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Unifying CyclesJ�org W�urtzAbstractTwo-literal clauses of the form L R occur quite frequently in log-ic programs, deductive databases, and|disguised as an equation|interm rewriting systems. These clauses de�ne a cycle if the atoms Land R are weakly uni�able, i.e., if L uni�es with a new variant of R.The obvious problem with cycles is to control the number of iterationsthrough the cycle. In this paper we consider the cycle uni�cation prob-lem of unifying two literals G and F modulo a cycle. We review thestate of the art of cycle uni�cation and give new results for a specialtype of cycles called unifying cycles, i.e., cycles L R for which thereexists a substitution � such that �L = �R . Altogether, these resultsshow how the deductive process can be e�ciently controlled for specialclasses of cycles without losing completeness.
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1 IntroductionIt is the foremost goal of the research in the �eld of automated deduction todevelop general and adequate proof methods and techniques for the logicsunder consideration. It is comparatively easy to invent a general proofmethod, but it is much more di�cult to develop a general and adequate prooftechnique. For example, the resolution principle [Rob65] and the connectionmethod [Bib87] are general proof methods for �rst-order logic. But arethey adequate? What is the meaning of adequateness in the �rst place?Roughly speaking, we will consider a technique as being adequate if it solvessimpler problems faster than more di�cult ones. We illustrate the notionof adequateness by a problem, where the known general proof techniquesface di�culties whereas trained humans seem to be able to solve it quitereasonably.For this purpose, consider the following set of clauses in Prolog-like nota-tion which is taken from [Pfe88] and was originally studied by  Lucasiewicz. Pi(iab; i(ibc; iac)): GPw  Pv; Pivw: MPPi(i(ixy; z); i(izx; iux)): AThe terms represent implicational formulas, i.e., iab encodes a! b and Passerts the derivability of its argument. Thus, the second clause representsmodus ponens. It contains several cycles [Bib88] de�ned by the connectionsbetween the atom Pw and the atoms Pivw and Pv . The clause MP canbe applied to itself and this may lead to an exponential growth of the searchspace. The obvious problem is to control the self-applicability of MP whileretaining completeness.  Lukasiewicz has found a 29 step proof. He musthave exercised a good control over MP! Quintus Prolog on a Sun SPARCstation 2 did not �nd a proof in several days. Nearly all existing automatictheorem provers cannot solve this problem as well since they are not able toexercise a good control over MP. E. Lusk reports1 that the parallel versionof Otter at Argonne is able to obtain a hyperresolution proof with about150 proof-steps while generating 6.5 million clauses in about half an hourduring the search for it. Their prover does not have a good control over MPas well. It solves the problem by sheer power.In [BHW91] it was conjectured that a problem like the  Lucasiewicz-formula could be solved in less than a second by way of a technique called1Private communication with W. Bibel [BHW91]3



cycle uni�cation. At present this conjecture remains a challenge since the Lucasiewicz-formula is a particularly di�cult instance of a class of formulaswhich could eventually be treated by cycle uni�cation. In [BHW91] a �rststep was made towards this goal by restricting the attention to the specialcase of formulas with exactly one cycle. In fact, we have focused our analysison the simple class of two-literal clauses of the form Pl1 : : : ln Pr1 : : : rnwhich consists of nothing but a single cycle. This additional restrictionsimpli�es the discussion without loss of generality of the method. In thispaper we further analyze clauses consisting of a single cycle and extend theresults found in [BHW91].Such a two-literal clause is usually embedded in the context of somelarger formula, or set of clauses. Again for simplicity of the discussionand without loss of generality, we restrict the treatment to the case of twoadditional clauses, namely a goal clause { referred to as (calling) goal { of theform  Ps1 : : :sn , which calls the cycle, and a fact { called (terminating)fact { of the form Pt1 : : : tn , which terminates the cycle. In our restrictedcase a cycle uni�cation problem is then the following one:Is there a substitution � such that �Ps1 : : : sn is a logical con-sequence of Pl1 : : : ln Pr1 : : : rn and Pt1 : : : tn ?If such a substitution � exists, then � is said to be a solution for the cycleuni�cation problem. For more general cases, cycle uni�cation can be de�nedin an analogue way.In order to be able to control a cycle we have to answer the followingquestions. Is cycle uni�cation decidable? How many independent most gen-eral solutions has a cycle uni�cation problem? Does there exist a uni�cationalgorithm which enumerates a minimal and complete set of solutions for acycle uni�cation problem? Answers to these questions may help to increasethe power of automated theorem provers signi�cantly. For example, if acycle is embedded in a larger formula and it can be determined that the cor-responding cycle uni�cation problem is unsolvable, then the clauses de�ningthe cycle can be eliminated from the formula. If a minimal and complete set� of solutions for a cycle uni�cation problem exists and can be enumerated,then any other solution is subsumed by a solution in � and need not to beconsidered. If � is �nite, then this may prune a potentially in�nite searchspace to a �nite one. But theorem proving is not the only task which maybene�t from cycle uni�cation.There are a variety of applications for cycle uni�cation. Observe thatalthough the variables occurring in the two atoms Ps1 : : :sn and Pt1 : : : tn4



might not be instantiated, it is possible to analyze the structure of the cycle.Therefore, we can compute partial solutions in a preprocessing manner (allpossible solutions if �nitely or only a subset otherwise). If some variableswill be instantiated in the course of further computation, we can update thepartial solutions (see also eg. [Fut88] on partial evaluation). Furthermore,cycle uni�cation helps us to transform recursive programs to iterative ones.The iterative structure can be compiled such that a proof might be detect-ed faster than with the depth-�rst search of Prolog. One of the impor-tant applications is datalogic, i.e., the �eld between logic and databases (cf.[Bib87]). It has been shown by eg. Smith [SGG86] that cycles are the sourceof non-terminating queries. Consequently, insights from cycle uni�cationmay be and have already been used to determine non-terminating queriesto deductive systems ([DVB89],[DVB90]). Cycle uni�cation might also con-tribute to answer the question whether the top-down, Prolog-like evaluationof recursive calls can be guaranteed to terminate ([UvG88],[Pl�u90]).Although cycle uni�cation is of signi�cant importance for the �eld ofautomated deduction, it has received surprisingly little attention in theliterature. Function-free cycle uni�cation problems, i.e., cycle uni�cationproblems de�ned over variables and constants only, occur mainly in de-ductive databases and it can be shown that under certain conditions theseproblems do not give rise to in�nite computations (cf. [MN83]). In [OW84]the number of iterations through a cycle can be limited via a user-de�nedparameter. In [Vie87] certain cycle uni�cation problems are solved by gen-eralization and subsumption. There, after several iterations through a cycle,subterms occurring in a goal are replaced by variables. Subsumption tech-niques may now be applied to terminate otherwise in�nite derivations. Thetechnique is shown to be complete. Unfortunately, answers to the general-ized goal need not to be answers to the initial goal. M. Schmidt{Schau�[SS88] has shown that cycle uni�cation is decidable provided that the goaland the fact are ground, i.e., they do not contain variable occurrences. In-dependently, P. Devienne [Dev90] has given a more general result for cycleuni�cation problems with linear goals and facts, i.e., each variable occurs atmost once in the goal and the fact. He uses essentially the same ideas asSchmidt{Schau�, but a very special technique based on directed weightedgraphs. Devienne's results were used by De Schreye et al. [DVB90] to decidewhether cycles admit non-terminating queries to deductive systems. Anoth-er approach has been taken by H.J. Ohlbach [Ohl90a] who represented setsof terms by so-called abstraction trees which may compress the search space.Moreover, abstraction trees can be used to compile two-literal clauses and in5



certain cases a �nite abstraction tree can represent in�nitely many solutionsof a cycle uni�cation problem [Ohl90b]. A further approach for unifyingin�nite sets of terms which are encoded in so called �-terms is describedin [Sal92]. The incorporation of �-terms into logic programming allows onthe one hand in�nite queries and the �nite representation of in�nitely manyanswers. On the other hand, it avoids repeated computation and certainkinds of in�nite loops, without changing the denotational semantics of theprograms.In [BHW91] we developed the theoretical foundations for cycle uni�ca-tion. For various classes of restricted cycle uni�cation problems we showedtheir decidability, proved that they have at most �nitely many most generalsolutions and constructed an algorithm to compute this set. The most gen-eral result concerned the class of non-recursive matching cycles Cnrm , i.e.,cycles fL Rg for which there exists a substitution � such that �L = Ror L = �R and 6 9i : x 7! t 2 �i , x 2 Var(t) , and t 6= x .2 But thesewere only fundamental classes of cycle uni�cation problems. One of theopen problems was to control cycles which overcome the limits of match-ing cycles. In this paper we present the class of unifying cycles, i.e., cyclesfL Rg such that L and R are uni�able. With this class we �nish workon cycles whose problems might be characterized by having always �nitelymany solutions.After some preliminaries on de�nitions and notations we formally de-�ne cycle uni�cation in Section 3. The important notion of dependencygraphs is introduced in Section 4. In Section 5 we de�ne di�erent class-es of restricted cycle uni�cation problems and show that their uni�cationproblems are decidable, determine the uni�cation type, and develop a uni-�cation algorithm. Our most general result concerns the class of unifyingcycles fL Rg which is a combination of the �rst three analyzed typesof cycle uni�cation problems. The paper concludes with a summary of theresults on cycle uni�cation and an outline of future work.2 De�nitions and NotationsOur de�nitions and notations follow those suggested in [DJ91]. Throughoutthis paper capital letters such as P , Q , : : : denote predicate symbols, smallletters such as a , b , : : : denote constants, f , g , : : : function symbols, and2By �i we denote the i{fold composition of � with itself, i.e., �1 = � and �i =�(�i�1) . 6



z , y , : : : variables. A term is either a variable or of the form f(t1; : : : ; tn) ,where t1; : : : ; tn are terms. s , t , : : : denote terms. An atom is of theform P (t1; : : : ; tn) . Let X be an atom or a term. Var(X) denotes the setof variables occurring in X . X is called ground i� X does not contain anyvariable. X is called linear i� every variable occurs at most once in X .By Xk we denote the syntactic object where each variable occurring in Xhas the index k attached to it. t[x1; : : : ; xn] denotes a term t such thatfx1; : : : ; xng � Var(t) .A substitution is a mapping from the set of variables into the set ofterms which is equal to the identity almost everywhere. Hence, it can berepresented as a �nite set of pairs fx1 7! t1; : : : ; xn 7! tng , xi 6= ti ,1 � i � n . Substitutions are denoted by small greek letters such as� , � , : : : . The identity substitution is called " . �t = �(t) if t is avariable and �t = f(�t1; : : : ; �tn) if t = f(t1; : : : ; tn) . Dom(�) = fx jx is a variable and �x 6= xg is the domain of � .The composition �� of two substitutions � and � is de�ned by (��)x =�(�x) . The restriction of the substitution � to the set V of variables isde�ned by �jV x = �x if x 2 V and �jV x = x otherwise. A substitution� is called variable-pure if f�x j x 2 Dom(�)g only consists of variables.A renaming is a variable-pure substitution � such that �x = �y impliesx = y for x; y 2 Dom(�) .If W is a set of variables, then � = � [W ] i� 8x 2 W : �x = �x . Asubstitution � is called more general than a substitution � on W , � �� � [W ] , i� there exists a substitution � such that �� = � [W ] . Twosubstitutions � and � are called equivalent (or variants) on W , � � � [W ] ,i� � �� � [W ] and � �� � [W ] . Two substitutions � and � are calledindependent on W i� � 6�� � [W ] and � 6�� � [W ] .� is called a uni�er for t and t0 i� Dom(�) � Var(t) [ Var(t0) and�t = �t0 . A uni�er � of t and t0 is called most general uni�er i� � ��� [Var(t)[Var (t0)] for all uni�ers � of t and t0 . The de�nitions above canbe extended to atoms, equations, and sets of equations in the obvious way.For a uni�cation algorithm we use the operations suggested in [MM82].3 Cycle Uni�cationC = fL Rg is called a cyclic theory , or cycle for short, if the atoms L andR are weakly uni�able, i.e., there exist two substitutions � and �0 suchthat �L = �0R [Ede85]. Let G and F be two atoms such that Var(G)\7



Var(F ) = ; . A cycle uni�cation problem hG �C�! F i (or hG ��! F iC ) isthe problem whether there exists a substitution � such that �G is a logicalconsequence of F and C . A substitution � is a solution for the cycleuni�cation problem if Dom(�) � Var(G) and �G is a logical consequenceof F and C .3Since solutions to cycle uni�cation problems are substitutions, the no-tions of more general, independent, etc. substitutions can be extended tomore general, independent, etc. solutions of cycle uni�cation problems inthe obvious way.As a �rst example consider the problemhPa ��! P�faifPx Pfxg:The empty substitution " is the only most general solution for this problem.However, there may be more than one solution as the examplehPxy ��! PabifPvw Pwvgshows. This problem has the two independent most general solutions fx 7!a; y 7! bg and fx 7!b; y 7! ag . But, there may be even in�nitely manyindependent most general solutions. As an example considerhPx ��! PaifPfy Pyg:This problem has the most general solutions fx 7! ag; fx 7! fag; fx 7!�ag; : : : .For a cycle uni�cation problem hG ��! F ifL Rg to be solvable, theatoms F and G must be of the form P (t1; : : : ; tn) and P (s1; : : : ; sn) ,respectively. Since L and R are weakly uni�able, their predicate symbolsmust also be identical, i.e., L and R must be of the form P 0(l1; : : : ; ln)and P 0(r1; : : : ; rn) , respectively. In the sequel we will only consider cycleuni�cation problems of this form. Furthermore, as the case P 6= P 0 istrivial, we assume P = P 0 .3A cycle uni�cation problem should not be confused with a theory uni�cation problemhG =C F i , i.e., the problem whether there exists a substitution � such that �G =C �F[Bib87, Sti85]. 8



To solve a cycle uni�cation problem hG �C�! F i we have to �nd a substi-tution which either uni�es G and F or uni�es { viz. simultaneously uni�eseach equation in { Ck = N [ Yk [ X k ;whereN = fs1 := l11; : : : ; sn := l1ng is the set of entry equations,Yk = fri1 := li+11 ; : : : ; rin := li+1n j 1 � i � kgis the set of cycle equations for k iterations through the cycle, andX k = frk+11 := t1; : : : ; rk+1n := tngis the set of exit equations after k iterations through the cycle.The following proposition is an immediate consequence of the complete-ness and soundness of the connection method [Bib87] or SLD-resolution, eg.[Llo84].Proposition 1 � is a solution for hG �C�! F i i� there exists a substitution� such that � uni�es G and F and � = �jVar(G) or there exists a naturalnumber k such that � uni�es Ck and � = �jVar(G) .Throughout the paper � will denote the most general uni�er of G andF restricted to Var(G) , if it exists. Similarly, �k will denote the mostgeneral uni�er of Ck restricted to Var(G) , if it exists. The solutions �kwill be computed by applying the Martelli&Montanari operations [MM82]to the set Ck .4Let C = hG �C�! F i be a cycle uni�cation problem. A set � of substi-tutions is a complete set of solutions for C i� each substitution in � is asolution for C and for each solution � for C we �nd a substitution � in �such that � �� �[Var(G)] . A complete set � of solutions for C is said to beminimal i� for all �; � 2 � we �nd that � �� �[Var(G)] implies � = � .In order to be able to control a cycle, we are interested in the answer tothree basic questions. Is cycle uni�cation decidable? How many independent4We start with a set of term-equations. The following operations (in the sequel calledMartelli&Montanari operations) are exhaustively applied. Let x be a variable and t aterm. If x := x occurs, it is erased. t := x is replaced by x := t . If x := t occurs in theset, x 7! t is applied to all other equations (variable elimination); if x 2 Var(t) , thenfailure. If the set contains f(t1 : : : tn) := f 0(t01 : : : t0n) and f 6= f 0 then failure, otherwisereplace this equation by t1 := t01; : : : ; tn := t0n (term reduction). A set of term-equationsis in solved form if all equations are of the form x := t . We stop with success if we obtaina solved form. 9



most general solutions has a cycle uni�cation problem? Does there exista uni�cation algorithm which enumerates a minimal and complete set ofsolutions for a cycle uni�cation problem?Following [Sie90], we de�ne the type of a cycle uni�cation problem asfollows. A cycle uni�cation problem is of type unitary i� there exists asingle most general solution, �nitary i� there exist �nitely many most generalsolutions, and in�nitary i� there exist in�nitely many most general solutions.4 Dependency GraphsIn this section we introduce the notion of dependency graphs for cycle uni�-cation problems. All results in this paper depend on certain kinds of pathsin the dependency graphs.Consider the cycle uni�cation problem C = hG ��! F ifL Rg . A de-pendency graph relates variables occurring in the Goal G and variables ofthe cycle fL Rg . First, the variables in G are related to the variablesoccurring in the �rst instance of the left-hand side of the cycle, i.e., L1 . Sec-ond, the variables in the i -th instance of the right-hand side of the cycle,i.e., Ri , are related to the variables in the i+ 1 -st instance of the left-handside, i.e., Li+1 . Let N 0 and Y 0i be the sets which are obtained from Nand Ri := Li+1 by applying all possible Martelli&Montanari operations, re-spectively, i.e., they are in solved form. The variable dependency graph GCcorresponding to C is the pair (V;E) , where� V is a set of nodes, containing a node labeled by v for each v 2Var(C) , and� E is a set of directed edges x;y 2 E computed as follows.1. Let u; v 2 Var(G) and x; y 2 Var(L R) . If t[u] := t0[x1] 2N 0 or t0[x1] := t[u] 2 N 0 , then add the directed edge from uto x , i.e., u;x . If t[u] := t0[v] 2 N 0 , then add the undirectededge between u and v . If t[x1] := t0[y1] 2 N 0 , then add theundirected edge between x and y . After all edges are inserted,add the directed edge u;x if x is reachable from u via directed(traverseable in both directions) or undirected edges. Finally,delete all undirected edges.2. Consider equations in Y 0i . The following cases are consideredfrom top to bottom. 10



{ If xi := t[yi+1] 2 Y 0i and zi+1 := t0[yi+1] 2 Y 0i , then add thedirected edges x;y and x;z .{ If xi := t[yi+1] 2 Y 0i and zi := t0[yi+1] 2 Y 0i , then add thedirected edges x;y and z;y .{ If xi := t[yi+1] 2 Y 0i , then add the directed edge x;y .{ If xi+1 := t[yi] 2 Y 0i and zi+1 := t0[yi] 2 Y 0i , then add thedirected edges y;x and y;z .{ If xi+1 := t[yi] 2 Y 0i and zi := t0[yi] 2 Y 0i , then add thedirected edges y;x and z;x .{ If xi+1 := t[yi] 2 Y 0i then add the directed edge y;x .Since Y 0i is in solved form, no other cases are possible involvingdi�erent superscripts.Observe that no superscribed variables occur in the dependency graph.As an example consider the cycle uni�cation problemC = hPu1u2u3u4u5 ��! PababaifPyvywz Pxyvywg :We obtain as the most general uni�er of Pu1u2u3u4u5 and Py1v1y1w1z1the substitution�0 = fu1 7!y1; u2 7!v1; u3 7!y1; u4 7!w1; u5 7!z1gbecause N 0 = fu1 := y1; u2 := v1; u3 := y1; u4 := w1; u5 := z1g:In the �rst step we obtain Figure 1.Furthermore, we obtain as the most general uni�er of Pxiyiviyiwi andPyi+1vi+1yi+1wi+1zi+1 the substitution�i = fxi 7!yi+1; yi 7!wi+1; vi+1 7!wi+1; vi 7!yi+1; wi 7!zi+1gbecauseY 0i = fxi := yi+1; yi := wi+1; vi+1 := wi+1; vi := yi+1; wi := zi+1gThe dependency graph GC is �nished by the second step. The result isshown in Figure 2. 11



"""""" u5
u2u1u3u4 zw vyFigure 1: First step of the construction of the dependency graph

""""""x u5
u2u1u3u4 zw vyFigure 2: Final dependency graph12



A variable u 2 Var(G) depends on xi; x 2 Var(L R) , ifft[u] := t1[x11] or (t[u] := t010 [x110 ]; t0010 [x110 ] := t1[x11])g [ft0j [xjj] := tj+1[xj+1j+1] or (t0j [xjj ] := t0j0 [xj+1j0 ]; t00j0 [xj+1j0 ] := tj+1[xj+1j+1]) j 1 � j < ig; xi = xcan be derived from N and Y i�1 by application of Martelli&Montanarioperations. Because of the de�nition there exists a directed path, i.e., asequence of adjacent directed edges from u to x , of length i traversedin the right direction. Similarly, yj 2 Var(Lj  Rj) depends on xj+i 2Var(Lj+i Rj+i) if for xi = xft[yj ] := t1[xj+11 ] or (t[yj ] := t010 [xj+110 ]; t0010 [xj+110 ] := t1[xj+11 ])g [ft0k [xj+kk ] := tk+1[xj+k+1k+1 ] or (t0k [xj+kk ] := t0k0 [xj+k+1k0 ]; t00k0 [xj+k+1k0 ] := tk+1[xj+k+1k+1 ]) j 1 � k < ig;i.e., there exists a directed path of length i between yi and xj+i . Hence,we have a correspondence between the paths of the dependency graph andthe dependencies established by the entry- and cycle-equations. We can alsosay that a variable u 2 Var(G) depends on xi if an instantiation of xi mayinuence via a set of equations in some Ck the instantiation of u .A path is a list of variables hx1; : : : ; xni; n � 1; fx1; : : : ; xng � Var(L R); such that x1;x2; : : : ; xn�1;xn is a path in the dependency graphand either no edge starts from xn or xn is the �rst variable in hx1; : : : ; xnioccurring twice. Furthermore, the �rst variable of a path must be connectedwith a variable u 2 Var(G) via one directed edge. A path hx1; : : : ; xli iscalled linear i� xi 6= xj ; 1 � i; j � l; i 6= j . A path � = hx1; : : : ; xli con-tains the subpath � = hy1; : : : ; ymi i� there exists an i � 1 and an j � lsuch that � = hxi; : : : ; xji. A path � = hx1; : : : ; xli is called a (cyclic)permutation i� hx1; : : : ; xl�1i is linear and x1 = xl A path hx1; : : : ; xliis called a (cyclic) permutation with linear entry-path i� hx1; : : : ; xl�1i islinear and there exists an j , 1 < j < l , such that xl = xj . It is ob-vious that a permutation with linear entry-path hx1; : : : ; xl; : : : ; xl+k; xlican be divided into the linear entry-path hx1; : : : ; xli and the permutationhxl; : : : ; xl+k; xli . x is called a branching-point if more than one directededges start from x . Finally, a path hx1; : : : ; xli is of length l , x1 is calledthe starting-point and xl is called the end-point of the path.The cycle uni�cation problemhPu1u2u3u4u5 ��! PababaifPyvywz Pxyvywg13



depicted in Figure 2 de�nes the permutationhy; v; yiand the linear pathshv; y; w; zi; hy; w; zi; hw; zi; and hzi:One should observe that the dependency graph contains a cycle i� fL Rg de�nes a permutation. Furthermore, for a path hx1; : : : ; xni one shouldobserve that the superscribed variable xi1 depends on the superscribed vari-able xi+n�1n .A similar approach with so called argument/variable graphs was un-dertaken by J. Naughton [Nau89] and with connection graphs by Wei et al.[WLH91]. Both works were settled in the �eld of deductive databases. Theyconsidered a set of facts and introduced non-recursive predicates, i.e., othersthan the cycle predicates. They disallowed, however, multiple occurrencesof variables in the cycle and needed not to consider function-symbols. Thus,these approaches are too weak for cycle uni�cation.5 Unifying Cycles (Cu)In this section we show for certain kinds of subclasses of Cu their decidability,determine the uni�cation type and develop a uni�cation algorithm. Theseclasses show characteristics which can be generalized for the class Cu ofunifying cycles.A variable x is called recursive i� it is possible to derive from L := Rwith Martelli&Montanari operations an equation of the form x := t suchthat x 2 Var(t) and t 6= x . Therefore, if the Martelli&Montanari algo-rithm runs into an occur-check failure, we know that the cycle contains arecursive variable. As an example consider the cycle fPfx Pxg . Obvious-ly, the variable x is recursive. Embedded in the cycle un�cation problemhPy ��! PaifPfx Pxg we obtain the independent most general solutionsfy 7! ag; fy 7! fag; fy 7! �ag; : : : , i.e., in�nitely many. This is one ofthe reasons why we exclude recursive variables. A cycle uni�cation problemhG ��! F ifL Rg is called unifying i� L and R are uni�able, i.e., the cyclecontains no recursive variables. 14



5.1 Linear Paths (Clp)We recall that a path hx1; : : : ; xli is called linear i� xi 6= xj ; 1 � i; j �l; i 6= j . A cycle uni�cation problem hG ��! F ifL Rg is in the classClp, if the corresponding dependency graph de�nes only linear paths. Lethx1;i; : : : ; xli;ii; 1 � i � n; be the n de�ned linear paths. Furthermore, letm = max(l1; : : : ; ln) where max denotes the maximum-predicate.Proposition 2 Let hG ��! F ifL Rg 2 Clp and m be de�ned as above.Then, for the most general solutions�m�1 = �i; i � m;holds.Proof: After m � 1 iterations through the cycle every variable occurringin G either does not depend on a variable at all or it depends on a variablexjli;i; 1 � i � n; 1 � j � m . Because the variables xli;i; 1 � i � n; areend-points of linear paths, they do not depend on any other variable. Hence,further iterations through the cycle do not contribute to further solutions.qedProposition 2 states that only the �rst m�1 iterations through the cyclecontribute to a possible solution of a cycle uni�cation problem de�ning linearpaths. We conclude that for cycle uni�cation problems de�ning linear pathsand m de�ned as above, we have only to consider � , i.e., the restrictionof the most general uni�er of G and F to Var(G) , if it exists, and the�rst m� 1 iterations through the cycle to obtain all possible most generalsolutions for a cycle uni�cation problem in the class Clp . Conversely, ifneither G and F are uni�able nor any of the sets Ci; 0 � i < m , issolvable, then the cycle uni�cation problem is unsolvable.As an example consider the cycle uni�cation problemhPu1u2u3u4 ��! Paafb,fcifPfy;zvw Pxxfy;vg:The corresponding dependency graph is depicted in Figure 3.We obtain the linear pathshy; v; wi; hzi; hv; wi; hwisuch that m = max(3; 1; 2; 1) = 3 . If we solveC0 = fPu1u2u3u4 := Pfy1; z1v1w1; Px1x1fy1; v1 := Paafb,fcg;15



Figure 3: u4u3u1 wvyu2 zxwe obtain the solution �0 = fu1 7! fb ; u3 7! fcg:SolvingC1 = ( Pu1u2u3u4 := Pfy1; z1v1w1; Px1x1fy1; v1 := Pfy2; z2v2w2;Px2x2fy2; v2 := Paafb,fc )yields �1 = fu1 7! fcg:If we iterate once more through the cycle, we obtain from solvingC2 = ( Pu1u2u3u4 := Pfy1; z1v1w1; Px1x1fy1; v1 := Pfy2; z2v2w2;Px2x2fy2; v2 := Pfy3; z3v3w3; Px3x3fy3; v3 := Paafb,fc )the solution �2 = fu1 7!fy1g:Because y1 depends on w3 , which does not occur in the right-hand sideof the cycle fPfy,zvw  Pxxfy,vg , no further iterations through the cyclecontribute new solutions, i.e., �2 = �j ; j > 2 .5.2 Permutations (Cp)We recall that a path hx1; : : : ; xli is a permutation i� hx1; : : : ; xl�1i is lin-ear and x1 = xl . A cycle uni�cation problem hG ��! F ifL Rg is in theclass Cp if the corresponding dependency graph de�nes only permutations.Let hx1;i; : : : ; xki;i; x1;ii; 1 � i � n; be the n de�ned permutations. Fur-thermore, let N = lcm(k1; : : : ; kn) where lcm denotes the least commonmultiple.55Because the permutations hx1; : : : ; xli; hx2; : : : ; x1i; : : : ; hxl; : : : ; xl�1i are de�nedby the same path in the dependency graph, we will not distinguish between them.16



Proposition 3 Let hG ��! F ifL Rg 2 Cp and N be de�ned as above.Then, �j �� �j+i�N ; j � 0; i > 0:Proof: Assume �j and �j+i�N to exist. First, we associate with eachvariable x occurring in a permutation precisely one permutation such thathxi is a subpath of it. We assume hxi to be contained in the permutationhx1; : : : ; xp; x1i . Hence, xj+1 depends on xj+1+p; xj+1+2�p; : : : . Because8j9l : l � kj = N , xj+1 depends also on xj+1+i�N and N is by de�nitionthe least number for which this is true for all variables.For computing a solution �j we have to solve Cj = N [Yj [X j . A subpathhx; yi of the permutation hx1; : : : ; xp; x1i is de�ned by the following sets ofequations: fxi := yi+1g or fyi+1 := xig or fxi := t; yi+1 := tgsuch that the last set is equivalent to fxi := yi+1; xi := tg . This holdsbecause the cycle is non-recursive. The sets above can be derived from thecycle-equations Y i . Therefore, we obtain the chain of equationsxj+1 := yj+21 ; yj+21 := yj+32 ; : : : ; yj+i�Ni�N�1 := xj+1+i�Nif we follow the permutation-path associated with x . So, xj+1 is not onlydepending on xj+1+i�N but they must be equal, i.e.,xj+1 := xj+1+i�Nwhich is yielded by i �N � 1 variable-elimination steps.Let u 2 Var(G) . u depends on some variables zj+11 ; : : : ; zj+1n such thatx 2 fzj+11 ; : : : ; zj+1n g . For all zj+11 ; : : : ; zj+1n the following holds.Assume sjv = f(: : :) for an occurrence6 v where u 7!s 2 �j . Observe thatf(: : :) represents a constant if the arity of f is 0. From xj+1 := xj+1+i�N(which is equivalent to xj+1+i�N := xj+1 ) and from t0[xj+1+i�N ] := t (whichis obtained from the set of equations fRj+1+i�N := Fg ) it follows by variable-elimination that t0[xj+1] := tis implied by Cj+i�N . On the other hand, we obtain t0[xj+1] := t fromfRj+1 := Fg of Cj as well. Hence, we also obtain sjv = f(: : :) if we6An occurrence is a list of natural numbers or � . Let t be a term. tj� = t . Ift = f(t1; : : : ; tn) and v is an occurrence in ti , then tji:v = tijv .17



compute the solution �j+i�N for Cj+i�N . Because no further operationswhich are caused by remaining equations in Cj+i�N can make the function-symbol f dissappear. Thus, the topmost function-symbol of sjv must beequal for j and j + i �N iterations through the cycle.On the other hand, assume u not to be instantiated or sjv 2 Var for jiterations. Because in Cj+i�N we have more equations than in Cj , the valueof u after j iterations must be more general than that for j+i�N iterationsif �j+i�N exists.This argumentation holds for each zj+1i ; 1 � i � n; such that u depends onit. The solutions are related by �� and not by = because they are variantsof each other (observe the variable-chain of the permutation-variables). qedOne should observe that the existence of �j does not imply the existenceof �j+i�N , e.g. for intertwined permutations like the second example below.But it is easy to see that the non-existence of �j implies the non-existenceof �j+i�N . Proposition 3 expresses that we only have to consider the uni�erof G and F restricted to Var(G) , if it exists, and the �rst N�1 iterationsthrough the cycle to obtain all possible most general solutions for a cycleuni�cation problem in the class of permutations.As an example for a cycle uni�cation problem in Cp considerhPu1u2u3u4 ��! PababifPvxyx Pxvxygwhich de�nes the dependency graph of Figure 4.Figure 4:QQQ bbb u3u4u2u1 v yxThe dependency graph de�nes the two permutationshx; y; xi and hx; v; xi18



such that N = lcm(2; 2) = 2 . Considering one instance of the cycle andsolving C0 = fPu1u2u3u4 := Pv1x1y1x1; Px1v1x1y1 := Pababgyields �0 = fu1 7!b; u2 7!a; u3 7!b; u4 7!ag:FromC1 = fPu1u2u3u4 := Pv1x1y1x1; Px1v1x1y1 := Pv2x2y2x2; Px2v2x2y2 := Pababgwe obtain the solution�1 = fu1 7!a; u2 7!b; u3 7!a; u4 7!bg:If we iterate once more, we have to solveC2 = ( Pu1u2u3u4 := Pv1x1y1x1; Px1v1x1y1 := Pv2x2y2x2;Px2v2x2y2 := Pv3x3y3x3; Px3v3x3y3 := Pabab )which results again in �0 which also implies that �0 �� �2 .A slight variation of the example above is the cycle uni�cation problemhPu1u2u3u4 ��! PabacifPvxyx Pxvxygwhere we have replaced the fact Pabab with Pabac . If we want to solveC1 = fPu1u2u3u4 := Pv1x1y1x1; Px1v1x1y1 := Pv2x2y2x2; Px2v2x2y2 := Pabacg;x1 has to be bound simultaneously to b and c such that neither �1 nor �2exists.As another example consider the cycle uni�cation problemhPu1u2u3u4u5 ��! Pv1v2v3fa ; v4ifPyxvwx Pxyxvwgwhich de�nes the dependency graph depicted in Figure 5.We obtain N = lcm(2; 3) = 6 . SolvingC0 = fPu1u2u3u4u5 := Py1x1v1w1x1; Px1y1x1v1w1 := Pv1v2v3fa; v5gyields the solution �0 = fu3 7! fag19



Figure 5: SS��u4 u3 u5 u2 u1yxvwand solving C5 yields the solution�5 = fu1 7! fa ; u2 7! fa ; u3 7! fa ; u4 7! fa ; u5 7! fag:This con�rms that �0 �� �5 . But we also observe that it is not necessaryto consider the fourth and �fth iteration at all. This holds because afteralready 3 iterations all variables in the goal Pu1u2u3u4u5 are instantiatedwith fa . Consider the variable x1 . For 2 and 3 iterations we obtain x1 := x3and x1 := x4 , respectively. On the other hand, we obtain for x2 after 2iterations x2 := x4 . Hence, the chain x1 := x2; x2 := x3; x3 := x4 holds.Because all variables in the �rst instance depend on some xi; 1 � i � 4;only 3 iterations are necessary since all further iterations do not change thesolution. Let L = fp1; : : : ; png be the lengths of the de�ned permutationsminus 1. For cycles with gcd(p1; : : : ; pn)7 = 1 and a dependency graphconsisting of precisely one connected component we are looking for the leastnumber m such that8j; 1 � j � m; 9u : (j = uXk=1 ik�plk ; ik 2 f�1; 1g; plk 2 L^8v; 1 � v � u : 0 � vXk=1 ik�plk � m):Thus, we get a re�nement of the upper limit of iterations we have to consider.5.3 Permutations with Linear Entry-Path (Cplp)We recall that a path hx1; : : : ; xli is a permutation with linear entry-pathi� hx1; : : : ; xl�1i is linear and there exists an j , 1 < j < l; such thatxl = xj . A cycle uni�cation problem hG ��! F ifL Rg is in the classCplp if the corresponding dependency graph de�nes only paths which are7gcd denotes the greatest common divisor.20



permutations with linear entry-path or which are a subpath of a permutationwith linear entry-path. Let hx1;i; : : : ; xli;i; : : : ; xli+ki ;i; xli;ii; 1 � i � n;be the n de�ned permutations with linear entry-path. Furthermore, letm = max(l1; : : : ; ln) and N = lcm(k1; : : : ; kn) .Proposition 4 Let hG ��! F ifL Rg 2 Cplp , m and N be de�ned asabove. Then, �m�1+i �� �m�1+i+k�N ; i � 0; k > 0:Proof: It is a straightforward conclusion from the structure of the de-pendency graph that after m � 1 iterations through the cycle all variablesu 2 Var(G) depend either on no variable at all or on variables xm which arecontained in the permutation-parts of the permutations with linear entry-path. After m� 1 + i iterations through the cycle all u 2 Var(G) dependeither on no variable at all or on variables ym+i such that y is contained ina permutation-part. Now we apply the same argumentation as in the proofof Proposition 3. qedProposition 4 tells us that we only have to consider the uni�er of Gand F restricted to the variables occurring in G , if it exists, and the �rstm + N � 2 iterations through the cycle to obtain all possible most generalsolutions for a cycle uni�cation problem in the class Cplp .As an example consider the cycle un�cation problemhPv1v2v3v4 ��! Pabfc,uifPxyfz;fy Pwxfy;fzg :The problem de�nes the dependency graph illustrated in Figure 6.Figure 6:��SS u4u2 u3u1 zyxwThe dependency graph de�nes the permutation with linear entry-pathhx; y; z; yi:21



We conclude N = 2 from the permutation-part hy; z; yi and m = 2 fromthe linear entry-path hx; yi , which are de�ned by the cycle fPxyfz,fy  Pwxfy,fzg . Therefore, we conclude by Proposition 4 that�1+i �� �1+i+k�2; i � 0; k > 0:As an example we compute �3 fromC3 = 8><>: Pv1v2v3v4 := Px1y1fz1; fy1; Pw1x1fy1; fz1 := Px2y2fz2; fy2;Pw2x2fy2; fz2 := Px3y3fz3; fy3; Pw3x3fy3; fz3 := Px4y4fz4; fy4;Pw4x4fy4; fz4 := Pabfc,u 9>=>; :We obtain �3 = fv1 7!c; v3 7! fc; v4 7! fz4g:From solvingC1 = ( Pv1v2v3v4 := Px1y1fz1; fy1; Pw1x1fy1; fz1 := Px2y2fz2; fy2;Pw2x2fy2; fz2 := Pabfc,u )we obtain the solution�1 = fv1 7!c; v3 7! fc; v4 7! fz2g:Hence, �1 �� �3 holds.5.4 Unifying Cycles (Cu)Unifying cycles consist of a combination of linear paths, permutations andpermutations with linear entry-path where each variable can be a starting-point of certain kinds of paths. We assume the unifying cycle to contain ppermutations hx1;i; : : : ; xmi;i; x1;ii; 1 � i � p;pl restricted permutations with linear entry-pathhy1;i; : : : ; yli;i; yli+1;i; : : : ; yli+ni ;i; yli+1;ii; 1 � i � pl;such that no subpath is a subpath of a permutation except the permutation-part of the path itself, and l restricted linear pathshz1;i; : : : ; z~li;ii; 1 � i � l;22



such that no subpath is a subpath of a permutation. Let m = max(1; l1; : : : ; lpl; ~l1; : : : ; ~ll)and N = lcm(1; m1; : : : ; mp; n1; : : : ; npl) . Herein, 1 is needed if thereare no linear paths and no permutations at all, respectively. We use theabbreviations Permj = fxj1;i; : : : ; xjmi;i j 1 � i � pgand Linj = fzj~l1;1; : : : ; zj~ll;lg:Perm and Lin denote the sets of variables without superscribed indices.Therefore, Perm contains only variables which occur in permutations andLin contains only the end-points of the restricted linear paths. Observe thatall permutation-parts of permutations with linear entry-path are containedin the set of permutations.Proposition 5 Let hG ��! F ifL Rg 2 Cu , m and N be de�ned as above.Then, �m�1+k �� �m�1+k+j�N ; k � 0; j > 0:Proof: Due to better readability we only prove �m�1 �� �m�1+j�N . Thewhole proof of Proposition 5 is established with the addition of one moresuperscribed index.Assume �m�1 and �m�1+j�N to exist. First we associate with each variablex 2 Perm precisely one permutation such that hxi is a subpath of it. Weassume hxi to be contained in the associated permutation hy1; : : : ; yl; y1i .Let u 2 Var(G) .First, we consider m � 1 iterations through the cycle. Assume that udepends on a variable yj 2 Linj ; j � m . Hence, all further iterations leavethe value of yj invariant because y depends on no other variable since it isan end-point.On the other hand, assume that u depends the �rst time on a variablexi; i � m; where x 2 Perm . Because of the de�nition of m , every pathstarting in u must end in an end-point y 2 Lin or reach such an x 2 Permin the �rst m � 1 iterations. Assume xi to depend on yi+1j1 ; 1 � j1 � l .If there is a branching in the path of the permutation (or at x itself), thiscannot be caused by a derived equation of the form zi := t such that t isno variable because of the non-recursiveness of the cycle fL Rg .For computing a solution �j we have to solve Cj = N [Yj [X j . A subpathhx; yi of the permutation hx1; : : : ; xp; x1i is de�ned by the following sets ofequations in Y 0i :fxi := yi+1g or fyi+1 := xig or fxi := t; yi+1 := tg23



such that the last set is equivalent to fxi := yi+1; xi := tg . This holdsbecause the cycle is non-recursive. The sets above can be derived from thecycle-equations Y i . Therefore, we obtain after m � 1 iterations throughthe cycle the chain of equationsxi := yi+1j1 ; : : : ; ym�1jm�i�1 := ymjm�i ; yk 2 fy1; : : : ; ylg; j1 � k � jm�i;if we follow the permutation-path associated with x . Hence, it follows fromthis chain that xi := ymjm�iholds. Furthermore, xi may depend on some other variables zm1 ; : : : ; zmn .This is depicted in Figure 7.8 Figure 7:@@@@����,,,, ...zmnzm1ymjm�ixiuIn combination with the set of equations fRm := Fg of Cm�1 , these depen-dencies establish a set of dependencies for xi . On the other hand, we knowfrom the proof of Proposition 3 that after m� 1 + j �N iterationsymm�i := ym+j�Nm�iholds. Since hxi is a subpath of hy1; : : : ; yl; y1i , there must exist a p suchthat m�i is equal to m+j �N�p (cf. Figure 8). From m�i = m+j �N�pwe conclude that p = j �N + i holds. It follows from the underlying chainof equations that xi := xj�N+iholds. Furthermore, xj�N+i depends on zm+j�N1 ; : : : ; zm+j�Nn where z1; : : : ; znare the same variables as for m� 1 iterations. In combination with the set8Here and in Figure 8 the directed edges denote a path of adjacent directed edges in theoriginal dependency graph where the inner nodes are omitted due to better readability.24



of equations fRm+j�N := Fg of Cm�1+j�N results the same set of dependen-cies for m� 1 + j �N iterations as for m� 1 iterations. This is depicted inFigure 8.9 Figure 8:PPPPPPPPPPllllllllllxj�N+iymjm�ixiu ym+j�Njm�izm+j�N1zm+j�Nn...This argumentation holds for all xi such that hxi is contained in a per-mutation. Now we consider again the cases where sjv = f(: : :) , u is notinstantiated or sjv 2 Var for u 7! s 2 �m�1 . The proof is establishedanalogously to the proof of Proposition 3. qedProposition 5 tells us that we only have to consider the uni�er of Gand F restricted to Var(G) , if it exists, and the �rst m+N � 2 iterationsthrough the cycle to obtain all possible most general solutions for a cycleuni�cation problem in the class Cu . Conversely, if neither G and F areuni�able nor any one of the sets Ci , 0 � i � m+N�2 , is solvable, thenthe cycle uni�cation problem is unsolvable. One should observe that thisresult subsumes the result of linear paths (where N = 1 ), of permutations(where m = 1 ) and of permutations with linear entry-path. Observe thatthe existence of �m�1+k does not imply the existence of �m�1+k+j�N . Butif �m�1+k does not exist, �m�1+k+j�N does not exist as well.As an example we resume the example of Section 4, i.e., we consider thecycle uni�cation problemhPu1u2u3u4u5 ��! PababaifPyvywz Pxyvywg :The dependency graph of Figure 9 de�nes the restricted linear pathshw; zi and hzi9Observe that xj�N+i need not to be on the path between ymjm�i and ym+j�Njm�i .25



and the permutation hy; v; yi:Figure 9:
""""""x u5

u2u1u3u4 zw vyHere we see why we must restrict the de�nition of linear paths. With theformer de�nition we would also have to consider the paths hv; y; w; zi andhy; w; zi . But they contain variables ( v and y ) which are already subpathsof permutations. Hence, they must not contribute to m . Therefore, wecompute m = max(1; 2; 1) = 2 and N = lcm(1; 2) = 2 such thatm + N � 2 = 2 . In order to compute the solution for 1 iteration throughthe cycle we have to solveC1 = ( Pu1u2u3u4u5 := Py1v1y1w1z1; Px1y1v1y1w1 := Py2v2y2w2z2;Px2y2v2y2w2 := Pababa )which results in �1 = fu1 7!a; u2 7!b; u3 7!ag:If we solveC3 = 8><>: Pu1u2u3u4u5 := Py1v1y1w1z1; Px1y1v1y1w1 := Py2v2y2w2z2;Px2y2v2y2w2 := Py3v3y3w3z3; Px3y3v3y3w3 := Py4v4y4w4z4;Px4y4v4y4w4 := Pababa 9>=>;26



we obtain �3 = fu1 7!a; u2 7!b; u3 7!ag;i.e., �1 again which is implied by Proposition 5.Let hG ��! F ifL Rg be a cycle uni�cation problem in the class Cu .The following steps de�ne a cycle uni�cation algorithm for unifying cycleswith the help of the previous propositions. Algorithms for Clp; Cp; and Cplpare special cases. Uni�cation Algorithm for Cu1. If G and F are uni�able, then compute � as the most generaluni�er for G and F restricted to the variables in G .2. Compute the dependency graph for hG ��! F ifL Rg .3. If hG ��! F ifL Rg 2 Cu , then compute the lengths l1; : : : ; liof all de�ned restricted linear paths/linear entry-paths and thelengths m1; : : : ; mj of all de�ned permutations. Let m =max(1; l1; : : : ; li) and N = lcm(1; m1 � 1; : : : ; mj � 1) .4. If Ck is solvable, then compute �k as the most general uni�er forCk , restricted to the variables occurring in G , 0 � k � m+N�2 .5. Let � be the set of solutions obtained in steps (1) and (4). If� = ; , the problem is unsolvable. Otherwise, iteratively eliminatea substitution � if the current set of solutions contains anothersubstitution � with � �� � [Var(G)] . The obtained set is a minimaland complete set of solutions for the cycle uni�cation problemhG ��! F ifL Rg .As an example we resume our example from above. An application of thealgorithm yields the following results.1. Pu1u2u3u4u5 and Pababa are uni�able by � = fu1 7!a; u2 7!b; u3 7!a; u4 7!b; u5 7!ag .2. The dependency graph is depicted in Figure 2.27



3. The dependency graph de�nes the restricted linear paths hw; zi and hziand the permutation hy; v; yi . Therefore, m = 2 and N = 2 .4. �0 = fu1 7! b; u2 7! a; u3 7! b; u4 7! ag; �1 = fu1 7! a; u2 7! b; u3 7!ag; �2 = fu1 7! b; u2 7! a; u3 7! bg are the most general solutionsobtained by solving C0; C1; and C2 , respectively.5. We obtain the set f�1; �2g as a minimal and complete set of solutions.The following theorem follows immediately from the previous results.Observe that Theorem 6 holds for Clp; Cp; and Cplp as well because theyare subsets of Cu .Theorem 6 Let C be a unifying cycle.(i) hG �C�! F i is decidable.(ii) hG �C�! F i is �nitary.(iii) There exists an algorithm computing a minimal and complete set ofsolutions for hG �C�! F i .6 Summary and Future WorkIn this paper we �rstly de�ned cycle uni�cation. We then restricted ourattention to the class Cu which denotes the class of cycle uni�cation prob-lems de�ning unifying cycles, i.e., cycles fL Rg for which L and R areuni�able. By considering several subclasses of Cu , leading in combinationto the results for Cu , we have extended known work.Table 1 gives an overview of our results as well as of previous work. Ineach row we state the decidability and the uni�cation type for a particularclass of cycle uni�cation problems, indicate whether there exists an algo-rithm to compute a minimal and complete set of solutions and provide thereference if there exists one. C denotes the class of unrestricted cycle uni-�cation problems. In Cl and Cg goals and facts are restricted to be linearand ground, respectively. Cm contains only matching cycles fL Rg suchthat there exists a substitution � and �L = R or L = �R . Cnrm containsonly non-recursive matching cycles fL Rg , i.e., the cycle is matching and6 9i : x 7! t 2 �i , x 2 Var(t) , and t 6= x . The various classes are related asshown in Figure 10.Our most general result concerns the class of unifying cycles. For thisclass we have shown that we only have to consider �nitely many iterations28



Class Decidability Type Algorithm ReferencesC open in�nitary openCl decidable in�nitary open [Dev90]Cg decidable unitary yes [SS88]Cm open in�nitary openCnrm decidable �nitary yes [BHW91]Cu decidable �nitary yes in this paperTable 1: Properties of cycle uni�cation classes
C Cl Cg CmCnrmCuFigure 10: The relation between the classes C , Cl , Cg , Cm , Cnrm , and Cu .29



through the cycle to obtain a minimal and complete set of solutions. Further-more, we have presented an algorithm for computing the maximal number ofnecessary iterations to obtain this set. This enables us to e�ciently controlthe deductive process without losing completeness. Thus, we have �nishedthe basic research for cycle uni�cation problems which are non-recursive.For future work on these classes we are interested in re�nements for theupper bound of iterations through the cycle. A �rst approach has beenshown at the end of Section 5.2 for intertwined permutations. Further basicresearch has to consider the case of recursive cycles, i.e., cycles which canadmit in�nitely many independent solutions.One of the major open problems in our restricted context is the questionwhether C is decidable. Cl and Cu are decidable. However, there are severalresults which point into the opposite direction for the case of C . In [Dau88]it is shown that the termination of a one rule term rewriting system, whererewriting may occur at proper subterms, is undecidable. Similarly, we knowfrom [SS88] that the class of Horn clauses consisting of two clauses of theform L R and two ground unit clauses is undecidable. It is, however, notobvious, how these results could be adapted to cycle uni�cation problems.In the future we intend to develop heuristics to control further classes ofcycle uni�cation problems. We are looking for a wellfounded ordering basedon a measure of complexity for instances of the cycle in order to apply anidea similar to the one contained in [SS88]. Certain cycles fL Rg causesome of the terms occurring in L and R to grow or shrink monotonicallyin each iteration of the cycle. If there were an upper bound for these termsde�ned by G or F , then one would be able to decide the cycle uni�cationproblem hG ��! F ifL Rg . For illustration of this idea consider the cycleuni�cation problem hP�x,x ��! PufuifPfffy;fz Pfy;zg:The i-th instance of the right-hand side of the cycle fP�fy,fz  Pfy,zg ismatched against the i+1-st instance of the left-hand side by �i = fyi :=�y i+1; zi := fz i+1g . We observe that the depth of y and z decreases witheach iteration through the cycle. The goal and the fact de�ne upper boundsbecause of their non-linearity which correlates y and z . In [BHW91] wehave exploited this insight for the computation of the number k of iterationsthrough the cycle to obtain a solution. For the example above we obtaink = 2 and the solution �2 = fx 7! f5y3g . Under some circumstances,those problems can be solved with a technique called meta-unifying whichis described in [Sal92]. We expect other useful heuristics to exist.30
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