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Oz is a programming language designed to support multiple programming paradigms in a clean factored way

that is easy to program despite its broad coverage. It started in 1991 as a collaborative effort by the DFKI

(Germany) and SICS (Sweden) and led to an influential system, Mozart, that was released in 1999 and widely

used in the 2000s for practical applications and education. We give the history of Oz as it developed from its

origins in logic programming, starting with Prolog, followed by concurrent logic programming and constraint

logic programming, and leading to its two direct precursors, the concurrent constraint model and the Andorra

Kernel Language (AKL). We give the lessons learned from the Oz effort including successes and failures and

we explain the principles underlying the Oz design. Oz is defined through a kernel language, which is a formal

model similar to a foundational calculus, but that is designed to be directly useful to the programmer. The

kernel language is organized in a layered structure, which makes it straightforward to write programs that

use different paradigms in different parts. Oz is a key enabler for the book Concepts, Techniques, and Models

of Computer Programming (MIT Press, 2004). Based on the book and the implementation, Oz has been used

successfully in university-level programming courses starting from 2001 to the present day.
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1 INTRODUCTION

The Oz programming language is designed to support different programming paradigms with
equal ease. This vision was conceived in the early 1990s, when a research community was created
around programming languages based on concurrent constraint programming, first in Swedish and
German national projects, and then combined in the ACCLAIM European research project which
took place from 1992 to 1995. From the beginning, this community was convinced that all large
programs need to use more than one paradigm, and that concurrent constraint programming was a
suitable foundation to build a multiparadigm system. This initially resulted in three languages and
their implementations, namely AKL, Oz 1, and LIFE. AKL was developed by Sverker Janson and
Seif Haridi at KTH (Royal Institute of Technology in Stockholm) and SICS (Swedish Institute of
Computer Science), Oz 1 was developed by Gert Smolka at Saarland University and DFKI (German
Research Center for Artificial Intelligence), and LIFE was developed by Hassan Aït-Kaci at Digital
PRL (Paris Research Laboratory). In 1995, the Swedish and German groups realized that they needed
to combine their efforts and that Oz 1 was a good starting point [na Haridi 1994]. We quote from
the Oz 2.0 tutorial (November 1996) [na Haridi 1996]:

When we start writing programs in any existing language, we quickly find ourselves
confined by the concepts of the underlying paradigm. Oz tries to attack this problem
by a coherent design of a language that combines the programming abstractions of
various paradigms in a clean and simple way.

This led to a continued development of the Oz language, first leading to Oz 2 and its implemen-
tation DFKI Oz 2.0 (released in 1996), and then reaching nearly its final shape with Oz 3 and its
implementation, the Mozart Programming System (released in January 1999). This system and its
successors are available as open-source software up to the present day [na Mozart Consortium
2018]. This article tells the story of Oz first during the period that it was conceived (1991-1999),
then during the period when it was widely used (1999-2009), and subsequently, when it was used
mostly for computer science education.

The Oz design effort started in 1991 and initially focused on designing a language for knowledge-
based multi-agent applications, starting from logic and concurrent programming. But this initial
goal rapidly became much more ambitious, to support as many programming paradigms as possible
in an equitable way, with a uniform syntax, simple semantics, and efficient implementation. In this
context, we defined a programming paradigm as follows:

A programming paradigm is an approach to program a computer based on a coherent
set of principles or a mathematical theory. Examples include functional program-
ming, based on the λ calculus, logic programming, based on Horn clause logic, and
object-oriented programming, based on a set of principles including data abstraction,
polymorphism, and inheritance.

Following this definition, we understood early on that large programs often use many paradigms
together. For example, the program may have a database that uses a relational (logical) structure, it
may have to do (functional) transformations, it can use object-oriented principles to structure its
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data abstractions, and it can use a concurrent paradigm (such as dataflow) to connect its independent
parts. Many present-day programming systems support this to some degree, either inside a language,
with libraries, or by combining several languages.

The Oz language supports the combination of paradigms within a single language by using
a kernel language approach. Starting with a small language containing just a few concepts, we
first explore how to program and reason in this language. We then add concepts one by one to
overcome limitations in expressiveness. For example, object-oriented programming, as usually
done in mainstream languages, has a kernel language with just one additional concept with respect
to functional programming, namely mutable state. Functional dataflow programming has just
two concepts in addition to functional programming, namely dataflow variables and threads. This
design process resulted in a uniform framework that covers all major programming paradigms that
were known at that time. A large number of practical paradigms are supported, each represented
as a subset of Oz, and each defined with its own kernel language [na Van Roy 2008]. Note that
most of these kernel languages have very much in common, even for programming paradigms
that superficially seem very different. In this way, the Oz language cleanly and simply supports
programs that use multiple paradigms. It is very natural to write programs with multiple paradigms
in Oz, as is shown with many substantive examples in Section 5.2.

Structure of the Paper. We divide this paper into four parts.

• The first part (Section 2) gives the history of Oz. Section 2.1 situates Oz with respect to its
roots in logic programming and concurrent constraint programming. Section 2.2 gives a
detailed account of the Oz project, from its inception in 1991 up to the release of the Mozart
1.0 system in 1999. Section 2.3 presents the period when Mozart was widely used in projects
and applications, from 1999 to 2009. Section 2.4 explains what happened after that, from 2009
to the present, when Mozart was mostly used for education (courses and MOOCs). Finally,
Section 2.5 gives an assessment of the Oz project including its successes and failures.

• The second part (Section 3) explains four major principles underlying the Oz project: making
operations explicit, evolutionary development based on efficient implementation and simple
formalization, supporting multiparadigm programming, and combining dynamic and static
typing. These four principles are important to characterize the originality of the Oz project.

• The third part (Section 4) gives the impact of Oz. Section 4.1 presents the textbook published
by MIT Press, which contributed to the visibility and use of Mozart. Section 4.2 summarizes
the use of Oz in computer science education (including university courses and a MOOC).
Section 4.3 summarizes the main projects and applications that used Oz.

• The fourth part (Section 5) gives an overview of the main technical ideas of Oz, so that curious
readers can see the final results of all this work. Section 5.1 defines the Oz kernel language
with its concepts and operations, and explains how it organizes the paradigms. Section 5.2
gives some highlights of multiparadigm programming by presenting examples of various
paradigms and how they can be used together. We show examples of functional dataflow,
lazy functional dataflow, actor dataflow, mutable state, and relational programming. Section
5.3 explains how we extended Oz to supported distributed programming. The layered design
of Oz lends itself to an efficient deep embedding of distribution in the language.

2 HISTORY

The history of Oz can be divided into three periods: the gestation period (1991-1999), when Oz
was created and developed into a full-featured robust language and implementation (the Mozart
system, released in January 1999), the Mozart period (1999-2009), when Oz was widely downloaded
(as the Mozart system) and used and supported by key developers and active user groups, and the
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Fig. 1. Precursors of Oz

education period (2009-present), when Oz use diminished and it was mainly used and supported as
a platform for education.

2.1 Precursors

Oz is a recent descendant of a series of logic-based languages that originated with Prolog (see
Figure 1). We give a brief overview of the evolutionary steps starting from Prolog that resulted
in Oz. Around 1980, research based on Prolog bifurcated into two separate directions of language
design, namely concurrent logic programming (Section 2.1.2) and constraint logic programming
(Section 2.1.3). The former introduced the process model of logic programming and was used for
operating system design and parallel processing. The latter generalized Prolog’s execution to use
general constraints and constraint solvers, and was used to solve complex combinatoric problems.
These two directions evolved separately until 1990. At that time, the concurrent constraint model
was introduced as a clean formalization of concurrent logic programming (Section 2.1.4), and the
Andorra Kernel Language (AKL) was designed to combine the concepts of the two areas (Section
2.1.5). Oz is a direct descendant of both AKL and concurrent constraint programming, and was
from the beginning designed to be multiparadigm.

2.1.1 Prolog. Since the construction of the first automatic computers, one of the ultimate goals
of computer science was to build a system that would allow programming in logic, i.e., to use
deduction as computation. Efforts in this direction led to the first practical logic programming
language, Prolog, which was conceived and built in the early 1970’s by Alain Colmerauer, Robert
Kowalski, and Philippe Roussel [Colmerauer and Roussel 1996]. This system uses a simple depth-
first proof algorithm for first-order logic, with programs written as conjunctions of Horn clauses.
When attempting to prove a predicate, the search algorithm will successively try all Horn clauses.
If a proof is not possible with a given clause, the system will try the next clause. This selection
process is called don’t know nondeterminism. The initial system and its followups were interpreters.
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The first Prolog compiler was built by David H.D. Warren in 1977 [Warren 1977]. By 1983, Warren
had developed the New Prolog Engine, which was soon called the WAM (Warren Abstract Machine)
[Warren 1983]. It became the de facto standard implementation technique and led to a proliferation
of sequential WAM-based Prolog systems [Van Roy 1994]. These systems are widely used up to the
present day [na Carlsson et al. 2001ś2020].

The Prolog language itself, despite being a sweet spot in the trade-off between expressiveness and
efficiency, only partly lived up to the initial promise of programming in logic. Prolog programs, de-
spite being logical specifications (if written in an appropriate style) needed to be highly algorithmic
in order to achieve efficiency [O’Keefe 1990; Sterling and Shapiro 1986]. Therefore, in addition to
much work on Prolog implementation, there was much language design work focused on increasing
the abstraction level of logic programming while maintaining high execution efficiency. This work
went primarily in two directions, which are known as concurrent logic programming and constraint
logic programming.

2.1.2 Concurrent Logic Programming. The invention of concurrent logic programming was a
major step in logic programming research. This was started by systems that added coroutining
to Prolog, such as IC-Prolog developed by Keith Clark at Imperial College. Finally, concurrent
logic programming was introduced with Parlog and Concurrent Prolog, developed by Clark and
Ehud Shapiro, respectively [Clark 1987; Shapiro 1983, 1987]. These systems replace the sequential
depth-first search of Prolog by a process model, in which each predicate is defined by guarded
clauses. Invoking a predicate creates a concurrent process. This process first chooses a clause, using
a nondeterministic choice inspired by Dijkstra’s guarded command language. This selection process
is called don’t care nondeterminism, since any single clause with a true guard may be chosen and
committed to. When the clause is chosen, each predicate in the body of the clause is in turn invoked.
Concurrent processes communicate and synchronize by means of shared logic variables, which act
as communication channels. In Oz, this use of logic variables is very common, and we call logic
variables used in this way dataflow variables.

This model was used as the basis for the Japanese Fifth Generation Computer Systems (FGCS)
initiative, which took place from 1982 to 1992 [na Wikipedia 2020b]. Groups in this initiative and
elsewhere designed many different languages that were variations on this theme. In particular, the
design of GHC (Guarded Horn Clauses) by Kazunori Ueda simplified concurrent logic programming
considerably by introducing the notion of quiet guards [Ueda 1985]. In a quiet guard, a clause
matching a goal will fire only if the guard is logically entailed by the constraint store (explained
below in Section 2.1.4). The concept of quiet guard led to the concept of logical entailment as a way
to define synchronization, a key innovation that was first formalized by Michael Maher [Maher
1987].

Originally, any predicate could be in a guard, which is called a deep guard, but eventually
most of the work focused on systems with flat guards, which are limited to basic constraints or
system-provided tests [Tick 1995]. Note that the flat/deep distinction is orthogonal to the notion of
quietness: both flat and deep guards can use logical entailment as the synchronization condition.
The difference is that in a deep guard, the set of constraints whose entailment is being checked
is determined dynamically, by running the guard, instead of being statically known as in a flat
guard. Flat guards are easy to implement efficiently and allow to express most of the programming
techniques necessary for implementing systems based on networks of concurrent processes. The
flat versions of Concurrent Prolog and GHC, called FCP and FGHC respectively, were developed
into large systems [Institute for New Generation Computer Technology 1992; Shapiro 1989]. The
KL1 (Kernel Language 1) language, derived from FGHC, was implemented in the high-performance
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Fig. 2. The concurrent constraint model

KLIC system by Takashi Chikayama and his group. This system runs on sequential, parallel, and
distributed machines [Fujise et al. 1994; Ueda and Chikayama 1990].

2.1.3 Constraint Logic Programming. Another major step in logic programming research was the
invention of constraint logic programming as a generalization of Prolog. This started with the
Prolog II language invented by Alain Colmerauer, which supported rational trees and disequalities
(equations of the form X , Y ) [Colmerauer 1982], followed by theoretical development by Joxan
Jaffar and Jean-Louis Lassez [Jaffar and Lassez 1987; Marriott et al. 2006], the CLP(R) system and
Pascal Van Hentenryck’s work on finite domain constraints [Jaffar et al. 1992; Van Hentenryck
1994], and subsequently by a large body of work on constraints and their solvers. Constraint logic
programming generalizes both the basic data operations and the control flow of Prolog. To explain
this, we first summarize briefly the basic data operation of Prolog. This operation, called unification,
is an algorithm to solve systems of equality constraints. Unification rewrites a conjunction of
equality relations into a canonical solved form where each variable X is either bound to a term t or
remains unbound.
A constraint logic programming system generalizes unification: equality relations are replaced

by other relations (such as disequalities, inequalities, arithmetic relations on finite integer domains,
or symbolic relations on symbolic data structures such as graphs or trees), and the unification
algorithm is replaced by an algorithm to solve these relations. In this way, the constraint logic
system can be used to solve complex combinatoric optimization problems. In principle this is a
straightforward generalization, but in practice it is highly technical and complex, because useful
relations and domains often do not have efficient solution algorithms. The efficiency of a constraint
solver depends on the efficiency of the constraint solving algorithm and on the effectiveness
of search heuristics that generalize Prolog’s depth-first search. Choosing useful relations and
domains and designing efficient solution algorithms often requires doing significant research and
development. Modern constraint solving systems provide abilities that are competitive with and
complement traditional areas such as operations research [na Schulte et al. 2019].

2.1.4 Concurrent Constraint Programming. The semantic foundation of concurrent logic program-
ming, and subsequently of Oz, is the concurrent constraint model originally developed by Vijay
Saraswat [Saraswat and Rinard 1990; Saraswat 1993]. Conceptually, the model consists of a shared
constraint store observed by concurrent agents, as illustrated in Figure 2. Agents do not commu-
nicate directly, but indirectly through the store. Given is a constraint store σ that consists of a
conjunction of primitive logical constraints, σ = c1 ∧ c2 ∧ ... ∧ cn . The model defines two basic
operations on the constraint store, called ask and tell. Both operate on a constraint c that can also
be a conjunction of primitive constraints. The tell operation c adds c to the store σ , which then
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S ::= S1 S2 concurrent composition

| X in S variable introduction

| c tell constraint

| if C1 [] · · · [] Cn else S end conditional

| p(X1 · · · Xn ) procedure call

C ::= X1 · · · Xn in c then S ask clause

D ::= proc p(X1 · · · Xn ) S end procedure definition

Fig. 3. The concurrent constraint language

becomes σ ∧ c , and it checks that the result is satisfiable. The ask operation waits until σ entails c
(written as σ |= c) or the negation of c (written as σ |= ¬c). If σ entails the negation of c, we say
that σ disentails c. Intuitively, the ask operation waits until we know enough to decide whether
c is satisfied or whether it will never be satisfied. If neither can be decided, then the agent waits.
This is how synchronization happens in concurrent constraint systems. In general, a constraint can
be any formula in first-order logic. In practice, the constraints are chosen so that the ask and tell
operations are computable, and preferably efficient.

This conceptual model inspired a series of process calculi for communicating concurrent agents.
The work on AKL and Oz was based on a specific calculus that came from this model. In this
calculus, the agents are programmed using the language defined in Figure 3, shown with a syntax
similar to Oz. This language adds several operations in addition to the basic ask and tell, namely
concurrent composition, variable introduction, and procedures. The ask is written as a conditional
if ... end that contains ask clauses. When the constraint c in an ask clause is entailed, the statement
S in the ask clause can execute. If more than one ask clause is entailed, a nondeterministic choice is
made between them. The else statement can only be executed when all ask clauses are disentailed.
The concurrent constraint model can be used with any constraint system. Oz supports several

constraint systems, but the most commonly used one is equality constraints on records, which
generalizes Prolog terms. This is a logical way to represent standard data structures such as
lists, tuples, and trees. To understand how this model works, we give a simple example of a
concurrent constraint program that generates two lists of given lengths and appends them. We
assume the system supports list notation and simple arithmetic constraints. The program defines
two procedures:

proc append(L1,L2,L3)

if L1=nil then L2=L3

[] X M1 in L1=X|M1 then M3 in L3=X|M3 append(M1,L2,M3)

end

end

proc list(N,L)

if N=0 then L=nil

[] N>0 then L1 N1 in N1=N-1 L=N|L1 list(N1,L1)

end

end

In this definition the vertical bar, e.g., as used in X|M1, denotes infix list construction, analogous to
cons in Lisp. Let us execute the following expression:

L1 L2 L3 in list(100,L1) list(100,L2) append(L1,L2,L3)
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constraint store
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local agents

local
constraint storeconstraint store

Fig. 4. The AKL computation model

This initially creates three agents using the concurrent composition. Note that the language
does not contain sequential composition: all operations are done concurrently. The agents execute
concurrently and communicate through the constraint store. Synchronization is done by entailment,
i.e., the if constraint conditions. Execution order is constrained by the data dependencies between
telling a constraint and asking a constraint. The list agents will add constraints, resulting in
L1 and L2 eventually being equal to the lists 100|99|98|...|2|1|nil. The append agent will
wait until something is known about L1. As soon as part of L1’s structure is known in the store,
for example L1=X|M1, then the second condition inside the if of the append is entailed, and the
corresponding body is executed. This tells the constraint L3=X|M3, which incrementally constructs
part of the output, and it also reduces to append(M1,L2,M3), which is an agent that appends the
remainder. Notice that the append agent can be made tail-recursive, since L3=X|M3 can be added
to the store independently of the recursive agent call. In an efficient implementation that reuses
the stack space of append, we see that the stack space is constant. The Oz kernel language also
has the property that list-building functions are tail-recursive. The essential difference between the
concurrent constraint model and Oz 3 is that concurrency in Oz 3 is explicit (explicit thread creation)
instead of implicit (see Section 2.2 below). As a final remark, note that the three agents, namely
the two list agents and the append agent, can potentially run in parallel, if the implementation
supports it. An appropriate scheduler will stream the output of the first list agent to the append
agent, and run the second list agent in parallel with this. Because of data dependencies, however,
each agent internally will run sequentially.

2.1.5 Andorra Kernel Language (AKL). Around 1988, Sverker Janson and Seif Haridi started a
project at SICS with the explicit goal of defining a single language that provides the abilities of both
search-based logic programming (as in Prolog) and concurrent logic programming (as in GHC)
[Janson and Haridi 1991]. This work was originally based on a general And-Or computation model
first proposed by David H.D. Warren to support parallel execution of Prolog. The result of this
work was AKL, which generalizes the concurrent constraint language of the previous section. (AKL
also adds ports for actor-based programming, but we postpone their discussion until Section 5.1.)
Because it provides a unified formal model, AKL allows combining the two paradigms of search and
concurrency in a compositional way, namely using search in a concurrent setting, and concurrency
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S ::= S1 S2 concurrent composition

| X in S variable introduction

| c basic constraint

| if C1 [] · · · [] Cn else S end conditional

| p(X1 · · · Xn ) procedure call

| choice C1 [] · · · [] Cn end disjunction

| bagof X S Y end aggregation

C ::= X1 · · · Xn in S1 then S2 clause

D ::= proc p(X1 · · · Xn ) S end procedure definition

Fig. 5. The AKL kernel language

in a search setting. Figure 5 shows the AKL kernel language. It generalizes the concurrent constraint
language of Figure 3 in two ways:

• Deep guards. The guard in a clause C can be an arbitrary computation, defined by a statement
S1 instead of just a basic constraint. We call this a deep guard, as opposed to the flat guard
of the concurrent constraint language. The deep guard’s computation builds a conjunction
of basic constraints at run-time. A guard can be chosen nondeterministically when this
computation terminates and when the basic constraints are entailed by the constraint store.

• Encapsulated search. Two new statements are added, namely choice and bagof. These
statements work together: the bagof X S Y end executes a statement S that contains a
choice. The choice gives a sequence of alternative computations, C1 to Cn and the bagof
can choose these alternatives in order. Individual solutions are referred to by X and the list of
solutions is returned in Y. The bagof of Figure 5 is one example of many possible built-in
aggregators in AKL. It is similar in spirit to list comprehensions in functional languages.

Nested computation spaces. The major technical contribution of AKL, which underlies both deep
guards and encapsulated search, and which lets it merge concurrent and constraint programming,
is the concept of nested computation space that includes the semantic concept of stability needed
for its correct operation [Janson 1994]. We call computation space the constraint store together
with the agents observing it, as used in concurrent constraint programming (see Figure 2). Note
that in AKL, the computation space is an implementation concept that is not directly visible to the
programmer, unlike Oz which made the computation space a first-class language concept. AKL
allows computation spaces to be nested, which means that an agent can itself be a computation
space (as shown in Figure 4). With respect to the parent computation space, we call such an agent a
local computation space. A local space sees the constraints of its parent space in conjunction with
its own constraints, but a parent space cannot see the constraints of a local space.
A local space is stable when it contains no reducible instructions and no additional parent

constraints could make it reducible again. Stability is a termination condition on the local space.
The two conditions are both important. First, the computation inside the local space must not be
reducible. Second, the computation must not become reducible for any possible added constraint in
the parent space (because parent space constraints are visible to the local space). More precisely,
given a local space defined by an initial statement S0 and an initial store σ0. The local space executes
by reduction steps, giving (S0,σ0) → (S1,σ1) → · · · → (Sn ,σn). Each reduction step can add
constraints to the local constraint store. The local space is stable when for all satisfiable parent
constraints σ , the local statement Sn is not reducible with the store σ ∧σn . This can be implemented
efficiently by tracking variable bindings.
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Deep guards and encapsulated search can both be implemented with stability of local spaces:

• Execution of a deep guard. A deep guard can be chosen when it is stable and when its
constraints are entailed by the parent store.

• Execution of encapsulated search. The bagof executes each alternative of the choice in a
new local space. When an alternative is stable, bagof detects this and merges the solution (if
it exists) into the parent space.

In its simplest form, bagof adds a Prolog-style depth-first search to the concurrent constraint model.
It is more general than Prolog in that the solutions are provided incrementally and concurrently
with other activities in the execution. We remark that bagof can provide other forms of search,
such as breadth-first, iterative deepening, and so on, by changing how the alternatives of a choice
statement are chosen. As we will see later, computation spaces were further developed in Oz,
making them first class, which allowed user-programmable search strategies for constraint solving.

2.2 Gestation Period: 1991–1999

In the beginning. Oz was conceived in the HYDRA project, a German national project that started
in June 1991 at DFKI in Saarbrücken, led by Gert Smolka and including three graduate students
working on Oz, Martin Henz, Michael Mehl, and Ralf Scheidhauer. HYDRA was initially motivated
to address complex deductive problem solving (which was needed for many DFKI projects). When
the project started, its goals were to overcome limitations in logic programming, namely to improve
control strategies and add constraints, and also to add concurrency and object orientation. By the
end of 1991, the Saarbrücken group had made connections with groups in SICS in Sweden, led by
Seif Haridi, and DEC PRL in France, led by Hassan Aït-Kaci, who were working in similar directions
(with the AKL and LIFE languages). These three national groups then became part of the ACCLAIM
European research project, which started in September 1992 [na ACCLAIM 1992ś1995]. Inspired
by the concurrent constraint model of Vijay Saraswat, ACCLAIM’s goal was to advance the area of
concurrent constraint programming, at all levels from foundation to languages and frameworks,
and implementation technology.

First design of Oz and start of ACCLAIM. At the same time that ACCLAIM started, HYDRA had
already made a first prototypical implementation of Oz, with some key ideas including named first-
class procedures and an early object system. The nameOzwas suggested byMartinHenz. Identifying
procedures with unique unforgeable names avoids the need to do higher-order unification, which
is undecidable. A new record data type was added that was inspired by LIFE [Smolka and Treinen
1994; Van Roy et al. 1996]. This implementation consisted of four components: a programming
environment based on Emacs, a compiler implemented in the typed logic programming language
TEL (a logic programming language with types and functions designed and implemented in a
previous project), an abstract machine implemented in C++, and a graphics system based on
the public domain package Interviews. This implementation was successfully demonstrated at
two international workshops: the CCL Workshop in Val d’Ajol, France in October 1992, and the
ACCLAIM kickoff workshop in Stockholm in November 1992. The new language and its prototype
implementation allowed experimentation with multiple programming paradigms.

Moving to concurrent constraints. However, this initial design of Oz, pre-ACCLAIM, was not based
on concurrent constraints. When ACCLAIM started, the Oz design took the ideas of concurrent
constraints coming from AKL. Furthermore, the initial design started with synchronous commu-
nication between concurrent agents (CSP style), which was abandoned in favor of asynchronous
communication as provided by the concurrent constraint model.
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Supporting constraint programming. Moving to concurrent constraints had the important conse-
quence that it greatly facilitated strengthening the constraint programming part of Oz. In 1993,
HYDRA added finite domain constraints and encapsulated search, which are needed for many
applications (scheduling, production planning, natural language processing). By the end of 1993, a
higher-order combinator for encapsulated search was added into the system [Schulte and Smolka
1994; Schulte et al. 1994; Smolka 1995a]. This made Oz into the first concurrent and higher-order
programming language that integrates Prolog-style problem solving. It’s clear that Oz and AKL are
by now converging: the encapsulated search problem was first solved by AKL in 1991, and Oz took
this solution and improved it by making it a higher-order combinator.

First informal release. Although there was not yet an official release, by November 1993 the system
was released informally to interested researchers and supported by a 350-page OzHandbook. Several
DFKI projects, AKA-MOD and AKA-TACOS, used Oz, as well as Daimler Benz Research in Berlin
and around one dozen other places worldwide. It is interesting to see that SICS had similar goals
with its AKL project; as part of ACCLAIM, HYDRA by now has established a close collaboration
with SICS, which will eventually lead to a joint effort on a common language and implementation.

Oz 1. The system was now moving towards a public release. Both the language and its imple-
mentation were evolving rapidly. For objects and concurrency, Oz 1 made the following design
decisions:

• Implicit thread creation. For reasons of efficiency, Oz 1 abandoned the original concurrency
model that had maximal concurrency where all are agents are concurrent by default (as in
Section 2.1.4). This was replaced by implicit thread creation. By default, statements execute
sequentially. When a statement blocks, a new thread is created that contains only the blocked
statement. The main thread is not suspended but continues with the next statement.

• Object system and mutable state. The Oz 1 object system was based on two principles. First,
the object’s state was stored in a mutable container, called a cell. Second, all methods had
two additional (hidden) arguments, which contained the input and output states. This was
needed to guarantee the correct serialization of stateful operations in object programs, given
implicit thread creation.

As a consequence of the above, the graphical subsystem was completely redesigned. A high-level
window interface was built on top of Tcl/Tk, providing Oz programmers with a concurrent object-
oriented interface to graphical objects. Among other things, this allows for multiple inheritance
(Tcl/Tk has no inheritance). The Oz 1 language is well summarized in the major paper on the Oz
Programming Model [Smolka 1995b].

Initial evaluation for multi-agent programming. For Daimler Benz Research at Berlin, HYDRA
conducted a study evaluating the benefits of Oz as a basis for their multi-agent programming
projects. The study and a prototype were presented to Daimler Benz on October 20, 1994. The
study argues that Oz is superior to Allegro Common Lisp, their current platform at that date. For
some applications the study showed that implementation effort can be reduced by one order of
magnitude. Moreover, the Oz prototype was significantly more efficient in time and memory usage.

Release of DFKI Oz 1.0 (January 23, 1995). The Oz 1 implementation was now called DFKI
Oz 1.0 and publicly released. The main components of this system are an interactive programming
interface, a concurrent browser (interactive dataflow display of data structures), powerful inter-
operability features, an incremental compiler, an emulator executing the code produced by the
compiler, and support for stand-alone applications. The system came with a garbage collector and
object-oriented support for constructing graphical user interfaces based on Tcl/Tk. The efficiency
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Fig. 6. Explorer tool for interactive exploration of a search tree.

of this implementation is competitive with commercial Lisp and Prolog systems of the time. In the
first two months since the release, about 300 installations were registered worldwide. The release
came with 11 documents (about 630 pages), consisting of tutorials, reference manuals, and the
language definition. The survey of Oz document was requested about 740 times via ftp and the
World Wide Web. Among the requests, commercial Internet sites made up about 40% of the US
domain.

Extending the support for constraint programming. During 1995 and early 1996 the constraint
systemwas again substantially strengthened through the work of Christian Schulte [Schulte 1997a,b,
1999, 2000a,b, 2002].

• First-class computation spaces. The basic operations of computation spaces are made available
to programmers as an abstraction that allows programming inference engines directly in Oz
[Schulte 1997b].

• Reified constraints. To facilitate construction of more complex constraints, the system was
extended with reified propagators. A propagator is a concurrent agent that implements a
constraint in the solver. A reified propagator adds a boolean control variable that repre-
sents the truth of the propagator’s constraint. This allows to program high-level constraint
programming abstractions such as a cardinality constraint and constructive disjunction.
Constructive disjunction is an example of a deep constraint combinator [Schulte 2000b]. It is
important for constraint applications like scheduling and timetabling. This extension was
evaluated with real-world data, by constructing a timetable for a German college.

• Explorer tool. The Explorer tool allows real-time interactive exploration of a constraint
problem’s search tree [Schulte 1997a]. Constraints are attached to the tree’s nodes, subtrees
can be expanded or collapsed, and search can be directed interactively. Figure 6 gives a
screenshot of the original Explorer. User-defined tools can be attached to the Explorer to
display and interact with the constraints. For example, a timetabling solver could display
partially solved timetables. At this time, DFKI Oz was the first system to provide an interactive
tool to assist the development of constraint-based problem solving.
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• Recomputation-based search. Recomputation trades space for time, which is essential for many
applications that otherwise require too much memory [Schulte 1999]. All search functionality
was reimplemented to support recomputation.

• C++ interface. An interface for writing finite domain propagators in C++ was designed and
implemented in the system.

Joining efforts. The connection between Oz and AKL became closer in 1995 during the final
period of ACCLAIM. The Swedish and German groups decided to join their efforts and continue
work on a common system, which would be a successor to DFKI Oz 1.0. Two national projects, both
called PERDIO, were started in early 1996, to continue the work as a collaboration [na Haridi et al.
1996; Smolka et al. 1995]. On the Swedish side, Erik Klintskog, Per Brand, and Nils Franzén joined
the project, and Konstantin Popov moved from Saarbrücken to Stockholm in 1997. In addition,
Peter Van Roy, who was originally a member of DEC PRL working with Hassan Aït-Kaci on LIFE
[Aït-Kaci and Podelski 1993], wanted to be part of this work and joined the DFKI when DEC PRL
closed in October 1994. The stated goal for the PERDIO funding was to develop a system for open,
distributed, fault-tolerant, reactive, and knowledge-intensive applications. The actual goal that
was realized was to finalize the common language and prepare a major release, which became
the Mozart system. Peter Van Roy visited SICS for one month in January 1996 to work on the Oz
distribution model with the Swedish group. Van Roy and Seif Haridi continued to work together,
first in Saarbrücken when Haridi came there for a sabbatical stay from May to November 1996, and
subsequently after Van Roy joined UCL (Belgium) in October 1996.

First International Workshop on Oz Programming (WOz’95, Nov. 1995). The Dalle Molle Institute
for Artificial Intelligence Research organized a workshop for Oz programming which was held
in Martigny (Switzerland) with around 40 participants from both academia and industry [na
Cochard 1995]. Eighteen papers were accepted, of which 11 were by people other than the language
developers, and there were three tutorials on Oz programming.

Oz 2. During 1996, the Oz 1 language changed radically to become Oz 2. Oz 2 made the following
design decisions:

• Explicit thread creation. The implicit thread creation of Oz 1, while solving the efficiency
problem, introduces many other problems. It makes reasoning about sequentiality and termi-
nation difficult, it gives no control over concurrency (e.g., ability to create concurrent agents
explicitly), and it increases the complexity of the object system (which requires a separate
mechanism to enforce sequentiality of state updates). Oz 2 abandons this in favor of explicit
thread creation. Sequential composition is the default, and concurrency is never introduced
implicitly but must be explicitly introduced by the program as a thread. As a result, Oz 2 can
be seen as a higher-order multithreaded language with dataflow synchronization.

• New object system. Given explicit thread creation, the object system was redesigned and
simplified. Experiments confirm that the new design results in a major efficiency improvement
both with respect to space and time [Henz 1997a,b].

• Exception handling. Given explicit thread creation, an efficient and lean exception-handling
mechanism was designed for Oz 2.

• Actor support. Oz 2 adds the port concept (see Section 5.1.4), which is a primitive providing
efficient many-to-one communication and is a basic building block for actor programming.
Experience with AKL showed that ports are an effective primitive [Janson et al. 1993].

All libraries and the object system were redesigned according to these changes.
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Release of DFKI Oz 2.0 (September 1996). The Oz 2 implementation was called DFKI Oz 2.0
and publicly released.

Beginning of PERDIO project. Just after the HYDRA project was finished, the PERDIO project
started in April 1996. From the viewpoint of a programmer building a networked application, PER-
DIO’s goal was to combine network transparency with network awareness. Network transparency
means that the semantics of computations does not depend on the node they execute on, and
that the possible interconnections between two computations do not depend on whether they
execute on the same or on different nodes. Network awareness means that distribution is achieved
by explicit acts that give full control over communication patterns. While network transparency
makes it easy to write distributed software, network awareness makes it possible to avoid undesir-
able network traffic and to fully plan the exploitation of the resources of a distributed computing
system. When PERDIO started we considered that Oz was a good base language (targeting locally
networked computers, not Internet, in the original proposal) because it combines expressiveness
with simplicity:

• Expressiveness. Concurrency is essential for distributed systems. Logic variables provide for
dataflow synchronization. Objects provide for concurrent data abstractions. Threads can
communicate computational tasks through first-class procedures and classes. Code transfer
between nodes is automatic, since classes are first-class values that can be copied across the
network. Distributed lexical scoping is a direct consequence of network transparency. This
concept was advocated by Luca Cardelli in his work on Obliq [Cardelli 1995]. Computations
behave identically independent of the node they execute on.

• Simplicity. Simplicity comes from a design that expresses higher-level abstractions in a
lean kernel language. Once distribution issues are understood for the kernel language, they
will extend readily to the rest of the language. This holds true both for conceptual and
implementational concerns. This is explained in Section 5.3.

In the first year of PERDIO (up to March 1997), we developed: (1) a distribution model for Oz, (2) a
first version of an open, Internet-based module system for Oz, called components; (3) a first version
of Ozlets, which are applications embedded into Web pages and written in Oz; and (4) a prototype
system implementing all of the above. PERDIO eventually targeted partially synchronous systems,
like the Internet, but not the complexities related to NATs and firewalls (a good explanation of this
complexity is given in [Roverso et al. 2009]).

Oz 3. We now made a conservative extension of the Oz 2 language by adding read-only views
of logic variables (for encapsulating abstractions based on logic variables, such as ports), and by
adding abilities for large-scale and distributed programming. The resulting language is called Oz 3.
The support for large-scale programming is based on components and was originally designed by
Gert Smolka, Denys Duchier, and Leif Kornstaedt [Duchier et al. 1998]:

• Functors and modules. We added support for component-based programming with two new
concepts, called functors and modules. A module is a running instance of a component,
including data structures, objects, and threads. A functor is a module specification that defines
a function whose arguments are modules and whose result is a new module. Instantiating
a functor means to call this function with the correct modules as inputs. All libraries were
then rewritten to become modules. A running application is a graph of modules.

• Module managers and lazy loading. The module manager is the part of the system that
creates modules by instantiating functors. The module manager is considered part of the
Oz 3 language definition. It is written in Oz using one additional language concept, namely
lazy evaluation. In lazy evaluation, a function is associated to a logic variable, and when
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there is an attempt to bind the variable, the binding is blocked and the function is called first,
and the variable is bound to the result. This was the first attempt to add lazy evaluation to
Oz. Because it does blocking inside of unification, it is not declarative, but this was fixed in
2003 (see Section 5.1.3 for the declarative version). The module manager uses lazy evaluation
to implement lazy loading, namely that a module is created at first use. This is completely
transparent to the program. This supports very short application startup times (fractions of a
second), and together with the added support for standalone applications, it allows Mozart
applications to be used in scripts.

The support for distributed programming builds on network transparency:

• Connection. Semantically, all Mozart processes live in the same shared store. But they do
not share any references. We add support for connections, which allows a Mozart process
to export an arbitrary language reference to another Mozart process. To initiate a connec-
tion, a Mozart application creates a ticket, which is a text string representation of an Oz
language reference. This allows the reference to be communicated using any infrastructure
that supports communication of text strings (such as sockets, Web pages, postal letters,
phone conversations, and so on). Once the initial connection is made, a rich communication
structure using Oz data structures can be built, in the same way that this is done by threads in
a single application. This is supported in the Mozart system by distributed protocols specific
to each language type, e.g., for logic variables, stateful entities such as objects, cells, and
ports, and stateless values such as procedures and records. This is explained in Section 5.3.

• Pickle. A stateless data structure can be converted into a byte sequence called a pickle. A data
structure can be recovered from its pickle, where the original and the recovered data structures
are semantically identical. Pickles can be stored on files and can be loaded from URLs. This
supports Mozart’s repository of third-party contributed components, called MOGUL (Mozart
Global User Library). Many Oz entities, including procedures and objects, receive upon
creation a unique and fresh name fixing their identity. Since pickles can be moved between
Mozart processes, the uniqueness of names must now be maintained globally. The original
scheme we implemented relies on the assumption that the clocks and IP addresses of the
involved computers are not manipulated, and that pickles are not faked.

Parallel search engines. Combining the distribution support and computation spaces, we now
started to experiment with a parallel search engine for constraint solving. The new parallel engine
takes the same problem definitions as the existing sequential engines, so there is no additional
burden on the programmer. The parallel engine consists of a few hundred lines of Oz code and is
a clear demonstration of the power of the high-level building blocks for distribution and constraints.

Release of Mozart 1.0 (January 25, 1999). The Oz 3 implementation was called Mozart since
1998, andwas now publicly releasedwith a BSD style open-source license. It camewith an interactive
Emacs developer interface and a set of libraries and tools for building standalone applications. It
was released as a 32-bit system with binaries for Mac OS X, Linux, and Windows. Within the first
three days after the announcement there were about 17000 page requests and 250 downloads of the
system. Producing Mozart 1.0 was a major engineering effort. The system consists of 180000 lines
of C/C++ and 140000 lines of Oz. The documentation comes in the form of Web pages and consists
of 65000 source lines. Mozart 1.0 is an application-strength and complete implementation of Oz
and improves considerably on the efficiency and stability of previous Oz implementations. Detailed
information about this Mozart implementation including an evaluation is given in the two Ph.D.
dissertations about the Oz Virtual Machine by Michael Mehl and Ralf Scheidhauer [Mehl 1999;
Scheidhauer 1998]. The close collaboration between SICS and DFKI was essential to this effort.
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Fig. 7. Mozart 1.4.0 documentation page (in 2008)

2.3 Mozart Period: 1999–2009

During the period 1999-2009, Mozart was widely downloaded and used, and supported by key
developers and the active user groups mozart-users and mozart-hackers.

• In the years 1999-2000-2001, our archives show that Mozart was downloaded more than 10000
times (more than 5000 times in the year 1999 alone). We have archives of the mozart-users
mailing list, which show that it was highly active from 2001 to 2009 and declined after
that. After 2009, Peter Van Roy continued to use Oz for his university courses and it was
maintained mainly for that purpose.

• Oz was used as primary language in programming courses given at 16 universities worldwide
that we are aware of, by people other than the language creators: Iowa State University,
University of Central Florida, Brigham Young University, Texas A & M University, Rensselaer
Polytechnic Institute, Dartmouth College, Norwegian University of Science and Technology,
Universidad del Valle (Cali, Colombia), Università degli Studi del Sannio, California State
University Los Angeles, Xavier University, Linköping University, National University of
Singapore, Cairo University, University of Dortmund, and New Mexico State University.

• In 2004 we organized the MOZ2004 conference on Oz and its applications, which was held in
Charleroi, Belgium in October 2004. There were 49 registered participants (some are shown
in Figure 8). Out of 23 accepted papers, 16 were written by people other than the language
creators. The proceedings were published in the Springer LNCS series as volume 3389 [Van
Roy 2004].

• During this period, we set up the Mozart third-party library (called MOGUL: Mozart Global
User Library), which accepted many packages by third parties. This library had 68 packages,
of which 58 are by people other than language creators.

• From 1999 to 2003, we wrote a programming textbook organized according to the multi-
paradigm structure of Oz and distilling our experience in the Oz project (see Section 4.1).
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This book was published by MIT Press (2004) and has sold more than 10000 copies as of 2018.
It continues to sell well (hundreds of copies per year up to the present, not including licensed
editions and translations). It has more than 600 citations in Google Scholar.

• During this period the Oz language remained stable, but we evolved the support for distributed
programming. This support was completely redesigned to be modular, so that the distribution
protocols needed for deep embedding were cleanly separated from the Oz emulator. This is
documented in the 2005 dissertation of Erik Klintskog [Klintskog 2005]. We also completely
redesigned the failure detectors and how they are visible in the language, which greatly
improves the ability to design resilient distributed abstractions completely inside the language.
This is documented in the 2007 dissertation of Raphaël Collet [Collet 2007].

• There were many other research publications around Oz and Mozart, including more Ph.D.
dissertations, most of which are listed on the Mozart web site [na Mozart Consortium 2018].

The last major release of Mozart 1 was Mozart 1.4.0, which was released in 2008 (see Figure 7).
After this release, the maintenance of the Mozart 1 system diminished as key developers left the
project (the system was mostly maintained by Ph.D. students) and research funding ran out.

Feature overview. At its release in 1999, the Mozart system mainly innovated in three areas:
multiparadigm programming, open distributed computing, and constraint-based inference. We
developed applications in scheduling and timetabling, in placement and configuration, in natural
language and knowledge representation, and we also built multi-agent systems and sophisticated
collaborative tools (see Section 4). The multiparadigm design, in particular, was spectacularly
successful. It made it possible to use all the features of Oz together in a simple way, for example:

• Ultralightweight threads. Mozart implements ultralightweight threads and easily supports
applications with hundreds of thousands of threads in a single operating system process.
Because of dataflow synchronization using logic variables, programming highly concurrent
applications is easy (Section 5.2.1 shows how it works).

• Logic programming. Mozart supports logic programming going beyond Horn clauses. Because
of encapsulated search and concurrency, Mozart provides first-class Prolog top levels, i.e., it
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is possible to run multiple concurrent instances of a Prolog search and ask for successive
solutions inside a program.

• GUI programming. Mozart provides an object-oriented interface to the Tcl/Tk GUI library.
This was later extended by QTk, which makes it possible to define graphic user interfaces
much more compactly (see Section 4.3).

• Distributed components. Components are values in the Oz language, and the distribution
model transfers them using copying (eager or lazy). This allows transparent and efficient
transfer of program code between Mozart processes (as shown in Section 5.3).

Many code examples of multiparadigm programming are given in Section 5.2.

Language fixes. During this period, the Oz 3 language remained mostly stable. We fixed the
semantics of lazy evaluation so that it would be declarative and fit well into the dataflow syn-
chronization. The restructuration of the distribution subsystem changed the language interface to
distribution, in particular for failure detection.

2.4 Education Period: 2009–Present

During this period, the core development of Mozart was finished and maintenance focused on using
Mozart as a platform for education. Peter Van Roy continued to teach programming courses at UCL
at the engineering faculty and supported Mozart for this purpose, using the textbook mentioned
above (see Section 4.2). Oz is well-suited as a language for education, with its interactive interface
and well-factored multiparadigm design.

Mozart 2. All versions of Mozart 1 are 32-bit systems. As personal computers migrated to 64-bit
architectures in the years following the Mozart 1.4.0 release, a need was felt for a 64-bit Mozart
version. Mozart 2 is a clean 64-bit reimplementation of Mozart that was realized at UCL by Sébastien
Doeraene and Yves Jaradin and released in 2012. This system is being used and maintained up
to the present day [na Jaradin and Doeraene 2013]. Both Mozart 1 and Mozart 2 are available at
the Mozart 2 site [naMozart Consortium 2018]. Mozart 2.0.1 was released in September 2018 by
Guillaume Maudoux with support from other developers. This system still has significant use, e.g.,
more than 800 downloads in the six months since its release. Mozart 2 is a full implementation of
Oz with the following differences:

• It lacks the constraint and distribution support. The UCL team did not have the resources to
implement this in Mozart 2, so we focused on the essential support for education.

• It has a reflection interface that allows defining new implementations of kernel language
operations within the Oz language. This was intended to enable a reimplementation of the
distribution support within the Oz language, but this was never completed.

• It has a language extension to support list comprehensions designed by François Fonteyn in
June 2014 [Fonteyn 2014]. The list comprehension extension seamlessly supports the eager
and lazy dataflow paradigms illustrated in Section 5.2.

• It has a multicore extension designed by Benoit Daloze in June 2014 that allows taking
advantage of multicore processors [Daloze 2014]. Each Mozart process, which is implemented
as an operating system process, has a dedicated port that allows receiving messages sent
from another process. Messages can be any values in the language (including procedures
and classes) and are copied between Mozart processes in a similar way to Erlang processes.
There are no shared references between Mozart processes.
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2.5 Successes and Failures

Let us now take a step back to assess the results of the Oz project. The project started with very
ambitious goals. It is interesting to see how this turned out in the long term. The initial goal of
multiparadigm programming was largely achieved. The Oz language successfully integrates many
paradigms and Mozart is a high-quality efficient implementation, as witnessed by the wide variety
of large-scale applications (Section 4.3) and the longstanding use in education (Section 4.2). Both
the Oz design and the CTM textbook successfully used the kernel language approach to present
many paradigms in an integrated framework (see Section 5 and Section 4.1). During its heyday, Oz
had impact in many areas, as explained in Section 4. We showed that the deep embedding used in
Distributed Oz is a practical approach for distributed cluster computing (see Section 5.3 and the
iCities project in Section 4.3). We showed that Oz is well-suited for teaching programming using a
concepts-based approach (see Section 4.2). On the other hand, we failed in creating a self-sustaining
Oz community. There were two main reasons for this.

2.5.1 Syntax. The first reason was the unusual syntax, and we failed to recognize this and fix it.
The syntax had several problems: it was widely different from existing syntaxes, it was verbose
in some common cases (e.g., lambda expressions), and the object system syntax was not polished.
Feedback from users and potential users confirms our suspicion that the unusual syntax was one
reason that Oz was not used as much as it could have been. It created a threshold that made it
harder for potential new users to join the community. We note that this was only a threshold effect
and did not hold for proficient users. Once a new user had overcome the threshold, they came to
appreciate the system’s power and simplicity.

The syntax design was a difficult issue because of the project’s ambition: we aimed to support as
many programming paradigms as possible. This put a strong constraint on the syntax: it needed to
support all paradigms in a clean and factored manner. For example, we used parentheses for records
and brackets for lists; this left us with braces for functions and procedures. This is an important
lesson for future language designers: be especially careful about syntax, and be prepared to make
big changes in the syntax when evolving the system. For example, the Erlang community developed
a new language, Elixir, that runs on the same virtual machine as Erlang and is interoperable with
Erlang. This was a very beneficial development for them.

2.5.2 Community. The second reason was much more important than the threshold effect of an
unusual syntax. We failed to navigate the transition between funded research, during which Mozart
was developed, and open-source development, which is mainly driven by social interactions and in
which most developers are volunteers. During the gestation period, the project had a strong sense
of purpose and was driven by a powerful development methodology (Section 3.2). When Mozart
was released in 1999, the goal of multiparadigm programming was considered to be achieved. At
that point, this sense of purpose diminished. A new sense of purpose did come into being with the
Mozart release, namely to create a community around the newly released system, but this new sense
was not as strong as the original. The original developers (including the authors) were primarily
researchers, and we did not make a successful transition to an open-source project organized
around a community of volunteer developers. Most of the key developers gradually lost interest
and left the project, and were not replaced by other developers. The German and Swedish teams
moved on to other projects, and only the Belgian team at UCL led by Peter Van Roy was left to
evolve the system. As a result, system support diminished, and we were slow to evolve the system:
64-bit support came only in 2012 (with Mozart 2), and multicore support came only in 2014.

2.5.3 Legacy. Despite these failures, Oz was a pioneer in many ways. In programming education,
Oz was a successful foundation for the concepts-based approach (see Section 4.2). During the
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education period, the Oz project was refocused on education by the UCL team. This was moderately
successful: UCL used Mozart to teach programming to all students of engineering for 15 years and
developed several popular MOOCs in the edX consortium. Mozart was and continues to be used in
other universities. We also attracted some outside developers and continued to evolve the system.
As a result, Mozart maintained a presence in the general developer community.

Oz also pioneered several important programming concepts: lightweight threads (with shared
data, unlike Erlang) which are used in Go, the distinction between mutable and immutable data
which is used in Scala, deterministic dataflow, which is commonly used in cloud analytics tools,
actors that return futures, which is being used in actor-oriented databases, and constraint logic
programming, where Oz introduced first-class computation spaces that allow programming search
strategies and deep constraint combinators independent of the declarative specification of the
problem. Whereas in the 1990s, languages were mostly single-paradigm, in the present day this
has changed and supporting multiple paradigms is now considered to be an important language
property (see Section 3.3) [Van Roy 2006]. Some of the programming concepts pioneered by Oz
have become commonplace in mainstream languages, as illustrated in Section 5.2.

3 PRINCIPLES

From the beginning, the Oz effort was guided by several strong principles. The coherence of the Oz
3 language can be attributed to these principles as well as to the enthusiasm and vision of the Oz
developers. Here we explain four of these principles:

• Explicitness. We initially tried to make many operations implicit, but experience showed that
this is often wrong.

• Developmentmethodology. The developmentmethodologywas characterized by a combination
of efficient implementation and simple formal semantics. This was possible because the Oz
developers were both practical implementors and theoretical computer scientists.

• Support multiparadigm programming. The need to support multiple programming paradigms
was recognized from the start, in the HYDRA project, and quickly broadened to cover much
more than improvements in logic programming.

• Combine dynamic and static typing. Because of the goal of multiparadigm programming, we
initially started with dynamic typing, but we recognized that this must be complemented
with static typing, even for exploratory programming.

An early discussion of these principles is given in [Van Roy et al. 2003b].

3.1 Explicitness

During the AKL and Oz projects, we initially tried to make many operations implicit. For example,
Oz 1 has implicit concurrency, where the program is sequential by default and threads are created
whenever an operation blocks. Experience showed that this was almost always wrong and that it is
better to make operations explicit, where they are inserted by an explicit programmer command.
We give four examples of this that we observed during the Oz project:

• Provide explicit concurrency, i.e., sequential composition by default with explicit thread
creation (see Oz 2 paragraph on page 14). This is important for interaction with the envi-
ronment, efficiency, reasoning about termination, and debugging. The Oz design introduced
explicit concurrency in two steps. The original concurrency model of concurrent constraint
programming had maximal concurrency, where all operations are concurrent and execution
is directed by dataflow dependencies. Oz 1 replaced this maximally implicit model by a model
with implicit thread creation, where threads are created only when statements block. This
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solved the efficiency problem of the maximally concurrent model, but it had many other
problems. Oz 2 replaced the implicit thread creation of Oz 1 by explicit thread creation.

• Provide explicit mutable state, i.e., variables are immutable by default and mutable variables
(cells) and communication channels (ports) must both be declared explicitly. Cells and ports
are equivalent in expressiveness, as explained in Section 5.1.4 (Mutable state paragraph). Our
experience shows that cells should not be defined implicitly, as is often done in popular
languages such as Java and Python, because this complicates program development and
maintenance. Ports are important for actor communication and composition of concurrent
components, and are declared for that purpose.

• Provide explicit laziness, i.e., execution is eager by default and laziness must be declared
explicitly. In our experience, this greatly simplifies reasoning about complexity and it allows
using laziness exactly where it is needed. Oz uses laziness for on-demand loading of software
components (see Oz 3 paragraph on page 15) and on-demand computation of constraint
solutions (see Section 5.2.6). Explicit laziness is also important for efficient functional data
structures [Okasaki 1998].

• Provide explicit search, i.e., programs should by default not use search. This is a problem with
older logic languages such as Prolog, where search was implicit. With explicit search such
as provided by first-class computation spaces in Oz 3, it can be used exactly where needed
and exactly in the right form [Van Roy et al. 2003b]. This is important because of the high
computational cost of search. However, search cannot be eliminated entirely because it is
essential for completeness. It is interesting, however, to note that the search is used in a lazy
fashion, where solutions are computed on demand using heuristics to reduce the need for
search.

These four cases can be seen as examples of Clarke’s Second Law [naWikipedia 2020a]:

The only way of discovering the limits of the possible is to venture a little way past
them into the impossible.

The Oz project started by trying to do many things implicitly, but as our experience showed that
this did not work well, we took a step back from the brink and made the operations explicit in
Oz 2. In a few cases (such as mutable state and laziness), we did not feel the need to implement
implicitness in our first design so we avoided it from the start.

3.2 Development Methodology

The development methodology used in the Oz project has been refined over many years, and is
largely responsible for the combination of expressive power, semantic simplicity, and implementa-
tion efficiency found in Mozart. The methodology was first explained in [Van Roy et al. 2003b];
partial explanations of it are given in [Smolka 1995b; Van Roy 1999]. We summarize it here.
At all times during development, there exist both a solid implementation and a simple formal

semantics. However, the system’s design is in continuous flux. The developers continuously intro-
duce new abstractions as solutions to practical problems. The burden of proof is on the developer
proposing the abstraction: he must prototype it and show an application for which it is necessary.
The net effect of a new abstraction must be either to simplify the system or to greatly increase
its expressive power. If this seems to be the case, then intense discussion takes place among all
developers to simplify the abstraction as much as possible. Often it vanishes: it can be completely
expressed without modifying the system. This is not always possible. Sometimes it is better to
modify the system: to extend it or to replace an existing abstraction by a new one.
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The decision whether to accept an abstraction is made according to several criteria including
aesthetic ones. Two major acceptance criteria are related to implementation and formalization. The
abstraction is acceptable only if its implementation is efficient and its formalization is simple.

To make this explanation concrete, we give a nonexhaustive list of examples of this methodology
in the design of Oz:

• A first example occurs with constraint programming and encapsulated search. The original
design used a special-purpose search combinator that itself spawned a local computation space
[Schulte et al. 1994]. This complex design was eventually replaced by the much simplified
computation space abstraction (see Section 5.1.6) [Schulte 1997b, 2002]. The latter provides the
ability to program many relational and constraint programming abilities without requiring
any additional support.

• A second example occurs with component-based programming using functors and modules,
as mentioned in the Oz 3 paragraph in Section 2.2. These new abilities did not require
any extension to the kernel language; higher-order programming with records and names
(unforgeable constants, see Section 5.1.1) is sufficient to define them.

• A third example is the support for lazy evaluation. As explained in the Oz 3 paragraph, this
was originally defined by making unification a blocking operation. In addition to making
unification more complex, this also made it nondeclarative. This was later replaced by a
single operation, WaitNeeded, which was simpler and easier to implement, and declarative
to boot (see paragraph Lazy functional dataflow in Section 5.1.3). By using WaitNeeded

exactly where it is needed the programmer can combine the techniques of deterministic
dataflow and by-need synchronization (see Section 5.2.3).

• A fourth example is the object system of Oz 2 as opposed to Oz 1. As explained in Section
2.2, Oz 2 has explicit thread creation, as opposed to implicit thread creation in Oz 1. In
addition to simplifying reasoning about programs, this also had the additional consequence
of simplifying the object system: the Oz 1 object system had to explicitly serialize an object’s
updates, whereas in Oz 2 this was no longer necessary, since threads provided a sufficient
serialization.

• A fifth example is the use of single assignment variables in a concurrent functional setting
(called łdataflow variablesž throughout this article, see definition in Section 2.1.2). One
advantage is that single assignment is a weak form of mutable state that does not affect the
purity of a functional program, while allowing some bindings. A second advantage is that all
list functions trivially become tail-recursive without needing code transformations or other
techniques (see Section 5.1.5). A third advantage is that all list functions can be used in a
concurrent setting on streams, where a stream is a list with an unbound tail. A list function
running inside a thread immediately becomes a concurrent agent, where input lists are used
as input channels and output lists as output channels. A fourth, major advantage is that all
higher-order functions become concurrency patterns; for example the FoldL function is the
heart of a concurrent agent with internal state and the Map function combines a broadcast
and convergecast (both in Section 5.2.4).

This methodology extends the approaches put forward by Hoare, Ritchie, and Thompson [Hoare
1987; Ritchie 1987; Thompson 1987]. Hoare advocates designing a program and its specification
concurrently. He also explains the importance of having a simple core language. Ritchie advises
having the designers and others actually use the system during the development period. In Mozart
this is possible because the development environment is part of the run-time system. Thompson
shows the power of a well-designed abstraction. The success of Unix was made possible due to its
simple, powerful, and appropriate abstractions.
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With respect to traditional software design processes, this methodology is closest to exploratory

programming, which consists in developing an initial implementation, exposing it to user comment,
and refining it until the system is adequate [Sommerville 1992]. The main defect of exploratory
programming, that it results in systems with ill-defined structure, is avoided by the way the
abstractions are refined and by the double requirement of efficient implementation and simple
formalization.

The two-step process of first generating abstractions and then selecting among them is analogous
to the basic process of evolution. In evolution, an unending source of different individuals is followed
by a filter, survival of the fittest [Darwin 1859]. In the analogy, the individuals are abstractions
and the filters are the two acceptance criteria of efficient implementation and simple formalization.
Some abstractions thrive (e.g., compositionality with lexical scoping), others die (e.g., the łgenerate
and testž approach to search is dead, being replaced by propagate and distribute), others are born
and mature (e.g., dynamic scoping, see Section 5.3), and others become instances of more general
ones (e.g., deep guards, once basic, are now implemented with spaces).

3.3 Support Multiparadigm Programming

In any large programming project, it is almost always a good idea to use more than one paradigm:

• Different parts are often best programmed in different paradigms.1 For example, an event
handler may be defined as an actor whose new state is a function of its previous state and an
external event. This uses both the object-oriented and functional paradigms and encapsulates
the concurrency in the actor.

• Different levels of abstraction are often best expressed in different paradigms. For example,
consider a multi-agent system programmed in a concurrent logic language. At the language
level, the system does not have the concept of state. But there is a higher level, the agent
level, consisting of stateful entities called łagentsž sending messages to each other. Strictly
speaking, these concepts do not exist at the language level. To reason about them, the agent
level is better specified as a graph of communicating actors.

Section 5.2 gives examples of what can be done in Oz when combining multiple paradigms in
the same program. Note that it is always possible to encode one paradigm in terms of another.
Usually this is not a good idea. We explain why in one particularly interesting case, namely pure
concurrent constraint programs with state [Janson et al. 1993]. The canonical way to encode
mutable state in a concurrent constraint program without state is by using streams. A stream
represents a communication channel; a send is done by binding the tail to a pair of a message and
new tail (see also Section 5.2.1). In this case, an actor object is a recursive predicate that reads a
stream. A reference to an actor is a stream that is read by the actor. This reference can only be
used by one sender object, which sends messages by binding the stream’s tail. Two sender objects
sending messages to an actor are coded as two streams feeding a stream merger, whose output
stream then feeds the actor. Whenever a new reference is created, a new stream merger has to be
created. The system as a whole is therefore more complex than a system with state:

• The communication graph of the actors is encoded as a network of streams and stream
mergers. In this network, each object has a tree of stream mergers feeding into it. The trees
are created incrementally during execution, as object references are passed around the system.

• To regain efficiency, the compiler and run-time system must be smart enough to discover
that this network is equivalent to a much simpler structure in which senders send directly to
receivers. This łdecompilationž algorithm is so complex that to our knowledge no concurrent
constraint or concurrent logic system ever implemented it.

1Another approach is to use multiple languages with well-defined interfaces. This is more complex, but sometimes works.
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On the other hand, a much simpler solution is to add named streams to the language, such as ports
in AKL or Oz. This supports many-to-one communication directly and hence directly supports
communicating actors.

Similar examples can be found for other concepts, e.g., higher-orderness, concurrency, exception
handling, and laziness [Van Roy and Haridi 2004]. We explain these examples:

• In a first-order language, a higher-order function can be encoded by explicitly representing
the environment frame needed for the closure. This complexity is unnecessary if the language
is higher-order.

• In a sequential language, concurrency can be encoded by explicitly representing task pools and
implementing a scheduler that chooses which task to execute. This complexity is unnecessary
if threads are added to the kernel language.

• In a language without exceptions such as the original C language, exception handling can
be encoded by implementing each operation as a function that returns an error code, and
checking the error code at each function call and returning immediately if there is an error
[Kernighan and Ritchie 1988]. Section 2.3 of [Van Roy 2009] gives an example of this encoding.
This complexity is unnecessary if exceptions are added to the kernel language.

• In a language without laziness, it is possible to encode lazy evaluation by program transfor-
mation. For example, the [Van Roy and Haridi 2004] textbook gives two implementations of a
bounded buffer in functional programming: in the textbook, Section 4.3.3 (Figure 4.14) shows
a bounded buffer in a concurrent functional language without laziness and Section 4.5.4
(Figure 4.27) shows a bounded buffer in a lazy concurrent functional language. In the former
definition, the consumer binds a dataflow variable as a signal to the producer whenever it
needs a new value. The latter definition is much simpler.

In each case, encoding the concept increases the complexity of both the program and the system
implementation. In each case, adding the concept to the language gives a simpler and more uniform
system. In general, when a specific problem is being solved, it can happen that programs become
complicated for technical reasons that are not directly related to the problem. This is a sign that
there is a new concept waiting to be discovered and added to the kernel language. We call this the
creative extension principle. It was first discovered by Felleisen [1990].

3.4 Combine Dynamic and Static Typing

Our goal was to explore multiple paradigms and how they interact. This was mostly unknown
territory when we started the Oz project, which is why we favored exploring expressiveness over
the compile-time verification given by static typing.

We define a type as a set of values along with a set of operations on those values. We say that a
language has checked types if the system enforces that operations are only executed with values
of correct types. There are two basic approaches to checked typing, namely dynamic and static
typing. In static typing, all variable types are known at compile time. No type errors can occur at
run-time. In dynamic typing, the variable type is known with certainty only when the variable is
bound. If a type error occurs at run-time, then an exception is raised. Oz is a dynamically-typed
language. Let us examine the trade-offs in each approach.
Dynamic typing puts fewer restrictions on programs and programming than static typing. For

example, it allows Oz to have an incremental development environment that is part of the run-time
system. It allows to test programs or program fragments even when they are in an incomplete
or inconsistent state. It allows truly open programming, i.e., independently-written components
can come together and interact with as few assumptions as possible about each other. It allows
programs, such as operating systems, that run indefinitely and grow and evolve.
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On the other hand, static typing has at least three advantages when compared to dynamic typing.
It allows to catch more program errors at compile time. It allows for a more efficient implementation,
since the compiler can choose a representation appropriate for the type. Last but not least, it allows
for partial program verification, since some program properties can be guaranteed by the type
checker.
In our experience, we find that neither approach is always clearly better. Sometimes flexibility

is what matters; at other times having guarantees is more important. It seems therefore that the
right type system should be łmixedž, that is, be a combination of static and dynamic typing. This
allows the following development methodology, which is consistent with our experience. In the
early stages of application development, when we are building prototypes, dynamic typing is used
to maximize flexibility. Whenever a part of the application is completed, then it is statically typed
to maximize correctness guarantees and efficiency. For example, module interfaces and procedure
arguments could be statically typed to maximize early detection of errors. The most-executed part
of a program could be statically typed to maximize its efficiency.

Much work has been done to add some of the advantages of dynamic typing to a statically-typed
language, while keeping the good properties of static typing:

• Polymorphism adds flexibility to functional and object-oriented languages.
• Type inferencing, pioneered by ML, relieves the programmer of the burden of having to type
the whole program explicitly.

In the Oz project, we chose to go in the opposite direction by having the default be dynamic typing.
The Oz compiler does static type inference to improve compile-time error detection, but this is not
otherwise made available to the programmer. This can be seen as a precursor to gradual typing,
which defines a system where a type can be partially known or unknown at compile-time [Siek
and Taha 2006]. Oz makes a start in this direction, but much more work could be done on the topic
of static typing for multiparadigm programming.

4 IMPACT

4.1 CTM Textbook

Oz is used as the main language in the textbook Concepts, Techniques, and Models of Computer

Programming, published in March 2004 by MIT Press [Van Roy and Haridi 2004] and translated
into Japanese, Polish, French, and Spanish. The book is organized according to the kernel language
approach throughout. It has more than 1000 programs and program fragments, all of which run
on the Mozart System. The book was favorably received and is often compared to Structure and
Interpretation of Computer Programming [Abelson et al. 1996; Deville 2005; Gammie 2009]. It is still
popular at the present time and is widely referenced on the Internet. For example, it is listed on the
Web page łTeach Yourself Programming in Ten Yearsž by Peter Norvig, Research Director at Google
[na Norvig 2006ś2020]. The review by Peter Gammie in the Journal of Functional Programming
[Gammie 2009] contains the following memorable assessment:

The overarching achievement of this book is to be so provocative that one wants to
engage the authors in debate about almost everything they say. Partly this is due to
the chirpy writing style [...] but mostly it is their delicious iconoclasm.

Work on the book started in 1999 when Peter Van Roy and Seif Haridi realized that Oz was
comprehensive enough to support a programming textbook. We decided to write a book at its
natural size, explaining clearly all we had learned during the Oz project. We greatly underestimated
the effort this would take, to organize and write down what we learned and give it a coherent
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structure, but eventually the book was completed (the text was completed in Summer 2003).2

We acknowledge Raphaël Collet for his help on Chapter 13, which gives a complete structural
operational semantics for Oz, and Kevin Glynn who wrote the introduction to Haskell (Section
4.7). During the writing of the book, significant parts of the material were tested in programming
courses (as explained in Section 4.2). The Oz language was stable during the writing except for one
change, namely the fix to lazy evaluation which was completed just in time to make it in the book.
It was done by adding the operation WaitNeeded to the kernel language.
The last public draft of the book is from June 2003. On June 18, a message was posted by

user timothy to the Slashdot technology news site about the book, with title łA New Bible For
Programmers?ž, linking to this draft. This link was łslashdottedž: within 24 hours, there were more
than 6000 downloads, causing the UCL computing science departmental Web server to crash. We
subsequently received useful feedback that helped us correct some errors in the draft. We would
especially like to thank William Cook for noticing and helping us correct a major error in the
terminology for data abstractions. Thanks to his help, the book uses the correct terminology for
the two fundamentally different forms of data abstraction, namely abstract data types (ADTs) and
procedural abstractions (objects). The discussionwithWilliamCook is archived on the programming
languages blog Lambda the Ultimate for June 18, 2003.

4.2 Education

4.2.1 Traditional Courses. We have elaborated the book’s approach into a second-year university
level programming course. This was done before the book’s publication by Seif Haridi, Christian
Schulte, and Peter Van Roy, through courses given at KTH (Sweden), NUS (Singapore) (during
Haridi’s sabbatical stay), and UCL (Belgium), in 2001-2003. Van Roy has continued to teach and
refine courses based on the book up to the present day. Since its inception, more than 5,000
engineering students at UCL have followed this course as part of their core curriculum in the
five-year engineering degree. In addition, a number of other universities worldwide have taught
a similar course based on the CTM book and the course material we provide (Section 2.3 gives a
partial list).

Concepts-based approach. The course uses a concepts-based approach that progressively intro-
duces new concepts and organizes them into kernel languages [Van Roy 2011; Van Roy et al. 2003a].
When the course was first taught to all engineering students at UCL, in Fall 2004, there was initial
skepticism in the computing science department about the use of Oz since it was a research language
and not an industrially popular language. The course was provisionally accepted for two years, to
be followed by an evaluation to see whether it should be continued. After two years and positive
evaluations from the students, the course has been taught each fall semester ever since (15 times
up to and including Fall 2018). In the current version of the course, there are around four hundred
students each year. The didactic team consists of Peter Van Roy assisted by around four teaching
assistants and thirteen student monitors. The student monitors are third-year (or later) students
who have successfully taken the course previously. Each student monitor manages one lab session
per week. This pipelined structure has advantages for both cost and quality: it allows the course to
be taught with limited resources, and it allows junior students to be taught by their seniors who

2The first author kept all the drafts during the writing process. This led to the following curious result. Plotting the number

of distinct words w in a draft (where a łwordž is a maximal sequence containing only letters or digits) versus the draft size

s (in bytes) gives a function very close to a square root w = c · s0.5. A phone book (almost no repetition) would give an

exponent of 1, whereas repeating the same text would give an exponent of 0. The actual exponent 0.5 seems to show that

new information added during the writing process was always integrated into the existing information. Since c does not

vary significantly with the size, it also seems to indicate that the thoroughness of the integration was relatively constant

during the writing process.
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Functional programming 
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Higher-order programming 
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Object-oriented programming 

Data abstraction 
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Fig. 9. Five paradigms covered in the MOOCs Louv1.1x and Louv1.2x

understand well the difficulties encountered when learning programming concepts. We have been
using this approach for almost twenty years and we have gained two important insights about how
to teach programming:

• The first insight is the importance of the second year. In the first year, the students are given
an introductory course (which can be based on Java or Python). The language used in the
first year is not critical, since its role is to give the students an introduction to algorithmic
thinking. In the second year, the students are mature enough to understand a more abstract
course organized around programming concepts. The language is more important in the
second year, since we aim to give the students a broad and deep view of programming. Oz
was successful because it directly supports all the concepts of the course in one system, which
avoids the need for installing and using several systems.

• The second insight is the importance of formal semantics. University-level students in com-
puter science need to understand the semantics of their subject, in the same way that students
of electrical engineering need to understand the formal foundations of electromagnetism
such as given by Maxwell’s equations. We recommend that students be taught programming
language semantics in the second year. While the students can be given some semantics in
the first year, it is more important to start by learning algorithmic thinking. Giving a formal
semantics in the second year can succeed if the semantics is properly designed to be simple
and factored, such as the abstract machine semantics given in CTM. The semantics covers all
the concepts we teach in the course.

4.2.2 Massive Open Online Courses (MOOCs). Since 2013, when UCL joined the edX Consortium,
until 2018, the course was taught as two MOOCs (Massive Open Online Courses), called Louv1.1x
and Louv1.2x [Combéfis et al. 2014; Combéfis and Van Roy 2015]. We split the course into two
MOOCs, with 6 and 7 weekly lessons respectively, since there is too much material for a single
MOOC. Around 50,000 students have attended these MOOCs up to the present day. The two
MOOCs together cover five programming paradigms, as shown in Figure 9. All the material of
our university course is taught in the MOOCs and the weekly on-campus lecture is organized as a
flipped classroom. For legal reasons, we keep the same proctored on-campus evaluation as for a
non-MOOC course.
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The MOOCs provide programming exercises in Oz using the INGInious hosting platform for
online exercises [Derval et al. 2015]. We have also developed a tool, CorrectOz, that is able to
provide useful feedback to students when their programs have errors [Paquot and Magrofuoco
2016]. The tool includes an Oz parser and an abstract machine emulator, so it can detect both
syntactic and semantic errors. The parser accepts an extended Oz syntax that includes ambiguity,
so it can detect common errors such as missing keywords. The tool identifies around a hundred
error markers, which we found by analyzing actual student errors from the previous year’s course.
It is able to give useful feedback for around 80% of incorrect programs in the MOOC exercises.

The two MOOCs are also open to external students. One of the general problems that universities
face when organizing MOOCs is how to make them sustainable, since they require local resources.
We solved this problem for our course in two steps. The first edition of the MOOCs was funded
by the university (for the creation of the initial videos and exercises). All later editions of the
MOOCs require no additional funding because it is part of a university course that already has
significant resources allocated to it. One of the course’s four teaching assistants is assigned to
manage the MOOC for the UCL students as well as the external students. The main responsibility
of this assistant is maintenance of the MOOC’s support for programming exercises. In addition, all
of the course’s teaching assistants and student monitors help in managing the discussions on the
MOOC forums.

4.3 Projects and Applications

Since its release, theMozart systemwas widely used in research projects and innovative applications.
We made an effort to track down the most important of these applications, and we hope that we
did not miss any. Oz was initially designed to support knowledge-based multi-agent applications,
and many of the applications using Mozart were in this area. The natural language processing
community widely used Mozart and this was supported by a book of more than 300 pages [Duchier
et al. 1999]. The Strasheela constraint-based music composition system was implemented in Mozart
by Torsten Anders as part of his Ph.D. research [Anders 2007]. The TransDraw collaborative
graphic editor was implemented by Donatien Grolaux and used a transaction protocol to mask
network delays to give quick user interaction even on slow networks while guaranteeing a globally
consistent drawing [Grolaux 1998]. Fractalide is an implementation of HyperCard combined
with Flow-Based Programming done by Denis Michiels and Stewart MacKenzie [Michiels and
MacKenzie 2014]. In addition to these applications, Mozart was used as the main development
vehicle in several European and national research projects [Van Roy and Haridi 1999]. Three
Swedish projects were COORD, DMS, and ToCEE. The COORD project developed techniques
for agent coordination using decentralized market-based interaction models. The DMS project
developed a multi-agent platform inspired by the FIPA model, using the properties of Mozart to
improve the expressiveness of agent interaction models. The ToCEE project worked on a distributed
environment for cooperative engineering in the construction industry. The SELFMAN European
project worked on self-managing distributed systems based on structured overlay networks and
first-class components [na SELFMAN 2006ś2009][Lienhardt et al. 2007]. The PIRATES project in
Wallonia (Belgium) developed collaborative tools and libraries that built on Mozart’s distribution
support [na PIRATES 1997ś2003].

SimICS system-level architecture simulator. SimICS was the first system-level simulator that
could boot a non-modified commercial operating system at the instruction level [Magnusson et al.
2002, 1998]. In 1998 it was able to boot unmodified operating systems including Linux 2.0.30 and
Solaris 2.6. Mozart was used to implement SimGen, which is a key part of the SimICS system-level
architecture simulator. Starting from a specification of the target instruction set, SimGen generates
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Fig. 10. The SimICS system-level simulator showing the SimGen instruction-level compiler written in Mozart

(from [Magnusson et al. 1998]). This figure shows the role of SimGen in generating the various components

needed for system-level architecture simulation.

the core components necessary for the operation of SimICS, as shown in Figure 10. The company
Virtutech was created in 1998 to commercialize the SimICS technology, and Virtutech was acquired
by Intel in 2010, who are continuing to use the technology up to the present day. SimGen was
written by Fredrik Larsson starting in May 1996, originally in C but rewritten in Oz starting in the
beginning of 1997 (before the official release of Mozart 1) because of the requirements of symbolic
manipulation and high-level programming. SimGen was originally written for Ericsson in the APZ
project (proprietary processor for telephone switches) and later used to generate the interpreter
core of SimICS. The constraint part of Mozart was found useful for checking valid instruction
patterns. SimGen was improved over the years and eventually moved to Mozart 2. SimGen uses a
custom finite domain solver in the Mozart 2 version, since the latter no longer supports constraint
programming. SimGen is still being used today and it is probably one of the longest lasting projects
using Mozart.

Friar Tuck tournament scheduler. Friar Tuck is a round-robin sports tournament scheduling
application based on constraint programming that lets tournament coordinators enter a variety of
constraints to compute optimal solutions to complex tournament-planning problems (see Figure
11) [Henz 1999, 2000]. This software was used to schedule several sports tournaments in England
and the USA in 1999 and 2000, including the West of England Club Cricket Championship and
the Wisconsin Intercollegiate Athletic Conference. This software showed its ability to schedule
the 1997/1998 Atlantic Coast Conference (ACC) in basketball by outperforming the solution by
Nemhauser and Trick that was accepted by the ACC (1 minute for Friar Tuck versus 24 hours for
the other solution) [Henz 2001; Nemhauser and Trick 1998]. Friar Tuck was initially implemented
in Mozart by Martin Henz using Mozart’s constraint solver and GUI tools, and used as the initial
justification for creating a company also called Friar Tuck. However, the Mozart constraint solver
did not scale to the problem sizes that the company encountered in workforce management, which
was the area it focused on commercially. It was replaced by a custom solver using heuristic local
search using pseudo-boolean 0/1 models with max-SAT (maximum satisfiability). The company
still exists today and is called Workforce Optimizer.
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Fig. 11. The Friar Tuck tournament-scheduling application written in Mozart using constraint solving and GUI

programming (from [Henz 2000]). This figure shows the constraint editor for fixing patterns and opponents,

the interface to the solver phases, and the display of a generated schedule.

Fig. 12. The ΩMEGA proof assistant as part of a distributed application implemented in Oz, using multiple

abilities of Mozart including distributed programming, constraint programming, and GUI programming (from

ΩMEGA project, see [Siekmann et al. 2006]).

ΩMEGA proof assistant. ΩMEGA is a proof development system designed with the ultimate goal
of supporting theorem proving in mathematical research practice and mathematics education, i.e., it
is a mathematical assistant system that supports the user in the various tasks related to mathematical
theorem proving (see Figure 12). This was one of the first big applications to be implemented in
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simulator	architecture	

Fig. 13. Architecture and measured speedup of the iCities parallel agent simulator written in Mozart using

the network-transparent distribution model (from [Popov et al. 2003])

Mozart, by Jörg Siekmann and his group at DFKI and Saarland University [Siekmann et al. 2006].
The system consists of a proof planner and a distributed collection of tools for formulating problems,
proving subproblems, and for proof presentation. The distributed graphical user interface, LOUI,
provides advanced communication facilities; the MBase tool is an active mathematical database;
the constraint solver LINEQ helps to construct mathematical objects; several traditional automated
theorem proving systems such as OTTER and SPASS and an induction prover, INKA, may tackle
simple subproblems; diverse computer algebra systems can be used to simplify expressions and to
oracle the instantiations of variables.

iCities agent simulation. The iCities European project ran from 2000 to 2003 and studied the
evolution of inhabitants of virtual worlds (on-line communities), to understand emergent organi-
zational patterns for the information society. This project used Mozart to develop a large-scale
agent simulation platform (supporting millions of concurrent agents) running on workstation
clusters [Popov et al. 2003]. This work has shown empirically that the distribution of users on
sites follows a universal power law [Lelis et al. 2001]. The system did discrete-time simulation to
capture the behavior of Web users and Web sites. Sites and users are connected in small-world
graphs resembling the social network. Users are agents that exhibit behavior of real users, includ-
ing visiting bookmarked sites, exchanging information in łword-of-mouthž style, and updating
bookmarks. The simulator was completely written in Oz on Mozart using the network-transparent
distribution model and taking advantage of lightweight threads, dataflow synchronization, and
component-based programming. In 2002, the simulator supported up to 106 Web users on 104 Web
sites. Hardware used was a cluster of 16 AMD Athlon 1900+ computers connected by 100Mbit
switched Ethernet and running under Linux. On a single computer at 1GHz, the simulator required
about 1 minute for 104 users to do 102 steps. On the cluster, the simulator achieved parallel speedups
of 11 to 14, due to the high parallelism and efficient communication. Figure 13 shows the simulator
architecture and speedup numbers (łreplicationž means keeping local copies of stateless data,
łcachingž means agents migrate locally for each simulation step).

Virtual reality programming. Mozart was used in the DIVE system for virtual reality programming
[Axling et al. 1996; McGlashan and Axling 1996]. Mozart is designed to support multiple concurrent
agents with lightweight concurrency, which makes it well-suited for VR-applications. DIVE is an
interface between Oz applications and a toolkit for building distributed VR applications. It was
part of a framework for Agent Oriented Programming specialized for defining agents in virtual
environments for simulations. The framework was used to develop a system allowing collaborative
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configuration of virtual battlefields and battle simulations where the computer generated forces
are controlled with spoken natural language.

LogOz first-year programming course. The LogOz project created a first-year university program-
ming course based on progressive enrichment of multi-agent microworlds [Cambron and Cuvelier
2006; de le Vingne et al. 2007]. The LogOz vision is that first-year programming should focus on
concepts important for Internet computing such as concurrency, distribution, and fault tolerance.
The microworlds are inspired by the layered structure of Oz, with practical content inspired by
concepts from related efforts such as Logo, Toontalk, and Squeak. Students learn multi-agent pro-
gramming, which is used as a framework to introduce concepts from higher-order programming,
concurrency, graphic user interfaces, first-class software components, and fault-tolerant distributed
computing. The LogOz environment was implemented in Oz in two master’s projects and takes
advantage of the lightweight concurrency and symbolic programming abilities of Oz. We created a
complete one-semester course and tested it successfully on an audience of volunteer students.

QTk user interface toolkit. QTk was built as a frontend to Mozart’s Tk library [Grolaux et al. 2001,
2002] and is explained in chapter 10 of the CTM textbook [Van Roy and Haridi 2004]. QTk uses the
multiparadigm approach to simplify interface design. A user interface is defined by a combination
of declarative and imperative paradigms. The static part of the interface is defined by a nested
record structure. This record contains references to active objects to handle incoming and outgoing
events and to dynamically modify the interface. Our measurements show that coding the same
interface in QTk takes around one third the number of lines of code as in Tk.

Dataflow concurrency for Scala. Ozma is a conservative extension to the Scala programming
language that supports Oz dataflow concurrency and lazy execution [Doeraene 2011; Doeraene
and Van Roy 2013]. Ozma adds dataflow values, lightweight threads, lazy execution and ports,
as a conservative extension to Scala semantics. We have designed Ozma and built a compiler
and runtime environment that implements the full language. The implementation combines the
frontend of the Scala compiler together with the backend of the Mozart system.

5 TECHNICAL OVERVIEW

Previous parts of this article give the historical development of Oz and its impact. In this section,
we give a brief presentation of the technical contributions of Oz, to get a deeper understanding
of the historical development. All of the technical concepts presented in this section have their
backgrounds in the history.

5.1 Oz Language

5.1.1 Kernel Language Approach. Figure 14 shows three popular ways to define programming
languages, namely by a kernel language, a foundational calculus, or a virtual machine. We explain
the differences between these three approaches. Two approaches, the foundational calculus and
the virtual machine, are well-known. A foundational calculus gives a formal model of the language
that is designed to facilitate proving properties. For example, the λ calculus is a formal model for
functional programming that can be used to prove the Church-Rosser property (confluence). A
virtual machine defines an implementation of a language that maps in straightforward fashion
to existing processor architectures, to facilitate practical implementation. For example, the Java
Virtual Machine defines an emulator that can be used to implement the Java language. The third
approach, the kernel language, is less well-known.

A kernel language is a formal model with a mathematical semantics, like the foundational calculus,
but it has a different goal. Whereas the foundational calculus is designed to simplify mathematical
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Fig. 14. Three ways to define a programming language

study, the kernel language is designed to be directly useful to the programmer. The foundational
calculus is usually small, and often it is minimal (its constructs cannot be encoded by other constructs
in the calculus). Programmer-visible concepts need to be encoded in it, which makes it cumbersome
for programmers to write realistic programs in it. The kernel language tends to be larger, and
while it is usually not minimal, it does respect other formal requirements such as factorization
and compositionality. The kernel language contains concepts directly useful to programmers. The
programmer can write practical programs directly in the kernel language, and define linguistic
abstractions to make these programs more compact and readable (see Section 5.1.5). With a kernel
language, the programmer can immediately see how different paradigms relate to one another,
and how they can be used separately and together, since each paradigm corresponds to specific
kernel language constructs. Based on the kernel language, it is straightforward to define a simple
operational semantics for Oz (see Chapter 13 of [Van Roy and Haridi 2004]). The execution state
consists of a multiset of instructions (where each instruction corresponds to a thread) that observe
a shared constraint store. An execution step consists of choosing one instruction and performing
a single reduction on it. With this operational semantics, we can reason about computational
complexity and resource usage and we can define garbage collection.

The Oz 3 language, which we will refer to simply as Oz, is defined in terms of the kernel language
by adding syntactic sugar and linguistic abstractions. Since the kernel language is a subset of Oz 3,
it is possible to write programs directly in the kernel language. To make explicit the multiparadigm
nature of Oz, the kernel language is organized in a layered structure. Each paradigm is defined
by a set of concepts within this structure. Figure 15 shows most of the Oz kernel language. This
kernel language was designed in stepwise fashion during the Oz gestation period (see Section 2.2).
The CTM textbook presented in Section 4.1 is organized around this kernel language: each chapter
corresponds to a particular subset of the kernel language. We now briefly explain the operations
of the kernel language and organize them according to the principal programming paradigms
supported by Oz. To simplify the presentation in this article, Figure 15 leaves out two concepts
related to encapsulation of abstractions (unforgeable constants, called names, and read-only views
of dataflow variables), and the concept of a failed value (to handle unification failure). For interested
readers, the complete kernel language and its operational semantics are defined in Chapter 13 of
the CTM textbook [Van Roy and Haridi 2004].

5.1.2 Records, Atoms, Tuples, and Lists. A record in Oz is a compound data structure that consists
of a label f and a fixed collection of fields indexed by their field names l1, ..., ln . Records are the
only compound data structure in the kernel language. Atoms, tuples, and lists are defined in terms
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Functional

S ::= skip empty statement

| S1 S2 sequential composition

| local X in S end variable introduction

| X1=X2 variable-variable equality

| X=V variable-value equality

| if X then S1 else S2 end conditional

| {X Y1 · · · Yn } procedure call

| case X of Record then S1 else S2 end pattern matching

Functional dataflow

| thread S end thread introduction

Lazy functional dataflow

| {WaitNeeded X} by-need synchronization

Relational and constraint

| Space computation spaces

Exceptions

| try S1 catch X else S2 end exception scope introduction

| raise X end raise exception

Actor dataflow

| {NewPort X Y} port introduction

| {Send X Y} port send

Mutable state

| {NewCell X Y} cell introduction

| {Exchange X Y Z} cell exchange

X, Y, Z ::= (identifiers)

V ::= Number | Procedure | Record | true | false

Number ::= Int | Float

Procedure ::= proc {$ X1 · · · Xn } S end
Record ::= f (l1:X1 · · · ln :Xn )
Space ::= (space operations are listed in Figure 16)

Fig. 15. The Oz kernel language: This figure shows the layered structure of the Oz kernel language. Each

boldface heading introduces a programming paradigm. All paradigms above the double line are declarative

whereas paradigms below this line are nondeclarative. The usefulness of each paradigm is explained and

justified in the main text body. Because of this layered structure, paradigms coexist in the same language

and Oz programs can be written as a combination of several paradigms with well-defined interactions.

of records. An atom is a record with no fields. A tuple is a record whose field names are consecutive
integers starting from 1. The tuple t(S R) corresponds to the record t(1:S 2:R). A list is either
the atom nil or a tuple with label ’|’ and two fields containing an element and a list. The list
a|nil, which can also be written [a], corresponds to the record ’|’(1:a 2:nil).

5.1.3 Declarative Paradigms. The kernel language layers above the double line in Figure 15 all
define declarative paradigms, which are either pure functional or pure relational. From the viewpoint
of logic, all these paradigms are forms of logic programming that perform deductions which add
information to the constraint store. The relational paradigms extend the functional paradigms
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with search. The functional paradigms are related to the λ calculus as follows. We define the
term łdeclarativež to mean confluence of program executions. In many variants of the λ calculus,
which formalizes pure functional programming, the Church-Rosser theorem states that program
executions are confluent, from which it follows that the final result of an execution is the same
for all reduction orders, up to variable renaming. Functional programming in Oz is a variant
of the λ calculus with dataflow variables and threads. Dataflow variables are single-assignment
variables that allow synchronization on binding (wait until the variable is bound to a value). This is
a restricted use of logic variables. Threads define sequential (applicative order) executions within a
concurrent program execution. The Church-Rosser property was proved for this variant in [Niehren
et al. 2006].
It is interesting to note that both concurrency and laziness can be modeled by restrictions on

the order in which reductions are done. In a functional dataflow program, it is possible to create
threads. The scheduler will only choose reduction orders that correspond to thread executions. For
each thread, the scheduler guarantees fairness and a guaranteed minimum percentage of processor
steps, according to a policy defined by the Mozart system. In a similar way, a lazy functional
dataflow program allows only reduction orders that correspond to its threads and its by-need
synchronizations.

In a multiparadigm setting, it is often useful to define declarativeness as an observational property,
where a program is declarative if all possible final results of its executions are logically equivalent.
This is an important modularity property for declarative programming. For example, it happens
regularly that we would like to define a declarative component but the component can only be
implemented in a nondeclarative paradigm. A simple example is memoization, where a function
keeps a cache of previously computed results, so that future calls can check the cache instead of
doing a computation. This trades off computation time for memory space and its implementation
requires a paradigm with mutable state.

Functional. In the basic functional paradigm, programs are executed sequentially and arguments
are evaluated before functions are called. This allows the standard programming techniques of
eager functional programming. In addition, using the single-assignment property of logic variables
allows functions that construct data structures (such as lists or trees) to be tail-recursive (example
given in Section 5.1.5).

Functional dataflow. The functional dataflow paradigm adds dataflow concurrency. This allows
to unnest function calls, so that they can run concurrently. For example:

Y={F1 {F2 X}}

can be replaced by:

local Z in

thread Z={F2 X} end

thread Y={F1 Z} end

end

This allows F2 to build its result incrementally and F1 to use this result incrementally. This is
especially useful when the shared argument Z between the two functions is a stream. Then F2

can build the stream incrementally while F1 reads the stream incrementally. In effect, F1 and F2
have become concurrent agents and Z is a communication channel connecting the two. Because
list-building functions are tail-recursive, this is efficient (i.e., concurrent agents use constant stack
space). Section 5.2 gives more examples of this programming style.
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Lazy functional dataflow. The lazy functional dataflow paradigm adds the WaitNeeded operation,
which does by-need synchronization in a form compatible with dataflow variables [Spiessens
et al. 2003]. {WaitNeeded X} suspends until X is needed by another operation. To be precise, an
operation needs X if X must be bound to a nonvariable for that operation to continue. We can add
calls to WaitNeeded in a program to add by-need evaluation where necessary. This will not change
the result of the program, but only how much computation is done to obtain the result. Section
5.1.5 defines a linguistic abstraction for lazy functions. This allows the standard programming
techniques of lazy evaluation to be used. In addition, it can be used together with concurrency,
which gives extra expressiveness (see discussion in Section 5.2).

Relational and constraint. Relational and constraint programming are both forms of logic pro-
gramming, in which a program is defined in first-order logic and executed by means of an efficient
proof algorithm. Relations are first-order predicates; the general term relational programming refers
to programming with relations, which includes both Prolog-style logic programming and relational
database programming. The term constraint programming is used when the execution depends
on solution algorithms that target specific kinds of relations, which are referred to as constraints
(see Section 2.1.3). Constraint programming is often used for combinatoric optimization in tandem
with approaches coming from operations research. As indicated in Figure 15, the relational and
constraint paradigms are both implemented with first-class computation spaces.
Because functional programming in Oz is based on concurrent constraint programming, the

relational paradigm can be seen an extension to functional programming that adds a lazy depth-first
search ability to programs. Section 5.1.6 gives a linguistic abstraction for relational programs, by
introducing the choice, fail, and Solve operations and defining them with computation spaces.3

This lets us write programs that behave exactly the same as pure Prolog programs. Section 5.2.6
gives a programming example in this paradigm.

5.1.4 Nondeclarative Paradigms. The layers below the double line in Figure 15 add nondeclarative
expressiveness to the language. There are good reasons why such expressiveness is needed and pure
functional or relational programming does not suffice. This is explained below for each paradigm.

Exceptions. Functions plus exceptions are the first nondeclarative paradigm (first layer below
the double line in Figure 15). Exceptions are an important extension of declarative programming
because they allow a program to detect when its execution becomes nondeclarative. This can
happen for internal reasons (run-time errors) or external reasons (resource problems). Examples
of run-time errors are taking the square root of a negative number, dividing by zero, accessing a
nonexistent record field, or attempting to bind a variable to two different values. An exception can
also be raised when there is a external problem such as power interruption or memory exhaustion.
In all cases, raising an exception allows the program to manage problems without stopping program
execution. In the case of a binding conflict, one binding will succeed and the other will fail, which
in addition to being erroneous can introduce an observable nondeterminism in the program (if
the bindings are done in different threads). In this case, the exception handler can encapsulate the
nondeterminism and ensure that the rest of the program sees a deterministic result. In that way,
the program becomes declarative again.

Actor dataflow. Actor dataflow extends functional dataflow with the ability for multiple senders
to send messages to a given endpoint. The implementation serializes these messages so that the
receiver sees a single stream of messages. We add one concept, called a port, to the kernel language.
A port is defined as a unique unforgeable constant (the port’s name) associated with an unbound

3For an implementation of the constraint paradigm, see Chapter 12 of [Van Roy and Haridi 2004].
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dataflow variable (the end of the port’s stream). Sending a message to the port’s name atomically
binds the unbound variable to a list pair (cons cell) that contains the message and the new end
of stream. Two operations are provided for ports, namely NewPort and Send. Given two fresh
unbound dataflow variables P and S, the NewPort operation creates a port:

P={NewPort S}

Here, P is bound to a new unique port name and S is the end of the stream. The Send sends a
message to the port, which extends the stream by binding S:

{Send P alpha} % S = alpha|_

{Send P beta} % S = alpha|beta|_

For a computation to send a message to a port, it only needs to know the port’s name P. Repeated
sends will create a stream. Section 5.2.4 gives examples of actor dataflow.

Mutable state. There are many reasons why mutable state is important. A program may need
to distinguish separate invocations of the same function. A function may need to remember
information from past invocations, for example because it is part of an interaction with the real
world. A function’s implementation may need to be replaced by another implementation, without
changing the interface. Furthermore, the mutable state must be named because it must be possible
for a program to manage such changes during its own execution. In the general case, it must be
possible for data structures to contain references to mutable entities. To realize all these abilities,
we extend functional programming with the ability to store an updatable reference to the constraint
store. We add one concept, called a cell, to the kernel language. A cell consists of a pair of a unique
unforgeable constant, the cell’s name, and a variable reference into the constraint store, with two
operations NewCell and Exchange. Given a variable R, the NewCell operation creates a cell with
initial content R:

C={NewCell R}

The {Exchange C Old New} atomically does two operations: it binds Old to the old content of
C, and it sets New as the new content. The atomic combination of these two operations means that
Exchange can be used correctly on cells shared between multiple threads.
From a theoretical point of view, ports and cells are equivalent in expressiveness in the sense

that each can be implemented using the other. Therefore, in a foundational calculus, only one is
strictly necessary. In our kernel language, however, we have found it useful to include both as
separate concepts. From a programmer viewpoint, actor dataflow and mutable state are conceptually
different ideas that are used in different ways: actor dataflow is fundamentally asynchronous (Send
completes immediately and the message is added eventually to the port’s stream) whereas mutable
state is synchronous (Exchange completes when the cell has been updated). This distinction shows
up clearly in the deep embedding approach used for distribution (see Section 5.3).

5.1.5 Linguistic Abstractions. The kernel language is important to define precisely the Oz language
and its semantics. However, we do not expect programmers to use this language for practical
program development. The practical Oz language seen by programmers extends the kernel language
by adding syntactic sugar and linguistic abstractions. Syntactic sugar is just a convenient shortcut
for frequently occurring syntactic patterns. Linguistic abstractions are more important because they
introduce new programmer concepts. The kernel language is useful to understand how programs
execute (in fact, the Oz implementation can run kernel language programs directly), but it is usually
not the best way to write practical programs.
A linguistic abstraction is a construct that defines a syntax for an abstraction, i.e., a new pro-

grammer concept. Oz provides common linguistic abstractions such as functions (keyword fun),
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classes (keywords class, self, meth), loops (keyword for), and locks (keyword lock). The
relational programming primitives choice and fail are also provided as linguistic abstractions.
The translation of these linguistic abstractions into kernel language defines their semantics.

Functions as linguistic abstractions. We explain how functions are provided in Oz as linguistic
abstractions. A function with n arguments is translated into a procedure with n + 1 arguments,
where the function result corresponds to the procedure’s final argument. Function definitions and
calls are translated into procedure calls and definitions. The function definition:

fun {F X} X*X end

is translated into the following procedure:

F=proc {$ X R} R=X*X end

Here and in the kernel language of Figure 15, the dollar sign $ in the procedure’s header is used as
placeholder for an identifier, to indicate an anonymous procedure.

Lazy functions as linguistic abstractions. Translating function syntax to procedure syntax is more
than just a technical convenience. Because the function result is available explicitly, it allows
the translation to access it directly inside the procedure definition. This is used to translate lazy
functions. The lazy function definition:

fun lazy {F X} X*X end

is translated into the following procedure:

F=proc {$ X R} thread {WaitNeeded R} R=X*X end end

As explained before, the WaitNeeded call waits until R is needed by an operation.

Tail-recursive functions for list construction. Functions that construct lists are translated into
tail-recursive procedures using a similar technique: because the output can be accessed directly in
the translation, it can be created before the recursive call. This also requires the output to be created
as an unbound dataflow variable, which will be bound later in the recursive call. The definition of
Append:

fun {Append L1 L2}

case L1 of nil then L2

[] H|M1 then H|{Append M1 L2}

end

end

is translated into the following procedure:

Append=proc {$ L1 L2 L3}

case L1 of nil then L3=L2

[] H|M1 then

local M3 in

L3=H|M3

{Append M1 L2 M3}

end

end

end

The first element of the output list is constructed with L3=H|M3 and the rest of the output list is
constructed when M3 is bound in the recursive call to Append. For brevity we omit the straightfor-
ward translation of the case statement into a nested sequence of primitive case statements in the
kernel language.
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Space ::= X={NewSpace P} create new space X running program P

| I={Choose N} create a choice point with N alternatives and choose I

| Y={Ask X} ask space X for its status Y

| {Commit X I} make choice I in space X’s choice point

| Y={Clone X} create an identical copy Y of space X

| Y={Merge X} return space X’s constraints referenced by Y

Fig. 16. The computation space abstraction

Relational

| choice S1 [] · · · [] Sn end disjunction

| fail failure

| Y={Solve X} encapsulated search

Fig. 17. The relational kernel language

5.1.6 The Computation Space Abstraction. Oz computation spaces are inspired by AKL computation
spaces (see Section 2.1.5), except that instead of providing a built-in operation like AKL’s bagof, the
operations needed for Oz computation spaces are deconstructed and provided to the programmer
as a first-class abstraction in the language. Figure 16 gives the main operations of computation
spaces. We briefly explain what these operations do and how they are used and we show how to
implement relational programming with them. For a more detailed explanation, see [Schulte 2002]
or Chapter 12 of [Van Roy and Haridi 2004].

Relational programming with computation spaces. We explain how to implement a relational
program written in a functional paradigm with an additional instruction that allows to choose
among n alternatives (an example program is shown in Section 5.2.6). The parent space first creates
a new local space with NewSpace. Execution then continues as follows:

• The local space runs the relational program, and when it needs to choose it calls Choose,
which suspends. Concurrently, the parent space uses Ask to wait until the local space
achieves stability. When the local space is stable, the call to Ask returns with one of failed,
succeeded, or alternatives(N). In the third case, Choose was called with n alternatives,
so the parent space calls Commit to communicate a choice number to the local space (an
integer from 1 ton) and resume the suspended Choose call. Inside the local space, the Choose
call then returns with the choice number and the local space resumes execution.

• When a local space runs to completion with no more choice points, then the relational
program has possibly found a solution. This is detected with Ask in the parent space when it
returns failed or succeeded. In the latter case, there is a solution and the parent space
brings it up from the local space with Merge.

• To enumerate over more than one possible choice, the parent space uses Clone to create
clones of the local space before doing Commit. For each clone, the Commit is called with a
different choice number.

• Multiple solutions can be collected by the parent space and returned in a lazy list, which
behaves similarly to a Prolog interactive top-level query.

A linguistic abstraction for relational programming. Figure 17 shows a linguistic abstraction that
defines a kernel language for relational programming which allows Oz to do logic programming
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fun {Solve F}

{SolveStep {NewSpace F} nil}

end

fun {SolveStep S SolTail}

case {Ask S}

of failed then SolTail

[] succeeded then {Merge S}|SolTail

[] alternatives(N) then {SolveLoop S 1 N SolTail}

end

end

fun lazy {SolveLoop S I N SolTail}

if I>N then

SolTail

elseif I==N then

{Commit S I}

{SolveStep S SolTail}

else

C={Clone S}

NewTail={SolveLoop S I+1 N SolTail}

in

{Commit C I}

{SolveStep C NewTail}

end

end

Fig. 18. The Solve operation defined using computation spaces: lazy all-solution search engine

in the Prolog style. This extends the kernel language of Figure 15 with disjunction (choice),
failure (fail), and a Solve function. The choice groups together a set of alternative statements.
Executing the choice provisionally picks one alternative and continues execution. If this leads to
a failure later on (fail), then another alternative is picked. The Solve function is given a zero-
argument function as input and returns a lazy list of solutions. The input function calls choice
internally. Note that Solve calls can be nested: it is possible for an execution of a relational program
to itself run a local relational program.
Figure 18 gives the Oz code for the function Solve. For brevity, the Oz code of this figure is

given in the syntax of the practical Oz language, which can be translated into kernel language. We
do not give this translation, but it should be clear how it works. The choice statement is defined
with the Choose operation as follows:

choice S1 [] S2 [] ... [] Sn end

translates into:

case {Choose N}

of 1 then S1

[] 2 then S2

...

[] N then Sn

end
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When a choice statement is run, Choose first creates a choice point and suspends, waiting for a
Commit in the parent space.When the parent space commits, the Choose call returns the alternative
chosen by the parent and execution continues. The fail operation can be defined as a binding of
two incompatible values, e.g., 1=2.

The relational paradigm defined here is a simple example of computation spaces. The Mozart 1
system defines much more general uses. It provides many other search strategies, including breadth
first, iterative deepening, limited discrepancy search, branch and bound, and so on. It also provides
additional constraint domains and constraint operations, so that it can be used to do full-fledged
constraint programming.

5.2 Examples of Multiparadigm Synergy

Oz can express many programming techniques of different paradigms and use them together
cleanly in the same program. We do not present all these techniques here; they are explained in the
CTM textbook and elsewhere [Van Roy 2009; Van Roy and Haridi 2004]. This section focuses on
techniques that we consider to be uniquely important to Oz. They illustrate the expressive power
that comes from supporting multiple paradigms in the same language.
It is important to remember that these techniques were possible in the DFKI Oz 1.0 release in

1995 and were fully supported by the high-quality Mozart system released in 1999 (20 years before
the writing of this article). Since the first release of Mozart, Oz efficiently supported a programming
style based on declarative dataflow concurrency and asynchronous calls to objects where the
result was returned as a dataflow variable. In 1999, no other language with an implementation of
comparable quality to Mozart supported this style. The style has spread in the last two decades, and
these ideas are now available in widely used languages and systems. Both dataflow concurrency
and asynchronous object calls returning futures are now commonplace, e.g., in big-data analytics
tools and actor-oriented database systems. Supporting multiple paradigms within a language is now
commonplace, e.g., both Scala and Java 8 support functional programming with lambda expressions.

5.2.1 Functional Dataflow. This paradigm extends pure functional programming with two con-
cepts, namely dataflow variables and threads. We can write concurrent functional agents that
communicate through streams. This paradigm is widely applicable, despite the fact that it cannot
express nondeterministic programs. This is because it keeps all the advantages of functional pro-
gramming in a concurrent setting. Race conditions, which are observable effects of nondeterminism,
are impossible. The final results of an execution are always the same, no matter how the threads
are scheduled (assuming the scheduler is fair). It is possible to take any functional program and
add threads to it arbitrarily, without changing the result. The only effects of adding threads are to
remove deadlocks (give results when the original program did not) and to make the program more
incremental (give partial results when the inputs are built incrementally). In the programming
courses (Section 4.2) we call this łConcurrency for Dummiesž.

The advantage of functional dataflow. To compare the functional paradigm with the functional
dataflow paradigm, let us run two programs that perform the same computation, first sequentially
and then concurrently. We define the function Prod that creates a list of elements from L to H, and
takes 100 ms to create each element:

fun {Prod L H}

{Delay 100} % Delay at least 100 ms, to simulate a big computation

if L>H then nil else L|{Prod L+1 H} end

end
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Using Prodwe define a program that creates a list and then maps its elements. Here is the sequential
version:

L1={Prod 1 1000}

L2={Map L1 fun {$ X} X*X end}

The list L2 contains the squares of integers from 1 to 1000. Here is the concurrent version:

thread L1={Prod 1 1000} end

thread L2={Map L1 fun {$ X} X*X end} end

This is a practical concurrent program because both Prod and Map are tail-recursive, which implies
that they use constant stack size. It is generally true that all list-building functions in Oz can be
converted into concurrent executions, because they are tail-recursive. In the concurrent version,
the list L2 will also contain the squares of successive integers from 1 to 1000. Both programs
perform the same computation. So what difference does concurrency make? It is very simple: in the
sequential version, the dataflow variable L2 will remain unbound for 1000×100 ms = 100 seconds,
and it will then be bound to the whole list at once. In the concurrent version, a new element of
L2 will appear every 100 ms, for 1000 times. łConcurrency for Dummiesž has converted a batch
program into an incremental program.

Streams. Let us examine closely how the previous example works. During the execution, both
threads are active simultaneously, but not always runnable. Whenever the first thread adds an
element to L1, the second thread becomes runnable and can read the element. The intermediate
state of L1 is an incomplete list, i.e., it has an unbound dataflow variable at its tail. This is an
important concept that we have mentioned before (see Section 3.2). We give it a name: a stream is a
list with an unbound dataflow variable as its tail. The stream S:

S=a|b|c|d|S2

can be extended by binding the tail S2:

S2=e|f|S3

A stream can be used as a communication channel between two threads in the functional dataflow
paradigm. The first thread adds elements to the stream (it is a producer), and the second thread
reads the stream (it is a consumer). Any function that builds a list can be used as a producer and
any function that reads a list can be used as a consumer.

5.2.2 Higher-Order Functional Dataflow. In the functional dataflow paradigm, we can use functional
building blocks as concurrency patterns. As shown in the above example, we can use the Map
function to read a stream and build a new stream. In fact, all functions on lists can also be used on
streams. This is especially useful for higher-order functions:

• for X in L do S end: For all elements X of list L, execute statement S in the scope of X.
We call this a declarative for loop.

• L2={Map L1 F}: Transform L1 by applying F to all its elements, giving L2.
• X={FoldL L F U}: Combine all elements of L together with transformation function F and
initial value U, giving X.We summarize this with the equationx = (· · · ((u f l0) f l1) · · · f ln−1)

where L=[l0 · · · ln−1] and f is used as a binary infix operator.

These functions were originally designed for pure functional programming, but they get new
meaning as concurrency abstractions when used with dataflow variables in a concurrent setting.
We give several examples of this in the following sections.
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5.2.3 Lazy Functional Dataflow. This paradigm extends functional dataflow with by-need evalua-
tion, where we only evaluate an expression if its result is needed by another expression. Control
flows from output to the input: the computation is driven by the need to generate an output. In the
kernel language, this requires adding one concept to the functional dataflow paradigm, namely a
by-need wait which we call WaitNeeded. As a simple example, let us define the lazy function

fun lazy {Ints N}

N|{Ints N+1}

end

that creates a lazy list of successive integers. Ints is defined as follows in the kernel language:

proc {Ints N R}

thread {WaitNeeded R} R=N|{Ints N+1} end

end

In this way, all the programming techniques of traditional lazy evaluation become available to the
Oz programmer. For example, all the techniques that use lazy evaluation to build efficient functional
data structures are possible [Okasaki 1998]. Furthermore, lazy evaluation can be used together with
concurrency giving additional techniques. Combining lazy evaluation with concurrency, we can
write a bounded buffer where the producer does not run in lockstep with the consumer, which is
not possible with lazy evaluation only (code for the bounded buffer is given in Section 4.5.4 of [Van
Roy and Haridi 2004]). The combination of lazy evaluation and concurrency has been known at
least since 1977 [Kahn and MacQueen 1977].

5.2.4 Higher-Order Actor Dataflow. Higher-order functional dataflow has the limitation that it
is deterministic. To overcome this limitation, the kernel language adds one concept called a port,
which can be understood as a named stream.

Actors. By using ports, it is possible to define actor programming. We define an actor as a named
concurrent entity with an internal state, which transforms its state whenever a message is sent to
it. An actor can be defined with a port and a thread, using FoldL to read the message stream S:

fun {NewActor I F}

local S Out in

Out = thread {FoldL S F I} end

{NewPort S}

end

end

The name of the actor is the name of its internal port. I is the initial state and F is the state transition
function. The FoldL executes as a loop with an accumulating parameter. The first value of this
parameter is I. The second value is {F I M1}, where M1 is the first message sent to the actor. The
third value is {F {F I M1} M2}, and so forth. Each new message sent to the actor appears on the
message stream and causes a state transition. Out is the final state when the stream terminates,
which causes the actor to terminate.

Contract net protocol. A contract net is a simple negotiation protocol (see Figure 19). There are
three phases. First, a buyer sends a query to a set of sellers. Second, each seller sends a response with
its price. Third, the buyer then chooses the best price, sends an accept to that seller, and a cancel
to the others. This contract net protocol can be written very simply in the higher-order dataflow
concurrency paradigm. We implement the buyer and the sellers as actors. We use a higher-order
function to implement each phase of the protocol:
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Buyer 

Sellers 

Round 1 

query 

Round 2 

response 

Round 3 

accept/cancel 

Fig. 19. Contract net protocol

• Map sends the query to all sellers and collects the responses. The expressive power of Map
is remarkable in this example. It does both a broadcast (send to sellers) and convergecast
(collect responses).

• FoldL calculates the lowest price by iterating over all responses.
• ForAll sends the final decision (accept or cancel) to the sellers.

With this understanding, we can program the contract net protocol as shown in Figure 20. This
example is interesting because it is completely asynchronous. The Map sends messages and collects
responses asynchronously. The list of responses L is created immediately, without waiting for
responses to arrive, so it may contain unbound dataflow variables. This list is given as argument
to FoldL. What happens if the FoldL is executed before all the responses arrive? This is not a
problem: the FoldL operation will wait, in dataflow fashion, whenever it encounters a response
that is not available yet. So everything works out correctly, even though all messages are sent
asynchronously and responses can come at any time.

% First phase: send queries and collect the seller/price pairs.

L={Map Sellers fun {$ S} R in {Send S query(R)} t(S R) end}

% Second phase: find seller/price pair with lowest price.

t(S1 R1)={FoldL L.2

fun {$ t(S1 R1) t(S R)} if R<R1 then t(S R) else t(S1 R1) end end

L.1}

% Third phase: send accept to best seller, cancel to others.

for t(S R) in L do {Send R if S==S1 then accept else cancel end} end

Fig. 20. Contract net protocol (source code)

This implementation can be easily extended to handle issues that may arrive in practice, for
example to time out if a seller does not reply for a long time, or to reduce latency by sending a
cancel message to a seller as soon as a price is received that is lower than that seller’s price, without
waiting until the whole computation is terminated.

5.2.5 Mutable State and Data Abstraction. Data abstraction is the main organizing principle for
building complex software systems. A data abstraction is a part of a program that has an inside, an
outside, and an interface between the two. The inside is inaccessible to the outside, except through
the interface. The interface is a set of operations that can be used according to certain rules. Using
data abstractions has three main advantages. First, a guarantee that the abstraction gives correct
results, if the rules are respected. Second, a simplification of the program, since the user of an
abstraction does not have to understand the implementation in order to use it. Third, division of
labor that enables the development of programs by teams.
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Immutable ADT Immutable object

Stateful ADT

State

Fig. 21. Four ways to package a data abstraction

There are two main kinds of data abstraction, namely objects and abstract data types. An
object groups together value and operations in a single entity. An abstract data type keeps values
and objects separate. Orthogonally to this, an abstraction can be stateless or stateful. A stateless
abstraction is a pure value (a constant). A stateful abstraction encapsulates a mutable state that
can be changed during its operation. Mutable state is used in Oz for abstractions that interact with
the real world [Van Roy 2018]. For a given functionality, this means that there are four ways to
package the functionality in a data abstraction (see Figure 21). Modern programming languages use
all of these ways. Both stateful objects and abstract data types (ADTs) are ubiquitous; numbers are
typically implemented as ADTs (they are constants) and many languages allow defining stateful
objects. Stateful ADTs are widely used for large data structures such as arrays. Immutable objects
have become popular in big-data frameworks. For example, Spark uses a fluent interface which
builds on method chaining of objects: an object invocation returns a new object. Some stateful
systems use a fluent interface where an object invocation returns the same object with updated
state, which is then available for a chained invocation.

Immutable object. All four possibilities for packaging data abstractions are given and compared
in the CTM textbook [Van Roy and Haridi 2004]; here we show just the immutable object because
it is an unusual approach as compared to the other three.

local

fun {StackObject S}

fun {Push E} {StackObject E|S} end

fun {Pop E} case S of X|S1 then E=X {StackObject S1} end end

fun {IsEmpty} S==nil end

in record(push:Push pop:Pop isEmpty:IsEmpty) end

in

fun {NewStack} {StackObject nil} end

end

Calling NewStack creates an empty stack and calling IsEmpty returns a boolean. Calling Push or
Pop returns a new stack. The following code:

S={{{{{NewStack}.push 1}.push 2}.pop X}.pop Y}

binds X=2 and Y=1 and S to an empty stack. It is perhaps a remarkable fact that immutable objects
can be defined completely inside the functional programming paradigm; no other concepts are
needed.

ForCollect abstraction. We define a loop abstraction that can accumulate results over loop itera-
tions. This abstraction is interesting because it uses mutable state to implement functional dataflow.
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We start by introducing the declarative for loop which defines independent iterations. For example,
the expression for I in [1 2 3] do {Browse I*I} end is identical to:

local I=1 in {Browse I*I} end

local I=2 in {Browse I*I} end

local I=3 in {Browse I*I} end

(where Browse is a Mozart operation that displays its argument.) Each iteration is independent;
the identifier I references one element of the list in each iteration. Let us extend this declarative
for loop with the ability to accumulate results. We would like the statement:

R=for I in [1 2 3] do

... % accumulate I*I

end

to return R=[1 4 9]. We specify a new abstraction, ForCollect, that can do this:

R={ForCollect L proc {$ C I} S end}

This loops over all elements in L and executes statement S with loop index I and collect procedure
C. Calling {C X} inside S will accumulate X in R. The statement:

R={ForCollect [1 2 3] proc {$ C I} {C I*I} end}

will return R=[1 4 9]. Seen from the outside, ForCollect is a functional abstraction. Further-
more, because of the deep integration of programming paradigms in Oz, ForCollect works
correctly in a concurrent setting with streams, and it is also possible to write a version that creates
a lazy stream as output. Running ForCollect in its own thread will create a functional agent:

S2=thread

{ForCollect S1 proc {$ C X} if X mod 2 == 0 then {C X*X} end end}

end

This takes an input stream of integers S1 and creates an output stream S2 containing only the
squares of the even integers. We now show how to implement ForCollect. The collect procedure C
cannot bewritten in the functional paradigm because it hasmemory: each call to {C X} appends X to
the output list. C can only be defined using mutable state, i.e., a cell or a port. In our implementation,
each running instance of ForCollect uses one cell internally to store the current end of its output
list. This gives the following definition:

proc {ForCollect L P R}

local

Acc={NewCell R}

proc {C X} local R2 in {Exchange Acc X|R2 R2} end end

in

for X in L do {P C X} end

{Exchange Acc nil _}

end

end

The result is terminated by nil when the ForCollect operation terminates. In this code, the
{Exchange C X|R2 R2} binds the end of the output list to X|R2, which adds X to the list, and
sets the new end of the list to R2. The output list is terminated with nil when all executions of P
terminate. The use of Exchange ensures that ForCollect will work correctly when the collect
procedure is called from more than one thread. This is because Exchange atomically does both a
read and write; using separate read and write would allow race conditions where a second thread
inserts an operation in between the read and write. Exchange is the simplest way to avoid this
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problem; another solution would be to use explicit locks, by defining locks in the kernel language
(which also requires mutable state).

5.2.6 Relational Programming. To illustrate relational programming in the Prolog style, we show a
nondeterministic list append operation. In Prolog syntax this can be written as follows:

append([], L, L).

append([X|M1], L2, [X|M3]) :- append(M1, L2, M3).

In Oz the relational program is written as follows:

proc {Append L1 L2 L3}

choice L1=nil L2=L3

[] M1 M3 X in L1=X|M1 L3=X|M3 {Append M1 L2 M3}

end

end

It is instructive to compare this program with the append predicate in Section 2.1.4 and the Append
function in Section 5.1.5. In the relational paradigm, we search for solutions by calling Solve:

L={Solve fun {$} X Y in {Append X Y [1 2 3]} t(X Y) end}

This computes a lazy list that contains all solutions to the query {Append X Y [1 2 3]}. It
corresponds exactly to the following Prolog top level query:

|?- append(X, Y, [1,2,3]).

Asking for all elements of L (for example, by printing them) will result in:

L=[t(nil [1 2 3]) t([1] [2 3]) t([1 2] [3]) t([1 2 3] nil)]

These results are ordered according to a depth-first traversal of the solution tree, as in Prolog.

5.3 Distribution

As Oz 1 was being completed, the Oz research community realized that the Oz language design
would be a good starting point for building a distributed programming system. Because the language
cleanly separates immutable, dataflow, and mutable language entities, it would be possible to use a
deep embedding approach, where each language entity is implemented with its own distributed
algorithm. The design and implementation of Distributed Oz started in earnest in 1995 in the two
PERDIO projects mentioned in Section 2.2. The stated goal of these two projects was to build a
system for cluster computing. The distribution support as explained below was part of the Oz 3
language and its implementation was part of the Mozart Programming System first released in
1999 [Haridi et al. 1999, 1998, 1997; Van Roy 1999][na Van Roy et al. 1999].

5.3.1 Deep Embedding of Distribution in Oz. The first goal of Distributed Oz was to separate the
language semantics from the distribution structure. As far as possible, each language operation
should have the same semantics independent of the distribution structure. This separation means
that applications can be initially written in one distribution structure and run in another distribution
structure without changing the source code. The only differences would be operation timing and
possibility of partial failure. During the application’s lifetime, the distribution structure could
changed to accommodate changing requirements. For example, consider the contract net protocol
of Section 5.2.4. This program has the same behavior if the buyer and the sellers are located on
different nodes.
While this separation is an important goal, it cannot be perfect for the two reasons mentioned,

namely performance and failure. Changing distribution structure will change the communication
patterns needed during execution, which changes performance. Changing distribution structure also
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changes the failure behavior. When a compute node or a communication link fails, the execution of
a language entity may no longer obey the semantics. As a consequence, Distributed Oz consists of
three parts:

• First, the language semantics is obeyed precisely if there are no failures.
• Second, to control performance the developer can choose for each language entity the desired
protocol. Immutable entities, such as records and procedure values, are copied eagerly or
lazily. Dataflow variables can be bound once, eagerly or lazily. Mutable entities require a
consistency protocol. We provided two consistency protocols, namely stationary state and
migratory state.

• Third, to add fault tolerance, the system incorporates failure detection which allows building
fault-tolerance abstractions within the language.

5.3.2 Consequences of Deep Embedding. We show how to use deep embedding for distributed
computing.

Sharing references between stores. To initiate a distributed computation, two Oz processes need
to share one reference. We provide the ability to export a reference outside of an Oz process and to
import a reference that was previously exported. At this point, the two processes behave as if they
shared the same store. For example, let us define the function Add that keeps track of a running
sum. The call {Add X} adds X to the sum and then returns the updated sum.

C={NewCell 0}

fun {Add X} Old New in {Exchange C Old New} New=Old+X New end

{Offer Add URI}

Exporting is done by Offer which stores a serialization of Add as a character string in the uniform
resource identifier URI. The function Add can be imported from another process by calling Take:

Add2={Take URI}

Sum={Add2 25}

In the implementation, Add2 is a local reference on the second process, but because of deep
embedding, Add2 is semantically identical to Add. In this way, Add can be imported into any
number of processes and called from them. Semantically, it is as if Add was called from multiple
threads. Because the definition of Add uses Exchange, this is a correct concurrent execution.

Distributed lexical scoping. A procedure value that references a language entity will continue to
reference that entity, independent of where the procedure value is transferred across the network.
This implies that entities that are moved or copied across compute nodes will continue to behave
according to their specification. The function Add defined above will always reference the cell C
no matter from where it is executed. To achieve distributed lexical scoping, the implementation
transparently translates local references into remote references, and vice versa, when references
are moved between processes.

Dataflow across nodes. The producer and consumer example of Section 5.2.1 can be run on
different compute nodes. Because of the distributed implementation of streams (which uses the
distributed binding protocol explained in Section 5.3.3) this creates an asynchronous pipeline
between the two compute nodes.

Automatic code transfer between nodes. Let us define a compute server that uses its computational
resources to do any computation that we give it:

P={NewPort S}

thread
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for M in S do {M} end

end

{Offer P URI}

To use this server, the client imports P and sends it the computation to be performed:

P2={Take URI}

fun {Fibo N} if N<2 then 1 else {Fibo N-1}+{Fibo N-2} end end

local F in

{Send P2 proc {$} F={Fibo 30} end}

{Browse F} % Display F on the local screen

end

The code of the zero-argument procedure is transferred to the compute node and executed there.
When the computation is complete, F is bound to the result, which is sent back to the client because
of distributed lexical scoping.

Components with local resources. Resource dependencies are specified in Oz 3 in terms of functors
and modules. A module provides a well-defined package of functionality with an interface and an
implementation. Modules are localized to single compute nodes. A functor is a linguistic abstraction
that specifies a module. It defines the module’s interface, the implementation, and the other modules
that it needs. Functors are first-class values. For example, the functor Timer specifies a simple
timer that uses the underlying operating system functionality provided by the module OS:

functor Timer

export starttime:S endtime:E

import OS

define

T={NewCell 0} in

proc {S} T:={OS.time} end

fun {E} {OS.time}-@T end

end

The functor Timer is a value that can be exported, imported by another node, and installed there
using the local OS module of that node. This is an example of dynamic scoping. To implement a
sandbox, the destination node can provide a version of OS with restricted functionality.

5.3.3 Implementation. A wide range of distributed protocols were used to implement Distributed
Oz. Several of these are interesting in their own right and are presented below.

Distributed binding protocol (distributed unification). The distributed binding protocol is used to
bind dataflow variables that have references on several compute nodes. This algorithm is efficient
in common cases. For example, when the variable is bound on one node and read on a second
node then the latency is the same as explicit message passing. The general binding algorithm is
called distributed unification on rational trees and it was first defined formally and proved correct
in [Haridi et al. 1999]. Distributed Oz implements an extended version of this algorithm that is
well-behaved in case of network and node failures.

Migratory state protocol. This protocol migrates an object to the node where it is called, while
maintaining consistency and lexical scoping [Van Roy et al. 1997]. This does consistent caching of
the object state.

Distributed garbage collection. Distributed Oz implements garbage collection at three levels:

• Each compute node has a local garbage collector. This collector coordinates with the dis-
tributed collectors described below.
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• To handle distributed references, this is extended with a weighted reference counting algo-
rithm. This algorithm is efficient and scalable, but it does not handle cycles between mutable
entities on different nodes. These are left as a programmer responsibility.

• To handle failure, this is further extended with a time-lease mechanism. This handles perma-
nent or long-lived temporary failures.

6 CONCLUSIONS

This paper gives a retrospective view of the history of the Oz project, including both the community
aspects and the technical aspects. We show how Oz has its roots in the logic programming commu-
nity and how its development broadened to cover many programming paradigms. We explain the
Oz design process with the people involved and the decisions made, we show how the language
evolved over the years, and we give the principles of its design. Oz had impact on both research
and education, and we give highlights in both these areas. We show what Oz programming is like
and we gives examples of synergy when combining several paradigms in one program. We hope
that the ideas of this article will be an inspiration to future language designers.
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