variable labels. Looking at the de�nition of �M , we recognizethe following: If u is a possible start node with minimum weight, then for allnodes v 2 RM(u) we have �M (v) = weight(u). This observation leads to thefollowing algorithm. First we label all variables with 1. Then we considerall possible start nodes u in weight increasing order. We start a depth-�rstsearch (DFS) at each u and assign the label weight(u) to all variables that ucan reach and have not been reached before.The pseudo-code for this approach is given in Algorithm 4.3. We observethat every variable domain is scanned exactly once, and hence the runningtime is O(m). The correctness of the algorithm is implied by the followingobservation: After a node u has been processed in one of the for-loops inlines 2, 4 or 6, we have l[Var ] = �M(Var) for every variable Var 2 RM (u).Algorithm 4.3 Computation of the variable labelsProcedure: ComputeVarLabels(M)1: initialize the labels of all variable nodes to 12: for all values val matched in M with weight < 0 in incr. order do3: VarDFS(M [val ], weight(val))4: for all variables Var free in M do5: VarDFS(Var , 0)6: for all values val matched in M with weight � 0 in incr. order do7: VarDFS(M [val ], weight(val))Procedure: VarDFS(Var , w)8: if l[Var ] =1 then9: l[Var ] w10: for all values val 0 2 Dom(Var) do11: if val 0 has a matching mate Var 0 then12: VarDFS(Var 0, w)13: end if14: end ifNow we discuss the labelling of the value nodes. One is tempted to usea similar approach as above: Process all free values in decreasing weightorder, for each such node v label every unlabelled value that can reach vwith weight(v). The problem with this approach lies in the term \can reachv", i.e. the approach requires to scan the incoming edges of the nodes in ~GM .Since we do not want to build the graph explicitly, we would have to askthe constraint programming system questions of the following form: Given a



96 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFvalue val , tell us every variable Var such that val 2 Dom(Var). To the bestof our knowledge there is no system that supports such a query eÆciently.So we take a di�erent approach. It will turn out that we can use DFSagain, but we have to apply it to an acyclic graph. We observe that two valuesthat belong to the same strongly connected component can reach exactly thesame nodes, which implies that their potentials are equal. And hence, wecan use a well-known technique to make ~GM acyclic: We shrink its SCCs.The shrunken graph ~G sM contains a node for each component C of ~GM , andthere is an edge (C1; C2) in ~G sM i� there is an edge (x; y) in ~GM with x 2 C1and y 2 C2.Let us consider what this means for our running example. On the left-hand side of Figure 4.11 we have marked the SCCs of ~GM with dashed boxes.Observe that every free node forms a trivial component of its own, whereasthe component of every matched node contains at least the mate. Note thatshrinking the components collapses the edges (X3; 0) and (X4; 0) into thesingle edge (C5; C3).Now we can state a recursive algorithm for computing the value labels of acomponent C: Assume �rst that C has no outgoing edges, then there are twopossible cases for the label l[C]. If C consists of a single free value val , thenl[C] = weight(val). Otherwise C contains no free value, and hence, l[C] =�1. So if C has no outgoing edges, the recursion terminates immediately.Suppose now that C has outgoing edges, which implies that there are no freevalues in C. We initialize l[C] with �1. For any edge (C;C 0) in ~G sM wecompute l[C 0] recursively and set l[C] to the maximum of its current valueand l[C 0]. Note that this algorithm always terminates because the graph isacyclic.The algorithm can be implemented with DFS. On the right-hand side ofFigure 4.11, we have depicted the shrunken graph and for each component weindicate the time when the corresponding DFS call completes: for example,C2 : 3 means that C2 is the third component that gets completed. One cansee that the source of an edge is always completed after the target. Thisholds for every DFS in an acyclic graph. And hence, whenever a componentis completed by DFS, we can assign the correct label to it.It is not necessary to construct ~G sM explicitly. We can perform a DFSin the graph ~GM (see Algorithm 4.4). The shrinking of the SCCs is doneimplicitly: We determine a single label for all values in an SCC. To provethe correctness of the algorithm, we introduce some terminology. We de�nethe root of an SCC C to be the �rst value r in C that is discovered by thealgorithm, where discovery means that the status changes from unreached toactive. Since all nodes of C become DFS descendants of r, the root is the last
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Algorithm 4.4 Computation of the value node labelsProcedure: ComputeValLabels(M ,R,SCC )Require: SCC [val ] stores the SCC number for each value val and M isundef-free1: initialize the labels of all SCCs with �12: initialize mark of all values as unreached3: for all values val do4: if mark [val ] = unreached then5: ValDFS(val)Procedure: ValDFS(val)6: mark [val ] active7: if val is free then8: l[SCC [val ]] weight(val)9: else10: let Var denote the matching mate of val11: for all values val 0 2 Dom(Var) do12: if mark [val ] = unreached then13: ValDFS(val 0)14: end if15: l[SCC [val ]] max(l[SCC [val ]]; l[SCC [val 0]])16: end if17: mark [val ] completed
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Figure 4.11: The strongly connected components of ~GM and the completiontimes of a DFS in ~G sM .node in C which is marked completed . We say that an edge (Var ; val 0) in ~GMis �nished, when line 15 has been executed for val 0 during the enumerationof the domain of Var in line 11. The correctness of the algorithm followsimmediately from the second statement of the following lemma:Lemma 4.4 During the execution of Algorithm 4.4 the following holds:1. If an edge (Var ; val 0) is �nished and Var and val 0 belong to di�erentSCCs, then all nodes in the component of val 0 are marked completed.2. If the root of a component C is marked completed, then label of C isequal to the potential of all values in C.Proof. Suppose that the �rst claim is false. This means that an edgee = (Var ; val 0) which connects nodes in di�erent SCCs gets �nished, beforeall nodes in the component of val 0 are completed. In particular, the root r0 ofthis component is not completed. Since ValDFS(val 0) is called immediatelybefore e is �nished, we can conclude that r0 is active when e gets �nished.And hence, Var is a descendant of r0 in the DFS tree, which implies that r0can reach Var . As Var can reach val 0 and val 0 can reach r0, we have thatVar is in the same SCC as r0 and val 0, a contradiction.We prove the second statement. It is easy to see that the labels assignedby the algorithm can never be higher than the correct labels. So we can ignorecomponents with potential �1. Let r denote the root of a component with�M(r) > �1. Thus there is a path ~p in ~GM from r to a free value y withweight(y) = �M (r). We prove the statement by an induction on the numberof components that are visited by ~p. The base case for our induction is thatr and y lie in the same SCC. Since y is a free value, its component is labelledcorrectly after the completion of the call DFS(y) (see line 8).



4.2. PROPAGATION ALGORITHM 99Now we come to the induction step. Assume that r and y reside indi�erent SCCs, and let e = (Var ; val 0) be the �rst edge on ~p that connects anode in the SCC of r with a node outside. Consider the point in time whene is �nished, this is clearly before the completion of r. By the �rst statementof the lemma, the root r0 of the component of val 0 is marked completed atthat time. So by the induction hypothesis (applied to the suÆx of ~p fromval 0 to y), the component of r0 has the correct label weight(y). Thus thecomponent of r also receives the correct label (see line 15).Example. In Figure 4.12 we show all the node labels for our runningexample. Observe that the label of the value 2 is �1, which means thatthis value must be matched with X1 in any R-matching, because X1 isthe only variable in the SCC of 2. Moreover, we can see for example thatregret(X4; 4) = 5 � (�1) = 6. And indeed, if we want to construct a maxi-mum weight R-matching containing the edge fX4; 4g, we have to set value 5free and match X5 with �1. The latter is necessary because we are requiredto match X5.
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�1Figure 4.12: Example showing the computation of the upper regret.4.2.8 Putting it all togetherIn this section we describe how to assemble the algorithms developed aboveto a propagation algorithm for the WPA-constraint. We will also prove somestatements regarding consistency and the overall running time.Before we describe Algorithm 4.5, we introduce the notion lower regret. Itis de�ned in an analogous way as the upper regret: Let wmin denote theweight of a minimum weight R-matching in the weighted value graph G.Consider an edge e = fVar ; valg and let w be the minimum weight of anyR-matching containing e. (If no such R-matching exists set w = 1.) Wede�ne regret(Var ; val) = w � wmin , i.e. the lower regret tells us by whichamount the minimum weight increases if we force the assignment of val to



100 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFVar . If wmax is the maximum weight of an R-matching in G, then theweights of all R-matchings containing e lie in the interval I(e) := [wmin +regret(Var ; val);wmax � regret(Var ; val)]. We call I(e) the weight intervalweightintervalI(e) of e, and we will make sure that the following holds when our algorithmterminates: For any edge e that is not pruned we have I(e) \Dom(W ) 6= ;.The algorithm works as follows. First we compute the set R. Thenwe enter the main loop, which repeats the following steps: We determinea minimum weight matching Mmin in the weighted value graph G and thecorresponding lower regrets5. If Mmin does not exist, or if weight(Mmin) isgreater than the upper endpoint of Dom(W ), the constraint has no solutionand we report failure. With the lower regrets we can prune the domainsof X1; : : : ; Xn according to the upper endpoint of Dom(W ). After that wecompute a maximum weight matching Mmax and the upper regrets, whichallows us to perform similar pruning steps as before.Unfortunately, it is not guaranteed that we reach a �xpoint after oneiteration of the main loop. Hence, we repeat these steps until no edge deletionoccurs anymore. Of course, we only recompute the matching Mmin or Mmaxif this is necessary. We do not start from scratch, but rather use the oldmatching (minus the removed edges) as input for our matching algorithm.A recomputation becomes necessary, if an edge in the matching is deleted,or if a free variable enters R. We observe that the lower regret of all edgesin Mmin is zero, and for every variable X =2 R which is free in Mmin we haveregret(X; undef ) = 0. And hence, the pruning according to the lower regretscan never invalidate Mmin , but only Mmax . A similar observation can bemade for Mmax and the upper regrets. Moreover, if the pruning according tothe upper regrets deletes some edges, we do not have to recompute the upperregrets unless there are also edge removals due to the lower regrets. We willprove this in the following lemma.Lemma 4.5 Let M be a maximum weight R-matching in the weighted valuegraph G. Suppose the upper regret of an edge e increases as we delete anedge d from G with regret(d) > 0. Then regret(e) � regret(d) holds beforethe deletion. An analogous statement can be made for the lower regrets.Hence, if Algorithm 4.5 removes d because its regret is too high, then it alsoremoves e.Proof. We only have to prove the claim for the upper regrets. Let d =fVard; valdg and e = fVar e; val eg. In the sequel we will use the subscript \1"if we refer to the graph ~G1 = ~GM and the subscript \2" for ~G2 = ~GMnd. Since5As we stated before, these quantities can be determined by multiplying all weights by�1 and computing a maximum weight matching and the upper regrets.



4.2. PROPAGATION ALGORITHM 101Algorithm 4.5 Propagation algorithm for WeightedPartialAlldi�Procedure: PropagateWPA(X1; : : : ; Xn;undef ;T ;W )1: compute R = fXi j undef =2 Dom(Xi)g2: initializeMmin and Mmax // maybe empty3: recompute min  true; recompute lregret  true4: recompute max  true; recompute uregret  true5: while recompute lregret or recompute uregret do6: if recompute min then7: compute min weight undef-free R-matching Mmin8: if Mmin does not exist or weight(Mmin) > W then9: report failure and terminate10: W  max(W;weight(Mmin))11: recompute min  false12: end if13: if recompute lregret then14: compute the lower regrets (wrt. Mmin)15: for all variables Xi and all values v 2 Dom(Xi) do16: if weight(Mmin) + regret(Xi; v) > W then17: remove v from Dom(Xi); recompute uregret  true18: if v = undef then add Xi to R19: if fXi; vg 2Mmax or (Xi free in Mmax and v = undef ) then20: recompute max  true21: end if22: recompute lregret  false23: end if24: if recompute max then25: compute max weight undef-free R-matching Mmax26: if weight(Mmax ) < W then report failure and terminate27: W  min(W;weight(Mmax ))28: recompute max  false29: end if30: if recompute uregret then31: compute the upper regrets (wrt. Mmax )32: for all variables Xi and all values v 2 Dom(Xi) do33: if weight(Mmax )� regret(Xi; v) < W then34: remove v from Dom(Xi); recompute lregret  true35: if v = undef then add Xi to R36: if fXi; vg 2Mmin or (Xi free in Mmin and v = undef ) then37: recompute min  true38: end if39: recompute uregret  false40: end if41: end while



102 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFregret1(d) > 0, we have d =2 M , and M is a maximum weight R2-matchingin G2 (even if vald = undef ). Moreover, Var d and vald lie in di�erent SCCsof ~G1. Hence, the SCCs of ~G1 and ~G2 are identical. As the upper regretof e increases by the deletion, Var e and val e also belong to di�erent SCCs.Thus regret1(d) = �1(Var d)� �1(vald) and regret1(e) = �1(Var e)� �1(val e).(We assume w.l.o.g. that M is undef-free.) By de�nition, there is a path~p in ~G1 from a possible start node x to Var e with weight(x) = �1(Var e)(see page 94); and there is a path ~q in ~G1 from val e to a free node y withweight(y) = �1(val e) (cf. De�nition 4.3).The deletion of d either increases the �-value of Var e (if d lies on ~p) ordecreases the �-value of val e (if d lies on ~q). In any case x can reach Vard.Thus �1(Vard) � weight(x) = �1(Var e). Moreover, vald can reach y so that�1(vald) � weight(y) = �1(val e).So regret1(d) = �1(vald)� �1(vald) � �1(vale)� �1(val e) = regret1(e).Before we analyse the running time of the algorithm, we give an examplewhich shows that it may be necessary to have several iterations of the mainloop even if both matchings remain unchanged in one iteration. (This canhappen because deleting an edge due to its upper regret may increase thelower regret of another edge.)Example. We consider the graph G shown on the left-hand side of Fig-ure 4.13, and we assume that Dom(W ) = [4; 5]. We suppose that every valueis equal to its weight. All variables must be matched, i.e. R = fX1; X2g. Weshall see that the algorithm must make 3 iterations, until it has reached a�xpoint. In the table on the right-hand side of the �gure we depict the stateof the algorithm after the execution of line 14 and line 31 in the respectiveiteration. An \x" in a column indicates that the respective edge has beenpruned by the algorithm.In the �rst iteration, g is deleted because of its upper regret. In thesecond row of the table we see that weight(Mmax ) = 14 and regret(g) = 13.So every R-matching containing g has weight at most 1, which is less thanW . Observe that g neither belongs to Mmin nor to Mmax , but the pruningof g a�ects the lower regrets. This causes the deletion of j in the seconditeration. As j was in Mmax , we have to recompute Mmax and the upperregrets. At the end of this iteration we prune f , because its upper regretis now too high. Since f was a member of Mmin , we have to recompute aminimum weight matching in the next iteration. As weight(Mmin) increasesto 5, we set W to 5. Moreover, we remove i due to its lower regret. Finally,we recompute Mmax and terminate.In the sequel we analyse the running time of Algorithm 4.5 and make
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weight e f g h i j1 min = �3 lr 8 0 1 0 1 4max = 14 ur 0 8 13 9 4 02 min = �3 lr 8 0 x 0 6 9max = 11 ur 0 8 x 6 0 x3 min = 5 lr 0 x x 0 6 xmax = 5 ur 0 x x 0 x xFigure 4.13: An example computation of the pruning algorithmsome statements about the consistency it achieves. By Lemma 4.3, the totaltime for the computations of the matchings is bounded by O((n+p)m), wherep denotes the number of pruned variable-value pairs and m denotes the totalsize of the initial domains. A single iteration takes time O(nm) in the worstcase, but if we do not count the time for the matching computations, weobtain O(m) per iteration. Since in all iterations, except for the last one,at least one value is pruned from some domain, Algorithm 4.5 runs in timeO((n + p)m). So when the algorithm runs for a very long time, this iscompensated by a large amount of pruning.With respect to consistency, we observe that upon termination of thealgorithm we have I(e) \ Dom(W ) 6= ; for any edge e which has not beenremoved from G. This follows directly from the fact that both matchingsand the corresponding regrets are valid upon termination. We summarizeour observations in the following theorem:Theorem 4.3 Consider the constraint WPA(X1; : : : ; Xn; undef ;T ;W ) andsuppose we apply Algorithm 4.5 to it. Then its worst case running time isO((n + p)m), where p is the number of pruned variable-value pairs. If itterminates without reporting failure, we have I(fXi; vg) \ Dom(W ) 6= ; forany value v that occurs in the domain of some variable Xi.Observe that this does not imply that every value v 2 Dom(Xi) is con-sistent. We know that weight(M) 2 I(fXi; vg) for any R-matching M con-taining fXi; vg. But the converse is not true in general, there may be a valuew 2 I(fXi; vg) such that there is no R-matching M which has weight w andcontains fXi; vg.This is shown by the following example: Suppose we have a WPA-constraint on three assignment variables X; Y; Z with domains Dom(X) =f�4;�2g, Dom(Y ) = f0; 2g and Dom(Z) = f4; 6g and a weight variable Wwith Dom(W ) = f3g. Assume that the weight of every value is equal to the



104 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFvalue itself. Then it is easy to verify that the minimum weight of an assign-ment is 0, the maximum weight is 6, and the lower or upper regret of anyvariable-value pair is at most 2. Thus the weight interval of any edge e in theweighted value graph satis�es I(e) � [2; 4] � Dom(W ). Hence, the algorithmdoes not prune anything. But since every value has an even weight, therecan be no solution to the constraint.In the next lemma, we show that deciding solvability of aWPA-constraintis hard (if the weights appearing in its arguments have large absolute value):Lemma 4.6 Deciding whether the constraint WPA(X1; : : : ; Xn; undef ;T ;W )has a solution is NP-complete (in the weak sense).Proof. It is easy to see that the problem is in NP, because we can verifyin polynomial time that a given variable assignment satis�es the constraint.To prove NP-completeness, we will give a reduction of an NP-complete setpartitioning problem called \Subset Sum" (see [GJ79]):Subset SumWe have a �nite set A, each element a 2 A has a weight w(a) 2 Z+,and we have an integer B 2 Z+. The problem is to decide whetherthere is a subset A0 � A such that Pa2A0 w(a) = B.In order to encode an instance of the Subset Sum problem with A =fa1; : : : ; ang we use n assignment variables X1; : : : ; Xn. We set undef := 0.For i = 1; : : : ; n we choose Dom(Xi) := f0; aig and weight(ai) := w(ai). Fi-nally, we set Dom(W ) := [B;B]. A solution (v1; : : : ; vn; B) of the constraintWPA(X1; : : : ; Xn; undef ;T ;W ) corresponds to the subset A0 = fvi j vi 6=undef g � A of weight B and vice versa. (Observe that this reduction onlyuses the \weight"-part of the WPA-constraint, the \partial alldi�erent"-partis satis�ed automatically by construction.)We conclude the general analysis of the algorithm by showing that it isidempotent and monotonic (cf. page 14):Lemma 4.7 Algorithm 4.5 is idempotent and monotonic.Proof. It is obvious that the algorithm is idempotent, because the match-ings and the regrets are valid upon termination.To show monotonicity, we consider two applications of the algorithm that donot report failure. We assume that the weight table and the value undef arethe same in both applications. In the sequel we will use the subscripts \1"and \2" to refer to the respective application. We use the superscript \0" to



4.2. PROPAGATION ALGORITHM 105denote the input domains and the superscript \?" when we refer to the out-put domains. Suppose that the input domains satisfy Dom01(W ) � Dom02(W )and Dom01(Xi) � Dom02(Xi) for i = 1; : : : ; n.We show by induction that at any point in time during the second applica-tion the following holds: Dom?1(W ) � Dom2(W ) and Dom?1(Xi) � Dom2(Xi)for i = 1; : : : ; n. Clearly, the claim holds at the beginning of the secondapplication.There are four lines where Algorithm 4.5 updates a domain: 10, 17, 27and 34. For the induction step we assume that the claim holds before sucha domain update and prove that it still holds afterwards. So before theupdate step, the �nal weighted value graph G?1 of the �rst application is asubgraph of the current weighted value graph G2 of the second application,and R?1 � R2. Hence, a minimum/maximum weight R?1-matching in G?1 hasat least/most the weight of a minimum/maximum weight R2-matching inG2. Therefore the claim holds after an update in lines 10 and 27.We come to the updates in lines 17 and 34. Consider an edge e = fXi; vg inG?1. By Theorem 4.3, the following holds: I?1 (e) \ Dom?1(W ) 6= ;. So whenline 16 or line 33 is executed for e, we have I2(fXi; vg) \ Dom2(W ) 6= ;,because I2(fXi; vg) � I?1 (e) and Dom2(W ) � Dom?1(W ). This implies that eis not pruned from G2, i.e. v remains in Dom2(Xi).Hence, when the second call terminates, we have Dom?1(W ) � Dom?2(W )and Dom?1(Xi) � Dom?2(Xi) for i = 1; : : : ; n.Scenarios one and twoWe can derive better results with respect to both consistency and runningtime, if we consider again the three scenarios from the beginning of thischapter (see page 71). Let us assume �rst that we are in the �rst scenario,where the constraint is used in a minimization problem, i.e. we impose onlyan upper bound on the weight variableW . Thus W is never greater than theweight of a minimum weight matching. By the lemma which we will provebelow, this implies that our algorithm terminates after one iteration and thatit achieves arc-consistency for the assignment variables:Lemma 4.8 Consider the constraint WPA(X1; : : : ; Xn; undef ;T ;W ) suchthat W is not greater than the minimum weight of an R-matching in thecorresponding weighted value graph. If we apply Algorithm 4.5, then it termi-nates after one iteration, and hence the running time is O(nm). It achievesarc-consistency for the variables X1; : : : ; Xn, i.e. for every variable Xi andevery value v 2 Dom(Xi) there is a solution (v1; : : : ; vn; w) of the constraint



106 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFwith vi = v. (The lower endpoint of Dom(W ) is made consistent, the upperendpoint may not be consistent.)Proof. In order to show that the algorithm makes only one iteration, itsuÆces to prove that the condition of the \if"-statement in line 33 will neverbe true. Consider the execution of line 33 for a variable-value pair (Xi; v).By Lemma 4.5, we have regret(Xi; v) < 1, which implies regret(Xi; v) <1. Thus there is an R-matching M containing the edge e = fXi; vg. Weinfer weight(Mmax ) � regret(Xi; v) � weight(M) � weight(Mmin). As W =weight(Mmin) holds after the execution of line 10, the \then"-part of the\if"-statement in line 33 is not executed.Now we show that there is a solution where v is assigned to Xi. Let Gbe the weighted value graph at the end of the �rst iteration. G contains e =fXi; vg, and the minimum weight matching and the lower regrets computedby the algorithm are valid for G. So we can �nd an R-matching M 0 in Gwith e 2 M 0 and weight(M 0) = weight(Mmin) + regret(Xi; v). Since v hasnot been pruned from Dom(Xi), we have weight(M 0) � W (see line 16).Together with W = weight(Mmin) this implies weight(M 0) 2 Dom(W ). ByLemma 4.1, M 0 corresponds to a solution where v is assigned to Xi.As a corollary from the previous proof, we observe that we can skip thepruning related to the upper regrets (lines 30{40) if W = weight(Mmin),because then the condition of the \if"-statement in line 33 will always befalse. An analogous observation can be made for the lower regrets (lines 13{23) if W = weight(Mmax ). However, these lines must not be skipped in the�rst iteration, because we have to prune the edges with regret 1.The situation of the second scenario is very similar to the case above.Recall that we assume in this scenario that the weight variable W is onlybounded from below. In this case, we should compute Mmax and the upperregrets before we compute Mmin and the lower regrets. Otherwise we mightneed two iterations until we achieve arc-consistency for the assignment vari-ables.Scenario threeNow we come to the last scenario where all values (except for undef ) haveweight 1, and we make no assumptions about the lower or the upper endpointof the domain of the weight variable W . This scenario is analysed in thefollowing lemma:Lemma 4.9 Consider a constraint WPA(X1; : : : ; Xn; undef ;T ;W ) such thatall values di�erent from undef have weight 1. Then Algorithm 4.5 achieves



4.3. COMPARISON WITH RELATED WORK 107arc-consistency for all variables (including W ). It makes at most two itera-tions, hence its running time is bounded by O(nm).Proof. We consider the �rst iteration and denote by t? the point in timeimmediately after the execution of line 31 in the �rst iteration. Let R?be equal to the contents of the variable R and let G? denote the weightedvalue graph at that time. Mmin and Mmax are minimum/maximum weightundef-free R?-matchings in G?, and the lower and upper regrets computedby the algorithm are valid with respect to G?.We show that any value w in Dom(W ) is consistent at time t?. We haveDom(W ) � [weight(Mmin);weight(Mmax )]. The set Mmin �Mmax consists ofnode-disjoint alternating paths and cycles p1; : : : ; pk. Let M0 = Mmin andMi =Mi�1� pi for i = 1; : : : ; k. Each of these matchings is an R?-matching,and Mk = Mmax . As all value weights are 1 or 0 (for undef ), we inferweight(Mi)� weight(Mi�1) 2 f�1; 0; 1g (cf. Figure 4.2 on page 77). Hence,for every w 2 Dom(W ), there is a matching Mi in the sequence M0; : : : ;Mkwith weight(Mi) = w. By Lemma 4.1, Mi corresponds to a solution of theconstraint where w is assigned to W .Let v be a value in the domain of an assignment variable Xi and assumethat v is not pruned during the �rst iteration. Since I(e) = [weight(Mmin)+regret(e);weight(Mmax ) � regret(e)], this implies that there is some weightw in I(e) \ Dom(W ) (see lines 16 and 33). By the de�nition of the lowerand the upper regret, there are two R?-matchings Ml and Mh in G? suchthat both contain e and I(e) = [weight(Ml);weight(Mh)]. As every pathin Ml � Mh avoids e, an analogous argument as above proves that thereis an R?-matching M in G? with e 2 M and weight(M) = w. Hence, Mcorresponds to a solution where v is assigned to Xi.As the domains of all variables are consistent after the �rst iteration,there can be no pruning in the second iteration. Only the matchings maychange. Therefore the algorithm stops after the second iteration.4.3 Comparison with related workTo the best of our knowledge the WPA-constraint itself has not been treatedbefore. In this section we will discuss some global constraints which arerelated with our work and summarize the results which have been obtainedfor them. As the name suggests, our constraint is strongly related withthe classical Alldi� -constraint, which we discussed in Chapter 3. Of course,WPA is a generalization of Alldi� : If we choose for undef a value thatis not contained in any variable domain, set W and all weights to zero,



108 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFthen WPA becomes equivalent to an Alldi� -constraint on the assignmentvariables. There are several propagation algorithms which achieve di�erentdegrees of consistency (see [vH01a] for an overview). We compare our workwith the results of R�egin who proposed an arc-consistency algorithm [R�eg94].As before we denote by n the number of assignment variables and by m thesum of the cardinalities of their domains. R�egin's algorithm, which is alsobased on matchings in bipartite graphs, has a worst case running time ofO(pnm). It is also incremental and has a best case running time of �(m).By Lemma 4.8, our propagation algorithm achieves the same consistency,however the worst case running time is O(nm).WPA is a generalization of a constraint called alldi� except 0 . The argu-ments of the constraint are n assignment variables and the constraint statesthat all variables must take pairwise distinct values except for those vari-ables which are assigned the value 0. This constraint has been mentioned in[Bel00], there it was considered for applications like the ones we describedin scenario three (on page 72). But as far as we know, no propagation al-gorithm has been proposed before. This constraint can be expressed by aWPA-constraint where undef is set to 0, and all weights are set to 1 (exceptfor the value undef ) and the initial domain of W is [0;n]. Using this trans-lation, the user has the possibility to control the number of variables whichare set to 0, by imposing constraints on W . By Lemma 4.9, we can achievearc-consistency for the assignment variables in a worst-case running time ofO(nm).Petit et al. [PRB01] also consider relaxations of the Alldi� -constraint.Their constraint involves n assignment variables X1; : : : ; Xn and a cost vari-able C. They discuss two di�erent cost models. In the �rst model the cost ofan assignment is de�ned to be n minus the number of distinct values. So if allvalues are pairwise distinct, the cost is 0. And the assignments (1; 1; 2; 2) and(2; 1; 2; 2) have both cost 2. The second model is based on a reformulationof the Alldi� -constraint as �n2� binary constraints of the form Xi 6= Xj fori 6= j. And the cost in this model is simply the number of binary constraintswhich are violated by the assignment. If all variables take pairwise distinctvalues, the cost is 0 as before. The assignment (1; 1; 2; 2) has cost 2, whereasthe cost of (2; 1; 2; 2) is now 3.For both models they propose algorithms which prune the domains of theassignment variables according to a maximum cost. The algorithm for the�rst model is based on the computation of maximum cardinality matchingsin the value graph. Its worst case running time is O(pnm) and it achievesarc-consistency. The second model seems to be more diÆcult to handle. Thealgorithm for this model is based on ows. Its complexity is O(n2pnms),



4.3. COMPARISON WITH RELATED WORK 109where s is the maximum cardinality of a variable domain. And it cannotguarantee arc-consistency.We want to point out that we cannot emulate any of the two models withour constraint because we do not allow that any value di�erent from undefis taken more than once in an assignment.The next constraint that we discuss is called SumOfWeightsOfDistinct-Values (abbreviated as SWDV ). Beldiceanu et al. [BCT02] introduced thisconstraint. It takes as input n assignment variables X1; : : : ; Xn, a value-weight table T and a weight variableW . In contrast to WPA, any value maybe used several times in an assignment, but the weights may not be negative.The SWDV -constraint states thatW =Pv2fX1 ;:::;Xng weight(v), i.e. W mustbe equal to the total weight of the variable assignment, but every value vcontributes at most once to total weight, even if it is assigned to many X's.It is easy to see that the maximum weight of a variable assignment isequal to the weight of a maximum weight matching in the correspondingweighted value graph. So the \upper side" of this constraint is very similarto WPA. In fact, the matching algorithm and the computation of the upperregrets that we have presented in the previous section have been derivedfrom algorithms developed in [BCT02]. The \lower side" of SWDV is quitedi�erent from WPA and seems to be more diÆcult to handle (see [BCT02]for details).In the sequel we compare with the constraint MinWeightAllDi� intro-duced by Caseau and Laburthe [CL97]. This constraint augments the classi-cal Alldi� -constraints with costs. In addition to the n assignment variables,the constraint takes as input a cost table T and a cost bound �. The tableT states for every variable X and every value v 2 Dom(X) the cost cX;v forassigning v to X. So in contrast to our constraint the cost of a value maydepend on the variable to which it is assigned. The cost of an assignment(v1; : : : ; vn) is de�ned as Pni=1 cXi;vi. MinWeightAllDi� holds if all assign-ment variables take pairwise distinct values and the cost of the assignmentdoes not exceed �. So this constraint models a similar situation as in scenarioone (see page 71). But it is not capable of modelling an undef value thatmay be used several times.6Sellmann [Sel02] gave an arc-consistency algorithm for this constraint. Itworks on a weighted variable-value graph G, where the weights are associ-ated with the edges. Checking feasibility of the constraint can be done bycomputing a minimum weight variable-perfect matching in G. And the prun-ing amounts to n single source shortest paths computations in an oriented6As a work-around, one might introduce n distinct values undef 1; : : : ; undef n withweight 0 and add undef i to the domain of Xi.



110 CHAPTER 4. WEIGHTED PARTIAL ALLDIFFvariable-value graph. Thus the algorithm runs in time O(n(m + k log k)),where k = n+ jSni=1Dom(Xi)j, i.e. k equals the number of nodes in G. Theauthor mentions that it is not known how this algorithm can be implementedto run incrementally faster. So in a setting where the costs of the values areindependent of the variables to which they are assigned, it is better to usethe algorithms for the WPA-constraint, because they can achieve bound con-sistency in time O(nm) (see Lemma 4.8), and they are incremental.Finally, we want to mention the constraint CostGCC which has beendescribed by R�egin [R�eg99]. It allows to state a cost bound for the globalcardinality constraint (GCC ), which we discussed in Section 3.2.3. Similarto MinWeightAllDi� , the input of the constraint consists of n assignmentvariables X1; : : : ; Xn, a cost table T and a cost bound �. In addition, wehave for every value v a lower and an upper capacity bound lv and uv. Theconstraint states each value v must be used at least lv and at most uv timesin the assignment and that the cost of the assignment must not be morethan �. Clearly, in the special case where all lower capacities are zero andall upper capacities are one, CostGCC is equivalent to MinWeightAllDi� .R�egin [R�eg99] describes an arc-consistency algorithm for CostGCC . Hisalgorithm is based on min-cost-ow (for feasibility checking) and single sourceshortest paths computations in a so-called residual graph (for pruning). Itcan be implemented to run in time O(n(m+ k log k)).7The constraint CostGCC can model scenario one as follows: we set alllower capacity bounds to zero, the upper capacity bound for the value undefis n and the upper bound for all other values is one. R�egin's algorithmachieves the same pruning as our algorithms for the WPA-constraint, butthe complexity is higher. There are cases where CostGCC is more generalthan WPA. But when this additional power is not needed, our algorithmsgive a better worst case complexity.

7So for the special case MinWeightAllDi� , R�egin's algorithm has the same asymptoticcomplexity as the algorithm by Sellmann [Sel02].



Chapter 5A non-overlapping constraintbetween convex polygonsThis chapter discusses a non-overlapping constraint between two convex poly-gons1. We restrict our attention to the two-dimensional plane R2 , but manystatements can be generalized for higher dimensions. First, we want to ex-plain what we mean by non-overlapping. Let P and Q be two sets of points(e.g. two polygons). If P and Q do not intersect at all (see left-hand side ofFigure 5.1) or only their boundaries intersect (as in the middle of the �gure),then P and Q are called non-overlapping. Only if P and Q have a com-mon interior point (i.e. int(P ) \ int(Q) 6= ;), we say that P and Q overlap(cf. right-hand side of the �gure).P Qa) no intersection P Qb) touching P Qc) overlappingFigure 5.1: Examples illustrating the de�nition of overlapping.Determining whether two convex polygons intersect is a well-studied prob-lem in computational geometry (see [dBvKOS00] for example). However, wewant to deal with problems where the position of one or both polygons isnot completely determined. We illustrate this with the example shown inFigure 5.2: We have two rectangles R1 and R2. The shape and the positionof R1 are �xed, the shape of R2 is �xed too, but its position is not. The1This and other relevant geometrical notions are formally de�ned in Section 2.3.111



112 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTreference point of R2, which is indicated by a dot in the �gure, can be movedwithin a certain region. The coordinates of the reference point are given bytwo real-number2 variables X2 and Y2 with domains Dom(X2) = [2; 5] andDom(Y2) = [1; 3]. Thus the reference point may be moved to any positionin the rectangle O2 = Dom(X2) � Dom(Y2). Our goal is to �nd out that itmust not be placed in the interior of the shaded region of O2, because thiswould cause R1 and R2 to overlap, i.e. we want to narrow the domain of X2to [3; 5]. R1 R2O21 2 3 4 51234Figure 5.2: Example for a situation where one object is not �xed.In general, the positions of both objects appearing in a NonOverlapping-constraint may be variable. Each object is modelled by a �xed shape polygonShp and a (possibly) variable translation vector t = (x; y) 2 R2 . The actualobject is obtained by applying the translation t to Shp, which we will denoteby t � Shp. For convenience, we assume that Shp contains the point (0; 0),i.e. the origin of the coordinate system. In a translated copy P = (x; y)�Shp,we call the point (x; y) the origin of P . So the relative position of the originwith respect to Shp is �xed. In our drawings we will mark this point by adot (cf. R2 in Figure 5.2). Geometrically, (x; y)� Shp is obtained by movingthe dot into the point (x; y).Our non-overlapping constraint has the following syntax:NonOverlapping(Shp1; (X1; Y1);OrgBnd1; Shp2; (X2; Y2);OrgBnd2)Each object is characterized by 4 parameters which have the following mean-ing:� Shpi is a convex polygon that describes the shape of the i-th object.� (Xi; Yi) is the translation vector for Shpi, i.e. the position of its origin.Both Xi and Yi are variables whose domains are closed intervals in R.2In the paper [BGT01] we considered �nite domain integer variables. But since thecoming theory is more easily formulated for real numbers, we chose domains of real num-bers. Other domains will be discussed in Section 5.5.



113� The origin boundary OrgBnd i is a convex polygon that (further) re-stricts the placement of the origin of the i-th object. We require that(Xi; Yi) must be a point in OrgBnd i.Thus the origin of the i-th object must be a point in the domain poly-gon Domaini = (Dom(Xi) � Dom(Yi)) \ OrgBnd i, which is convex again.The reader may wonder why we have introduced OrgBnd i. The reason isthat Dom(Xi)�Dom(Yi) is always an axis-parallel rectangle, and hence, of-fering the origin boundary as additional restriction increases the modellingcapabilities of the constraint.The constraint holds if (X1; Y1)�Shp1 and (X2; Y2)�Shp2 do not overlapand the origins are contained in the respective domain polygons. The relationS of the above mentioned constrained contains all tuples (x1; y1; x2; y2) withthe following properties:� int((x1; y1)� Shp1) \ int((x2; y2)� Shp2) = ;� (xi; yi) 2 Domaini for i 2 f1; 2g.This constraint can be applied to all kinds of two-dimensional placementproblems, e.g. designing a pattern for cutting cloth, or laying out parts ona sheet of metal [CF94]. The reader may wonder if these problems can bemodelled well without allowing rotations of the shape polygon. Concerningthe �rst example, we observe that cloth may be decorated with a pattern,thus the shapes that are to be cut out are often not allowed to be rotated, onlyto be translated. In the second example it may be possible in some casesto reduce the waste if rotations are possible. However, this may increasethe time to solve the problem considerably. So in applications with limitedcomputation time, a restricted model (without rotations) that yields goodsolutions quickly may be preferable. This might be the reason why rotationshave not been taken into account in [CF94].The work discussed in this chapter is based on the paper [BGT01], whichis joint work with Nicolas Beldiceanu and Qi Guo. The chapter is organizedas follows. We start with a rough overview of the propagation algorithm.Then we introduce the overlapping polygon, which will play a key role in thealgorithm. We describe its main properties and discuss how to compute it.After that we present a narrowing algorithm for the variable domains, andwe analyse its running time. Then we sketch some possible extensions of theconstraint. Finally, we conclude with the discussion of related work.



114 CHAPTER 5. A NON-OVERLAPPING CONSTRAINT5.1 Overview of the algorithmIn the sequel we develop a propagation algorithm that can narrow the do-mains of the origin variables to bound-consistency. Throughout this chapterwe will use R as number type. But the results will also be valid for rationalnumbers. It will turn out that our algorithm needs to perform the followingoperations on numbers: the arithmetic operations \+;�; �; =" and compar-isons. In order to make the analysis easier, we assume that each of thesebasic number operations can be done in constant time. (We know that theseassumptions are not realistic for exact computations with real or rationalnumbers, some of the issues will be discussed later in Section 5.5.) Giventhese assumptions we will show that the running time of the algorithm islinear in the total number of vertices of the input polygons.As mentioned above, our algorithm does not deal with two �xed polygonsbut rather with two families F1 and F2 of polygons:Fi = f(x; y)� Shpi j (x; y) 2 DomainigSuppose we want to place the origin of the shape polygon of F1. Our algo-rithm can be outlined as follows:� Compute Domain1 and Domain2:In order to determine Domaini, we have to compute the intersection ofthe origin boundary OrgBnd i with the axis parallel rectangle spannedby (X i; Y i) and (Xi; Yi). This problem is well-known in computergraphics as \polygon clipping", an eÆcient algorithm for convex poly-gons was given by Sutherland and Hodgman [SH74]. (A very readablepresentation of this algorithm together with other clipping algorithmscan be found in [FvDFH90].)� Compute the overlapping polygon Overlap(Shp1;F2):The overlapping polygon will be discussed in detail in Section 5.2. Thecrucial property of this polygon is that its interior points are exactlythe forbidden placements of Shp1 with respect to F2. A placement(x1; y1) is forbidden if (x1; y1)� Shp1 overlaps every member of F2.� Examine Pl1 = Domain1 n int(Overlap(Shp1;F2)):The set Pl1 contains all admissible placements for the origin of Shp1.With a sweepline algorithm (see Section 5.3) we can narrow the domainsof X1 and Y1 to bound consistency.In the sequel we will give some details of the algorithm. We will use thefollowing example to illustrate it:



5.1. OVERVIEW OF THE ALGORITHM 115Example. The two objects that we want to place are described by thefollowing parameters:� Shp1 = h(4;�4); (�2;�2); (0; 2)i,Dom(X1) = [5; 9];Dom(Y2) = [1; 6],OrgBnd1 = h(5; 4); (9; 0); (11; 4); (8; 7)i� Shp2 = h(0; 0); (5; 0); (7; 2); (6; 5); (0; 3)i,Dom(X2) = [�2; 5];Dom(Y2) = [�1; 4],OrgBnd2 = h(9; 2); (1; 4); (�1;�1); (1;�4)iThe shape polygons are depicted in Figure 5.3. The algorithm starts withclipping origin boundaries against the rectangles which are induced by thevariable domains (see Figure 5.4). Clipping OrgBnd1 against the rectanglewith the corners (5; 1) and (9; 6) yields Domain1 = h(5; 4), (8; 1), (9; 1), (9; 6),(7; 6)i. For the second family we obtain Domain2 = h(5; 3), (1; 4), (�1;�1),(5;�1)i. 51234 1 2 3 4 5 6 7
Shp21 2 3 4 5Shp12

Figure 5.3: The shape polygons in our running example.
2468 2 4 6 8 10 2468 2 4 6 8 10Domain1 Domain2

Figure 5.4: Clipping of the origin boundaries for our running example.



116 CHAPTER 5. A NON-OVERLAPPING CONSTRAINT5.2 The overlapping polygonIn this section we tackle the problem of �nding the forbidden placements forthe origin of Shp1 with respect to F2. We start with a slightly easier problem.We consider a �xed instance P2 2 F2, and ask ourselves which placements areforbidden with respect to P2. This problem is a subproblem in robot motionplanning where one has to move a polygonal-shaped robot such that it avoidspolygonal-shaped obstacles (see [dBvKOS00, Chapter 13]). Our \robot" isShp1 and our \obstacle" is P2. But there is a subtle di�erence between thetwo problems: In robot motion planning the robot is not allowed to touchthe obstacle, whereas Shp1 may touch P2 but not overlap. However, we shallsee that the results from motion planning carry over to our problem withminor modi�cations.Let F = f(x; y) j ((x; y) � Shp1) \ P2 6= ;g, i.e. F corresponds to allplacements where Shp1 and P2 touch or overlap. Geometrically the boundaryof F can be obtained by sliding Shp1 along the boundary of P2 and tracingthe origin of Shp1 (see Figure 5.5). Moreover, we see that the boundaryof F (denoted by @F ) consists of the placements where Shp1 and P2 justtouch, and the interior of F (i.e. int(F )) contains the placements where theyoverlap.
Shp1 F P2

Figure 5.5: The forbidden placements for Shp1 wrt. a �xed instance P2.In order to describe F in a way which will facilitate its computation, weuse the notion of a Minkowski sum: The Minkowski sum of two sets P;Q �R2 is denoted by P�Q and de�ned as follows: P�Q = fp+q j p 2 P; q 2 Qg.(Observe that f(x; y)g�Shp1 = (x; y)�Shp1.) Moreover, for � 2 R we de�ne� � P := f� � p j p 2 Pg. It will turn out that F = P2��Shp1, but before weshow this, we list some fundamental properties of Minkowski sums and theirinterior points, which will be used to prove the subsequent lemmas.Lemma 5.1 For two sets P;Q � R2 the following holds:



5.2. THE OVERLAPPING POLYGON 117� int(p� P ) = p� int(P ), 8 p 2 R2 .� int(� � P ) = � � int(P ), 8� 2 R n f0g.� int(P � Q) = int(P )� int(Q), if P and Q are convex with non-emptyinterior.For a convex set Q � R2 , p1; : : : ; pn 2 R2 and �1; : : : ; �n 2 [0; 1] withPni=1 �i = 1 the following holds:( nXi=1 �ipi)�Q = nMi=1 �i(pi �Q)Proof. The proof of the �rst two statements is straightforward. The lasttwo statements are shown in Section 2.3 (cf. Lemmas 2.5 and 2.6).The following lemma characterizes the forbidden placements of a shapepolygon with respect to a �xed polygon, i.e. we show F = int(P2 ��Shp1).Lemma 5.2 A member t� Shp of a family F of convex polygons overlaps aconvex polygon P i� t 2 int(P ��Shp).Proof.int(t� Shp) \ int(P ) 6= ; () 9 s 2 int(Shp); 9 p 2 int(P ) : t+ s = p() 9 s 2 int(Shp); 9 p 2 int(P ) : t = p� sL 5.1() t 2 int(P ��Shp)Now we pick up our original problem. Recall that a placement t is for-bidden with respect to a family F2 i� t� Shp1 overlaps every member of thefamily. By the Lemma above this is the case i� t 2 TP22F2 int(P2 ��Shp1).The problem with this characterization is that F2 may have in�nitely manymembers, which makes it hard to compute this intersection. In the sequelwe will show that it suÆces to consider only a �nite number of members ofF2. Every member of F2 can be written as v� Shp2 with v 2 Domain2. Lethv1; : : : ; vni be the vertices of Domain2. We call v1�Shp2; : : : ; vn�Shp2 theextreme members of F2 and denote them by Extr(F2). Using the convexityof the shape polygons and the fact that every point in Domain2 can be writ-ten as a convex combination of its vertices, we will prove the lemma below.It states that t � Shp1 overlaps all members of F2 i� it overlaps all of itsextreme members.33The lemma also holds for families with a non-convex domain polygon, but the shapepolygon has to be convex.



118 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTLemma 5.3 A convex polygon S1 overlaps all members of a family F2 ofconvex polygons i� S1 overlaps all extreme members of F2.Proof. Suppose that S1 overlaps all polygons in Extr (F2), we will showthat it overlaps every member v � Shp2 of F2. (The other direction of thestatement is trivial.)We can �nd extreme members v1 � Shp2; : : : ; vk � Shp2 of F2 such thatv =Pki=1 �ivi with �1; : : : ; �k 2]0; 1] and Pki=1 �i = 1. Since S1 overlaps allextreme instances, there exists si 2 int(S1 \ vi � Shp2) for i = 1; : : : ; k. It iseasy to see that s =Pki=1 �isi is in int(S1), because s is a convex combinationof interior points and S1 is convex. Applying Lemma 5.1, we obtain s 2Lki=1 �i�int(vi�Shp2) = int(Lki=1 �i�(vi�Shp2)) = int((Pki=1 �ivi)�Shp2) =int(v � Shp2). Thus S1 and v � Shp2 overlap.Now we can de�ne the overlapping polygon as a �nite intersection ofMinkowski sums: Overlap(Shp1;F2) := TP22Extr(F2)(P2 � �Shp1). The the-orem below states that the interior points of the overlapping polygon areexactly the forbidden placements of Shp1 with respect to F2.Theorem 5.1 A convex polygon t� Shp1 overlaps all instances of a familyF2 of convex polygons i� t 2 int(Overlap(Shp1;F2)).Proof. t 2 int(Overlap(Shp1;F2))() t 2 int(TP22Extr(F2) P2 ��Shp1)() t 2 TP22Extr(F2) int(P2 ��Shp1)L 5.2() t� Shp1 overlaps all extreme members of F2L 5.3() t� Shp1 overlaps all members of F2As an immediate consequence of the theorem above, we obtain the corol-lary below. We will use it to show that our narrowing algorithm achievesbound-consistency:Corollary 5.1 Let Pl1 = Domain1 n int(Overlap(Shp1;F2)) and let S de-note the set of all solutions of the non-overlapping constraint (cf. page 113).De�ne �x1;y1(S) := f(x1; y1) j 9 (x1; y1; x2; y2) 2 Sg, i.e. �x1;y1(S) is the pro-jection of S onto its �rst two components. Then Pl 1 = �x1;y1(S).



5.2. THE OVERLAPPING POLYGON 119Computation of the overlapping polygonWe discuss how to compute Overlap(Shp1;F2) eÆciently for a convex shapepolygon Shp1 and a family F2 of convex polygons. If v1�Shp2; : : : ; vn�Shp2are the extreme members ofF2, then the overlapping polygon looks as follows:Overlap(Shp1;F2) = n\i=1((vi � Shp2)��Shp1) = n\i=1(vi � (Shp2 ��Shp1| {z }=:S ))The computation proceeds in two steps: First we compute the Minkowskisum S := Shp2 ��Shp1, and then we intersect v1 � S; : : : ; vn � S. Observethat we deal with an intersection of translated copies of the same polygon,which { as we will see { is easier to compute than the intersection of narbitrary polygons.Computing the Minkowski sum of two convex polygonsIn the sequel we will present an algorithm that can compute the Minkowskisum of two convex polygons P = hp1; : : : ; phi and Q = hq1; : : : ; qki in timeO(h+k). Our presentation follows [dBvKOS00, Chapter 13.3], we include ithere for the sake of completeness and to introduce some notions needed in thenext section. Looking at Figure 5.6 we can make an important observation:An extreme point in direction ~d on P �Q is the sum of extremepoints in direction ~d on P and Q, and vice versa.As we can also see in the �gure, there are two cases for the extreme pointson a convex polygon in a direction ~d: Either there is a single point, which isa vertex, or there is a whole edge, which happens if the outer normal of theedge has the same direction as ~d. Thus adding the extreme points of P andQ in direction ~d either yields a vertex or an edge of P �Q. And a vertex ofthe Minkowski sum is obtained i� both P and Q have a single extreme pointin direction ~d.So in order to compute the vertices of P �Q we use a polar sweep algo-rithm. This means the following: We start with ~d pointing in the directionof the positive x-axis and then we rotate it counter-clockwise until we reachthe positive x-axis again.During the sweep we store the vertices of P and Q whichare currently extreme in direction ~d. As we can see on theright-hand side, a vertex is extreme for any direction in theinterior of the cone spanned by the outer normals of its inci-dent edges. And hence, the current extreme vertex changeswhenever we sweep \over" an outer normal. ~n1v ~n2 ~d



120 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTpp+ q PQ
P �Qq ~d

Figure 5.6: Minkowski sum of two convex polygons P and Q.For two vertices u = (ux; uy) and v = (vx; vy) the outernormal vector ~n(u; v) of the directed edge from u to v is(vy � uy; ux � vx). For a vector ~d we de�ne \ ~d to be thecounter-clockwise angle between the positive x-axis and ~d,and we require \ ~d 2 ]0; 2�]. (It may seem odd to exclude 0,but this is convenient for the algorithms we describe below.) ~n(u; v)uv �If we visit the vertices of a convex polygon in counter-clockwise order andstart with the lexicographically largest vertex, then the angles of the cor-responding normals increase monotonously in the interval ]0; 2�]. Algo-rithm 5.1, which computes the sum of two convex polygons is an immediateconsequence of the ideas discussed above.Algorithm 5.1 Minkowski sum P �Q of two convex polygonsProcedure: MinkowskiSum(P = hp1; : : : ; phi, Q = hq1; : : : ; qki)Require: P ,Q are convex, the vertices in both lists are in counter-clockwiseorder with p1 and q1 having lexicographically largest coordinates1: ph+1  p1; qk+1  q12: i 1; j  1 // we swept over the positive x-axis3: repeat4: add pi + qj as vertex of P �Q5: case 1: \~n(pi; pi+1) < \~n(qj; qj+1)6: i i + 1 // we swept over ~n(pi; pi+1)7: case 2: \~n(pi; pi+1) > \~n(qj; qj+1)8: j  j + 1 // we swept over ~n(qj; qj+1)9: case 3: \~n(pi; pi+1) = \~n(qj; qj+1) // parallel edges10: i i + 1; j  j + 1 // we swept over ~n(pi; pi+1) and ~n(qj; qj+1)11: until i = h+ 1 and j = k + 1



5.2. THE OVERLAPPING POLYGON 121We want to point out that the algorithm does not have to compute theangles of the two directions ~d = (dx; dy) and ~e = (ex; ey) explicitly in orderto compare them. In most cases it suÆces to check the sign of exdy � eydx,which is the third component of the cross product ~e � ~d.4 If the sign ispositive (negative) then \ ~d is greater (smaller) than \~e. Only if the sign iszero, which means the vectors point in the same or in opposite directions, wehave to be careful. But then we test whether the two directions point intothe same quadrant of the coordinate system.Assuming that a basic numerical operation takes only constant time, weobtain a running time of O(h + k) for the computation of the Minkowskisum.Example. We give an example illustrating the computation of the Minkowskisum. We consider the two shape polygons from our running example:P = Shp2 = h(7; 2); (6; 5); (0; 3); (0; 0); (5; 0)iQ = �Shp1 = h(2; 2); (�4; 4); (0;�2)iOn the left-hand side of Figure 5.7, the two polygons and the outer normalvectors of their edges are depicted. In the middle we see a sphere that repre-sents all possible two-dimensional directions. Our algorithm (conceptually)sweeps over all these directions in counter-clockwise order (starting with thedirection of the positive x-axis) and looks at vertices of P and Q that areextreme in the current direction. The normal vectors divide the sphere intoseveral sectors of directions. Within each sector the extreme vertices of bothP and Q do not change, but when the sweep bypasses the border of a sectorthe extreme vertex of at least one of the two changes. Thus each sector cor-responds to one vertex of the sum, and vice versa. (This correspondence isalso shown in the middle part of the �gure.) On the right-hand side of the�gure, we see the resulting polygon S = P �Q:S = h(9; 4); (8; 7); (2; 9); (�4; 7); (�4; 4); (0;�2); (5;�2); (7; 0)iComputing the intersectionNow we know how to compute the vertices s1; : : : ; sm of S = Shp2 � �Shp1in linear time. In the sequel we complete the computation of the overlappingpolygon Overlap(Shp1;F2) = Tni=1(vi � S). Since S is convex, it can bewritten as the intersection of half-planes H1; : : : ; Hm. Hj lies to the leftof the oriented line fsj + �(sj+1 � sj) : � 2 Rg (with sm+1 := s1). And4Here we see ~d and ~e as three-dimensional vectors with zero z-component.



122 CHAPTER 5. A NON-OVERLAPPING CONSTRAINT
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s3 s2s8p1; q1p5; q3 p1; q3! s1p2; q1! s2p2; q2! s3p3; q2! s4p4; q2p4; q3! s6 ! s7! s5 ! s8 P �QQP
Figure 5.7: Example illustrating the computation of a Minkowski sum.hence, S = Tmj=1Hj, which implies Overlap(Shp1;F2) = Tmj=1Tni=1(vi�Hj).Suppose we �x some j, then v1�Hj; : : : ; vn�Hj is a sequence of parallel half-planes. Thus there is some half-plane vej �Hj which is contained in all half-planes in the sequence, i.e. Tni=1(vi �Hj) = vej �Hj. We call Rj = vej �Hja relevant half-plane. How do we determine vej? Looking at Figure 5.8, wesee that vej can be found by sliding Hj in direction �~n(sj; sj+1), which isthe inner normal of the edge sjsj+1. The last vertex of the domain polygonDomain2 that we hit during the slide is the desired vertex vej . This meansvej is an extreme vertex in direction �~n(sj; sj+1) = ~n(sj+1; sj).

~n(sj+1; sj)~n(sj+1; sj) v1v2v3 v4
v2 +Hjv1 +Hjv3 +Hjv4 +Hj

Figure 5.8: Finding the relevant half-planes of the intersection.Algorithm 5.2, which computes the relevant half-planes, performs a polarsweep that is very similar to the computation of the Minkowski sum. Wehave to take care of the fact that we are looking at inner normal vectorsof the edges of S, thus we have to start with the lexicographically smallestvertex of S. It is easy to see that the running time is O(n+m), if we assumeagain that a basic number operation takes time O(1).Now we have reduced the intersection of n�m half-planes to an intersection



5.2. THE OVERLAPPING POLYGON 123Algorithm 5.2 Computing the relevant half-planesProcedure: RelevantHalfPlanes(D2 = hv1; : : : ; vni, S = hs1; : : : ; smi)Require: D2,S are convex, the vertices in both lists are in counter-clockwiseorder with v1 and s1 having lexicographically largest coordinates1: vn+1  v1; sm+1  s12: i 13: for all vertices sj of S (in ccw-order starting with the lex. smallest) do4: while \~n(vi; vi+1) < \~n(sj+1; sj) do5: i i+ 16: vej  vi; Rj  vej �Hj7: end forofm relevant half-planes: Overlap(Shp1;F2) = Tmj=1Rj. It is well known thatthis can be computed in timeO(m logm) (cf. [dBvKOS00, Chapter 4.2]). Butwe can take advantage of the fact that the half-planesR1; : : : ; Rm are ordered,because the angles of their outer normal vectors (which coincide with normalvectors of H1; : : : ; Hm) increase (strictly) monotonously. We will computethe intersection iteratively, i.e. for k = 2; : : : ; m we consider Ik = Tkj=1Rjand determine its boundary @Ik (if int(Ik) 6= ;). The boundary of the half-plane Rj = vej + Hj is the line Lj = fvej + sj + �(sj+1 � sj) j� 2 Rg.Each half-plane Rj can contribute at most one boundary element (i.e. a linesegment or a ray) to the boundary of the intersection, and this contributionlies on Lj.We represent @Ik by a list B = [B1; : : : ; Bh] of boundary elements. Letus de�ne the normal vector ~n(B) of a boundary element B to be the (outer)normal vector of the half-plane from which it originates. We will maintainthe invariant that \~n(B1) < : : : < \~n(Bh) and that successive boundaryelements share a common endpoint. Moreover, if Ik is unbounded, then B1and Bh are (non-intersecting) rays and B2; : : : ; Bl�1 are line segments; andif Ik is bounded, then it is a polygon and the elements in B are its edges.The boundary of I2 consists of two rays tailed at the intersection pointof L1 and L2. Suppose that we want to compute the boundary of Ik andthat the boundary of Ik�1 is represented by B = [B1; : : : ; Bh]. In order todetermine the position of a boundary element B in B relative to the half-plane Rk, we orient the line Lk (i.e. @Rk) such that int(Rk) lies to the leftand the complement of Rk lies to the right. We direct Lk from p = vek + sktowards q = vek + sk+1. The orientation of a point r with respect to Lk is



124 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTcomputed as follows:sgn ������ px py 1qx qy 1rx ry 1 ������ = 8<: +1 : r lies to the left0 : r lies on Lk�1 : r lies to the rightIt suÆces to look at the relative position of Lk and B (cf. Figure 5.9):1. B (except for one endpoint possibly) lies to the right of Lk:Then B \ Rk is either empty, or it contains one endpoint of B that isalso an endpoint of another boundary element B0 in B. Thus we candiscard B. (Observe that if B0 also lies to the right of Lk, then allboundary elements do and Ik is just a single point, which means thatits interior is empty.)2. B (except for one endpoint possibly) lies to the left of Lk:Then B � Rk, and hence B is contained in @Ik, and we keep it un-changed.3. B lies on Lk:Since ~n(B) and ~n(Rk) cannot point in the same direction, they mustbe anti-parallel, thus Ik = B, i.e. int(Ik) is empty.4. B and Lk intersect properly, i.e. in a single point, which is not anendpoint of B: Then we replace B with the part of B to the left of Lk.
Lk LkLk 311 Ik�1Rk 1441 Ik�1 Rk2 24 41Ik�1 Rk2

Figure 5.9: The possible cases when computing the boundary of Ik�1 \ Rk.(Next to each boundary element we indicate the case that applies.)In order to update B we do not have to test all its elements against Lk,but we can proceed as follows: As long as the �rst or the last element of Blies to the right of Lk, we discard it. If B becomes empty or we encounter anelement lying on Lk, we report that the interior of the overlapping polygonis empty and terminate. Let [Bl; : : : ; Br] be the sequence of the remainingelements. For both Bl and Br we have that at least one endpoint lies to the



5.2. THE OVERLAPPING POLYGON 125left of Lk. Observing that the angles of the normals of the elements increasemonotonously and that ~n(Rk) is contained in the cone spanned by ~n(Br) and~n(Bl), we can conclude that Bl+1; : : : ; Br�1 lie to the left of Lk. So we donot have to test them. For Bl and Br we distinguish three cases:� Both Bl and Br lie to the left of Lk, which can only happen if Ik�1 isbounded, then we are done.� If Bl and Br are distinct and Lk intersects both of them properly in pland pr, we update Bl and Br. Moreover, we append to B the segmentprpl, which is the contribution of Rk to the boundary of Ik.� If Ik is unbounded, we may have only one proper intersection p. Con-sidering the arrangements of the normal vectors, it is easy to see thatLk must intersect Br in that case. We update Br, and append to B aray that starts in p and has the same direction as Lk.What remains to show is that the algorithm runs in time O(m). With aconstant number of arithmetic operations \+;�; �; =" we can determine therelative position of a boundary element and an oriented line, and we cancompute the intersection of an element and a line. The algorithm makesm � 1 iterations. In every iteration it tests and discards some elements, ittests and possibly modi�es at most two elements, which are not discarded,and at most one new element is added. So except for the time spent forremoving elements each iteration takes constant time. As there can be atmost m removals in total, the time bound of O(m) follows.Example. We take up our running example again and discuss the com-putation of the overlapping polygon Overlap(Shp1;F2). The di�erent stepsare illustrated in Figure 5.10. The boundary of I2 consists of two rays thatare tailed in the same point, the second ray is intersected by L3 (see part1). Thus the boundary of I3 is obtained by updating the second boundaryelement and adding a ray that corresponds to the contribution of L3. Thecomputation for I4 proceeds in analogous way, because L4 properly intersectsthe last element of @I3 (see part 2).In part 3, we see that the last element of the boundary of I4 lies to right ofL5, and hence it is discarded. Its predecessor element intersects L5, so thatit must be updated. Moreover, the �rst boundary element, which is a ray,also intersects L5, which implies that I5 is bounded (cf. part 4).L6 intersects the �rst and the last element of @I5, and hence it contributes aline segment to the boundary of I6 (see part 5). The same can be said aboutL7 and the boundary of I6. The last part of the �gure shows I7 and L8. Ascan be veri�ed by an easy computation, I7 lies (slightly) to the left of L8.



126 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTTherefore I8 = I7 and no boundary element needs to be updated.So we obtain the following overlapping polygon:Overlap(Shp1;F2) = h(7; 6); (4; 7); (1:54; 6:18); (4:3; 2); (6; 2); (7:75; 3:75)i
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L7I6 B1B3 B3B1B4 B4 B5Figure 5.10: Computation of Overlap(Shp1;F2).
5.3 Narrowing the bounds of the origin vari-ablesIn this section we describe how to narrow the bounds of the origin variablesof F1. In fact, we focus on the lower endpoint of X1, but the proceduresfor the upper endpoint and for the endpoints of Y1 are similar. So far wehave determined Domain1, it contains all placements of the origin of Shp1which are possible in principle, i.e. without regarding F2. Moreover, wehave computed Overlap(Shp1;F2), whose interior consists of all placementsthat are forbidden because Shp1 would overlap every member of F2. ThusPl1 = Domain1 n int(Overlap(Shp1;F2)) contains exactly the placements ofShp1 which ful�l the constraint. In other words, Pl1 is the projection of thesolutions of the constraint on the �rst two components (see Corollary 5.1).Our task is to check that Pl1 is non-empty, and if so, we narrow the lowerendpoint of the domain of X1, i.e. we determine xmin = minfx j (x; y) 2 Pl 1g.(Observe that we do not want to compute all the vertices of Pl1.)



5.3. NARROWING THE BOUNDS OF THE ORIGIN VARIABLES 127We use a plane sweep algorithm: Conceptually we move a vertical sweeplinecontinuously from X1 to X1 until it hits a point p in Pl1 for the �rst time.(As p is a leftmost admissible placement, xmin is equal to the x-coordinate ofp.) We denote the sweepline at position x by Lx. During the sweep we main-tain the edges of Domain1 and Overlap(Shp1;F2) that intersect the currentsweepline Lx. Let us assume �rst that there are no vertical edges, we willlater discuss how to handle them. Since each of the two polygons is convex,Lx intersects each boundary in at most two points. Thus we can representthe status of the sweep with four edge pointers: D lower , D upper , O lower ,O upper . We suppose that every (non-vertical) edge is half-open: its left ver-tex belongs to it, but the right one does not (it belongs to the other incidentedge unless the right vertex is a rightmost vertex of the polygon).
Overlap(Shp1;F2) D upper

O lower
O upper

x0 x1 x2D lower
Domain1Lx0

Figure 5.11: Status after moving the sweepline past x0 (edge change event).(The next two events x1 and x2 are also indicated, where the latter is anintersection event.)The initialization of our algorithm looks as follows: We determine xstart ,which is the minimum x-coordinate of a vertex of Domain1 (and may belarger than X1), and the two (non-vertical) edges D lower and D upper ofDomain1 that intersect Lxstart . Then we compute the edges O lower andO upper of the overlapping polygon intersecting Lxstart . If they do not existor the overlapping polygon has a vertical edge at xstart , then Lxstart does notintersect the interior of Overlap(Shp1;F2). Hence, we can stop immediatelyand report that xmin = xstart . Otherwise, we consider the intersections ofLxstart with the four edges and compare their y-coordinates: We can terminatethe sweep if D lower jxstart � O lower jxstart or D upper jxstart � O upper jxstart . Ifthis is not the case, then all points of Domain1 with x-coordinate xstart are



128 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTcontained in the interior of the overlapping polygon.So we have to start the sweep in order to �nd the �rst position wherethe domain polygon leaves the interior of the overlapping polygon. This canonly be a position where the two boundaries intersect. Thus our algorithmconsiders two types of events:� intersection event:This event occurs when the sweepline Lx hits an intersection betweenD lower and O lower or between D upper and O upper . (Observe thatwe do not have to check for an intersection between a lower and anupper edge.) When this event occurs, we stop immediately and reportxmin = x.� edge change event:Whenever we sweep over a common vertex of two edges, we have toupdate the corresponding edge pointer: We let it point to the otherincident edge of the vertex. Then we check whether this edge lies tothe right of the sweepline. If not, we have reached the maximum x-coordinate of the polygon and we can terminate the sweep (see below).With the four edge pointers we are able to determine easily the position x ofthe next event and to handle all the events that occur there. As long as nointersection occurs, we go on with the sweep until we reach a rightmost vertexof one of the two polygons. Let xend denote the current position of the sweepline when this happens. First we consider the case that Overlap(Shp1;F2)ends at xend . This means that O lower and O upper have a common vertexlying on Lxend or a vertical edge connecting O lower and O upper lies on theline. So in any case there is no interior point of the overlapping polygon onLxend . As Domain1 does not end before xend , we know that Pl1 \ Lxend 6= ;and we report xmin = xend . The other case is that the domain polygonends strictly before the overlapping polygon, which implies that Domain1 iscontained in the interior of the overlapping polygon. Therefore, Pl1 is emptyand we report failure.This suggests to handle the events at position x in the following order:�rst intersection events, then edge changes of the overlapping polygon, and�nally edge changes of the domain polygon. So when we recognize the endof the domain polygon, we know that the overlapping polygon ends strictlylater without checking this explicitly. Moreover, we want to point out thatdue to convexity a vertical edge is always extreme to the left or to the right.So we do not have to consider vertical edges after the initialization phase.We want to analyse the running time of this sweepline algorithm. In theinitialization phase we scan the vertex list of Domain1 for the leftmost vertex



5.4. SUMMARY AND TOTAL RUNNING TIME 129(or vertices if there is a parallel edge on the left-hand side), which allows usto set up D lower and D upper . This can be done in time O(jDomain1j). Theinitialization of O lower and O upper requires (in the worst case) to computethe intersection of Lxstart with every edge of the overlapping polygon. Thisrequires O(jOverlap(Shp1;F2)j) time. For the actual sweep we observe thathandling an event and determining the next one can be done in constanttime. Moreover, each vertex of either polygon gives rise to at most one edgechange event; and there can be only one intersection event in total. Thus theoverall running time of the sweep is O(jDomain1j+ jOverlap(Shp1;F2)j).Example. We return to our running example and discuss how the sweepalgorithm computes the narrowed lower endpoint for the variable X1. Theleftmost vertex of Domain1 is (5; 4), so we start the sweep at position xstart =5. And the edges D lower and D upper are initialized to be the two edgesincident to that vertex (see Figure 5.12). Then we scan the edge list ofOverlap(Shp1;F2), and �nd out that Lxstart intersects two of its edges, whichprovides us initial values for O lower and O upper . Moreover, the vertex(5; 4) is nested between the intersections of Lxstart with O lower and O upper ,and it does not lie on a vertical edge of the overlapping polygon. Thus thevertex is contained in int(Overlap(Shp1;F2)).So we have to move the sweepline in order to determine xmin . The �rstevent occurs at x1 = 6. It is an edge change event, we have to updateO lower . The next event occurs because O lower and D lower intersect inthe point p = (6:5; 2:5) (see position x2 in the Figure). Observe that p lieson the boundary of both polygons, and hence it is not an interior point ofthe overlapping polygon. Thus p is an admissible placement for the origin ofShp1, and we can report xmin = 6:5.On the right-hand side of Figure 5.12 we show that the placement p forthe origin of Shp1 is indeed admissible, i.e. there is a placement q 2 Domain2such that q � Shp2 and p� Shp1 do not overlap. (In the example they justtouch.)5.4 Summary and total running timeIn this section we briey summarize the steps of the full propagation al-gorithm in order to analyse its total running time. In order to simplifynotation let ni = jShpij and mi = jOrgBnd ij. We will show now that thedomain endpoints of X1 and Y1 can be narrowed to bound consistency intime O(n1+ n2 +m1 +m2). By symmetry, the same result holds for X2 andY2. We now consider the di�erent steps of the algorithm:



130 CHAPTER 5. A NON-OVERLAPPING CONSTRAINT
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Shp2 Shp1Domain1 2468 2 4 6 8
Overlap(Shp1;F2)

8x1xstart x2 x2Figure 5.12: The left-hand side shows the events in the sweep that computesxmin ; and the right-hand side demonstrates that an admissible placement isobtained at xmin = x2.� Computation of Domaini:Since OrgBnd i is a convex polygon, it can be clipped against a rectanglein time mi (see [SH74]). We observe that there can be at most twointersections between OrigBndi and an edge of the clipping rectangle.It is easy to see that jDomainij � mi + 4.� Computation of Overlap(Shp1;F2):{ Minkowski sum S = Shp2 ��Shp1:As we have seen, S can be computed in time O(n1 + n2), and wehave jSj � n1 + n2.{ Extremal vertices of Domain2 wrt. the edges of S:These vertices (and hence the relevant half-planes for the overlap-ping polygon) can be determined in time O(n1 + n2 +m2){ Intersection of the relevant half-planes:The computation takes time O(n1 + n2).So the total time needed to calculate the overlapping polygon is O(n1+n2 +m2), and this polygon has at most n1 + n2 vertices.� Determining the narrowed endpoints (by sweeping over Domain1 nint(Overlap(Shp1;F2)):We make four sweeps, each of them has a worst case running time ofO(m1 + n1 + n2).Putting everything together yields an overall running time for the propaga-tion algorithm of O(n1 + n2 +m1 +m2).



5.5. EXTENSIONS 1315.5 ExtensionsNon-convex polygonsWe begin with the case that both Shp1 and Shp2 are still convex, but at leastone origin boundary polygon is not. As before we start with clipping the ori-gin boundary, i.e. we compute Domaini = OrgBnd i \ Rect(X i; Y i; Xi; Yi).Since OrgBnd i is not convex, this is not so simple anymore, but it canstill be done in time O(mi logmi) (see [dBvKOS00, Chapter 2.4]), wheremi = jOrgBnd ij. Observe that the result of clipping is not necessarily singlepolygon, but may consist of several polygonal chains (see Figure 5.13). Asevery edge of OrgBnd i can intersect the clipping rectangle at most twice, wehave O(mi) vertices after clipping.
(Xi; Y i) DomainiClipRect (Xi; Yi)

Figure 5.13: Clipping a non-convex polygon against a rectangle.It will turn out that for computing Overlap(Shp1;F2) it suÆces to adaptthe de�nition of the extreme members of a family for non-convex domainpolygons: We consider the convex hull of Domain2 and de�ne Extr(F2) tobe the members which are obtained by placing Shp2 into the vertices ofCH(Domain2). The crucial observation is that with this de�nition Lemma 5.3carries over literally. The proof is also the same too, because every point inDomain2 is a convex combination of vertices of CH(Domain2). So we deter-mine CH(Domain2) in time O(m2 logm2) (cf. [dBvKOS00, Chapter 1.1]), itis a polygon with O(m2) vertices. After that we can compute the overlappingpolygon in the same way as described above.What remains is the �nal step. We discuss how to examine the set ofadmissible placements for Shp1 with a sweepline algorithm. Recall that Pl 1 =Domain1 n Overlap(Shp1;F2). The idea is basically the same as before, butthe problem is now that a sweepline Lx may intersect more than two edgesof Domain1, because this polygon is in general not convex. So we cannotrepresent the status of the sweepline with four edge pointers any longer, butwe have to use a more complicated data structure: We use a balanced binarytree that stores all edges that currently intersect Lx ordered according to the



132 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTy-coordinate of the intersection point. Since there are O(m1) such edges, wecan perform an update on the tree in time O(logm1).Moreover, �nding the next event is not as easy as before. The edge changeevents that are caused by the edges of the overlapping polygon can be foundas before, because this polygon is still convex. In order to keep track of theedge change events that arise from edges of Domain1, we sort the verticesof this polygon lexicographically. We will not go into detail how intersectionevents are determined, this is described for example in [dBvKOS00, Chapter2.1]. What is important for us is that future intersection events are generatedon-the-y during the sweep. But since we can stop the sweep when thesweepline hits an intersection for the �rst time, we only have to keep thenearest intersection event even if several such events are discovered duringthe sweep. As jOverlap(Shp1;F2)j = n1+n2, the whole sweep can be done intime O((m1 + n1 + n2) logm1). And hence, the overall running time for thepropagation algorithm isO((m1+m2+n1+n2) log(m1+m2)). So we only haveto pay a logarithmic factor if the origin boundary polygons are not convex.Moreover, it is clear that for this case we also achieve bound-consistency.The situation becomes more diÆcult when we consider non-convex shapepolygons. We can observe that many of our statements do not hold any morein that case. What we can do is the following: We divide each shape poly-gon into convex polygons (for example by triangulating them), i.e. Shpi =Skij=1 Shpij. For each pair (Shp1j; Shp2j0) we have a non-overlapping con-straint. Moreover, we need constraints stating that for each i the origins ofShpi1, Shpi2, : : : are equal. We want to point out that this approach maylead to poor propagation and bound-consistency cannot be guaranteed.A note on the variable domainsIn the discussion above we have assumed that the domains of the variables areclosed intervals of real numbers. Moreover, we have supposed that our algo-rithms can perform the basic arithmetic operations \+;�; �; =" and compar-isons on these numbers in constant time. If the hardware-supported oatingpoint numbers are used for the computations, then these time assumptionshold. Clearly, oating point numbers cannot represent all reals and due torounding errors the computations are not exact. Thus the algorithm mayprune the variable domains too much, i.e. it can remove solutions of theconstraint.The accuracy problem can be solved by using rational numbers: Eachnumber is represented by a numerator and a denominator, which are integersof arbitrary length. Then we can perform exact computations (as long as



5.5. EXTENSIONS 133all results �t into memory), but a single operation cannot be performed inconstant time. The running time of an operation depends on the size ofits arguments, i.e. the number of bits that are required to represent thearguments. Observe that applying an arithmetic operation to two rationalnumbers of size s1 and s2 respectively may yield a result of size �(s1 + s2).And hence, rational numbers can slow down the computation considerably.A constraint programming system might o�er the user two implemen-tations of the propagation algorithm, one with oating point and one withrational numbers. Thus the user can choose between speed and accuracy.(Holzbaur has chosen this approach for his clp(Q,R) library [Hol95], whichprovides { among other things { support for linear equations over real andrational valued variables in Prolog.)Finally, we address some issues related to �nite integer domains, i.e. eachdomain is a �nite set of integers. A possible way to deal with these domains isto treat them as if they were continuous, which means every discrete domainD = fd1; : : : ; dkg is replaced by the interval D0 = [minD;maxD]. Then weapply our propagation algorithm to the interval domains, which may narrowD0 to the interval D00 = [a; b]. We can prune every value d in the originalD that violates dae � d � bbc. This is the basic approach suggested in[BGT01]. Clearly, no solution is lost this way, but no consistency can beguaranteed.We discuss how to achieve better pruning. Assume that each domainD is a range of integers, i.e. D = [a::b] = fa; a + 1; : : : ; bg with a; b 2 Z.Observe that Domain = (Dom(X)�Dom(Y ))\OrgBnd is not a polygon asin the continuous case, but a �nite set of points. In order to compute theoverlapping polygon we look for the extreme points in Domain.We give an example5. Assume OrgBnd = h(0; 0); (19; 0); (19; 12)i,Dom(X) =[1::20] and Dom(Y ) = [0::15]. The example is depicted on the left-hand sideof Figure 5.14. Domain consists of all points on the integer grid that lie inOrgBnd to the right of the line x = 1. The extreme points of Domain aremarked by circles: (19; 0); (19; 12); (8; 5); (5; 3); (2; 1); (1; 0). (Observe that(11; 7) does lie in OrgBnd because it lies above the line �12x + 19y = 0.)The extreme points in Domain are the vertices of the so-called integer hull(see [Har99]) of S = OrgBnd \f(x; y) 2 R2 j x � 1g, which is the convex hullof all the integer points in S.Assume that OrgBnd has m vertices with rational coordinates and that theabsolute value of the numerator and the denominator of each coordinate isbounded by Amax . Then the extreme vertices of Domain can be computedin time O(m logAmax ) (cf. [Har99]).5This example stems from Figure 4.1 in [Har99].



134 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTSuppose now we have computed the overlapping polygon. Observe thatits vertices may have rational coordinates even if the coordinates of all shapepolygons are integers. The next critical step in the pruning algorithm is theplane sweep which examines Pl1 = Domain1nOverlap(Shp1;F2) and narrowsthe variable domains. Suppose the situation is as shown in Figure 5.14 andwe want to prune the lower endpoint of the domain of X1. Observe that notall points in Pl1 are admissible, only those points which lie on the integergrid are allowed. In the example in the �gure, the leftmost point in Pl1 isp = (2:75; 4:25), but every leftmost point with integer coordinates has 4 asits x-coordinate. Clearly, computing the leftmost (rightmost) point in Pl1and rounding up (down) its x-coordinate yields a narrowing algorithm forX1. But { as the example shows { this algorithm does not achieve bound-consistency.In [BGT01], the authors suggest a modi�cation of the sweep algorithmwhich can increase the pruning power in some cases. The idea is to generatea check event for every integer xi in Dom(X1), which makes the sweep pauseat position xi. Thus it is possible to test whether Pl 1 contains a point (x; y)with x = xi. But one has to pay a price for the better pruning: The totalrunning time increases by a linear term in the size of the variable domains.(An asymptotically better running time can be achieved by using results frominteger linear programming in two dimensions [EL03].)
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Overlap Domain1
x � 1 OrgBndFigure 5.14: Examples depicting problems with integer domains.



5.5. EXTENSIONS 135More than two objectsSuppose we have a non-overlapping constraint on n objects, whose placementis in general not �xed. So with the ith object we associate a family Fi of con-vex polygons, which is described by a shape polygon Shpi, origin variablesXi,Yi, and an origin boundary polygon OrgBnd i. Suppose we want to prune theorigin variables of the �rst object. A straight-forward extension of the algo-rithm for two objects works as follows: We compute O1;i = Overlap(Shp1;Fi)for i = 2; : : : ; n. Then we examine Pl1 = Domain1 n (Ski=2 int(O1;i)) witha sweepline algorithm. Observe that the union of the overlapping polygonsdoes not have to be computed explicitly, this can be done on-the-y duringthe sweep. Of course, this makes the sweep more complicated as before, andone has to pay a logarithmic factor in running time.Let us compare this global approach with a setting where we have n� 1independent binary non-overlapping constraints between the �rst object andthe remaining objects. In general, we achieve a better running time becausewe perform only one sweep instead of n � 1 sweeps. Sometimes we alsoachieve better pruning, as the following example shows: We want to placethree objects, the shape of each object is a 3� 3 square (with its lower leftcorner at (0; 0)). The placement of the �rst object is not �xed, supposeDom(X1) = Dom(Y1) = [0; 5] and OrgBnd1 = [0; 5] � [0; 5]. The other twoobjects are �xed with (X2; Y2) = (0; 0) and (X3; Y3) = (0; 3). The situationis depicted on the left-hand side of Figure 5.15.Let us assume �rst that we have three binary non-overlapping constraints,one for each pair of objects. Since the constraint between the �rst and thesecond object is not aware of the third object, it will \think" that the �rstobject could be placed on top of the second one. Thus it will not narrow thedomain of X1. A similar argument shows that the constraint between the�rst and the third object also leaves the domain of X1 unchanged.However, it is clear that if we want to place the �rst object such that there isno overlapping, then X1 must be at least 3. Consider now the case that thereis only one global non-overlapping constraint between all the three objects.Suppose that the pruning algorithm overlays the overlapping polygons O1;2and O1;3 (as described above). Then it detects that the �rst object cannotbe placed at a point with x-coordinate less than 3 (cf. right-hand side ofFigure 5.15).In the example above, the approach worked well. But if we change theexample slightly, we obtain an instance with three objects, where our al-gorithm does not detect failure, although there is no solution. In our nextexample each object has identical parameters: For i = 1; 2; 3 Shpi is the 3�3square (with lower left corner at (0; 0)), Dom(Xi) = [1; 5], Dom(Yi) = f2g
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O1;3Domain1

Figure 5.15: An example where bound-consistency is achieved for a ternarynon-overlapping constraint.and OrgBnd i = [0; 5] � [0; 5]. Looking at Figure 5.16 it is easy to see thata ternary non-overlapping constraint on the three objects has no solution.Since all three objects have identical parameters, all overlapping polygonsare identical, too. The common overlapping polygon O is also depicted inthe �gure. As all x-coordinates of the points in O are between 2 and 4, wesee that the algorithm does not narrow the domains of X-variables and italso does not detect failure.In general we can make the following observation: If we have n identicalobjects, then the algorithm sketched above does not achieve more pruningthan the algorithm for the binary case, because all overlapping polygons willbe identical.
12354 1 2 3 4 5Overlap

Figure 5.16: Two squares can be placed without overlapping, but there is noroom for a third one.The last example makes our algorithm look bad, but we will show be-low that there is no eÆcient algorithm which can decide solvability of non-overlapping constraints of arbitrary arity (unless P=NP). (For this we restrictthe domain endpoints of the variables and the coordinates of the vertices tobe rational numbers.) We show that deciding solvability is NP-complete inthe strong sense (cf. [GJ79, Chapter 4.2]). This means that the problem iseven hard, when we only consider instances with \small" numbers as denom-inators and numerators.



5.5. EXTENSIONS 137Theorem 5.2 Deciding satis�ability for non-overlapping constraints (of ar-bitrary arity) is NP-complete in the strong sense.Proof. It is easy to see that the problem is in NP, because we can ver-ify in polynomial time that a given variable assignment satis�es the con-straint. To prove NP-completeness in the strong sense, we will give a (pseudo-polynomial) reduction from a scheduling problem called \Sequencing withrelease times and deadlines"6 (see [GJ79, problem SS1, pg. 236]), which isknown to be NP-complete in the strong sense:Sequencing with release times and deadlinesAn instance of the problem consists of a set T of tasks and, for eachtask t 2 T , a length l(t) 2 Z+, a release time r(t) 2 Z+0 , and a deadlined(t) 2 Z+. The question is, if there is a one-processor schedule for Tthat satis�es all release time constraints and meets all the deadlines,i.e. an injective function � : T 7! Z+0 , with �(t) > �(t0) implying �(t) ��(t0) + l(t0), such that, for all t 2 T , �(t) � r(t) and �(t) + l(t) � d(t).Let T = ft1; : : : ; tng be a set of tasks. For each task ti we introduce arectangular object. The shape of this object is the axis-parallel rectanglewith width l(ti) and height 1, i.e. Shpi = [0; l(ti)] � [0; 1]. The domains ofthe origin variables are de�ned as follows: Dom(Xi) = [r(ti); d(ti)� l(ti)] andDom(Yi) = f0g. The origin boundary is chosen such that it does not imposefurther restrictions: OrgBnd i = Dom(Xi) � [0; 1]. Clearly, the X-variablescorrespond to the starting times of the tasks. It easy to see that a schedule� for the instance of the sequencing problem corresponds to a solution of theconstraint, we simply assign to Xi the value �(ti) for i = 1; : : : ; n. On theother hand a solution to the constraint allows us to construct a schedule, weset �(ti) = bXic. The other properties of a pseudo-polynomial reduction (asde�ned at [GJ79, Section 4.2.2]) are also ful�lled.Three-dimensional convex polytopesWe extend our result to two convex polytopes in the three-dimensional spaceR3 . Thus each object that we place is described by a convex shape polytope,a convex origin boundary polytope and the origin of the shape polytope isdetermined by three variablesX, Y and Z. It is easy to see that all argumentsfrom above also hold in higher dimensions than two. And hence, the outlineof the algorithm to narrow the bounds of the variables stays the same as6This problem can be viewed as a one-dimensional non-overlapping constraint.



138 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTin Section 5.1. However, the computations involved in the di�erent stepsbecome more demanding as the dimension increases.Now we examine the di�erent steps of the algorithm. As before let ni =jShpij and mi = jOrgBnd ij.� Find combinatorial representations of Shp1; Shp2;OrgBnd1;OrgBnd2:Computing a combinatorial representation from a pure vertex repre-sentation of a polytope P can be done in time O(jP j log jP j) (see Sec-tion 2.3).� Determine Domain1 and Domain2:We compute the intersection of OrgBnd i with the three-dimensionalbox Dom(Xi)�Dom(Yi)�Dom(Zi). This takes time O(mi logmi) (see[HMMN84]). There is also a linear time algorithm ([Cha92]), but it israther complicated. Observe that jDomainij = O(mi).� Compute the overlapping polygon Overlap(Shp1;F2):As before we start by computing the Minkowski sum S = Shp2��Shp1.We use the algorithm by Guibas and Seidel [GS87] with running timeis O(n1 + n2 + jSj). We will not give the details of their algorithm butwe sketch some basic ideas. In the two-dimensional case we map eachpolygon onto the unit circle (cf. Figure 5.7) such that every vertexcorresponds to an arc on the circle (which consists of all directionswhere the vertex is extreme) and every edge corresponds to a pointon the circle (the outer normal vector of unit length). Computing theMinkowski sum basically amounts to overlaying the mappings of thetwo involved polygons. In the three-dimensional case each polytope ismapped to the unit sphere (Guibas and Seidel call this a direction map):every vertex corresponds to a surface patch (consisting of the directionswhere it is extreme), every edge is mapped to a great arc of the circle,and every facet corresponds to a point on the sphere (the outer normalvector of unit length). In order to determine the Minkowski sum, onecan compute the overlay of the two maps.The problem is that S may be very complex: As Guibas and Seidelpoint out, jSj can vary from �(n1 + n2) to �(n1 � n2).After that we determine for each facet f of S a vertex of Domain2 thatis extreme in the direction of the inner normal of f (denoted by ~n in(f)).This means we want to maximize ~n in(f)Tp subject to p 2 Domain2.Observing that Domain2 can be written as the intersection of half-spaces where each half-space corresponds to a facet, we see that we haveto solve a linear program for each facet f . However, the constraints of



5.5. EXTENSIONS 139the program are always the same, only the objective function varies.Therefore we can use an algorithm by Guibas et al. [GSC87] that �ndsthe extreme vertices for all facets of S in timeO((m2+jSj) logm2). Thisalgorithm builds the direction map of Domain2 (see again Figure 5.17)and constructs a data structure for locating points in this map. Thissolves the problem because a vertex of Domain2 is extreme for all points(i.e. directions) in its corresponding surface patch.Finally, we compute Overlap(Shp1;F2) as the intersection of jSj half-spaces. (Each half-space corresponds to a facet translated by an ex-treme vertex of Domain2, as in the two-dimensional case). This com-putation can be done in time O(jSj log jSj) (see [GO97, Chapter 19]or [PM79]). Thus the total time needed for the computation of theoverlapping polygon is O(n1+n2+(jSj+m2) log(jSj+m2)). Moreover,we observe that jOverlap(Shp1;F2)j = O(jSj).� Examine Pl1 = Domain1 n int(Overlap(Shp1;F2)):In the two-dimensional case we used an algorithm that moves a sweep-line across the plane in order to examine Pl1. Hertel et al. [HMMN84]show that in the three-dimensional case boolean operations on convexpolytopes can be computed by moving a sweepplane through the space.Their algorithm is quite elaborated and not just a straight-forwardgeneralization of the two-dimensional sweep, so we omit the detailshere. They achieved a running time of O(t log t) where t is the totalnumber of vertices of both polygons. So in our case t = O(m1 + jSj).In order to determine the lower and upper endpoints of the variabledomains we simply scan all vertices of Pl 1.
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Figure 5.17: Mapping a 3D polytope onto the unit sphere (reproduced from[GSC87]).To summarize, we obtain an algorithm for the three-dimensional case



140 CHAPTER 5. A NON-OVERLAPPING CONSTRAINTwhich achieves bound-consistency. The overall running time is O(s log s)with s = n1+n2+m1+m2+ jSj. And hence, the total running time heavilydepends on the complexity of S = Shp2 � �Shp1. This can be as small as�(n1 + n2) and then we pay only a logarithmic factor compared to the two-dimensional case. But it can also be �(n1 � n2), which makes the algorithmimpractical for large values of n1 and n2, because it computes S completely.One might ask what happens if we consider d-dimensional objects withd > 3. The lemmas and theorems that we discussed in this chapter hold inhigher dimensions. So one might try to apply basically the same algorithm asbefore. But we do not think that this is practical. One can show for examplethat a d-dimensional polytope with k vertices may have up to �(kbd=2c) facets(see [GO97, Chapter 19]). Therefore, we do not pursue this issue any further.5.6 Comparison with related workIn constraint programming non-overlapping constraints have been studiedfor a long time. Lahrichi and Gondran [LG84] introduced the notion ofcompulsory part for a family (of rectangles), which is the intersection of allmembers of that family. The overlapping polygon that has been de�ned inour work can be seen as a generalization. However, it is easy to see thatOverlap(Shp1;F2) may be non-empty although the compulsory part of F2 isempty. And hence, an approach that is based on compulsory parts does notyield a bound-consistency algorithm.Beldiceanu and Contejean [BC94] provided a global constraint called di�n.It allows to state a non-overlapping constraint between several d-dimensionalaxis-parallel boxes.To the best of our knowledge, all shapes that have been considered so farare axis-parallel rectangles (and axis-parallel boxes in higher dimensions).More complex shapes are approximated by sets of rectangles (cf. [CF94]),the origin of every rectangle is linked explicitly to the origin of its shape, andthere is a non-overlapping constraint for any pair of rectangles that belong todi�erent shapes. This approach su�ers from poor propagation. Our approachallows for the �rst time to model complex convex shapes directly. But non-convex shapes still have to be decomposed into convex shapes.



Chapter 6Dominance graphsThe second part of this thesis deals with a problem from the �eld of com-putational linguistics. Roughly speaking, the problem is to assemble somegiven tree fragments into a tree T such that some given constraints are sat-is�ed. These constraints have the form \node u should dominate node v",where dominate means that u is a (not necessarily proper) ancestor of v.The problem is given to us as a so-called dominance graph D, which will beformally de�ned later. Such a graph represents both the tree fragments andthe dominance requirements for T .Dominance based tree descriptions have been investigated in di�erent ar-eas for a long time. They were used in automata theory in the sixties [TW67],rediscovered in computational linguistics in the early eighties [MHF83], andinvestigated from a logical point of view in the early nineties [BRVS95]. Sincethen, there have been several applications in computational linguistics: Theyhave been used for grammar formalisms [VS92, RVSW95, DT99, Per00], innatural language semantics [Mus95, ENRX98], and for discourse analysis[GW98].The details of the tree descriptions vary over the di�erent applications,but there is a framework called dominance constraints [KNT01], which isgeneral enough to be applied to a variety of problems. However, Koller etal. [KNT01] showed that deciding solvability of dominance constraints is anNP-complete problem. From a practical point of view, there were doubtswhether these constraints are a useful tool. In fact, the solvers that existedat that time were not eÆcient enough.The doubts were removed by the work of Althaus et al. [ADK+01, ADK+03].They identify the subclass of normal dominance constraints. This subclassis suÆciently large for many practical applications and solvability can bedecided in polynomial time. The algorithms developed by Althaus et al. ac-tually work on dominance graphs. They describe a back-and-forth trans-141



142 CHAPTER 6. DOMINANCE GRAPHSlation between dominance graphs and normal dominance constraints, whichmakes their graph algorithms applicable to the logical language of dominanceconstraints.The work in the following chapters is based on the papers [ADK+01,ADK+03], which are joint work with Ernst Althaus, Denys Duchier, Alexan-der Koller, Kurt Mehlhorn and Joachim Niehren. But we also present someresults which improve upon this work and have not been published yet. Inparticular, the solvability test is by a factor of n faster and the enumerationalgorithm outperforms our old algorithm by a factor of n2, where n is thenumber of nodes of the graph.The second part of the thesis is organized as follows: In the remain-der of this chapter we discuss an example from computational linguistics tomotivate the subsequent work and we introduce some basic de�nitions. InChapter 7 we develop a linear time algorithm which can check if a givendominance graph D has a solved form. We show in Chapter 8 how to enu-merate all N minimal solved forms of D in time O(m + N � nm), where nis the number of nodes and m is the number of edges of D. Finally, wediscuss related work in Chapter 9. In particular, we describe the relationshipbetween dominance graphs and normal dominance constraints.6.1 MotivationAs an example for an application of dominance graphs in computational lin-guistics we will give a brief introduction to scope underspeci�cation [EKN01,AC92, Rey93, Bos96]. This application examines ambiguous sentences withrespect to the scope of quanti�ers. Here is an example:Every scientist speaks a language.This sentence has two possible readings which can be determined by thefollowing continuations:1. . . . But not all of them speak the same one.2. . . . This world language of science is English.In the �rst reading, no two scientists (necessarily) speak the same language.But in the second one, there is one certain language that is common to allscientists. The di�erence between the two readings and also the term scopeambiguity become clear when one looks at the representations of the tworeadings as logic formulas.



6.1. MOTIVATION 1431. 8x:(scientist(x)! 9y:(lang(y) ^ speak(x; y)))2. 9y:(lang(y) ^ 8x:(scientist(x)! speak(x; y)))In the �rst formula, the existential quanti�er is in the scope of the universalquanti�er, whereas in the second formula it is vice versa. The two readingsof the sentence also correspond to two di�erent parse trees T1 and T2 shownin Figure 6.1. In T1 the node n8 labelled with the universal quanti�er isan ancestor of the node n9 labelled with the existential quanti�er, i.e. n8dominates n9. In T2 the dominance relation between the two quanti�ers isopposite.T1: 8x �! �scientist �x � � 9y^ �lang �y � � speakx � � y
T2: 9y �^ �lang �y � � 8x! �scientist �x � � speakx � � yFigure 6.1: Trees corresponding to the readings of \Every scientist speaks alanguage".Let us now focus on the similarities of the two readings and how theyare reected in the two formulas and trees respectively. We begin with thelogic formulas. Both of them are composed of the following three parts whichcorrespond to the representations of the \semantic material" like \every sci-entist", \a language" and \speak":� 8x:(scientist(x)! : : :)� 9y:(lang(y) ^ : : :)� speak(x; y)The ellipses \. . . " in a part are place-holders where another part has to beplugged in. Furthermore, we know that in any reading the part for \speak"is within the scope of both quanti�ers.We can decompose the parse trees in an analogous way and obtain thetree fragments that are shown in Figure 6.2 (ignoring the dashed edges for themoment). The fragment of each quanti�er contains an unlabelled leaf node,which is a place-holder where the root of another fragment can be pluggedin. Such a leaf is called a hole. The graph in the �gure contains two dashededges which are directed from the holes to the root of the \speak"-fragment.



144 CHAPTER 6. DOMINANCE GRAPHSThey indicate that the respective hole dominates the \speak"-fragment inany possible parse tree for the sentence. We say that the dashed edges aredominance edges and the solid edges are tree edges.8x �! �scientist �x � � 9y �^ �lang �y � �speak �x � � yFigure 6.2: A graph representation of \Every scientist speaks a language".Graphs like the one in Figure 6.2 are useful to model the semantics of anambiguous sentence. Instead of committing to a particular reading (which isthe case if we use a parse tree), we can maintain all possible readings in onemodel. For such a model two questions arise naturally:1. Can we assemble the fragments to a parse tree that ful�ls all the dom-inance requirements?2. Can we enumerate all the trees that are a solution for the model?Ambiguity is an important problem in language processing, because thenumber of readings of a sentence grows quickly with the number of quanti�ersand scope ambiguity may interact with other sources of ambiguity. In theremainder of this section we give some examples which illustrate this.The following example has already 56 readings, its corresponding graphis shown in Figure 6.3.John says that some representative of every department in a com-pany saw a sample of each product.There are even more striking examples. The following sentence is due toHobbs [Hob83] and has about 200 readings:Many people feel that most sentences exhibit too few quanti�erscope ambiguities for much e�ort to be devoted to this problem,but a casual inspection of several sentences from any text shouldconvince almost everyone otherwise.



6.2. DEFINITIONS 145say �john � �9u �! �com �u � � 8w �! �^ �� dep �w � � 9x �^ �^ �� repr �x � � 9y �^ �� ^ �spl �y � � � 8z! �pro �z � �in �w � u � of �x � w � see �x � y � of �y � z �Figure 6.3: A graph representation of a sentence with 56 readings.6.2 De�nitionsIn this section we will give the de�nition of a dominance graph and de�nesome related notions. Informally, a dominance graph is a collection of rootedtree fragments and some dominance requirements between them. A domi-nance requirement is given as a directed edge from a leaf of one fragmentto the root of another fragment. So if one deletes all the node labels inFigure 6.3, one obtains a dominance graph. In the formal de�nition belowwe allow w.l.o.g. only tree fragments of height one, because this simpli�esthe succeeding arguments. (On page 194, we discuss how to eliminate thisrestriction.)De�nition 6.1 (dominance graph) A dominance graph D is a directedgraph (V;E) with two partitions V = Vr _[Vl and E = Et _[Ed. V is partitionedinto root nodes Vr and leaf nodes Vl; E is partitioned into tree edges Et anddominance edges Ed. The following must be satis�ed: Et � Vr � Vl andEd � Vl�Vr, i.e. tree edges are directed from roots to leaves, and dominanceedges point from leaves to roots. Moreover, (Vr _[Vl; Et) is a forest where eachtree has height one.We write D = (Vr _[ Vl; Et _[ Ed) to denote the dominance graph.In Figure 6.4 we depict three example dominance graphs. We draw rootsas squares, leaves as circles, tree edges as solid darts and dominance edges asdashed darts; the di�erent tree fragments are indicated by dotted silhouettes.Let us compare the graphs D1 andD2 in Figure 6.4: Both graphs have thesame tree fragments, only their dominance edges are di�erent. We observethat all dominance requirements of D1 are also encoded in D2. E.g., the factthat the node b should be an ancestor of f is expressed explicitly in D1 by
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Figure 6.4: Examples to illustrate the de�nitions of a dominance graph andrelated notions.a dominance edge, in D2 this is encoded implicitly because there is a pathfrom b to f . We see that D2 is more restricted than D1, for D2 �xes f to be adescendant of c, whereasD1 leaves the relation between these two nodes open.We say that D2 is a (strict) ampli�cation of D1. In order to describe thisnotion formally, we de�ne the reachability relation Reach(D) of a directedgraph D = (V;E): Reach(D) is the transitive closure of E (interpreted asbinary relation over V ), i.e. a tuple (u; v) of nodes is contained in Reach(D)i� there is a non-empty path from u to v in D.De�nition 6.2 (ampli�cation) Let D = (Vr _[ Vl; Et _[ Ed) and D0 =(V 0r _[ V 0l ; E 0t _[ E 0d) be two dominance graphs. We say that D is an am-pli�cation of D0 if the following holds: Vr = V 0r , Vl = V 0l , Et = E 0t andReach(D) � Reach(D0). If we have Reach(D) � Reach(D0), then D is astrict ampli�cation of D0.Let us look at the examples in Figure 6.4 again. We see that D3 is a strictampli�cation of D2, and hence also of D1. Recall that our goal is to assemblethe tree fragments to a tree such that its ancestor-descendant relation ful�lsall dominance requirements imposed by the respective dominance graph. Anytree which is a solution for D3 is also a solution for D1 and D2, because D3is an ampli�cation. We observe that D3 has a nice property: Every node isincident to at most one dominance edge, i.e. the dominance edges match someleaves and roots. Thus the dominance edges tell us how to assemble the tree



6.2. DEFINITIONS 147fragments: We plug c into b, i into d, f into e and l into g. (One can imaginethe plugging process as contracting each dominance edge and identifying itstwo incident nodes.) We call D3 a con�guration, which is de�ned formallybelow:De�nition 6.3 (con�guration) A dominance graph D = (Vr _[Vl; Et _[Ed)is called a con�guration if D is a forest and Ed is a matching, i.e. each nodeis incident to at most one dominance edge. A con�guration D which is anampli�cation of a dominance graph D0 is called a con�guration of D0.We can now formalize the problems from Section 6.1:1. Decide whether a given dominance graph D has a con�guration.2. Enumerate all con�gurations of a dominance graph D.Let us reconsider the dominance graph D2 in Figure 6.4. D2 is a tree, but itis not a con�guration, because the leaf b has two outgoing dominance edges.As D3 is an ampli�cation of D2 which in turn is an ampli�cation of D1, wecan see D2 as an \intermediate stage" between the original problem encodedin D1 and the solution represented by D3. This stage is called solved formand de�ned below.De�nition 6.4 (solved form) A dominance graph D = (Vr _[ Vl; Et _[ Ed)is in solved form if D is a forest. A solved form D which is an ampli�cationof a dominance graph D0 is called a solved form of D0. We say that Dis a minimal solved form of D0 if there is no solved form D00 of D0 withReach(D00) � Reach(D).By de�nition, every con�guration is also a solved form, but in general nota minimal solved form. In our example, D2 and D3 are solved forms of D1.Since D3 is a strict ampli�cation of D2, it is not a minimal solved form of D1.D2, however, is a minimal solved form of D1. This can be seen as follows:Consider a solved form D with Reach(D1) � Reach(D) � Reach(D2). SinceReach(D2) = Reach(D1) [ f(e; f); (e; h); (e; g)g, Reach(D) contains at leastone of the three tuples (e; �). As f , h, and g belong to the same tree fragment,Reach(D) must contain all of them.In the sequel we will show that the term \solved form" is justi�ed, i.e. ev-ery dominance graph in solved form has a con�guration. In the proof inthe lemma below we describe how a con�guration can be constructed from asolved form.Lemma 6.1 A dominance graph D in solved form has a con�guration.
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Figure 6.5: Application of Transformation Rule 1: The dominance edge froml0 into s is shifted down to l.Proof. By the de�nition of solved form, D is a forest. If it is not acon�guration, then there exists a leaf with more than one outgoing dominanceedge. So we can apply the following transformation to D and obtain a newgraph D0:Transformation Rule 1 Let l0 be a leaf with at least two outgoing domi-nance edges (l0; r) and (l0; s). Choose an arbitrary leaf l in the fragment withroot r and replace (l0; s) by (l; s), see Figure 6.5.Clearly, D0 is in solved form. Moreover, it is an ampli�cation ofD becausethe edge (l0; s) in D is replaced by a path from l0 to s in D0. As D is a forest,we have (l; s) =2 Reach(D) (cf. left-hand side of Figure 6.5). Thus D0 is astrict ampli�cation. This means the following: By applying the rule aboverepeatedly, we can generate a series of strict ampli�cations in solved formuntil we obtain a con�guration of D. Each application increases the size ofthe reachability relation, and hence there can be at most n2 applications,where n is the number of nodes of D.The lemma above implies that con�gurability and solvability (i.e. decidingwhether a dominance graph has a con�guration or a solved form respectively)are equivalent problems. Concerning our second problem, the enumerationproblem, it also suÆces to focus on solved forms: We will show that allcon�gurations of a dominance graph D can be obtained by applying Trans-formation Rule 1 exhaustively to its minimal solved forms. Let us assumethat D is connected1 so that all its solved forms are trees. Then our claimfollows immediately from the lemma below:1Observe that this property can always be achieved: Add to D a dummy fragment witha root r and a single leaf l, then add dominance edges from l to every root di�erent fromr.



6.2. DEFINITIONS 149Lemma 6.2 Let D1 and D2 be two dominance graphs, which are trees. IfD2 is an ampli�cation of D1, then D2 can be obtained from D1 by at mostn2 applications of Transformation Rule 1, where n is the number of nodes inD1.Proof. If D1 6= D2, then there is a dominance edge (l; r) which is in D2 butnot in D1. Let � denote the lowest common ancestor of l and r in D1. Wehave � 6= r, for otherwise r would be an ancestor of l in both D1 and D2; thiswould imply that D2 contains a cycle. Moreover, � 6= l. Assume otherwise,then there is a path from l to r in D1. Since (l; r) is not an edge of D1, thispath must visit a node x di�erent from l and r. As D2 is an ampli�cationof D1, there is a path from l to r in D2 that visits x. But since D2 is a treecontaining the edge (l; r), this is impossible.From l 6= � 6= r we conclude that in D1 the nodes l and r are descendantsof di�erent children sl and sr of � (see left-hand side of Figure 6.6). In D2, land hence sl are ancestors of r. The fact that sl and sr are ancestors of r inD2 but siblings in D1 implies that � is a leaf and sl and sr are roots. In D2,sl must be an ancestor of sr or vice versa (cf. right-hand side of Figure 6.6).Let us assume the former (the other case is symmetric), and let (sl; h) be the�rst edge on the path from sl to sr. Clearly, h is a leaf in the fragment of sl.Now we apply Transformation Rule 1 and replace in D1 the dominance edge(�; sr) by the dominance edge (h; sr). Thus we obtain a new tree D withReach(D1) � Reach(D) � Reach(D2). And hence, we can transform D1 intoD2 by at most n2 applications of the transformation rule. (Observe that twotrees with the same reachability relation are equal.)
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Chapter 7Deciding solvabilityIn this chapter we show that solvability of a given dominance graph D canbe decided in linear time. We obtain this result as follows: First we provethat solvability of D is equivalent to the absence of certain cycles (calledharmful cycles) in an undirected version of D. Then we develop a linear-time algorithm which can check whether a graph contains a harmful cycle ornot.Although the enumeration of solved forms is the topic of the next chapter,we start this chapter with the presentation of an enumeration algorithm. Thisbrute-force algorithm is ineÆcient, but it assist us in proving the correctnessof the harmful cycle criterion.7.1 A brute-force enumeration algorithm forminimal solved formsWe discuss an algorithm for enumerating all minimal solved forms of a dom-inance graph D, which is due to Althaus et al. [ADK+03]. Let us denotethe set of all minimal solved forms of D by S(D). How can we �nd a solvedform of D? By de�nition, a solved form is a forest, i.e. it is acyclic and everynode has at most one incoming edge. If D contains a cycle, then it has nosolved form, and we can stop our search. So assume that D is acyclic. If itis not in solved form, then there must be a node s in D with two or moreincoming edges. Recalling the de�nition of a dominance graph, we can inferthat s must be a root node and the incoming edges are dominance edges. Inthe sequel we describe two transformation rules that allow us to reduce theindegree of a root while { in some sense { preserving the set of solved forms.Looking at the dominance graph D in Figure 7.1, we see that the domi-nance edge d from l to s is superuous, because there is an alternative path151
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Figure 7.1: Eliminating a redundant edge in D to obtain D0.from l to s. Thus the dominance requirement d is implied by transitivity.If we delete d from D and obtain D0, we have Reach(D) = Reach(D0), andhence S(D) = S(D0). We call a dominance edge d = (l; s) redundant in adominance graph D if there is a path from l to s in D n d. This gives rise tothe following transformation rule:Transformation Rule 2 (Redundancy Elimination) Remove every re-dundant dominance edge.Our de�nition of redundancy coincides with the de�nition of transitiveredundancy introduced by Aho et al. [AGU72].1 We can apply their algorithmto make our dominance reduced, i.e. to remove all redundant dominanceedges.But even a reduced dominance graph D may contain a root s with twoincoming dominance edges (l1; s) and (l2; s) (see the left-hand side of Fig-ure 7.2). Consider a solved form Ds of D. Since both l1 and l2 dominates in Ds and Ds is a tree, we conclude that l1 is an ancestor of l2 or viceversa. Assume the former, then l1 must also be an ancestor of the root r2of the fragment containing l2. Thus Ds is also a solved form of the graphD1 = D [ (l1; r2) (cf. right-hand side of Figure 7.2). But if l2 is an ancestorof l1 in Ds, then Ds is a solved form of D2 = D [ (l2; r1), where r1 is theroot of the fragment of l1. Clearly, Ds cannot be a solved form of both D1and D2. (Otherwise, Reach(Ds) would contain both (l1; l2) and (l2; l1), whichcannot be in a tree.) This means that S(D) = S(D1) _[S(D2), which justi�esour next transformation rule:1Observe that a tree edge cannot be transitively redundant, because it is the onlyincoming edge of its incident leaf.



7.1. BRUTE-FORCE ENUMERATION OF SOLVED FORMS 153
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Figure 7.2: D1 and D2 are generated by applying the choice rule to D.Transformation Rule 3 (Choice) Let s be a root with at least two incom-ing dominance edges (l1; s) and (l2; s) and let r1 and r2 be the roots of thefragments containing the leaves l1 and l2, respectively. Generate two ampli�-cations D1 and D2 by adding either (l1; r2) or (l2; r1) to D (see Figure 7.2).After an application of the choice rule, we have to work on two dominancegraphs, but what do we gain? Looking atD1, we see that the dominance edge(l1; s) is redundant. We can remove it and reduce the indegree of s. Moreover,since by our assumption (l1; s) is not redundant in D, we know that D1 is astrict ampli�cation of D. An analogous observation can be made for D2. Sowhenever we apply the choice rule to a reduced dominance graph, the twogenerated graphs have a bigger reachability relation than the original one.This property will guarantee the termination of our enumeration algorithm.The algorithm to enumerate the minimal solved forms of a dominancegraph D is straightforward (see Algorithm 7.1): First we check whetherthe graph is acyclic, if not we can terminate. After that we eliminate allredundant dominance edges. Then we look for a root s with two incomingdominance edges. If no such root exists, then D is a forest and we reportD as a minimal solved form. So assume we �nd such a root s. Then weapply the choice rule to s and process the generated instances D1 and D2recursively.We prove correctness and termination of the algorithm. First we showthat any minimal solved form Ds of D is reported by the algorithm. We haveseen that an application of the transformation rules above does not \lose" anysolved forms. So it is easy to see by induction that Ds is an ampli�cation ofsome solved form D0 which is reported by the algorithm. Thus Reach(D0) �Reach(Ds). Since Ds is minimal, we get Reach(Ds) = Reach(D0), whichimplies Ds = D0, because both graphs are trees.



154 CHAPTER 7. DECIDING SOLVABILITYAlgorithm 7.1 Enumerating the minimal solved forms of D (brute force)Procedure: Enum-BruteForce(D)1: if D contains no (directed) cycle then2: eliminate all redundant dominance edges3: if D has a root s with at least two incoming dominance edges then4: apply the choice rule and generate two new instances D1 and D25: Enum-BruteForce(D1); Enum-BruteForce(D2)6: else // D is in solved form7: report D8: end if9: end ifIt is clear that all reported dominance graphs are solved forms of D, butwe have to convince ourselves that they are indeed minimal. Suppose thatthe algorithm reports a solved formD0 ofD which is not minimal. Then thereexists a minimal solved form Ds of D such that D0 is a strict ampli�cationof Ds. This implies that Ds is also reported by the algorithm. Thus thealgorithm has made an application of the choice rule which \separated" D0and Ds, i.e. the application generated two graphs D1 and D2 such that D0 2S(D1) and Ds 2 S(D2). As we have shown, S(D1) and S(D2) are disjoint.And hence, D0 cannot be an ampli�cation of Ds, a contradiction.Now we prove termination. Since the choice rule is always applied toreduced graphs, the reachability relation strictly increases every time. Andhence, the recursion depth is bounded by the maximum size of this relation,which is n2, where n is the number of nodes of D. Observe that the runningtime of this algorithm is exponential in general, because every call to theprocedure Enum-BruteForce may spawn two recursive calls. If we apply thealgorithm to an unsolvable graph, it may have to generate many intermediatedominance graphs until it �nds out that all branches of the computation�nally produce graphs with a cycle.7.2 Harmful cyclesWe will now develop a criterion which allows us to decide eÆciently whether agiven dominance graph has a solved form or not. The following presentationis based on [ADK+03]. So far we have only seen examples which have a solvedform. It is time to study some unsolvable examples. Let us look at Figure 7.3and convince ourselves that the three graphs depicted there are unsolvable.For D1, this is easy, because it contains a directed cycle. Concerning D2,



7.2. HARMFUL CYCLES 155we see that the two leaves b and c in the topmost fragment both want todominate the root j, because there is a path from b to j and one from c toj. But since b and c are siblings in a tree fragment, this is impossible. It isnot obvious that D3 has no solved form. Let us apply the choice rule to theroot g: This generates two graphs D03 = D3 [ (b; d) and D003 = D3 [ (e; a)(cf. Figure 7.4). Due to symmetry, it suÆces to look at D03. We see that thetwo siblings b and c want to dominate i, which implies unsolvability.
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Figure 7.3: Three unsolvable dominance graphs.Is there a property that all the examples in Figure 7.3 have in common?If we ignore the arrowheads of the edges, we observe that the three unsolv-able dominance graphs contain a cycle. Unfortunately, a solvable dominancegraph D+ may also contain an \undirected" cycle. In Figure 7.5 we have asynopsis of an unsolvable graph D� and a solvable graph D+. (D� is thegraph in the middle of Figure 7.3, D+ is a subgraph of the solvable graph onthe left-hand side of Figure 6.4 on page 146.) D� and D+ look very similar,and they both contain undirected cycles C1 and C2 respectively.What is the crucial di�erence between the two cycles? If we translate C1back to the directed graph D�, we get two directed paths from a to i. Sinceboth paths start with tree edges, they prove that two di�erent children of a(namely b and c) both want to dominate the node i, which is impossible. SoC1 is a proof for the fact that D� is not solvable.Translating the cycle C2 back to D+ we obtain two directed paths from b tol. But this time both paths start with dominance edges. Thus there is noproblem, because in a solved form c may be an ancestor of f or vice versa,thus both of them can dominate l.
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Figure 7.4: Applying the choice rule to D3 to prove unsolvability.We call a cycle which can prove unsolvability a harmful cycle2. The ex-amples we have seen indicate that such a cycle must not visit two dominanceedges that are incident to the same leaf. The remainder of this section isorganized as follows: First we formally de�ne harmful cycles, and then weprove that solvability is equivalent to the absence of harmful cycles.As we have seen above, the directions of the edges do not matter whenwe look for harmful cycles. So instead of the original dominance graph D wesearch the underlying undirected dominance graph U(D).Informally, this graph is obtained by deleting the arrowheadsof all edges of D, the partition of the nodes into roots andleaves and the partition into tree and dominance edges arekept. As we can see on the right-hand side, U(D) can be amultigraph (see De�nition 2.7). D: U(D):
This is reected by our de�nition of an undirected dominance graph:De�nition 7.1 (undir. dom. graph) An undirected dominance graph Uis an undirected multigraph (V;E; inc) with two partitions V = Vr _[ Vl andE = Et _[ Ed. V is partitioned into root nodes Vr and leaf nodes Vl; E ispartitioned into tree edges Et and dominance edges Ed. The following musthold: Every edge e 2 E is incident to one root and to one leaf, and every leafis incident to exactly one tree edge.We write U = (Vr _[ Vl; Et _[ Ed; inc) to denote the undirected dominancegraph.The underlying undirected dominance graph of a (directed) dominance graph2In the papers [ADK+01, ADK+03] these cycles are called hypernormal.
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Figure 7.5: Two dominance graphs with undirected cycles (indicated by thedashed lines). D� is not solvable, but D+ is.D = (Vr _[ Vl; Et _[Ed) is the graph U(D) = (Vr _[ Vl; Et _[Ed; inc), where incis de�ned as follows: For an edge e = (u; v) of D we set inc(e) := fu; vg.In order to simplify notation we write e = fu; vg as an abbreviation forinc(e) = fu; vg, although there can be several edges connecting u and v.Observe that there can be at most one tree edge between u and v in anundirected dominance graph, but there may be more than one dominanceedge. We allow this on purpose, because our algorithm may add dominanceedges that are parallel to existing ones. (It will turn out that additionaldominance edges do not harm, because they will basically be ignored.)We need to introduce some notions to talk about undirectedcycles. The cycle on the right side visits four nodes, we say that itmakes four bends. A bend is a triple he; v; fi which consists of twodistinct edges e and f that are incident to the node v. Our examplehas the following bends: hj; a; gi, hg; b; hi, hh; c; ii and hi; d; ji. a

c

d

b

j ig hRecalling the example in Figure 7.5, we see that the bend hg; b; hi is exactlythe kind of bend that we want to avoid, because b is a leaf and g and h areboth dominance edges. This motivates the following de�nition:De�nition 7.2 (harmful cycle) Let C denote a cycle in anundirected dominance graph U . A bend he; v; fi on C is calledforbidden if v is a leaf and e and f are dominance edges;otherwise we say that he; v; fi is admissible. The cycle C iscalled harmful if C is simple and all its bends are admissible.



158 CHAPTER 7. DECIDING SOLVABILITYIn the sequel we will prove that solvability of a dominance graph D isequivalent to the absence of harmful cycles in U(D). For this aim, we showtwo lemmas, which { in some sense { express the fact that an application ofa transformation rule does not a�ect the existence of harmful cycles. (Forthe choice rule, this means that both generated instances contain a harmfulcycle if and only if there is a harmful cycle in the original graph.) First, weprove that the removal of redundant edges does not a�ect the existence of aharmful cycle.Lemma 7.1 Let D0 be a dominance graph which is obtained by applyingTransformation Rule 2 to a dominance graph D. Then U(D) contains aharmful cycle i� U(D0) does.Proof. Suppose that redundancy elimination has removed the dominanceedge e = (l; s) from D. Since the edges of D0 are a subset of those of D, weonly have to show the following: If U(D) contains a harmful cycle C whichuses the edge fl; sg, then there is also a harmful cycle in U(D0).As C is harmful, the bend at l must be admissible, i.e. C must use thetree edge fr; lg incident to l. So we may suppose that C starts with fr; lg andthen uses fl; sg as second edge. Since e is redundant in D, there is a simple(directed) path P from l to s in D0. Let x denote the last node on C whichis also visited by P (x 6= l, and possibly x = s). Let Px denote the pre�xof P from l to x. If x = r, then Px Æ (r; l) is a directed cycle in D0, whichtranslates to a harmful cycle in U(D0). So assume x 6= r. Thus the suÆxCx of C from x to r is not empty. Identifying Px with the correspondingundirected path in U(D0), we obtain the simple cycle C 0 = fr; lg Æ Px Æ Cx.Since x 6= l, we conclude that C 0 does not use the edge fl; sg, and hence, itis a cycle in U(D0). We have to check that any bend of C 0 is admissible. Forthe bend at the root r and any bend on Cx this is obvious. As Px is directed,any bend of Px is admissible, and if x is a leaf, Px must end with a tree edge.So the bend at x is also admissible. And hence, C 0 is harmful.Now we prove a similar lemma for the choice rule:Lemma 7.2 Suppose an application of Transformation Rule 3 to a domi-nance graph D generates two instances D1 and D2. Then U(D) contains aharmful cycle i� both U(D1) and U(D2) do.Proof. Let us assume that we apply the choice rule to two dominance edges(l1; s) and (l2; s) inD. This generates two ampli�cationsD1 = D[(l1; r2) andD2 = D [ (l2; r1), where r1 and r2 are the roots of the fragments containingl1 and l2 respectively (see Figure 7.2 on page 153). Since the edges of D are



7.2. HARMFUL CYCLES 159a subset of the edges of D1 and of the edges of D2, we only have to provethat U(D) contains a harmful cycle if U(D1) and U(D2) do.We consider a harmful cycle C1 in U(D1). If C1 does not use the newedge fr2; l1g, then it is also a cycle in U(D). So we may suppose C1 =fr2; l1g Æ fl1; r1g Æ P1, because the bend at l1 must be admissible. Similarly,we assume that U(D2) contains a harmful cycle C2 = fr1; l2g Æ fl2; r2g Æ P2.If P1 or P2 visits s, we can construct a harmful cycle in U(D): Supposefor some i 2 f1; 2g we have Pi = P 0 Æ P 00 such that P 0 ends in s. ThenP 0 Æ fs; lig Æ fli; rig is a harmful cycle because P 0 avoids li and fli; rig is atree edge.Hence, we may assume that both C1 and C2 avoid s. Let x denote the�rst node on P1 di�erent from r1 that also lies on P2. If x = r2, then P1 andP2 have no common inner node, and hence P1 Æ P2 is a simple cycle. Sincethe endpoints of P1 and P2 are roots, we see that all bends are admissible,and we are done.Now consider the case x 6= r2. For i 2 f1; 2g we decompose Pi such thatPi = Qi ÆRi, Qi ends at x and Ri starts at x (see Figure 7.6). Since Pi avoidsli, we conclude that Qi does not visit li. In particular we have l1 6= x 6= l2.We want to prove that Q1 also avoids l2. Suppose P1 visits l2, otherwisethere is nothing to show. Since the simple path P1 ends at r2 and all bendsof P1 are admissible, we can infer that the last edge on P1 is the tree edgefl2; r2g. As Q1 is a pre�x of P1 that ends in x and x is di�erent from bothl2 and r2, we conclude that l2 is an inner node of R1. So Q1 avoids l2. Ananalogous argument shows that Q2 does not visit l1. (Observe that x 6= r1by the choice of x.)By construction, Q1 and Q2 have no common node but x. Denote thereversal of Q1 by Qrev1 . Then the cycle C = fr1; l1gÆfl1; sgÆfs; l2gÆfl2; r2gÆQ2 ÆQrev1 (see again Figure 7.6) is simple. If C is not harmful, then the bendat x { where Q2 and Qrev1 join { is forbidden. This means x is a leaf, andboth Q1 and Q2 end with a dominance edge. Since the bend at x in C2 isadmissible, we have that R2 starts with the tree edge incident to x. Thereforeevery bend on the cycle Q1 ÆR2 is admissible. By the choice of x, this cycleis also simple. And hence, it is harmful.We are ready to prove our characterization of solvability. The proof is basedon the correctness of the enumeration algorithm from the previous section.Theorem 7.1 A dominance graph D is solvable i� U(D) does not containa harmful cycle.Proof. Suppose �rst, U(D) contains a harmful cycle and we run our enu-meration algorithm on D. Consider any instance D0 which is generated
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l2r2l1r1 s

Q1R2 x R1Q2
Figure 7.6: Situation in the proof of Lemma 7.2. (Observe that R1 may visitl2, hence Q1 ÆR1 Æ fr2; l2g Æ fl2; sg Æ fs; l1g Æ fl1; r1g is in general not a simplecycle. An analogous observation can be made for R2 and l1.)during this run by an application of a transformation rule. From the twoprevious lemmas we can conclude that U(D0) contains a harmful cycle. Andhence, D0 cannot be a forest. Thus, Enum-BruteForce(D) will not reportany solved form, which implies that D is not solvable.Assume now that U(D) does not contain a harmful cycle. Again, we runour enumeration algorithm on D and trace its computations. Lemma 7.2states that if the choice rule is applied to a graph without harmful cycle, thenat least one of the two generated instances has no harmful cycle. And hence,we can inductively identify a branch in the computation of the enumerationalgorithm where all generated dominance graphs are free of harmful cycles.Clearly, this branch cannot end with the discovery of a directed cycle. Thusthe branch terminates when a solved form of D is found.7.3 An eÆcient harmful cycle testIn this section we will give a linear time algorithm which can test whether agiven undirected dominance graph contains a harmful cycle. By Theorem 7.1,this implies that deciding solvability for a dominance graph can be done inlinear time. This improves upon the results in [ADK+03].The harmful cycle test will be developed gradually. We start with thewell-known depth �rst search algorithm which can look for arbitrary cyclesin undirected graphs. Then we make a simple modi�cation which guaranteesthat the algorithm reports only harmful cycles. Unfortunately, this algorithmmay miss harmful cycles, i.e. it may report that no harmful cycle exists,



7.3. AN EFFICIENT HARMFUL CYCLE TEST 161although there is one. After another modi�cation that takes care of thisproblem, we obtain a correct harmful cycle test.DFS in undirected graphsWe forget about dominance graphs for the moment and consider arbitraryundirected multigraphs. We recall the depth-�rst search algorithm (DFS),which can be used to explore an undirected multigraph G in a systematicway. Then we explain how this algorithm can be augmented for cycle de-tection. We want to point out that we accept arbitrary cycles, i.e. we donot impose any constraints on the bends. When DFS explores G, it main-tains for each node v its status , which can be unreached , active or completed :unreached means that v has not been discovered yet, active indicates that theexploration of v is in progress, completed marks the end of the exploration.The procedure DFS (without cycle detection) works as follows: At thebeginning the status of all nodes is set to unreached . Then DFS iterates overall nodes. Whenever it discovers a node v with status unreached , it callsthe procedure DFS-visit to explore v. This procedure changes the statusof v to active and scans every edge e = fv; wg incident to v. Whenever itencounters an unreached node w during the scan, it makes a recursive callDFS-visit(w) to explore w. When the scan of v is �nished, the status of vbecomes completed and the call DFS-visit(v) returns.We discuss a well-known modi�cation of this basic scheme which allowsto �nd cycles (see Algorithm 7.2). We use an array called dfs inedge: Forevery recursive call DFS-visit(w), it stores the edge which caused the call(see line 10). If the respective call has been a top-level call (see line 4), thendfs inedge is set to none.We make a crucial observation: At any time the active nodes lie on a simplepath P , and the edges on P are the dfs inedges of these nodes. We makethis more precise. Every active node corresponds to a call of DFS-visit thathas not returned yet. So we can order the active nodes v0; : : : ; vk accordingto the call stack of DFS-visit such that DFS-visit(v0) is the top-levelcall and DFS-visit(vi) has made a recursive call to DFS-visit(vi+1) fori = 0; : : : ; k�1. Then P = [v0; dfs inedge[v1]; v1; : : : ; dfs inedge[vk]; vk]. Notethat vk is the node whose edges are currently scanned. Suppose now thatwe scan an edge e 6= dfs inedge[vk] (cf. line 7), and assume that e connectsvk with another active node vi. Then we have discovered a simple cycleC = P 0 Æe, where P 0 is the subpath of P from vi to vk. This explains lines 11and 12 of the algorithm.Let us apply the algorithm to the example on the left-hand side of Fig-ure 7.7. Assume that we explore the node a �rst, and that edges are scanned



162 CHAPTER 7. DECIDING SOLVABILITYAlgorithm 7.2 Finding arbitrary cycles with standard DFSProcedure: DFS(G)1: initialize the status of all nodes to unreached2: for all nodes v of G do3: if status[v] = unreached then4: dfs inedge[v] none; DFS-visit(v)5: report \no cycle found"Procedure: DFS-visit(v)6: status [v] active7: for all edges e incident to v s.th. e 6= dfs inedge[v] do8: let w be the node adjacent to v via e9: case 1: status [w] = unreached10: dfs inedge[w] e; DFS-visit(w)11: case 2: status [w] = active12: report \cycle found" and terminate13: otherwise: do nothing14: end for15: status [v] completedfrom left to right. On the right-hand side, we visualize the state of thealgorithm at the time when it discovers the cycle: The node b is alreadycompleted (indicated by the thick circle), the nodes a, c, d and e are active(depicted by the double-circles) and the node f is still unreached. e is the lastnode on the path of active nodes, which means that the call DFS-visit(e)is currently executed. (This is why e is marked by two solid circles whilethe outer circles of the other active nodes are dashed.) For each node v withstatus [v] 6= unreached , we have marked dfs inedge[v] by an arrowhead point-ing towards v. The cycle is detected when the edge h is scanned, which leadsfrom e back to the active node c.We make another observation. Let us call a node v reached i� its statusis active or completed . The explored subgraph of G is the subgraph which isinduced by the reached nodes. It is easy to see that the algorithm computesa spanning forest F of the explored subgraph. The edges of the DFS forest Fare the dfs inedges of the reached nodes. We view F as a directed graph, foreach node v in the forest dfs inedge[v] is oriented towards v. Thus an edge(u; v) in F indicates that the call DFS-visit(u) has spawned a recursive callDFS-visit(v). We say that u is a DFS father of v, and we call v a DFSchild of u. If v is an ancestor of w in the DFS forest, then there is a unique
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Figure 7.7: Discovering a cycle with standard DFSpath from v to w in F , which we denote by v DFS w. We freely identify thedirected path v DFS w in F with the corresponding undirected path from vto w in G.Naive harmful cycle testSuppose now that we have an undirected dominance graph U . We wantto modify Algorithm 7.2 such that only harmful cycles are reported. Thismeans that a cycle C is only reported if all bends of C are admissible. Thealgorithm we obtain (see Algorithm 7.3) will be sound but not complete,i.e. it may overlook harmful cycles. (In the next section we will show analgorithm which is complete.)Our �rst modi�cation (in line 7 of Algorithm 7.3) ensures that the path ofactive nodes has only admissible bends. Consider a call Naive-HC-visit(v)(which corresponds to DFS-visit(v) in the standard algorithm). After vhas been made active, the path P of active nodes ends in v. Whenever anedge e incident to v leads to a recursive call, then the path of active nodesis extended to P 0 = P Æ e. If we are dealing with a top-level call, then P isempty and P 0 consists of a single edge, which implies that it does not haveany bend. So we do not have any restrictions on e in this case. If we arefaced with a recursive call, then P ends with dfs inedge[v], so P 0 has onemore bend than P , namely hdfs inedge[v]; v; ei. Therefore we should scan anedge e only if hdfs inedge[v]; v; ei is an admissible bend.3Recall that we are in a top-level call i� dfs inedge[v] = none. Thus we cancombine both cases into one by de�ning hnone; v; ei to be admissible for anyedge e incident to v.3We want to point out that hdfs inedge [v]; v; dfs inedge [v]i is not a bend, and hencee = dfs inedge [v] is not admissible.



164 CHAPTER 7. DECIDING SOLVABILITYAlgorithm 7.3 Naive harmful cycle testProcedure: Naive-HC-Test(U)1: initialize the status of all nodes to unreached2: for all roots r of U do3: if status[r] = unreached then4: dfs inedge[r] none; Naive-HC-visit(r)5: report \no harmful cycle found"Procedure: Naive-HC-visit(v)6: status [v] active7: for all edges e incident to v s.th. hdfs inedge[v]; v; ei is admissible do8: let w be the node adjacent to v via e9: case 1: status [w] = unreached10: dfs inedge[w] e; Naive-HC-visit(w)11: case 2: status [w] = active and he; w; �rst edge of w DFS vi admissible12: report \harmful cycle found" and terminate13: otherwise: do nothing14: end for15: status [v] completedBut this modi�cation is not enough. We also have to check the bend whichis generated when we \close" the cycle (see line 11). This becomes clear whenwe look at the example in Figure 7.8. It shows a dominance graph containinga cycle, and it visualizes the state of the algorithm when it scans the edge kwhich closes the cycle. The bends at c and d are admissible because they arebends of the path of active nodes. The bend at e is also admissible, otherwisek would not have been scanned (cf. line 7). But the bend hk; b; hi is forbidden,because b is a leaf and k and h are dominance edges. This is captured bythe condition \he; w; �rst edge of w DFS vi admissible" in line 11. Thus ouralgorithm does not report a harmful cycle when applied to this example.How can we check this condition eÆciently? In order to determine the�rst edge f on the path w DFS v, we could trace the reverse path from vto w by means of the dfs inedges. But this may take a long time. Wecan do it in constant time: If w is a root, then the bend is admissible, nomatter what f is. Otherwise, we look at dfs inedge[w] and distinguish threecases: If dfs inedge[w] is a tree edge (cf. node b in Figure 7.8), then f is adominance edge, because there is only one tree edge incident to the leaf w(by De�nition 7.1). Thus the bend is forbidden in that case. If dfs inedge[w]is a dominance edge (see node d in Figure 7.8), then f must be the tree edge
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Figure 7.8: Example demonstrating why a second modi�cation of Algo-rithm 7.2 is necessary.incident to w, for hdfs inedge[w]; w; fi is a bend of the path of active nodes.We conclude that the bend is admissible then.But what can we do if dfs inedge[w] = none? The solution is to rule out thiscase by a small modi�cation (see line 2): We make top-level calls only forroot nodes. Since every leaf is adjacent to a root (by a tree edge), it is stillguaranteed that every node of the graph is explored.From the discussion above it should be clear that the algorithm is sound:When it reports a harmful cycle, then it has discovered a simple cycle andit has checked that every bend is admissible. Unfortunately, there existexamples like the dominance graph U in Figure 7.9. Although U containsa harmful cycle (indicated by the thick edges), Algorithm 7.3 may not �ndit. We say \may", because the outcome of Naive-HC-Test depends on theorder in which the edges are scanned in line 7.We trace a computation which fails to discover a harmful cycle. As-sume the algorithm explores the root a �rst, i.e. it makes a top-level callNaive-HC-visit(a). Then it scans the edge fa; bg and makes a recursivecall for b. Suppose this call scans fb; fg �rst, which leads to a recursive callfor f . The edge ff; eg gives rise to a recursive call for e, the state of thealgorithm at that time is shown as state 1 in Figure 7.9.Since dfs inedge[e] is a dominance edge, the dominance edge fe; gg is notscanned during that call. The path of active nodes can only be extended bythe tree edge fe; dg, which causes a recursive call for d. During this call theedge fd; bg is scanned (cf. state 2 in the �gure). This closes a cycle, but asthe bend at b is forbidden, the cycle is ignored.Then the recursive calls to d, e and f �nish, and the algorithm returns to
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Figure 7.9: Example illustrating that Algorithm 7.3 may fail. (On he right-hand side four intermediate states of a failing computation are depicted.)b. It scans the edge fb; dg (see state 3), but it takes no action, becaused is completed. The algorithm backtracks to a and makes a recursive callNaive-HC-visit(c), which in turn spawns a recursive call for g. Then theedge fg; eg is scanned for the �rst time (state 4). Since e is already com-pleted, nothing happens. After that all calls of Naive-HC-visit return, andthe algorithm reports that it has not found a harmful cycle.We want to point out that a harmful cycle would have been found if fb; dghad been scanned before fb; fg in the call Naive-HC-visit(b).Correct harmful cycle testWe modify the naive harmful cycle test from the previous section such thatwe obtain a correct algorithm. Let us reconsider the example in Figure 7.9, inparticular the state labelled 3: The algorithm is scanning the edge Æ = fb; dgduring the call Naive-HC-visit(b). As d is already completed at that time,no action is taken. Observe that Æ is an edge on the harmful cycle C inU , which suggests that Æ should not be ignored. There is another edge onC that has been ignored so far: fe; gg has not been scanned although e isalready completed. Before we discovered Æ, we knew only one path from b toe, namely b DFS e. Since this path ends with a dominance edge, we skippedfe; gg when e was active. With the discovery of the so-called detour Æ thereis an alternative path Q = Æ Æ fd; eg from b to e ending with a tree edge.Thus Q0 = Q Æ fe; gg contains only admissible bends. As Q0 is a subpath ofC, we should do something to make the algorithm aware of it. The idea isto add a single dominance edge fb; gg to the graph as a short-cut for Q0.



7.3. AN EFFICIENT HARMFUL CYCLE TEST 167Before we formalize this idea, we discuss how the addition of fb; gg inu-ences the computation of the algorithm (see Figure 7.10). Suppose we are instate 3, discover the detour fb; dg and add the short-cut fb; gg (state 40).Before b is declared completed, the short-cut4 is scanned and a recursivecall for g is invoked (state 50). In this call the edges fg; eg and fg; cg areexplored. The former causes no action, because e is completed. The latterleads to a recursive call for c (state 60). The algorithm scans fc; ag andreports a harmful cycle.
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Figure 7.10: The computation of the harmful cycle test after adding theshort-cut fb; gg.In order to discover and handle detours we modify the harmful cycle testas follows: When we scan an edge e = fv; wg in a call HC-visit(v), wedistinguish a third case (see lines 15 and 16 of Algorithm 7.4). If w is acompleted root, we invoke the procedure Collect. As we shall see later, e isa detour and w is a descendant of v in the DFS forest. The task of Collectis to check the nodes on v DFS w for incident dominance edges that have notbeen scanned so far and to add the corresponding short-cuts. As the graphis altered by Collect, we create a working copy U of the original input Uinat the beginning of the algorithm (see line 1).4We assume that the short-cut is appended to the adjacency lists of b and g, whichguarantees that it will be scanned before b is declared completed.
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Algorithm 7.4 The correct harmful cycle testProcedure: HC-Test(Uin)1: U  copy of Uin2: for all nodes v of U do3: status [v] unreached ; mark [v] false // mark is used by Collect4: for all roots r of U do5: if status[r] = unreached then6: dfs inedge[r] none; HC-visit(r)7: report \Uin contains no harmful cycle"Procedure: HC-visit(v)8: status [v] active9: for all edges e incident to v s.th. hdfs inedge[v]; v; ei is admissible do10: let w be the node adjacent to v via e11: case 1: status [w] = unreached12: dfs inedge[w] e; HC-visit(w)13: case 2: status [w] = active and he; w; �rst edge of w DFS vi admissible14: report \Uin contains harmful cycle" and terminate15: case 3: status [w] = completed and w is a root16: Collect(e) // collects previously forbidden dom. edges17: otherwise: do nothing18: end for19: status [v] completed



7.3. AN EFFICIENT HARMFUL CYCLE TEST 169Before we describe the procedure Collect we de�ne the notion of a detour:De�nition 7.3 (detour) An edge Æ incident to a leaf v and a root w iscalled a detour if the following holds:� The node v is an ancestor of w in the DFS forest. All nodes on v DFS wexcept for v are completed.� The edge Æ is a dominance edge, dfs inedge[v] is a tree edge, and Æ 6=dfs inedge[w]. (Thus Æ does not belong to the DFS forest.)Suppose Collect is called for a detour Æ incident to a leaf v and a root w.The procedure traverses the nodes on v DFS w in reverse order, i.e. it starts inw and walks up in the DFS forest until it reaches v. This can be done withthe aid of the dfs inedges, because dfs inedge[x] connects a node x with itsfather in the DFS forest.Every node x (di�erent from v) on v DFS w is checked for incident dominanceedges that have not been scanned so far. By De�nition 7.3, x is completed.So if x is a root, or if x is a leaf and dfs inedge[x] is a tree edge, then all edgeshave already been scanned. But if x is a leaf and dfs inedge[x] is a dominanceedge, then only the tree edge incident to x has been scanned (cf. Figure 7.11).For every dominance edge e = fx; yg incident to x with e 6= dfs inedge[x],we add the dominance edge e0 = fv; yg to the graph, i.e. we append e0 toadjacency lists of both v and y. We call e the origin of e0. Observe that e0is a short-cut for the path Æ Æ (x DFS w)rev Æ e, which contains only admissiblebends (in particular at x).
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x y Æee0Æe
Figure 7.11: Addition of a short-cut e0 for the path Æ Æ (x DFS w)rev Æ e.It will turn out that it suÆces to process every node in U at most onceby Collect. Therefore we mark every node x that is examined (see line 5)



170 CHAPTER 7. DECIDING SOLVABILITYAlgorithm 7.5 Collect previously forbidden dominance edgesProcedure: Collect(Æ)Require: Æ is a detour1: let v be the leaf and w be the root incident to Æ2: x w3: repeat4: if mark [x] = false then5: mark [x] true6: if x is a leaf and dfs inedge[x] is a dominance edge then7: for all dom. edges e = fx; yg inc. to x s.th. e 6= dfs inedge[x] do8: add the dominance edge e0 = fv; yg to U9: origin[e0] e10: end for11: end if12: x father of x in the DFS forest13: until x = v14: remove Æ from U // only needed for the proofsand we skip marked nodes (cf. line 4).Before the procedure terminates, it deletes the detour Æ from U . This isonly needed for the correctness proof. At the time of its removal, Æ has al-ready been scanned twice (�rst by HC-visit(w) and later by HC-visit(v)).Hence, it would not be scanned again anyway. So in a practical implementa-tion of the algorithm we can keep Æ, and we do not have to store the originsof the short-cuts (see line 9), as this information is only used in the proofs.CorrectnessNow we prove the correctness of the harmful cycle test. We begin by showingthat the precondition of the procedure Collect is never violated:Lemma 7.3 Whenever Collect(e) is called in line 16 of Algorithm 7.4, eis a detour.Proof. Let v be the leaf and w be the root incident to e. Since w iscompleted when e is scanned during the call HC-visit(v), we have that wis neither the DFS father nor a DFS child of v, i.e. dfs inedge[v] 6= e 6=dfs inedge[w].An induction on the number of calls to Collect shows that dfs inedge[v]is a tree edge and v is a DFS ancestor of w: Assume �rst that e 2 Uin(base case). Then e has already been scanned in the call HC-visit(w). Let



7.3. AN EFFICIENT HARMFUL CYCLE TEST 171us consider the state of the algorithm at that particular point in time: vmust have been reached (otherwise v would have become a DFS child of w),but not completed (for v is still active now). Thus v has been active then,which implies that v is a DFS ancestor of w. Since the call HC-visit(w) hasnot reported a harmful cycle, he; v; �rst edge on v DFS wi is not admissible(see line 13 of Algorithm 7.4 and observe that the roles of v and w areinterchanged). Thus dfs inedge[v] is a tree edge.Suppose now that e has been added by a call Collect(Æ) (induction step).This implies that Æ is incident to v and some root r. Let ~e = origin[e],~e is incident to w and some leaf x. By the induction hypothesis, Æ is adetour. Therefore, the situation is as shown in Figure 7.12: dfs inedge[v] isa tree edge, and x is a node on v DFS r. We observe that ~e is present in theoriginal graph Uin (because dfs inedge[x] is a dominance edge). So ~e has beenscanned during the call HC-visit(w). When this call terminated, x and itsDFS ancestor v must have been active or completed. Since v is still activenow, it must have been active when the call for w was made. Hence, v is aDFS ancestor of w.The fact that dfs inedge[v] is a tree edge implies that e is a dominance edge,because there is only one tree edge incident to v. Since v is the last nodeon the path of active nodes, when Collect(e) is called, all its proper DFSdescendants are completed, in particular those on v DFS w.
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w Æ~ee
Figure 7.12: Situation in the induction step of the proof of Lemma 7.3.In the sequel we will show a crucial property of the procedure Collect.Consider a call Collect(Æ). Let U1 be the graph before the call and let U2denote the graph after the call. Then U1 contains a harmful cycle if and onlyif U2 does. We break this claim into two lemmas and prove them separately.



172 CHAPTER 7. DECIDING SOLVABILITYLemma 7.4 If there is a harmful cycle in U2, then there is one in U1.Proof. Suppose the statement is false and let C be a shortest harmfulcycle in U2. C must use one edge e0 = fv; yg added by Collect(Æ). Lete = origin[e0] = fx; yg. If C does not visit any node di�erent from v on thepath v DFS w, we can replace e0 by Æ Æ (x DFS w)rev Æ e and obtain a harmfulcycle in U1.Otherwise we assume that C starts in v with the edge e0. Since allnodes on v DFS w (except for v) are marked after the call and C ends withdfs inedge[v], we can decompose C = e0ÆP Æfs; tgÆQ such that s is a markedDFS descendant of v and Q avoids any marked descendants of v. The cyclev DFS s Æ fs; tg Æ Q is simple and uses only edges which are in both U2 andU1, because it avoids e0 as well as any other edge added by Collect(Æ).If it is not harmful, then the bend hdfs inedge[s]; s; fs; tgi is not admissible,i.e. s is a leaf and both dfs inedge[s] and g = fs; tg are dominance edges. Ifs has been marked during the call Collect(Æ), a short-cut g0 = fv; tg withorigin g has been added; so g0 Æ Q would be a shorter harmful cycle in U2.Otherwise, a short-cut g00 = fv0; tg has been added to some DFS ancestor v0of s by an earlier call. As s is marked but v is not, v0 cannot be a proper an-cestor of v. Since s is a descendant of both v and v0, v must be an ancestor ofv0. The edge g00 still exists in U2, otherwise t would be a marked descendantof v0 and hence of v. So v DFS v0 Æ g00 ÆQ is a harmful cycle that does not useany of the edges added by Collect(Æ). Hence, it is also contained in U1.Lemma 7.5 If there exists a harmful cycle in U1, then there is one in U2.Proof. Let C be a harmful cycle in U1. If C avoids Æ, there is nothingto show. Otherwise we assume that C starts in v with the edge Æ. Wedecompose C = Æ ÆP Æ fs; tg ÆQ such that s is a marked DFS descendant ofv and Q avoids any marked descendants of v. (Note that w is a candidatefor s.) The cycle v DFS s Æ fs; tg Æ Q is simple and avoids Æ. Hence, it iscontained in U2. If it is not harmful, then s is a leaf and both dfs inedge[s]and g = fs; tg are dominance edges. Therefore a short-cut g0 = fv0; tg hasbeen added to some (not necessarily proper) DFS descendant v0 of v. Theedge g0 still exists, otherwise t would be a marked descendant of v0 and henceof v. So v DFS v0 Æ g0 ÆQ is a harmful cycle in U1 that does not use Æ. Hence,it is also contained in U2.Combining the previous two lemmas, the next lemma follows by an easyinduction on the number of invocations of Collect:Lemma 7.6 At any time the current graph U contains a harmful cycle i�the original graph Uin contains one.



7.3. AN EFFICIENT HARMFUL CYCLE TEST 173This implies that the algorithm is sound. When it reports a harmfulcycle, then the current graph U contains one. This follows immediatelyfrom the fact that Collect never deletes an edge that is in the DFS forest(cf. De�nition 7.3). By Lemma 7.6, the original graph Uin contains a harmfulcycle.It remains to prove that the algorithm is complete: When no harmfulcycle is reported, then Uin contains none. Let U? denote the current graphU when the algorithm terminates. By Lemma 7.6, it suÆces to show thatU? does not contain a harmful cycle.In the subsequent proofs we will argue about the completion times of thenodes. For a node v in U? denote by ct(v) the time when status [v] is setto completed . We do need the exact times, we only compare time stampsof di�erent nodes. If the algorithm terminates without reporting a cycle,then we can make some important observations about the relation of thecompletion times of a node v and its adjacent nodes:Lemma 7.7 Assume Algorithm 7.4 terminates without reporting a harmfulcycle. Let v be a node in U?, and denote by u its DFS father (if it exists).Then ct(u) > ct(v), and the following holds:1. If v is a root:For every node w adjacent to v with w 6= u, we have ct(v) > ct(w).2. If v is a leaf and dfs inedge[v] is a tree edge:For every node w adjacent to v with w 6= u, we have ct(v) > ct(w).3. If v is a leaf and dfs inedge[v] is a dominance edge:Let r be the root that is adjacent to v by the tree edge. For every nodew adjacent to v with w 6= r, we have ct(r) < ct(v) < ct(w).The possible constellations are shown in Figure 7.13.Proof. It is clear that ct(u) > ct(v), because the call HC-visit(v) isinvoked by HC-visit(u).Case 1: Assume that v is a root and there is an edge e = fv; wg withw 6= u and ct(v) < ct(w). Suppose �rst that e already existed, before v wascompleted. Then e is scanned during the call HC-visit(v). At that timew must have been active (any other status would imply ct(v) > ct(w)). Sow is a DFS ancestor of v. Since no harmful cycle has been reported due tothis scan of e, we conclude that he; w; �rst edge on w DFS vi is not admissible,i.e. dfs inedge[w] is a tree edge. This implies that e is identi�ed as a detourwhen scanned again later during the call HC-visit(w). So e is deleted by
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case 1 case 2 case 3Figure 7.13: The constellations in U? described in Lemma 7.7, the arrowheadof each edge points to the incident node with the smallest completion time.(Dotted edges may represent a tree edge or a dominance edge.)Collect, a contradiction.Assume now that e is added as a short-cut after v has been completed. Inthis case e is also recognized as a detour and deleted, again a contradiction.Case 2: Suppose that v is a leaf, dfs inedge[v] is a tree edge, and there is anedge e = fv; wg with w 6= u and ct(v) < ct(w). No matter if e is a short-cutor not, we know that e is scanned during the call HC-visit(v). At that timew must have been active (otherwise ct(v) > ct(w)). But as w is a root, aharmful cycle would have been discovered then, a contradiction.Case 3: Let v be a leaf such that dfs inedge[v] is a dominance edge, andlet r denote the unique root adjacent to v by a tree edge. The inequalityct(v) > ct(r) follows from the fact that v is the DFS father of r.Assume now that there is an edge e = fv; wg with w 6= r and ct(v) > ct(w).We know that e is no short-cut in this case. Thus e is scanned during thecall HC-visit(w). At that time v must have been active (any other statuswould imply ct(w) > ct(v)). Hence, v is a DFS ancestor of w, and the �rstedge f on v DFSw is the tree edge incident to v and r. Therefore, the bendhe; v; fi is admissible, which implies that a harmful cycle would have beenreported, a contradiction.Now we are ready to �nish the completeness proof.Lemma 7.8 If Algorithm 7.4 reports that Uin contains no harmful cycle,then Uin does not contain one.Proof. Suppose otherwise. Then the algorithm terminates with a graphU?, which contains a harmful cycle C = [v0; e1; v1; : : : ; vk�1; ek; vk = v0](cf. Lemma 7.6). We may assume that ct(v0) has the largest completion timeof all nodes on C. Then we can show by induction that ct(vi) > ct(vi+1)for i = 0; : : : ; k � 1. For i = 0 this is obvious. So suppose i > 0 and



7.3. AN EFFICIENT HARMFUL CYCLE TEST 175ct(vi�1) > ct(vi). If vi is a root, or if vi is a leaf s.th. dfs inedge[vi] is atree edge, then vi�1 is the only neighbour of vi with a larger completion time(cf. cases 1 and 2 of Lemma 7.7). And the claim follows.If vi is a leaf and dfs inedge[vi] is a dominance edge, then ei must alsobe a dominance edge (see case 3 of Lemma 7.7). Since C is harmful, thebend hei; vi; ei+1i is admissible, i.e. ei+1 is the tree edge incident to vi. ByLemma 7.7, we have ct(vi) > ct(vi+1).Our inductive proof shows ct(vk�1) > ct(vk) = ct(v0), which contradictsthe assumption that v0 has the largest completion time.Implementation and runtime analysisWe discuss how to implement the harmful cycle test for an undirected domi-nance graph Uin such that it runs in time O(n+m), where n is the number ofnodes and m is the number of edges of Uin. In order to achieve this runningtime we have to re�ne the current implementation of the procedure Collect(see Algorithm 7.5). The problem is that Collect may visit a marked nodeseveral times. Recall that Collect walks up in the DFS forest from a nodew to an ancestor v, which is not marked5. Since marked nodes are alwaysskipped during this walk, we can save time if we are able to jump quicklyfrom a node x to its closest unmarked ancestor in the DFS forest.Algorithm 7.6 Improved implementation of Collect with Union-FindProcedure: Collect(Æ)1: let v be the leaf and w be the root incident to Æ2: x Find(w)3: while x 6= v do4: f  father of x in the DFS forest5: mark [x] true; Union(x,f) // mark is used for explanation only6: if x is a leaf and dfs inedge[x] is a dominance edge then7: for all dom. edges e = fx; yg inc. to x s.th. e 6= dfs inedge[x] do8: add the dominance edge e0 = fv; yg to U9: end if10: x Find(f)11: end whileFor this purpose, we use a Union-Find data structure in our improvedimplementation of Collect (see Algorithm 7.6). We maintain a partition ofthe nodes of Uin. Every set S in the partition has a unique representative5v is not marked because v is active and marked nodes are always completed.



176 CHAPTER 7. DECIDING SOLVABILITYrS. We have the invariant that all nodes in S n rS are marked, and rS is theclosest unmarked DFS ancestor of each of them. Thus we can determine theclosest unmarked ancestor of a node x by calling Find(x). At the beginningof the cycle test, every node forms a singleton set. Whenever a node x getsmarked, we unite the set of x with the set of its DFS father f (see line 5);the representative of the union is the representative of the former set of f .This establishes the invariant again.Since the Union operations are not applied to arbitrary sets { we always unitethe set of a node with the set of its DFS father { we can use the incrementaltree disjoint set union algorithm by Gabow and Tarjan [GT85]. Thus thetotal time consumed by the Union-Find data structure is bounded by O(n)plus the number of invocations of Collect.Skipping marked nodes ensures that every dominance edge in Uin canbe the origin of at most one short-cut. Since the origin of each short-cutis an edge in Uin, we conclude that the number of edges in the graph Uis bounded by 2m. It easy to see that HC-visit is invoked once for eachnode and that every edge is scanned at most twice. So we conclude that thetotal running time of the harmful cycle test is O(n +m), which implies thefollowing theorem:Theorem 7.2 Solvability of a directed dominance graph D can be decided intime O(m), where m is the number of edges of D.Proof. Follows immediately from Theorem 7.1 and the observation that Dhas at most m=2 nodes.



Chapter 8Enumeration of solved formsIn this chapter we describe how the minimal solved forms of a dominancegraph D can be enumerated eÆciently. We discuss two algorithms. The�rst algorithm is obtained by plugging the eÆcient solvability check from theprevious chapter into the brute-force enumeration algorithm from Section 7.1.This algorithm, called Enum1, runs in time O(m+N � n2m), where N is thenumber of minimal solved forms, n is the number of nodes and m is thenumber of edges of D. Then we give an example showing that this timebound is tight for Enum1. The example gives rise to an improved algorithmEnum2. Its running time is O(m+N � nm).8.1 An eÆcient enumeration algorithmThe eÆcient solvability test from the previous section allows us to improvethe brute force enumeration algorithm (Algorithm 7.1 on page 154) consider-ably. In order to obtain an eÆcient algorithm (cf. Algorithm 8.1), we replacethe test for a directed cycle in D by the test for a harmful cycle in U(D) (seeline 1).We analyse the running time of Algorithm 8.1. Let us discuss how tocompute the transitive reduction of D (in line 2) eÆciently. It is well-knownthat this can be done in time O(nm) (see [GK79, Sim88]), where n is thenumber of nodes and m is the number of edges. But only the top-levelcall needs to do the full-edged reduction. The graphs processed in therecursive calls have been generated from a reduced graph D by adding asingle irredundant edge (l; s) (cf. Transformation Rule 3 on page 153). Weshow how to exploit this to compute the transitive reduction of D [ (l; s)much faster.Adding (l; s) makes an edge (v; w) redundant i� there is a path from v to l177



178 CHAPTER 8. ENUMERATION OF SOLVED FORMSAlgorithm 8.1 EÆcient enumeration of minimal solved formsProcedure: Enum1(D)1: if U(D) contains no harmful cycle then2: eliminate all redundant dominance edges3: if D has a root s with at least two incoming dominance edges then4: apply the choice rule and generate two new instances D1 and D25: Enum1(D1); Enum1(D2)6: else // D is in solved form7: report D8: end if9: end ifand a path from s to w in D. So we mark all nodes in D that can reach lwith red colour and all nodes that can be reached from s with green colour.Then we delete all edges where the source node is red and the target node isgreen. Finally, we add (l; s). This yields a reduced graph and can be donein time O(m).The running time of the top-level call Enum1(D) { without the timeconsumed by recursive calls { is O(nm). The size of the dominance graphscan only decrease as the recursion depth increases. An application of thechoice rule adds one edge, but it makes at least one edge redundant. Thusthe number of edges can only decrease, which implies that the time spent bya recursive call is O(m).Consider a call Enum1(D0) such that D0 is solvable but not a solved formitself. This call spawns two recursive calls Enum1(D01) and Enum1(D02). If D02is not solvable, then the latter call terminates immediately and D01 must besolvable. We charge the time for processing D02 to its solvable \sibling" D01.This shows that our analysis does not have to take into account recursivecalls for unsolvable graphs.If Enum1 is applied to a solvable graph, it eventually reports at least oneminimal solved form Ds. Let us charge the time spent by this applicationto Ds. As we have seen before, the recursion depth is bounded by n2 (themaximum size of the reachability relation). So each reported solved formgets a total charge of O(n2m). Denote by N the number of minimal solvedforms of D. The total running time of Enum1(D) is O(m+N � n2m). (Notethat the total running time is O(m), if D is unsolvable.)Observe that N may be exponential in the size of D, as shown by theexample in Figure 8.1. On the left-hand side we see a dominance graphD that consists of �(k) nodes and edges and has k + 2 tree fragments.
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Figure 8.1: Example showing that N may be exponential in the size of D.Each permutation � of [1; k] corresponds to a di�erent solved form of D(cf. right-hand side): � is the topmost and  is the bottommost fragment, thefragments �1; : : : ; �k are arranged according to �. So D has k! solved forms.Hence, the running time of our enumeration algorithm may be exponential inthe size of its input. But it is output sensitive, its running time is polynomialin the sum of the sizes of its input and output.A worst case example for Enum1We discuss an example which shows that the bounds given above are tightfor Algorithm 8.1. We de�ne a sequence D(1); D(2); D(3); : : : of dominancegraphs. D(k) has �(k) nodes and �(k2) edges, it has only one solved form,and Enum1 may make �(k2) applications of the choice rule to �nd it. We say\may", because the number of applications depends on the selection of theroot and the two dominance edges to which the choice rule is applied.The graph D(k) has 2k tree fragments (see Figure 8.2): �1, : : :, �k, �2,: : :, �k and . The fragment �i has the root ui and two leaves vi and wi,the fragment �j consists of a root xj and a leaf yj, and the fragment  hasthe root r and the leaf l. D(k) has the following dominance edges: (vi; r) fori = 1; : : : ; k, (wi; xi) for i = 2; : : : ; k and (vi; xj) for 1 � i < j � k.Clearly, D(1) is in solved form, so assume k > 1. We apply the choice ruleexhaustively to the root r: For i = 1; : : : ; k�1 we apply the rule to the edges(vk; r) and (vi; r). This generates two ampli�cations Gi (by adding (vk; ui))and Hi (by adding (vi; uk)). Gi is not solvable, because U(Gi) contains theharmful cycle fvk; uigÆfui; vigÆfvi; xkgÆfxk; wkgÆfwk; ukgÆfuk; vkg. So therecursive call for Gi terminates immediately, and the computation proceeds



180 CHAPTER 8. ENUMERATION OF SOLVED FORMSu1 w1v1rl
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Figure 8.2: The �rst three graphs in our worst case example for Enum1.u1w1v1
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D(3): F (3): S(3):

Figure 8.3: A possible computation of Enum1 applied to D(3).with Hi. In Hi, the edge (vi; r) is redundant, the edge (vk; r) remains. Afterk � 1 applications of the choice rule we have transformed D(k) into a graphF (k), where the indegree of r is one. We can see this transformation inFigure 8.3 for D(3).The subtree rooted at uk in F (k) is in solved form (it is even a con�g-uration). If we replace this subtree with a tree fragment consisting of twonodes, we obtain the graph D(k�1). (We invite the reader to compare F (3) inFigure 8.3 with D(2) in Figure 8.2.) An easy induction shows that D(k) hasa unique solved form S(k) and that Enum1 may have to apply the choice rule(k� 1)+ (k� 2)+ : : :+1 = �k2� times to �nd it. S(k) is in some sense similarto D(1): If the subtree rooted at u2 in S(k) is replaced by a fragment with



8.2. AN IMPROVED ENUMERATION ALGORITHM 181two nodes, one obtains D(1) (see Figure 8.3).8.2 An improved enumeration algorithmIn this section we show how to improve the worst case running time of theenumeration algorithm. We will prove that a solved form of a dominancegraph D can be constructed in time O(nm) and all N minimal solved formscan be found in time O(m+N �nm), which shaves o� a factor of n comparedto our previous results.We reconsider the example in Figure 8.2 and analyse why Enum1 has spentso much time to solve it. In order to reduce the indegree of the root r inD(k) from k to one, the choice rule is applied k � 1 times, and eventuallyonly one solvable graph remains. But k � 1 unsolvable dominance graphsare generated and to recognise unsolvability the harmful cycle test is calledfor each of them. Our goal is to make only the \necessary" choices, whichmeans that we do not generate unsolvable instances anymore. To be moreprecise, we are given a root s in a solvable dominance graph D and we wantto compute a sequence D1; : : : ; Dh of solvable ampli�cations of D with thefollowing property: S(D) = S(D1) _[ : : : _[ S(Dh), and the indegree of s inDi is one for i = 1; : : : ; h. We will do this in time O(h �m).Suppose we apply the harmful cycle test to U(D). Since D is solvable, itwill not report a harmful cycle. From the DFS forest that is computed wewill be able to deduce the solvability or unsolvability of certain ampli�cationsof D without generating them.Let us look at a tree in the DFS forest that is generated by the top-levelcall HC-visit(s), and assume that s has a DFS child l such that dfs inedge[l]is a dominance edge (see left-hand side of Figure 8.4). Thus the only DFSchild of l is the root r of the fragment of l, because the bend at l mustbe admissible. Assume further that the root r0 is a DFS descendant of l.Then the edge fl; r0g cannot belong to U(D), otherwise U(D) would containa harmful cycle which contradicts the assumption that D is solvable. Weconclude that ~D = D [ (l; r0) is not solvable.Suppose further that there is a leaf l0 in the fragment of r0 which isadjacent to s by a dominance edge (see right-hand side of the �gure). If weapply the choice rule to the edges (l; s) and (l0; s) it generates the graphs~D and D̂ = D [ (l0; r). As we have just seen, ~D is unsolvable. So everysolved form of D is an ampli�cation of D̂. Hence, we can add (l0; r) to D andremove the redundant edge (l0; s) without changing the set of solved formsof D. Thus we reduce the indegree of s while preserving the solved forms.The results from above are expressed in the following lemma:



182 CHAPTER 8. ENUMERATION OF SOLVED FORMSslrr0 sr r0l l0sr r0l l0~D: D̂:
Figure 8.4: Left: DFS tree generated by HC-visit(s); the marked edge fl; rgcannot belong to U(D), if D is solvable. Right: Choice rule applied to (l; s)and (l0; s).Lemma 8.1 Suppose that Algorithm 7.4 is applied to U(D) of a solvabledominance graph D. Assume that a top-level call HC-visit(s) is made. Letl be a leaf such that dfs inedge[l] = fl; sg is a dominance edge. If l0 is aproper DFS descendant of l and r0 denotes the root of the fragment of l0 inD, then ~D = D [ (l; r0) is not solvable.Assume further that l0 is adjacent to s. Then we have for every solved formDs of D that (l0; r) 2 Reach(Ds), where r denotes the root of the fragment ofl. Hence, we can add (l0; r) to any ampli�cation D0 of D without changingthe set of solved forms, i.e. S(D0 [ (l0; r)) = S(D0).Proof. Since no harmful cycle is reported by the algorithm, the treeedge fr0; l0g becomes a DFS forest edge. So r0 is the DFS father of l0 (ifdfs inedge[l0] is the tree edge) or the DFS child of l0 (if dfs inedge[l0] is adominance edge). Hence, r0 is a DFS descendant of l.Let U = U(D) and ~U = U( ~D). We compare computation of the callsHC-Test(U) and HC-Test( ~U). We assume that the iterations in Algo-rithm 7.4 (see lines 4 and 9) process the iterated items according to somedeterministic order, so that the computations of the two calls are parallel aslong as possible. Thus both calls make the same computations until the edgee = fl; r0g is scanned for the �rst time during the harmful cycle test for ~U .Observe that e cannot be the origin of a short-cut before l is completed. Sincethe bend hdfs inedge[l]; l; ei is forbidden (see left-hand side of Figure 8.4), eis scanned only during the call HC-visit(r0), although l becomes active be-fore r0. As l is still active then, the algorithm reports a harmful cycle in ~U .Therefore ~D is not solvable.Suppose that l0 is adjacent to s, i.e. D contains the dominance edge (l0; s).Applying the choice rule to the edges (l; s) and (l0; s) generates two graphs.



8.2. AN IMPROVED ENUMERATION ALGORITHM 183One of these graphs is ~D, the other is D̂ = D [ (l0; r). We know thatS(D) = S( ~D) _[ S(D̂) (see page 152). As S( ~D) is empty, every solved formDs of D is an ampli�cation of D̂, which proves the rest of the claim.The lemma above allows us to reduce the indegree of s to one if s hasonly one DFS child (that is adjacent to it by a dominance edge). Nowwe consider two DFS children l1 and l2 of s and examine the solvability ofD1 = D [ (l1; r2) and D2 = D [ (l2; r1) (see left-hand side of Figure 8.5).Observe that these graphs are the two instances generated by applying thechoice rule to (l1; s) and (l2; s). We assume that l1 is completed before l2 andno other DFS child of s is completed in between.Suppose we add the edge d1 = fl1; r2g to U = U(D) and obtain U1 (asin the middle of the �gure). If we invoke HC-visit(s) on U1, the recursivecall for l1 ignores d1, because dfs inedge[l1] is a dominance edge. So does therecursive call for r2, because l1 is already completed at that time. Hence, D1is solvable.The situation is more complicated if we add d2 = fl2; r1g to U , whichyields U2 (see right-hand side of the �gure). We know that D2 is unsolvablei� U2 contains a harmful cycle. It will turn out that this is the case i� duringthe call HC-visit(l2) (including recursive calls spawned by this call) an edgefr0; l1g is scanned.Hence, the call HC-visit(s) provides us with enough information to avoidan explicit application of the choice rule to (l1; s) and (l2; s). The details aregiven below:Lemma 8.2 Suppose that Algorithm 7.4 is applied to U(D) of a solvabledominance graph D. Assume that a top-level call HC-visit(s) is made. Letl1 and l2 be two DFS children of s such that l1 is completed before l2 and noother DFS child of s is completed in between. Assume that the dfs inedgesof both leaves are dominance edges, and denote by r1 and r2 the roots of thefragments of l1 and l2, respectively. Then the following holds:1. D1 = D [ (l1; r2) is solvable. (In fact, applying Algorithm 7.4 to U(D1)yields the same computation as for U(D).)2. D2 = D [ (l2; r1) is solvable i� during the call HC-visit(l2) (includingspawned recursive calls) no edge incident to l1 is scanned.Proof. Let U = U(D) and Ui = U(Di), i = 1; 2. As in the proof ofthe previous lemma, the basic idea is again to compare the computation ofHC-Test(U) with those of HC-Test(U1) and HC-Test(U2).The �rst claim follows from the fact that the harmful cycle test for U1basically ignores the edge d1 = fl1; r2g (cf. middle of Figure 8.5). Since



184 CHAPTER 8. ENUMERATION OF SOLVED FORMSs l2r2l1r1s l2r2l1r1 ? r2s l2l1r1 r0
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Figure 8.5: Examining two siblings l1 and l2 in the DFS forest generated byHC-visit(s).the bend hdfs inedge[l1]; l1; d1i is not admissible, the edge is not scannedin the call HC-visit(l1). It is scanned for the �rst time during the callHC-visit(r2), and then no action is taken because l1 is already completedat that time. Thus the computations of the harmful cycle test for U1 andfor U are identical. Since U contains no harmful cycle, the correctness of thecycle test implies that there is no harmful cycle in U1. Hence, D1 is solvable.In order to prove the second claim, we examine the computations of theharmful cycle test for U and for U2 in detail. Consider the computation forU2, and assume w.l.o.g. that the edge d2 = fl2; r1g is the last edge that isscanned during the call HC-visit(r1). Since l2 is unreached at that time, d2becomes the dfs inedge of l2 and a recursive call HC-visit(l2) is spawned.We denote the state of the computation at that point in time by a, it isshown on the right-hand side of Figure 8.5.We switch now to the harmful cycle test for U and consider the point intime when the call HC-visit(l2) is made, the state of that computation isdepicted as state b on the right-hand side of the �gure.The two states are similar, the only di�erences are the following: In statea, we have dfs inedge[l2] = d2 and l1 and r1 are still active, while in stateb both l1 and r1 are completed and dfs inedge[l2] = fs; l2g. From the statesa and b the computations for U2 and U proceed in parallel ways until onethe of the following occurs: l2 gets completed or an edge incident to l1 or r2is scanned.Assume �rst that l2 becomes completed. Then in the computation forU2, r1 and l1 become completed, too, and the computation continues withthe top-level call for s. In the computation for U , the recursive call for l2returns immediately to the top-level call. So after the completion of l2, bothcomputations are in exactly the same state again (except for dfs inedge[l2]).



8.2. AN IMPROVED ENUMERATION ALGORITHM 185This means that each of them will terminate without reporting a harmfulcycle.Suppose now that an edge incident to l1 or r1 is scanned. At that timeall nodes adjacent to r1 except for l1 and l2 are already completed (becausewe assumed that d2 is the last edge to be scanned in the call for r1). Thisimplies that an edge incident to l1 is scanned. The harmful cycle test for U2will report a cycle, because l1 is active. (In the computation for U no actionwill be taken, for l1 is already completed there.)So we have shown the following: The harmful cycle test for U2 discovers aharmful cycle i� the test for U scans an edge incident to l1 while l2 is active.This proves the second claim of the lemma.The two lemmas allow us to design an improved enumeration algorithm.In order to be able to apply them, we make some changes to the edge scanprocedure (see E-visit in Algorithm 8.2). When this procedure is calledto scan the edges incident to a node v, the situation is as follows. We arebuilding the DFS tree with the root node s at the top. One DFS child of sis active, we denote it by l; v is a (not necessarily proper) DFS descendantof l. By lprev we denote the DFS child of s that has been completed last. (Ifl is the �rst child, then lprev = none).While constructing the DFS subtree rooted at l, we want to collect allDFS descendants l0 of l that are adjacent to s (cf. Lemma 8.1), and we wantto check whether an edge incident to lprev is scanned (see Lemma 8.2). Thisexplains why E-visit has the two additional arguments s and lprev, and whya set L of leaves is returned. L contains all DFS descendants of v that areadjacent to s (cf. line 1). When an edge incident to lprev is scanned, lprev isalso put into L (see line 5).Moreover, the test that checks whether a scanned edge closes a harmful cyclehas been omitted in E-visit, because we only apply it to graphs which donot have such a cycle.We discuss now the function EnumRoot(Din,s) (see Algorithm 8.3), whichtakes as input a solvable dominance graph Din and a root s (with indegreeat least 2) in Din. It returns a set A = fD1; : : : ; Dhg of dominance graphswith the following property: S(Din) = S(D1) _[ : : : _[ S(Dh), each Di is asolvable ampli�cation of Din and the indegree of s in Di is one.The algorithm works on three graphs in parallel. The �rst one is theundirected dominance graph U , on which the harmful cycle test for U(Din)is simulated. The second graph is the directed dominance graph D, whichis used to record the information that is gathered during the simulation; Dis initialized with a copy of Din. D is always a solvable ampli�cation of Din.The algorithm gradually adds dominance edges to D and removes dominance



186 CHAPTER 8. ENUMERATION OF SOLVED FORMSAlgorithm 8.2 Modi�ed edge scan used by Algorithm 8.3Function: E-visit(v; s, lprev)1: if v is adjacent to s then L fvg else L ;2: status [v] active3: for all edges e incident to v s.th. hdfs inedge[v]; v; ei is admissible do4: let w be the node adjacent to v via e5: if w = lprev then L L [ flprevg6: case 1: status [w] = unreached7: dfs inedge[w] e; L L[ E-visit(w)8: case 2: status [w] = completed and w is a root9: Collect(e)10: otherwise: do nothing11: end for12: status [v] completed13: return Ledges incident to s until the indegree of s becomes one. We want to pointout that the edge additions may introduce parallel edges and turn D into amultigraph, so we remove parallel edges before D is returned (cf. line 27).The third graph ~D is also a directed dominance graph and is initialized witha copy ofDin. ~D is only needed for the correctness proof and will be discussedlater.The algorithm builds a DFS tree rooted at s. It uses a variable lprev tostore the DFS child of s which has been completed last; at the beginninglprev is none. The simulation of the harmful cycle test starts with making sactive and setting dfs inedge[s] to none. Then the edges incident to s arescanned, we only consider dominance edges, because this enables us to applythe previous lemmas. (Note that this is not a problem, for we may assumethat the original cycle test scans the dominance edges �rst.) Whenever adominance edge d = fs; lg is scanned such that l is unreached, we make l aDFS child of s by setting dfs inedge[l] = d and we call E-visit for l. Thisconstructs the DFS subtree rooted at l and returns a list L of leaves (seeabove).Every leaf l0 in L n fl; lprevg is incident to s and a proper DFS descendantof l. We add the dominance edge (l0; r) to D, where r denotes the root ofthe fragment of l (cf. Lemma 8.1). This makes the edge (l0; s) redundant, sowe remove it from D.Assume now that lprev 6= none. If lprev is contained in L, we create a copyD0 of D, add the dominance edge (l; rprev) to D0 and remove the redundant



8.2. AN IMPROVED ENUMERATION ALGORITHM 187
Algorithm 8.3 Enumeration algorithm EnumRootFunction: EnumRoot(Din, s)Require: Din is a solvable dominance graph, s is a root in Din1: A ; // A will store the result2: U  U(Din); D Din; ~D Din // ~D only needed for the proof3: lprev  none // no previous DFS child of s4: initialize the status of all nodes to unreached5: dfs inedge[s] none; status [s] active6: for all dominance edges d = fs; lg in U incident to s do7: if status [l] 6= unreached then continue (with for loop)8: dfs inedge[l] d; L E-visit(l; s, lprev)9: r root of fragment of l10: for all l0 2 L n fl; lprevg do11: // apply Lemma 8.1:12: add dominance edge (l0; r) to D; remove (l0; s) from D13: end for14: if lprev 6= none then15: if lprev =2 L then16: D0  D; rprev  root of fragment of lprev in D017: // apply Lemma 8.2 (part 2):18: add dominance edge (l; rprev) to D0; remove (l; s) from D019: remove parallel edges in D020: A A[ EnumRoot(D0, s)21: end if22: // apply Lemma 8.2 (part 1):23: add dominance edge (lprev; r) to D and ~D; remove (lprev; s) from D24: end if25: lprev  l26: end for27: remove parallel edges in D28: A A [ fDg29: return A



188 CHAPTER 8. ENUMERATION OF SOLVED FORMSedge (l; s) from D0. (rprev is the root of the fragment of lprev.) We make arecursive call EnumRoot(D0,s) and add the reported graphs to the result setA. This is motivated by the second statement of Lemma 8.2.No matter if lprev is in L or not, we add the dominance edge (lprev; r) toD (cf. statement 1 of Lemma 8.2), we remove (lprev; s) from D due to re-dundancy. (The edge (lprev; r) is also added to ~D, but no edge is removed.)Finally, we set lprev equal to l and continue with the scan.When the scan terminates, lprev is the only leaf in D that is adjacent to svia a dominance edge. In fact, whenever line 6 is executed, lprev is the onlycompleted leaf that is adjacent to s by a dominance edge. This can be seenby induction: When line 6 is executed for the �rst time lprev = none and nonode is completed. Assume now that the invariant holds. The call of E-visitfor l declares all DFS descendants of l completed. By the edge deletions inline 12 we ensure that all proper descendants get disconnected from s. Inline 23 we disconnect lprev, so that l is the only completed node adjacent to sby a dominance edge. After setting lprev equal to l, the invariant holds again.Since all leaves connected to s by dominance edges are completed after thescan, we conclude that the indegree of s in D is one.It is not obvious that D is solvable. Recall that we simulate a harmfulcycle test for U(Din), so we cannot apply the lemmas to D, but we can applythem to ~D. This follows from the fact that the edges added to ~D (see line 23)are ignored by the harmful cycle test (see statement 1 of Lemma 8.2), whichimplies that the computation of EnumRoot is also a simulation of the harmfulcycle test for U( ~D). Therefore, ~D is solvable. The edges in D which are notin ~D have been added in line 12. By Lemma 8.1, inserting these edges into~D does not change the set of solved forms. The same holds for the deletionof redundant edges. Thus S(D) = S( ~D).An analogous argument shows that if a recursive call EnumRoot(D0,s) ismade, then D0 is a solvable dominance graph. Moreover, S(D) and S(D0)are disjoint. This follows from the fact that the lines 18 and 23 can be seenas an application of the choice rule to the edges (lprev; s) and (l; s). Thus aneasy induction proves that the graphs in the returned set A have non-emptyand pairwise disjoint sets of solved forms.We analyse the running time of the algorithm. Let m denote the numberof edges of Din. The time needed for simulating the harmful cycle test forU is O(m). The graph D always has m edges until the parallel edges areremoved in line 27, which can be done in time O(m). If we do not count thetime spent in lines 16 { 20, the running time of EnumRoot is O(m). If wemake a recursive call, D0 can be constructed in time O(m). We charge thistime to the recursive call. Since every call reports one dominance graph, the



8.2. AN IMPROVED ENUMERATION ALGORITHM 189total running time of EnumRoot(Din,s) is O(jAj �m), where A is the set ofampli�cations returned by this call.We summarize our results in the following lemma:Lemma 8.3 If Algorithm 8.3 is applied to a solvable dominance graph Dand a root s in D, it generates a set A = fD1; : : : ; Dhg of ampli�cations ofD. The running time is O(h � m), where m is the number of edges of D.Each graph Di 2 A is solvable, has at most m edges, and the indegree of sin Di is one. Moreover, S(D) = S(D1) _[ : : : _[ S(Dh).Given the function EnumRoot it is straightforward to design the secondenumeration algorithm Enum2 (see Algorithm 8.4). Suppose we have a solv-able dominance graph D. If all roots in D have indegree one, then D is asolved form; we report D and terminate. Otherwise we choose a root s in Dwith indegree greater than one. We call EnumRoot(D,s), which generates aset A of ampli�cations of D. We apply Enum2 recursively to every graph inA.Algorithm 8.4 Enumeration algorithm Enum2Procedure: Enum2(D)Require: D is a solvable dominance graph1: if all roots in D have indegree at most one then2: report D and terminate3: else4: pick root s s.th. indeg(s) > 1, every proper descendant has indegree 15: A EnumRoot(D,s)6: for all D0 2 A do Enum2(D0)7: end ifWe have to be careful how we select s, because EnumRoot may add edges.We should make sure that s is not chosen again in a recursive call of Enum2.Since D is solvable, it is a directed acyclic graph, and hence it makes senseto talk about ancestors and descendants. We observe that all edges addedby EnumRoot(D,s) are incident to proper ancestors of s in D. This suggeststo pick a root s with indegree greater than one such that all its properdescendants have indegree one. It is easy to determine s in time O(m): Weperform a depth-�rst search on D, until the �rst root s with indegree greaterthan one is completed. (Note that all proper descendants of s are completedbefore s.)Now we analyse the running time of Enum2(D). LetN denote the numberof minimal solved forms of D, and denote by n and m the number of nodes



190 CHAPTER 8. ENUMERATION OF SOLVED FORMSand edges respectively. Clearly, all the graphs that are processed in recursivecalls have at most O(m) edges. Moreover, our selection rule for s guaranteesthat the recursion depth is bounded by n.Consider a call Enum2(D0). It invokes EnumRoot(D0,s) for some root s,which generates a set A0 in time O(jA0j �m). A0 gives rise to jA0j recursivecalls of Enum2. By charging O(m) time to each of these recursive calls, weobtain an amortized time of O(m) for the call Enum2(D0).By each call of Enum2 at least one minimal solved form D is reported, andno solved form is reported twice. As the recursion depth is bounded by n,there are at most N � n calls of Enum2. Therefore the total running time ofEnum2(D) is O(N � nm).We summarize our results in the following theorem:Theorem 8.1 Let D be a dominance graph with n nodes and m edges, thenthe solvability of D can be decided in time O(m). If D is solvable, a solvedform of D can be constructed in time O(nm), and all N solved forms can beenumerated in time O(N � nm).Proof. The only thing that remains to be discussed is how to construct asolved form of a solvable dominance graph in time O(nm). We make a smallmodi�cation to the function EnumRoot: We delete the lines 15 { 21, i.e. wedo not make recursive calls anymore. Then the function runs in time O(m)and constructs only one solvable dominance graph. If we plug this modi�edfunction into Algorithm 8.4, we obtain an algorithm that reports a singlesolved form in time O(nm). (Note that the recursion depth is still boundedby n.)



Chapter 9Related work and discussionThis chapter is divided in two sections. The �rst section discusses somerelated work in the �eld of computational linguistics. It focuses on dominanceconstraints and two polynomial time solvable subclasses which can be appliedto many problems in computational linguistics. The second section deals withrelated algorithms for deciding solvability and for enumerating solved forms.9.1 Dominance constraints and subclassesOne might say that this section describes a struggle to �nd a logical lan-guage for talking about trees that is rich enough to model certain problemsfrom computational linguistics and restricted enough to solve these problemseÆciently. First we introduce the language of dominance constraints whichis simple and powerful but unfortunately also very hard to process. Thenwe discuss two proper subclasses which are useful in practice and can beprocessed eÆciently: normal and weakly normal dominance constraints.Dominance constraintsThe presentation in the following two sections is based on parts of [ADK+03],most of the results in this section are due to Koller and Niehren.f �g �a � a �Figure 9.1: f(g(a; a))The language of dominance constraints is a logi-cal language that talks about trees and the ancestor-descendant relation of their nodes. In this languagetrees are modelled as terms composed of functionsymbols. The ground term f(g(a; a)) correspondsto the tree shown in Figure 9.1. It uses three func-tion symbols with di�erent arities: f with arity one, g with arity two, and a191



192 CHAPTER 9. RELATED WORK AND DISCUSSIONwith arity zero. A function symbol of arity zero is called a constant.A dominance constraint � is a conjunction of dominance and labellingliterals of the following form� ::= � ^ �0 j X C� Y j X:f(X1; : : : ; Xn)where X,Y and X1; : : : ; Xn are variables and f is a function symbol of arityn. The function symbols are drawn from a signature �, we assume that �contains at least one constant and one function symbol of arity at least two.We denote the arity of function symbol f 2 � by ar(f).A solution of a constraint � consists of a tree � and a variable assignment� that maps the variables of � to the nodes of � such that all literals aresatis�ed.We make this more precise. A constructor tree � is a triple (V;E; L) suchthat the directed graph (V;E) is a rooted tree and L : V [ E ! � [ Nwith L(V ) � � (node labels) and L(E) � N (edge labels). The edge labelsdetermine the left-to-right order of the outgoing edges of a node u 2 V . Fork = 1; : : : ; ar(L(u)) there must be exactly one edge e = (u; v) 2 E withL(e) = k. The variable assignment is a mapping � : Vars(�) ! V , whereVars(�) is the set of all variables occurring in �.A tuple (�; �) satis�es a dominance literal X C� Y of � i� there is a pathin � from �(X) to �(Y ), i.e. �(X) is a (not necessarily proper) ancestor of�(Y ). We say that (�; �) satis�es the labelling literal X:f(X1; : : : ; Xn) i�L(�(X)) = f , and ek = (�(X); �(Xk)) is an edge in E with L(ek) = k fork = 1; : : : ; n.A solution of the constraint � = U :f(V ) ^ V :g(X; Y ) ^ X:a ^ Y :a isthe tree � in Figure 9.1 together with the obvious variable assignment �.Since the variable assignment does not have to be surjective, any tree thatcontains � as a subtree could also appear in a solution. Moreover, the variableassignment does not have to be injective, the same tree together with anextended variable assignment �0 would also be a solution for the constraint� ^W :f(Z). The variables U and W (as well as V and Z) are mapped tothe same node of � . We say that U and W overlap in the solution (�; �0).
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The overlapping feature (in conjunction with thedominance literals) makes this language very expres-sive, and it is very hard to decide whether a givendominance constraint has a solution. In fact, Koller etal. [KNT01] showed that this problem is NP-complete.We do not give the proof here but we show an ex-ample that illustrates the problem. Consider the constraint X:f(X1; X2) ^Y :f(Y1; Y2) ^ Y C� X ^X C� Y1, which is depicted in Figure 9.2. Every so-



9.1. DOMINANCE CONSTRAINTS AND SUBCLASSES 193lution to this constraint must map X to same node as either Y or Y1, i.e. Xmust overlap with Y or Y1 in any solution.In our drawings we indicate a parent-child relation implied by a labellingliteral X : f(: : : ; Y; : : :) by a solid dart from X to Y . A dominance lit-eral X C� Y is visualized by a dashed dart from X to Y . Hence, everydominance constraint � corresponds in a canonical way to a directed la-belled graph G�. The nodes of G� are the variables of � and the edges aref(X; Y ) jX:f(: : : ; Y; : : :) 2 � or X C� Y 2 �g. The edges induced by la-belling literals are called tree edges, and the edges that stem from dominanceliterals are dominance edges. The node and edge labels of G� are given bythe labelling literals (cf. the de�nition of a constructor tree). The connectedcomponents of the subgraph induced by tree edges are called the fragmentsof G�.Normal dominance constraintsThe NP-completeness result shed doubt on the practical usefulness of domi-nance constraints until Althaus et al. [ADK+01] were able to give a positiveresult. They extended the language of dominance constraints by allowinginequality literals of the form X 6= Y .1 Then they identi�ed the subclass ofnormal dominance constraints, for which solvability can be decided in poly-nomial time. The main property of these constraints is that the overlappingis restricted: Only a root of a tree fragment may overlap with an unlabelledleaf of another tree fragment. (Recall that this corresponds to the idea ofplugging roots into holes (i.e. unlabelled leaves) from Section 6.1.) A formalde�nition follows:De�nition 9.1 (normal dominance constraint)A dominance constraint � with inequality is a conjunction of dominance,labelling and inequality literals of the following form� ::= � ^ �0 j X C� Y j X:f(X1; : : : ; Xn) j X 6= Ywhere X, Y and X1; : : : ; Xn are variables and f is a function symbol of arityn. In a labelling literal X:f(X1; : : : ; Xn), the variable X occurs in parentposition and the variables X1; : : : ; Xn occur in child position. A variablethat only occurs in parent position in � is called a root, and a variable thatonly occurs in child position in � is called a hole.A dominance constraint � with inequality is called normal if it satis�es thefollowing conditions:1As the reader has probably guessed, (�; �) satis�es X 6= Y i� �(X) 6= �(Y ).



194 CHAPTER 9. RELATED WORK AND DISCUSSION1. If X and Y are variables that occur in parent position of two distinctlabelling literals, then � contains the literal X 6= Y .2. Every variable appears in at least one labelling literal of �.3. For each variable there is at most one occurrence in parent positionand at most one occurrence in child position of a labelling literal. Novariable occurs twice in a single labelling literal.4. If � contains the literal X C� Y , then X is a hole and Y is a root.When we talk about dominance constraints in the sequel, we will alwaysallow inequality literals. We want to make some remarks about this de�ni-tion. Condition 1 (together with Condition 2) implies that the only possibleoverlapping is between a hole and a root. Observe that Condition 3 doesnot exclude fragments of solid edges in G� which contain a cycle, but if afragment is acyclic, then it is tree shaped. Condition 4 requires that dashededges in G� are directed from holes to roots. We want to point out that notevery leaf of a solid tree fragment in G� has to be a hole. In the constraintX:f(Y; Z)^Z : a the variable Y is a hole, but Z is not, although in G� bothY and Z are leaves of the fragment with root X.Assume that we relax the de�nition of dominance graphs (see page 145)a little bit and allow tree fragments of arbitrary height (instead of heightone). Clearly, all the results from the previous chapters continue to hold.A dominance graph D with fragments of height di�erent from one can betransformed in linear time into an \equivalent" graph D0 with fragments ofheight one: If we have a fragment of height greater than one, we remove allnodes but the root and the leaves and connect the root to all the leaves bytree edges. If there is a fragment of height zero2, i.e. just a root r, we add anew leaf l and the tree edge (r; l) to the graph. This relaxation enables usto view the graph G� of a normal dominance constraint � as a dominancegraph, if all fragments of G� are acyclic.As it was the case for dominance graphs, we also de�ne the notion solvedform for a dominance constraint:De�nition 9.2 (solved form) A dominance constraint � is in solved formif G� is a forest. � is called an ampli�cation of a (normal) dominanceconstraint �0 if � and �0 contain the same labelling and inequality literalsand Reach(G�) � Reach(G�0) (i.e. � entails all dominance literals of �0). Asolved form of �0 is an ampli�cation of �0 which is in solved form.2E.g., the constraint X :a corresponds to a fragment of height zero.



9.1. DOMINANCE CONSTRAINTS AND SUBCLASSES 195A solved form � of �0 is called minimal if there is no solved form �00 of �0with Reach(G�00) � Reach(G�).We will show now that normal dominance constraints and dominancegraphs are equivalent with respect to solved forms. The precise correspon-dence is given by the following theorem:Lemma 9.1 Let � be a normal dominance constraint such that G� containsno cyclic fragment. Then there is a one-to-one correspondence between theminimal solved forms of � and the minimal solved forms of G� (viewed as adominance graph), which is given by the mapping �0 7! G�0.Proof. By de�nition, every solved form �0 of � is mapped to a solvedform of G�. The converse is in general not true, because of Condition 4 ofDe�nition 9.1: There may be a solved form of G� with a dominance edgeemanating from a leaf which is not a hole in �.We will show that this is not the case for a minimal solved form D0 of G�:If we apply one of our enumeration algorithms to G� (like Algorithm 8.1 onpage 178), it will report D0. Every edge in D0 which is not contained in G�has been inserted by an application of the choice rule. Since the choice ruleonly adds edges to leaves which already have an outgoing dominance edge(see Figure 7.2 on page 153), we conclude that every dominance edge in D0emanates from a hole in �. Hence, D0 corresponds to a solved form �0 of �with G�0 = D0.So far we have proven that the mapping �0 7! G�0 and its inverse mapa minimal solved form to a solved form. An easy argument shows that aminimal solved form of � is mapped to a minimal solved form of G� and viceversa.This theorem allows us to apply the algorithms from the previous chaptersto normal dominance constraints. But we have not proven yet that the notionsolved form deserves its name for dominance constraints. We show below thatevery dominance constraint in solved form has a solution. This is not a trivialresult. The construction that transforms a dominance graph in solved forminto a con�guration (see again Figure 6.5 on page 148) does not work fordominance constraints, because this construction may add a dominance edgeto a leaf which is labelled by a constant, i.e. it is not a hole.Lemma 9.2 A dominance constraint � in solved form has a solution.Proof. We only sketch the proof, the details can be found in the proof ofLemma 3.6 in [ADK+03]. By de�nition, G� (including its dominance edges)



196 CHAPTER 9. RELATED WORK AND DISCUSSIONis a forest. If it contains more than one tree, we add a new unlabelled rootr and connect r to the root of every tree by dominance edges. So from nowon we may assume that G� is a single tree.In general, G� is not a constructor tree (see page 192), because somenodes and some edges { the holes and the dominance edges { are not labelled.Since the signature � contains a function symbol f of arity at least two and aconstant a, we transform G� into a constructor tree � . We repeatedly applythe transformation shown in Figure 9.3. As every variable in � is a node in� , we can choose the variable mapping � to be the identity mapping. Thus� satis�es every inequality literal. Hence, (�; �) is a solution of �. (Thissolution does not involve any plugging at all, this issue is addressed later.)
Y3

X
Y1 Y2 Y4 Y1 Y2Y3 Y4

X f f a31 32 21
Figure 9.3: Transforming a subgraph induced by a hole and its outgoingdominance edges into a labelled subgraph. (In the example ar(f) = 3.)For a normal dominance constraint one can show a converse statement:The existence of a solution implies the existence of a solved form. Thefollowing lemma makes a slightly stronger statement:Lemma 9.3 Every solution of a normal dominance constraint � satis�essome solved form of �.Proof. See the proof of Lemma 3.7 in [ADK+03]. f � X1� Y1 Z1 �f � X2� Y2 Z2 �a � U a � V

We give an example to illustrate that this lemmadoes not hold for arbitrary dominance constraints:V2i=1(Xi:f(Yi; Zi) ^ Yi C� U ^ Zi C� V ) ^ U :a ^ V :aThis constraint has a solution (the tree f(a; a) withthe obvious variable mapping), but it has no solvedform. It is not normal because it violates Condi-tion 1 of De�nition 9.1. In order to make the constraint normal, one would



9.1. DOMINANCE CONSTRAINTS AND SUBCLASSES 197have to add inequality literals, in particular X1 6= X2. Hence, the normalconstraint would not have a solution.Combining the previous lemmas, we see that a normal dominance con-straint � has a solution i� it has a solved form. By Lemma 9.1, we can applythe harmful cycle test (Algorithm 7.4) to G� in order to decide whether �has a solution.Let us examine how the size of G� depends on the size of �. The numbern of nodes of G� is equal to the number of variables of �. G� does not dependon the inequality literals of � at all. Let l denote the size of a \reasonable"encoding3 of �. Then G� has O(l) edges and nodes. The next theorem followsimmediately from Theorem 8.1:Theorem 9.1 Let � be a normal dominance constraint with n variables.Denote by l the encoding length of �. Deciding whether � has a solution canbe done in time O(l). If � is solvable, a solved form (and a solution) can beconstructed in time O(nl), and all N solved forms of � can be enumerated intime O(N � nl).Constructive solutions of normal dominance constraintsConsider a dominance constraint � which has a solution (�; �). Then anyconstructor tree � 0 which contains � as a subgraph gives rise to a solution(� 0; �). Hence, � has in�nitely many solutions. For many problems in com-putational linguistics the acceptable solutions may only contain material thatis mentioned in the labelling constraints of �. Koller et al. [KNT03] gave aformal de�nition of this property:De�nition 9.3 (constructive solution) A solution (�; �) of a dominanceconstraint � is called constructive if the following holds: For every node nin � there is a variable X in � such that �(X) = n and X is not a hole.A constructive solution requires that every hole of � overlaps with a root.Thus this notion formalizes the idea of plugging roots into holes from Sec-tion 6.1. Unfortunately, deciding whether a (normal) dominance constrainthas a constructive solution is NP-complete. (This follows immediately fromTheorem 10.1 in [ADK+03].) Observe that the solution which is built in theproof of Lemma 9.2 is not constructive.3Each variable is encoded by an index in [1::n], which �ts into one machine word. Theencoding size of a dominance literal is constant, and the size of a labelling literal involvinga function symbol f is linear in the arity of f . Inequality literals implied by normality arenot encoded at all.



198 CHAPTER 9. RELATED WORK AND DISCUSSIONBut Koller et al. [KNT03] were able to identify a subclass of constraintscalled leaf-labelled, chain-connected normal dominance constraints for whichthe existence of a constructive solution can be decided in linear time (withour harmful cycle test). A normal dominance constraint � is leaf-labelledif every variable occurs on the left-hand side of a labelling or a dominanceliteral. This means that the leaf of every fragment of G� is either labelled bya constant or the source of a dominance edge.� is called chain-connected if the fragments F1; : : : ; Fk of G� can be parti-tioned into two disjoint sets O and U such that the following holds (cf. Fig-ure 9.4):1. O is not empty.2. For all i let ri be the root of Fi. For i = 1; : : : ; k � 1 either� Fi 2 O and Fi+1 2 U , and there is a hole Xi;r in Fi such that(Xi;r; ri+1) 2 Reach(G�) ; or� Fi 2 U and Fi+1 2 O, and there is a hole Xi+1;l in Fi+1 such that(Xi+1;l; ri) 2 Reach(G�).3. For all i 2 [2::k � 1] with Fi 2 O the holes Xi;l and Xi;r are di�erent.
F2 F4

F3 F5F1 X3;l 6= X3;rX1;l X5;r
Figure 9.4: A schematic picture of a chain. A dotted dart represents a pathin G� (possibly a single dominance edge).Koller et al. show the following theorem (see Theorem 13 in [KNT03]) forthe above de�ned subclass of normal dominance constraints:Theorem 9.2 Every solved form �0 of a leaf-labelled, chain-connected nor-mal dominance constraint � has a constructive solution.This implies that the existence of a constructive solution of � can bechecked in linear time. Koller et al. also show that G�0 is always a con�gura-tion of G�. Hence, a constructive solution of � can be built from �0 in linear



9.1. DOMINANCE CONSTRAINTS AND SUBCLASSES 199time. So if � is solvable, all N constructive solutions can be enumerated intime O(N �nl) where n is the number of variables and l is the encoding lengthof �.Koller et al. conjecture that all linguistically useful constraints fall in thesubclass of leaf-labelled, chain-connected normal dominance constraints. Inorder to justify their conjecture, they de�ne a nontrivial grammar for a frag-ment of English and show that it only generates dominance constraints thatbelong to the class above.Moreover, they consider an underspeci�cation formalism called Hole Seman-tics ([Bos96] and [Bos02]). They describe a back-and-forth translation be-tween this formalism and normal dominance constraints. Due to this trans-lation, the algorithms from the Chapters 7 and 8 can be used to speed upthe processing of Hole Semantics for practically useful instances.Weakly normal dominance constraintsBodirsky et al. [BDMN04] introduced a subclass of dominance constraintswhich is called weakly normal dominance constraints. This class is a propersuperclass of the class of normal dominance constraints. The main di�erenceis that Condition 4 of De�nition 9.1 is relaxed for a weakly normal dominanceconstraint �: If � contains a dominance literal X C� Y , then X is a hole ora root and Y is a root.Weakly normal dominance constraints correspond to weakly normal domi-nance graphs, which are dominance graphs that allow root-to-root dominanceedges. Bodirsky et al. show how to enumerate all N minimal solved formsof a solvable weakly normal dominance graph D in time O(N � nm), wheren is the number of nodes and m is the number of edges of D. This matchesthe asymptotic running time of the best enumeration algorithm presented inthis thesis. However, with respect to deciding solvability their best resultis O(nm). This is a factor of n slower than our solvability test for normaldominance constraints (see Algorithm 7.4).This gap gives rise to the question whether the approach from Chap-ter 7 can be generalized to weakly normal dominance graphs. The answeris probably negative as the example D on the left-hand side of Figure 9.5demonstrates. It is easy to see that D is unsolvable. U(D) contains threesimple cycles: C1 = [a; b; f; d; g; c; a], C2 = [a; b; f; d; a] and C3 = [a; c; g; d; a].We will show that none of these cycles alone proves unsolvability, i.e. none ofthem corresponds to an unsolvable subgraph of D. The graph D1 = Dn(a; d)is solvable (cf. middle of the �gure) and U(D1) contains C1. An analogousobservation can be made for D2 = D n (c; g) and C2 (see right-hand side of



200 CHAPTER 9. RELATED WORK AND DISCUSSIONthe �gure), as well as for D3 = D n (b; f) and C3 (symmetrical to D2 andC2).
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Figure 9.5: An unsolvable weakly normal dominance graph D without anunsolvable simple cycle.Niehren and Thater [NT03] show that enlarging the subclass of eÆcientlysolvable dominance constraints from normal to weakly normal dominanceconstraints is relevant for computational linguistics. They describe a sublan-guage of Minimal Recursion Semantics (see [CFS97]), which is called MRS-nets. By de�ning a back-and-forth translation between MRS-nets and normaldominance nets (a subclass of weakly normal dominance constraints), theyshow that the algorithms in [BDMN04] can be applied to MRS-nets.9.2 Related algorithmsIn this section we give an overview about the algorithms that have been de-veloped for solving dominance constraints. To the best of our knowledge the�rst algorithms for solving dominance constraints are based on constraintprogramming (see [DG99] and [DN99]). The implementations are based onset constraints [MM97]. The value of a set variable S is a set (usually ofintegers), hence the domain of S is a set of sets. The encoding of a domi-nance constraint as a constraint program with set constraints is similar in allapproaches. We follow the presentation of Koller and Niehren [KN02].Consider a dominance constraint � with n variables X1; : : : ; Xn. Thefollowing descriptions become easier if we assume that � has a solution (�; �),which we do not know yet of course. For any pair fXi; Xjg of variables wecan distinguish the relative position of the nodes ni = �(Xi) and nj = �(Xj)



9.2. RELATED ALGORITHMS 201in � : ni = nj, or ni is a proper ancestor of nj (denoted as niC+nj), or ni is aproper descendant of nj, or neither of the three previous cases holds, whichwe denote by ni ? nj. With respect to a variable Xi we can partition thevariable indices in four disjoint sets:� Eqi := fj j�(Xi) = �(Xj)g� Upi := fj j�(Xi)C+ �(Xj)g� Downi := fj j�(Xj)C+ �(Xi)g� Disji := fj j�(Xi)? �(Xj)gAs we do not know these sets, we introduce �nite set variables eq i, upi,downi and disj i, which allow us to reason about these sets even if they arenot determined. For convenience we add two auxiliary set variables equpiand eqdowni, which will be constrained to be the union of eq i with upi anddowni, respectively. Moreover, we introduce for each variable Xi a �nitedomain integer variable label i which represents the { currently unknown {label of �(Xi) in � . In addition, we have a tuple variable childreni for thechildren of �(Xi). The variable Xi itself is modelled as a tuple variable xi.For each variable Xi of � we post the following constraints to the solver:xi = [eq i; upi; downi; disj i; childreni; label i]^ i 2 eq i ^ eq i _[ upi _[ downi _[ disj i = [1::n]^ equpi = eq i _[ upi ^ eqdowni = eq i _[ downiNow we show how the literals of � are modelled in the constraint program:[[Xi C� Xj ]] � equpi � equpj ^ eqdowni � eqdownj^ disj i � disj j[[Xi:f(Xj1; : : : ; Xjn) ]] � label i = id(f) ^ childreni = [xj1 ; : : : ; xjn]^ downi = eqdownj1 _[ : : : _[ eqdownjn^ upj1 = equpi ^ : : : ^ upjn = equpi[[Xi 6= Xj ]] � eq i \ eq j = ;These constraints alone do not guarantee that every solution of the con-straint program encodes a forest. Consider for example the dominance con-straint X1 6= X2; there is a solution where eq1 = up2 = f1g, eq2 = up1 = f2g.So for any pair of variables fXi; Xjg of � we introduce an integer variableRij and impose the following constraint:Rij 2 [1::4] ^ xor(Rij = 1 ^ xi = xj; Rij = 2 ^ [[Xi C+ Xj ]];Rij = 3 ^ [[Xj C+ Xi ]]; Rij = 4 ^ [[Xi ?Xj ]])



202 CHAPTER 9. RELATED WORK AND DISCUSSIONwhere [[Xi C+ Xj ]] � [[Xi C� Xj ]] ^ [[Xi 6= Xj ]][[Xi ?Xj ]] � eqdowni � disj j ^ eqdownj � disj iThese constraints enforce that any solution of the constraint program en-codes a forest. The variable Rij is useful for enumerating all solutions of theconstraint program during the search process.The nice property of the solvers based on set constraints is that they canhandle arbitrary dominance constraints. Moreover, the practical applicationsin computational linguistics usually involve not only dominance constraints.Here the exibility of the constraint programming approach becomes appar-ent: Other constraints can be integrated seamlessly into the existing program.But the approach that uses set constraints has some major drawbacks. Sinceeven deciding solvability for dominance constraints is NP-complete, there areno non-trivial runtime guarantees. And applied to instances from computa-tional linguistics these solvers are too slow to be really practical; observe thatthe program above uses �(n2) disjunctive propagators (xor) for a constraintwith n variables.In fact, with respect to the class of normal dominance constraints thesolvers based on set constraints were outperformed by the �rst polynomialtime solver by Althaus et al. [ADK+01]. We want to point that these al-gorithms have been integrated in the constraint solver of Oz [Smo95]. Thismakes sure that the advantages of the constraint programming approach arenot lost.The enumeration algorithm for minimal solved forms by Althaus et al. issimilar to the procedure Enum1 in this thesis (see Algorithm 8.1). The coreof their algorithm is also a harmful cycle4 test. Their test is di�erent fromAlgorithm 7.4 and it is less eÆcient.We sketch the approach in [ADK+01] and [ADK+03]. The idea is totransform the problem of �nding a harmful cycle in an undirected domi-nance graph U to a matching problem in an auxiliary graph A. For everyedge e = fu; vg in U there are two nodes neu and nev in A. The edge setof A is partitioned in two sets M and K. M contains an edge fneu; nevg forevery edge e = fu; vg of U . For every admissible bend he; v; fi in U (cf. Def-inition 7.2) we have an edge fnev; nfvg in K. It is easy to see that M is aperfect matching in A. Althaus et al. show that A contains a harmful cyclei� A contains a perfect matching M 0 that di�ers from M .The construction of the auxiliary graph is illustrated by an example in Fig-ure 9.6. Each edge of U gives rise to two nodes in A (indicated as black4In [ADK+01] these cycles are called hypernormal cycles.



9.2. RELATED ALGORITHMS 203bullets) and to an edge inM (indicated by a thick solid line). Every admissi-ble bend in U corresponds to an edge in K (indicated by a thick dashed line).Only one bend in U is forbidden, it is marked by \!" in the middle of the�gure. The harmful cycle C = [a; b; d; c] in U corresponds to an alternatingcycle C 0 in A. Hence, it gives rise to the perfect matching M 0 = M � C 0 inA, which is depicted on the right-hand side of the �gure. Observe that the\harmless" cycle [d; c; f; g; h; e] in U does not correspond to an alternatingcycle in A.
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Figure 9.6: An example illustrating the construction of the auxiliary graph.In order to test whether A contains a perfect matchingM 0 6=M , one canuse an algorithm by Gabow et al. [GKT01] which has a linear running time inthe size of A. Unfortunately, there are examples where A is much larger thanU . Let n be the number of nodes and m be the number of edges of U . ThenA has n0 = m nodes and it may have m0 = �(nm) edges. Thus the worstcase running time of the solvability test is �(nm). Using this test, Althaus etal. obtain an enumeration algorithm that can enumerate all minimal solvedforms of a dominance graph in time O(n3m) per solved form.The matching uniqueness test by Gabow et al. is based on Edmonds'blossom-shrinking idea [Edm65]. A reader who is familiar with this tech-nique may have observed some similarities with the procedure Collect (seeAlgorithm 7.5) that is used by the harmful cycle test in this thesis. Al-gorithm 7.4 operates directly on the dominance graph and its worst caserunning time is O(m), which is a factor of n better.Finally, we briey discuss the algorithms by Bodirsky et al. [BDMN04],which can be applied to weakly normal dominance graphs. Their work isbased on the notion of freeness. A node u in a dominance graph D is calledfree if there is a solved form of D where u has indegree zero. So if u is free,



204 CHAPTER 9. RELATED WORK AND DISCUSSIONone can construct a solved form D0 of D where u is the root of a tree in theforest D0. Clearly, if D is solvable, it must contain at least one free node.Bodirsky et al. show that a free node u satis�es the following two properties:1. The indegree of u in D is zero.2. In U(D) there are no two distinct tree edges e and f which are incidentto u and belong to same biconnected component5 of U(D).Let D be a dominance graph which consists of a single connected compo-nent. Suppose we want to �nd a solved form ofD. The algorithm of Bodirskyet al. �rst chooses some candidate u for a free node, i.e. a node that satis�esthe two properties described above. (If no such candidate exists, the algo-rithm fails.) Then u is removed from D, and for each connected componentof D n u a solved form is computed recursively. Finally, these solved formsand u are assembled to a solved form of D.It can be shown that if the algorithm fails (for some choice of candidates),then D is not solvable. Moreover, the algorithm can be easily modi�ed toenumerate all minimal solved forms of D: If there are several candidates fora free node, one has to consider all of them instead of choosing only one ofthem.The running time of the solvability test by Bodirsky et al. is O(nm),which is an order of magnitude slower than Algorithm 7.4. Concerning theenumeration of solved forms, they match the asymptotic running time of theprocedure Enum2 (see Algorithm 8.4), which is O(N � nm) to enumerate allN minimal solved forms. Of course, one has to take into account that theiralgorithms can be applied to a larger class of problems.To summarize the second part of this thesis, one can say that we havedeveloped eÆcient algorithms which can be applied to practical problemsin computational linguistics. They contributed to proving that dominanceconstraints are not only a theoretical tool for modelling problems, but alsogive rise to practical implementations to solve these problems. For the class ofnormal dominance graphs, our algorithms can compete with the best knownenumeration algorithms and they outperform all other known solvability testsby at least a factor of n.
5A graph G is biconnected if it cannot be disconnected by the removal of a single node.A biconnected component of U(D) is a maximal biconnected subgraph.



SummaryThis thesis is divided in two parts: The �rst part discusses propagationalgorithms for some constraints. The second part deals with dominancegraphs, these graphs can be used to represent and solve some tree processingproblems arising in computational linguistics.A constraint satisfaction problem (CSP) consists of a �nite set of variablesX1; : : : ; Xn with associated domainsD1; : : : ; Dn and a �nite set of constraintson these variables. The task is to �nd a solution, which means a variableassignment that maps every variable Xi to a value in Di and satis�es all con-straints. The set of all possible variable assignments (including assignmentsthat are not solutions) is called the search space.A very successful approach for solving CSPs interleaves constraint propa-gation, which prunes parts of the search space that do not contain a solution,and search, which explores the remaining parts. Thus the overall performanceof this approach depends heavily on the complexity of the propagation algo-rithms and the amount of pruning that they achieve.We present propagation algorithms for the following constraints:� Sortedness and Alldi�:The constraint Sortedness(X1; : : : ; Xn;Y1; : : : ; Yn) holds i� sorting thesequence [X1; : : : ; Xn] (in non-descending order) yields the sequence[Y1; : : : ; Yn]. The constraint Alldi�(X1; : : : ; Xn) holds i� X1; : : : ; Xnare pairwise di�erent.We assume that all variable domains are intervals and for each of thetwo constraints we develop a bound-consistency algorithm that runs intime O(n) plus the time needed to sort the interval endpoints.� WeightedPartialAlldi� (abbreviated as WPA):The constraint WPA(X1; : : : ; Xn; undef ;T ;W ) is a generalization ofAlldi�. Not all assignment variables X1; : : : ; Xn have to take di�erentvalues; the special value undef may be assigned to several variables.Only those assignment variables which are not equal to undef have totake pairwise distinct values. Moreover, with every value di�erent from205



206 SUMMARYundef that occurs in one of the domains Dom(X1), . . . , Dom(Xn) weassociate a weight that is determined by the value-weight table T . Theconstraint states that Pni=1 weight(Xi) = W , where W is the weightvariable.We show that the problem of deciding whether this constraint has asolution is NP-complete. But we identify some application scenarioswhere we can achieve arc-consistency for the assignment variables intime O(nm). Here m is the sum of the cardinalities of the domains ofthe assignment variables.� NonOverlapping:This constraint states that two objects in the two-dimensional planeR2 should not overlap. The shape of each object is determined by aconvex polygon Shp and the position of each object is speci�ed by twovariables X and Y . The actual object is obtained by applying thetranslation vector (X; Y ) to Shp.We suppose that the variable domains are (closed) intervals of realnumbers, and we give a bound-consistency algorithm. Under the as-sumption that comparisons and basic arithmetic operations can be per-formed in constant time, the running time of our algorithm is linear inthe size of the input polygons.The second part deals with a tree processing problem from computationallinguistics. The problem is given to us in the form of a dominance graph.Informally, such a graph contains a collection of tree fragments which haveto be assembled into a tree T such that some given constraints are satis�ed.These constraints have the form \node u should dominate node v", whichmeans that u should be an ancestor of v in T .We describe a criterion which allows us to decide eÆciently whether agiven dominance graph D is solvable: We show that solvability is equivalentto the absence of certain cycles in D (so-called harmful cycles). Based onthis criterion we develop an algorithm for deciding solvability of D that runsin time O(n + m), where n is the number of nodes and m is the numberof edges of D. Finally, we present an algorithm that can enumerate all N(minimal) solved forms of D in time O(m+N � nm).



ZusammenfassungDiese Arbeit besteht aus zwei Teilen. Im ersten Teil behandeln wir Propagier-ungsalgorithmen f�ur einige Constraints. Der zweite Teil besch�aftigt sich mitDominanzgraphen; diese Graphen dienen der Beschreibung von Baumverar-beitungsproblemen aus dem Bereich Computer-Linguistik.Ein Constraint-Problem ist gegeben durch eine endliche Menge von Vari-ablen X1; : : : ; Xn, die zugeh�origen Wertebereiche D1; : : : ; Dn und eine end-liche Menge von Constraints (Bedingungen, Anforderungen) f�ur diese Vari-ablen. Eine L�osung des Problems ist eine Variablenbelegung, die jeder Vari-ablen Xi einen Wert in ihrem Wertebereich Di zuweist, so da� alle Con-straints erf�ullt sind. Der Suchraum eines Constraint-Problems ist die Mengealler Variablenbelegungen (auch solche, die keine L�osung sind, geh�oren dazu).Ein erfolgreicher Ansatz zur L�osung von solchen Problemen besteht darin,abwechselnd Constraint-Propagierung und Suche einzusetzen. Dabei dientdie Propagierung dazu, Teile des Suchraumes zu eliminieren, die keine L�osungenthalten, so da� die Suche nur noch einen kleinen Teil des urspr�unglichenRaumes explorieren mu�. Somit h�angt der Erfolg dieses Ansatzes stark vonder Komplexit�at der Propagierungsalgorithmen ab und davon, wieviel desSuchraumes sie eliminieren k�onnen.Wir beschreiben Propagierungsalgorithmen f�ur die folgenden Constraints:� Sortedness und Alldi�:Der Constraint Sortedness(X1; : : : ; Xn;Y1; : : : ; Yn) ist genau dann er-f�ullt, wenn man die Sequenz [Y1; : : : ; Yn] durch (aufsteigendes) Sortierender Sequenz [X1; : : : ; Xn] erh�alt. Der Constraint Alldi�(X1; : : : ; Xn)ist genau dann erf�ullt, wenn den Variablen X1; : : : ; Xn paarweise ver-schiedene Werte zugewiesen werden.Die Wertebereiche, auf denen unsere Propagierer arbeiten sind In-tervalle. Unsere Algorithmen erreichen \bound-consistency", d.h. dieEndpunkte der Ausgabeintervalle sind konsistent. Die Laufzeit istO(n)plus die Zeit, die zum Sortieren der Endpunkte der Eingabeintervalleben�otigt wird. 207



208 ZUSAMMENFASSUNG� WeightedPartialAlldi� (abgek�urzt WPA):Der Constraint WPA(X1; : : : ; Xn; undef ;T ;W ) ist eine Verallgemeine-rung von Alldi�. Die Werte der Variablen X1; : : : ; Xn m�ussen nicht alleunterschiedlich sein; der spezielle Wert undef kann mehreren Variablenzugewiesen werden. Nur die von undef verschiedenen Variablen m�ussenpaarweise verschiedene Werte annehmen. Jedem Wert v (au�er undef )ist durch die Gewichtstabelle T ein Gewicht weight(v) zugeordnet. DerConstraint sagt aus, da� Pni=1 weight(Xi) = W sein mu�.Wir zeigen, da� das Erf�ullbarkeitsproblem f�ur WPA-constraints NP-vollst�andig ist. F�ur einige Anwendungsszenarien entwickeln wir Al-gorithmen, die \arc-consistency" erreichen und die Laufzeit O(nm)haben, wobei m die Summe der Kardinalit�aten der Wertebereiche vonX1; : : : ; Xn bezeichnet. (\Arc-consistency" bedeutet, da� jeder Wert ineinem Ausgabe-Wertebereich Teil einer L�osung des Constraints ist.)� NonOverlapping:Dieser Constraint legt fest, da� sich 2 zwei-dimensionale Objekte nicht�uberlappen. Das Aussehen eines Objektes wird jeweils durch eine kon-vexes Polygon Shp festgelegt, und seine Position wird durch zwei Vari-ablen X und Y beschrieben. Das eigentliche Objekt erh�alt man, indemman Shp um den Translationsvektor (X; Y ) verschiebt.Wir gehen davon aus, da� die Wertebereiche der Variablen (abgeschlos-sene) Intervalle von reellen Zahlen sind. Unser Algorithmus erreicht\bound-consistency" (vgl. oben). Unter Annahme das Vergleiche unddie grundlegenden arithmetischen Operationen auf reellen Zahlen inkonstanter Zeit ausgef�uhrt werden k�onnen ist die Laufzeit linear in derGr�o�e der Polygone in der Eingabe.Im zweiten Teil besch�aftigen wir uns mit einem Baumverarbeitungsprob-lem aus der Computerlinguistik. Das Problem wird durch einen Dominanz-graphen beschrieben. Solch ein Graph enth�alt eine Menge von Baumfrag-menten, die zu einem Baum T zusammengesetzt werden sollen, so da� dieVorfahrrelation von T gewisse Bedingungen erf�ullt. Diese haben die Form\der Knoten u soll den Knoten v dominieren", d.h. u soll ein Vorfahr von vin T sein.Wir beschreiben ein Kriterium, das die Grundlage f�ur einen eÆzien-ten L�osbarkeitstest bildet: Ein Dominanzgraph D ist genau dann, wenn erkeinen \b�osen Zyklus" (harmful cycle) enth�alt. Unser L�osbarkeitstest hateine Laufzeit von O(n + m), wobei n die Anzahl der Knoten und m dieAnzahl der Kanten von D ist. Dar�uber hinaus entwickeln wir einen Algo-rithmus, der alleN (minimalen) gel�osten Formen vonD in ZeitO(m+N �nm)aufz�ahlen kann.
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