Deutsches
Forschungszentrum
fur Klnstliche
Intelligenz GmbH

Research

Report
RR-92-22

Unifying Cycles

Jorg Wiurtz

March 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz

Postfach 20 80
67608 Kaiserdautern, FRG

Tel.: +49 (631) 205-3211
Fax: + 49 (631) 205-3210

GmbH

Stuhlsatzenhausweg 3

66123 Saarbriicken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
far
Kulnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszen-
trum fir Kuinstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken
is a non-profit organization which was founded in 1988. The shareholder com-
panies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM,
Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Re-
search projects conducted at the DFKI are funded by the German Ministry for
Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial
intelligence and other related subfields of computer science. The overall goal is
to construct systems with technical knowledge and common sense which - by
using Al methods - implement a problem solution for a selected application area.
Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

oogoooag

The DFKI strives at making its research results available to the scientific com-
munity. There exist many contacts to domestic and foreign research institutions,
both in academy and industry. The DFKI hosts technology transfer workshops for
shareholders and other interested groups in order to inform about the current state
of research.

From its beginning, the DFKI has provided an attractive working environment for
Al researchers from Germany and from all over the world. The goal is to have a
staff of about 100 researchers at the end of the building-up phase.

Friedrich J. Wendl|
Director

Unifying Cycles
JorgWiurtz

DFKI-RR-92-22

A short version of this report has appeared in the Proceedings of the
1992 European Conference on Artificial Intelligence, Vienna, Austria,
August 3-7, 1992.

This work has been supported by a grant from The Federal Ministry
for Research and Technology (FKZ ITWM-9105).

(©) Deutsches Forschungszentrum fur Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Deutsche Forschungszentrum
fur Kinstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledge-
ment of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fur Kiinstliche Intelligenz.

Unifying Cycles

Jorg Wurtz

Abstract

Two-literal clauses of the form L + R occur quite frequently in log-
ic programs, deductive databases, and—disguised as an equation—in
term rewriting systems. These clauses define a cycle if the atoms L
and R are weakly unifiable, i.e.; if L unifies with a new variant of R.
The obvious problem with cycles is to control the number of iterations
through the cycle. In this paper we consider the cycle unification prob-
lem of unifying two literals ¢ and F modulo a cycle. We review the
state of the art of cycle unification and give new results for a special
type of cycles called unifying cycles, i.e., cycles L+ R for which there
exists a substitution ¢ such that ¢l = oR. Altogether, these results
show how the deductive process can be efficiently controlled for special
classes of cycles without losing completeness.

Contents

1 Introduction

2 Definitions and Notations

3 Cycle Unification

4 Dependency Graphs

5 Unifying Cycles (C,)
5.1 Linear Paths (C;,) oo o
5.2 Permutations (C,) Lo L

5.3 Permutations with Linear Entry-Path (Cp;p)
5.4 Unifying Cycles (Cy,)o o o o

6 Summary and Future Work

10
11
12
15
16

21

1 Introduction

It is the foremost goal of the research in the field of automated deduction to
develop general and adequate proof methods and techniques for the logics
under consideration. It is comparatively easy to invent a general proof
method, but it is much more difficult to develop a general and adequate proof
technique. For example, the resolution principle [Rob65] and the connection
method [Bib87] are general proof methods for first-order logic. But are
they adequate? What is the meaning of adequateness in the first place?
Roughly speaking, we will consider a technique as being adequate if it solves
simpler problems faster than more difficult ones. We illustrate the notion
of adequateness by a problem, where the known general proof techniques
face difficulties whereas trained humans seem to be able to solve it quite
reasonably.

For this purpose, consider the following set of clauses in Prolog-like nota-
tion which is taken from [Pfe88] and was originally studied by Lucasiewicz.

— Pi(iab,i(ibc, tac)). G
Pw +— Pv, Puww. MP
Pi(i(izy, z),i(izz, tux)). A

The terms represent implicational formulas, i.e., 2ab encodes @ — b and P
asserts the derivability of its argument. Thus, the second clause represents
modus ponens. It contains several cycles [Bib88] defined by the connections
between the atom Pw and the atoms Piwvw and Pv. The clause MP can
be applied to itself and this may lead to an exponential growth of the search
space. The obvious problem is to control the self-applicability of MP while
retaining completeness. FLukasiewicz has found a 29 step proof. He must
have exercised a good control over MP! Quintus PROLOG on a Sun SPARC
station 2 did not find a proof in several days. Nearly all existing automatic
theorem provers cannot solve this problem as well since they are not able to
exercise a good control over MP. E. Lusk reports! that the parallel version
of Otter at Argonne is able to obtain a hyperresolution proof with about
150 proof-steps while generating 6.5 million clauses in about half an hour
during the search for it. Their prover does not have a good control over MP
as well. It solves the problem by sheer power.

In [BHWO1] it was conjectured that a problem like the Lucasiewicz-
formula could be solved in less than a second by way of a technique called

'Private communication with W. Bibel [BHW91]

cycle unification. At present this conjecture remains a challenge since the
Lucasiewicz-formula is a particularly difficult instance of a class of formulas
which could eventually be treated by cycle unification. In [BHW91] a first
step was made towards this goal by restricting the attention to the special
case of formulas with exactly one cycle. In fact, we have focused our analysis
on the simple class of two-literal clauses of the form Ply...l, < Pry...1,
which consists of nothing but a single cycle. This additional restriction
simplifies the discussion without loss of generality of the method. In this
paper we further analyze clauses consisting of a single cycle and extend the
results found in [BHWO1].

Such a two-literal clause is usually embedded in the context of some
larger formula, or set of clauses. Again for simplicity of the discussion
and without loss of generality, we restrict the treatment to the case of two
additional clauses, namely a goal clause — referred to as (calling) goal — of the
form « Psjy...s,, which calls the cycle, and a fact — called (terminating)
fact — of the form Pty ...t,, which terminates the cycle. In our restricted
case a cycle unification problem is then the following one:

Is there a substitution ¢ such that oPs;...s, is a logical con-
sequence of Ply...l,+ Pry...r, and Pt{...t,7

If such a substitution ¢ exists, then o is said to be a solution for the cycle
unification problem. For more general cases, cycle unification can be defined
in an analogue way.

In order to be able to control a cycle we have to answer the following
questions. Is cycle unification decidable? How many independent most gen-
eral solutions has a cycle unification problem? Does there exist a unification
algorithm which enumerates a minimal and complete set of solutions for a
cycle unification problem? Answers to these questions may help to increase
the power of automated theorem provers significantly. For example, if a
cycle is embedded in a larger formula and it can be determined that the cor-
responding cycle unification problem is unsolvable, then the clauses defining
the cycle can be eliminated from the formula. If a minimal and complete set
> of solutions for a cycle unification problem exists and can be enumerated,
then any other solution is subsumed by a solution in ¥ and need not to be
considered. If X is finite, then this may prune a potentially infinite search
space to a finite one. But theorem proving is not the only task which may
benefit from cycle unification.

There are a variety of applications for cycle unification. Observe that
although the variables occurring in the two atoms Psy...s, and Pty...t,

might not be instantiated, it is possible to analyze the structure of the cycle.
Therefore, we can compute partial solutions in a preprocessing manner (all
possible solutions if finitely or only a subset otherwise). If some variables
will be instantiated in the course of further computation, we can update the
partial solutions (see also eg. [Fut88] on partial evaluation). Furthermore,
cycle unification helps us to transform recursive programs to iterative ones.
The iterative structure can be compiled such that a proof might be detect-
ed faster than with the depth-first search of PrRoLoG. One of the impor-
tant applications is datalogic, i.e., the field between logic and databases (cf.
[Bib87]). It has been shown by eg. Smith [SGG86] that cycles are the source
of non-terminating queries. Consequently, insights from cycle unification
may be and have already been used to determine non-terminating queries
to deductive systems ([DVB89],[DVBI0]). Cycle unification might also con-
tribute to answer the question whether the top-down, Prolog-like evaluation
of recursive calls can be guaranteed to terminate ([UvG88],[P1i90]).
Although cycle unification is of significant importance for the field of
automated deduction, it has received surprisingly little attention in the
literature. Function-free cycle unification problems, i.e., cycle unification
problems defined over variables and constants only, occur mainly in de-
ductive databases and it can be shown that under certain conditions these
problems do not give rise to infinite computations (cf. [MN83]). In [OW84]
the number of iterations through a cycle can be limited via a user-defined
parameter. In [Vie87] certain cycle unification problems are solved by gen-
eralization and subsumption. There, after several iterations through a cycle,
subterms occurring in a goal are replaced by variables. Subsumption tech-
niques may now be applied to terminate otherwise infinite derivations. The
technique is shown to be complete. Unfortunately, answers to the general-
ized goal need not to be answers to the initial goal. M. Schmidt—Schauf
[SS88] has shown that cycle unification is decidable provided that the goal
and the fact are ground, i.e., they do not contain variable occurrences. In-
dependently, P. Devienne [Dev90] has given a more general result for cycle
unification problems with linear goals and facts, i.e., each variable occurs at
most once in the goal and the fact. He uses essentially the same ideas as
Schmidt—Schaufl, but a very special technique based on directed weighted
graphs. Devienne’s results were used by De Schreye et al. [DVB90] to decide
whether cycles admit non-terminating queries to deductive systems. Anoth-
er approach has been taken by H.J. Ohlbach [Ohl90a] who represented sets
of terms by so-called abstraction trees which may compress the search space.
Moreover, abstraction trees can be used to compile two-literal clauses and in

certain cases a finite abstraction tree can represent infinitely many solutions
of a cycle unification problem [Ohl90b]. A further approach for unifying
infinite sets of terms which are encoded in so called p-terms is described
in [Sal92]. The incorporation of p-terms into logic programming allows on
the one hand infinite queries and the finite representation of infinitely many
answers. On the other hand, it avoids repeated computation and certain
kinds of infinite loops, without changing the denotational semantics of the
programs.

In [BHW91] we developed the theoretical foundations for cycle unifica-
tion. For various classes of restricted cycle unification problems we showed
their decidability, proved that they have at most finitely many most general
solutions and constructed an algorithm to compute this set. The most gen-
eral result concerned the class of non-recursive matching cycles C,ppp , i€,
cycles {L + R} for which there exists a substitution ¢ such that ¢L = R
or L =cR and Ai izt € a', o € Var(t), and t # .2 But these
were only fundamental classes of cycle unification problems. One of the
open problems was to control cycles which overcome the limits of match-
ing cycles. In this paper we present the class of unifying cycles, i.e., cycles
{L < R} such that L and R are unifiable. With this class we finish work
on cycles whose problems might be characterized by having always finitely
many solutions.

After some preliminaries on definitions and notations we formally de-
fine cycle unification in Section 3. The important notion of dependency
graphs is introduced in Section 4. In Section 5 we define different class-
es of restricted cycle unification problems and show that their unification
problems are decidable, determine the unification type, and develop a uni-
fication algorithm. Our most general result concerns the class of unifying
cycles {L + R} which is a combination of the first three analyzed types
of cycle unification problems. The paper concludes with a summary of the
results on cycle unification and an outline of future work.

2 Definitions and Notations

Our definitions and notations follow those suggested in [DJ91]. Throughout
this paper capital letters such as P, @), ... denote predicate symbols, small
letters such as a, b, ... denote constants, f, g, ... function symbols, and

2‘By o' we denote the i—fold composition of & with itself, i.e., ¢ = ¢ and o' =
a(o' .

zZ, Y, ... variables. A term is either a variable or of the form f(t1,...,¢,),
where ¢y, ..., t, are terms. s, ¢, ... denote terms. An atom is of the
form P(t1,...,t,). Let X be an atom or a term. Var(X) denotes the set
of variables occurring in X . X is called ground iff X does not contain any
variable. X is called linear iff every variable occurs at most once in X .
By X* we denote the syntactic object where each variable occurring in X
has the index k attached to it. t[xy,...,2,] denotes a term ¢ such that
{21, ..., zo} CVar(t).

A substitution is a mapping from the set of variables into the set of
terms which is equal to the identity almost everywhere. Hence, it can be

represented as a finite set of pairs {ay — ¢y, ..., @, — t,}, @ # t;,
1 < ¢ < n. Substitutions are denoted by small greek letters such as
o, 0, The identity substitution is called ¢. ot = o(t) if t is a

variable and ot = f(oty,...,0t,) if t = f(t1,...,t,). Dom(o) = {2 |
x is a variable and ox # 2} is the domain of o.

The composition o1 of two substitutions ¢ and 7 is defined by (o7)2 =
o(rz). The restriction of the substitution ¢ to the set V of variables is
defined by o|lyz = oz if 2 € V and o|y 2 = & otherwise. A substitution
o is called variable-pure if {ocx | © € Dom(o)} only consists of variables.
A renaming is a variable-pure substitution ¢ such that oz = oy implies
x =y for z, y € Dom(o).

If W is a set of variables, then o = 7 [W]iff Va € W : 02 = 7. A
substitution o is called more general than a substitution 7 on W, o
< 7 [W], iff there exists a substitution p such that po = 7 [W]. Two
substitutions o and 7 are called equivalent (or variants) on W, o ~ 7 [W],
iff ¢ < 7 [W] and 7 € o [W]. Two substitutions o and 7 are called
independenton W iff o€ 7 [W] and 7€ o [W].

o is called a unifier for t and t' iff Dom (o) C Var(t) U Var(t') and
ot = ot’. A unifier ¢ of t and ¢ is called most general unifier iff o <
T [Var(t)UVar(t')] for all unifiers 7 of ¢ and ¢'. The definitions above can
be extended to atoms, equations, and sets of equations in the obvious way.
For a unification algorithm we use the operations suggested in [MMS&2].

3 Cycle Unification

C = {L+ R} is called a cyclic theory, or cycle for short, if the atoms L and
R are weakly unifiable, i.e., there exist two substitutions ¢ and ¢’ such
that oL = 'R [Ede85]. Let G and F' be two atoms such that Var(G)n

Var(F) = 0. A cycle unification problem (G =2+ F) (or (G —» F)¢) is
the problem whether there exists a substitution ¢ such that oG is a logical
consequence of I and C'. A substitution ¢ is a solution for the cycle
unification problem if Dom (o) C Var(G) and oG is a logical consequence
of I/ and C'.3
Since solutions to cycle unification problems are substitutions, the no-
tions of more general, independent, etc. substitutions can be extended to
more general, independent, etc. solutions of cycle unification problems in
the obvious way.
As a first example consider the problem
(Pa —» Pﬁf@{PxePfx}‘
The empty substitution £ is the only most general solution for this problem.
However, there may be more than one solution as the example
<P$y - Pab>{va%Pwv}
shows. This problem has the two independent most general solutions {z+—

a, y— b} and {x—b, y— a}. But, there may be even infinitely many
independent most general solutions. As an example consider

(Pr —» Pa>{PfyePy}'

This problem has the most general solutions {z — a}, {z — fa}, {z —
fa}, ...

For a cycle unification problem (G' — F>{L%R} to be solvable, the
atoms [’ and G must be of the form P(ty,...,t,) and P(s1,...,s,),
respectively. Since L and R are weakly unifiable, their predicate symbols
must also be identical, i.e., L and R must be of the form P'(ly,...,1,)
and P'(ry,...,r,), respectively. In the sequel we will only consider cycle
unification problems of this form. Furthermore, as the case P # P’ is
trivial, we assume P = P'.

®A cycle unification problem should not be confused with a theory unification problem
(G =¢ F), i.e., the problem whether there exists a substitution ¢ such that ¢G =¢ o F
[Bib&7, Sti85].

To solve a cycle unification problem (G' =&+ F) we have to find a substi-
tution which either unifies G and F' or unifies — viz. simultaneously unifies
each equation in —

cF=NUYruXF,

where
N={s; =1, ..., s, =1L} is the set of entry equations,
YE={ri =it Ll = 1< < k)

is the set of cycle equations for k iterations through the cycle, and

k+1 . .
X ={rith =4y, o pf =)

is the set of ezit equations after k iterations through the cycle.

The following proposition is an immediate consequence of the complete-
ness and soundness of the connection method [Bib87] or SLD-resolution, eg.
[Llo84].

Proposition 1 ¢ is a solution for (G =2+ F) iff there exists a substitution
0 such that 6 unifies G and F and o = 0|Var(G) or there exists a natural

number k such that 8 unifies C* and o = 0|Var(G)'

Throughout the paper 7 will denote the most general unifier of G' and
F restricted to Var(G), if it exists. Similarly, 7, will denote the most
general unifier of C* restricted to Var(G), if it exists. The solutions 7
will be computed by applying the Martelli&Montanari operations [MM82]
to the set C*.4

Let C = (G —2* F) be a cycle unification problem. A set ¥ of substi-
tutions is a complete set of solutions for C iff each substitution in > is a
solution for C and for each solution 8 for C we find a substitution ¢ in X
such that o € §[Var(G)]. A complete set X of solutions for C is said to be
minimal iff for all o, § € ¥ we find that ¢ < 8[Var(G)] implies 0 = 6.

In order to be able to control a cycle, we are interested in the answer to
three basic questions. Is cycle unification decidable? How many independent

*We start with a set of term-equations. The following operations (in the sequel called
Martelli&Montanari operations) are exhaustively applied. Let x be a variable and ¢ a
term. If x = & occurs, it is erased. ¢ = x is replaced by x = ¢. If £ =t occurs in the
set, x> ¢ is applied to all other equations (variable elimination); if = € Var(t), then
failure. If the set contains f(t1...¢,) = f'(t1...t,) and f # f' then failure, otherwise
replace this equation by ¢ = ¢{, ..., t, =, (term reduction). A set of term-equations
is in solved form if all equations are of the form x = ¢. We stop with success if we obtain
a solved form.

most general solutions has a cycle unification problem? Does there exist
a unification algorithm which enumerates a minimal and complete set of
solutions for a cycle unification problem?

Following [Sie90], we define the type of a cycle unification problem as
follows. A cycle unification problem is of type wunitary iff there exists a
single most general solution, finitaryiff there exist finitely many most general
solutions, and infinitaryiff there exist infinitely many most general solutions.

4 Dependency Graphs

In this section we introduce the notion of dependency graphs for cycle unifi-
cation problems. All results in this paper depend on certain kinds of paths
in the dependency graphs.

Consider the cycle unification problem C' = (G' —+ Fgy. A de-
pendency graph relates variables occurring in the Goal G and variables of
the cycle {L + R} . First, the variables in G are related to the variables
occurring in the first instance of the left-hand side of the cycle, i.e., L'. Sec-
ond, the variables in the ¢-th instance of the right-hand side of the cycle,
i.e., R, are related to the variables in the 7+ 1-st instance of the left-hand
side, i.e., L't'. Let A’ and)’ be the sets which are obtained from A
and R'= L*t! by applying all possible Martelli&Montanari operations, re-
spectively, i.e., they are in solved form. The variable dependency graph Ggo
corresponding to C' is the pair (V, F), where

e V is a set of nodes, containing a node labeled by v for each v €

Var(C), and
e F is a set of directed edges z~+y € E computed as follows.

1. Let u, v € Var(G) and z, y € Var(L<+ R). If t{u] = t'[21] €
N or t'[21] = t[u] € N, then add the directed edge from u
to z, e, u~a. If tfu] = t'[v] € N, then add the undirected
edge between u and v. If t[zl] = ¢[y'] € N7, then add the
undirected edge between x and y. After all edges are inserted,
add the directed edge u~+z if z is reachable from u via directed
(traverseable in both directions) or undirected edges. Finally,
delete all undirected edges.

2. Consider equations in V. The following cases are considered
from top to bottom.

10

— If 2 = t[yit!] € V" and z 1 = ¢[yt1] € V', then add the
directed edges z~+y and z~»z.
— If 28 = t[yt] € V" and 2 = ¢[y"t] € V', then add the
directed edges z~+y and z~~y.
— If 2' =yt e y”', then add the directed edge z~sy.
— If 27 = ¢[yf] € V' and 2t = ¢[yi] € V', then add the
directed edges y~+2x and y~»z.
— If &'t = ¢[y] € V" and 2 = ¢'[y)] € V", then add the
directed edges y~+2 and z~~z.
— If 2! = ¢[yi] € V" then add the directed edge y~-z .
Since)’ is in solved form, no other cases are possible involving
different superscripts.

Observe that no superscribed variables occur in the dependency graph.
As an example consider the cycle unification problem

C = (Pujuguzugus —3 Pababa)(pyyywzc Poyuyw) -

We obtain as the most general unifier of Pujuqususus and Pylvlylwlz

the substitution

1

aoz{uwwﬂ Uz'—>?f17 U3'—>yl7 u4»—>w1, U5'—>Zl}
because
/ o1 -1 -1 -1 -1
N :{Ulzy y Ug =V U3 =Y, Ug =W, Us = 2 }

In the first step we obtain Figure 1.
Furthermore, we obtain as the most general unifier of Pz'y'v'y*w® and
Pyitlytlytlyetl ot the substitution

i+1 +1

7 yz'_>w2 7 Uz—l—l

o, ={a'—y , vyt wlb—>zl+1}

because
yll — {$Z - yz-|—17 yz - wz+17 Uz-l—l - w2+17 ot = y2+17 wh = Zl-l-l}

The dependency graph Go is finished by the second step. The result is
shown in Figure 2.

11

Uy U2

/y
us

U4 > w z = Us

Figure 1: First step of the construction of the dependency graph

(73] (15)
w / 1 |
us
U4 w z Us

Figure 2: Final dependency graph

12

A variable u € Var(G) depends on ', x € Var(L+ R), if

(1] = tafol] or (tfu] = ol Hhlah] = t[el])} U

i i+1 i i+1 i+17 - i+1 .
{t;[xj] = tj_|_1[x§+1] or (t;[acj] = t;/[acj, 1, t;’/[acj,] = tj+1[ac§+1]) |[1<j<i}l,z;=ua
can be derived from AN and Y~!' by application of Martelli&Montanari
operations. Because of the definition there exists a directed path, i.e., a
sequence of adjacent directed edges from u to x, of length ¢ traversed
in the right direction. Similarly, y/ € Var(L? <~ R’) depends on /%" €
Var(LIT « Rt if for o, ==

{tly’'] = tila™] or (tly'] =), D21 = e} U

4k k1 itk k1 k1 +k+1 .
(L™ = b e or (b = P, e = e) (1< k< i),

i.e., there exists a directed path of length 7 between y' and z77'. Hence,
we have a correspondence between the paths of the dependency graph and
the dependencies established by the entry- and cycle-equations. We can also
say that a variable u € Var(G) depends on 2* if an instantiation of 2! may
influence via a set of equations in some C* the instantiation of w.

A pathis alist of variables (z1,...,2.), n > 1, {&1, ..., 2.} CVar(L+
R), such that z;~=a2, ..., @,_1~a, is a path in the dependency graph
and either no edge starts from ,, or z,, is the first variable in (z1, ..., z,)
occurring twice. Furthermore, the first variable of a path must be connected
with a variable u € Var(G) via one directed edge. A path (z1,...,2) is
called linear iff x; # x;, 1 < 14,7 <1, i # j. A path p=(2y,...,2;) con-
tains the subpath 7 = (y1,...,y) iff there exists an ¢ > 1 and an j <1
such that 7 = (2;,...,2;). A path 7 = (z1,...,27) is called a (cyclic)
permutation iff (x1,...,2;_1) is linear and z; = z; A path (z1,...,2))
is called a (cyclic) permutation with linear entry-path iff (x1,...,2;-1) is
linear and there exists an j, 1 < j < [, such that z; = z;. It is ob-
vious that a permutation with linear entry-path (z1,...,2, ..., %14k, 21)
can be divided into the linear entry-path (zi,...,2;) and the permutation
(x1,..., %14k, 1) . « is called a branching-point if more than one directed
edges start from z . Finally, a path (z1,...,2;) is of length |, z1 is called
the starting-point and x; is called the end-point of the path.

The cycle unification problem

(Pujuguzugus —o Pababa)(pyyywzc Poyuyw)

13

depicted in Figure 2 defines the permutation

(y,v,y)

and the linear paths

(v, y,w,z), (y,w,z), (w,z), and (z).

One should observe that the dependency graph contains a cycle iff {L +
R} defines a permutation. Furthermore, for a path (zq,...,2,) one should
observe that the superscribed variable 2% depends on the superscribed vari-
able zitn—1,

A similar approach with so called argument/variable graphs was un-
dertaken by J. Naughton [Nau89] and with connection graphs by Wei et al.
[WLH91]. Both works were settled in the field of deductive databases. They
considered a set of facts and introduced non-recursive predicates, i.e., others
than the cycle predicates. They disallowed, however, multiple occurrences
of variables in the cycle and needed not to consider function-symbols. Thus,
these approaches are too weak for cycle unification.

5 Unifying Cycles (C,)

In this section we show for certain kinds of subclasses of C,, their decidability,
determine the unification type and develop a unification algorithm. These
classes show characteristics which can be generalized for the class C, of
unifying cycles.

A variable z is called recursive iff it is possible to derive from L = R
with Martelli&Montanari operations an equation of the form z = ¢ such
that @ € Var(t) and t # 2. Therefore, if the Martelli&Montanari algo-
rithm runs into an occur-check failure, we know that the cycle contains a
recursive variable. As an example consider the cycle {Pfr+ Pz} . Obvious-
ly, the variable z is recursive. Embedded in the cycle unfication problem
(Py =+ Pa)(pss«pyy We obtain the independent most general solutions
{y —a}, {y— fa}, {y— ffa}, ..., i.e., infinitely many. This is one of
the reasons why we exclude recursive variables. A cycle unification problem
(G = F)(rpy is called unifying iff L and R are unifiable, i.e., the cycle
contains no recursive variables.

14

5.1 Linear Paths (C},)

We recall that a path (zq,...,2;) is called linear iff z; # z;, 1 < 4,j <
[, © # j. A cycle unification problem (G —+ F);,p, is in the class
Cip, if the corresponding dependency graph defines only linear paths. Let
(x14y-.-521,), 1 <1< mn, be the n defined linear paths. Furthermore, let
m = max(ly, ..., l,) where max denotes the maximum-predicate.

Proposition 2 Let (G -+ F) . gy € Cp and m be defined as above.
Then, for the most general solutions

Tm—1 = T4, { Z m,
holds.

Proof: After m — 1 iterations through the cycle every variable occurring
in G either does not depend on a variable at all or it depends on a variable
x{“», 1 <1< n, 1<j7<m. Because the variables z;,;, 1 < ¢ < n, are
enél—points of linear paths, they do not depend on any other variable. Hence,
further iterations through the cycle do not contribute to further solutions.
qed

Proposition 2 states that only the first m—1 iterations through the cycle
contribute to a possible solution of a cycle unification problem defining linear
paths. We conclude that for cycle unification problems defining linear paths
and m defined as above, we have only to consider 7, i.e., the restriction
of the most general unifier of G and F' to Var(G), if it exists, and the
first m — 1 iterations through the cycle to obtain all possible most general
solutions for a cycle unification problem in the class Cj,. Conversely, if
neither G and F are unifiable nor any of the sets C*, 0 < i < m, is
solvable, then the cycle unification problem is unsolvable.

As an example consider the cycle unification problem

<Pu1u2u3u4 —= Paafb;fc>{Pfy,szePam’fy,v}'

The corresponding dependency graph is depicted in Figure 3.
We obtain the linear paths

(y,v,w), (2), {v,w), (w)
such that m = max(3, 1, 2, 1) = 3. If we solve

C° = {Pujugusuy = Pfy', 2'vlw', Peta! fy' v = Paafd,fc},

15

Figure 3:

x y v w
Ug ——=2 U1 Us Uy

we obtain the solution
70 = {u1—fb, uz— fe}.

Solving

ol = Pujususug = Pfyl, zlotw!, Palal fyl, vl = Pfy?, 220%w?,
- Pz22? fy?, v? = Paafb,fc

yields
71 = {uy > fe}.
If we iterate once more through the cycle, we obtain from solving
02— Pujugusug = Pfyt, 2lotw!, Pela! fyl, ol = Pfy?, 220%w?,
P22 fy? v? = Py, 2303w, Pa3a® fy?, v3 = Paafb,fc

the solution
2 = {ur = fy'}.
Because y' depends on w?®, which does not occur in the right-hand side

of the cycle {Pfy,zow + Przfy,v}, no further iterations through the cycle
contribute new solutions, i.e., =175, 7 > 2.

5.2 Permutations (C,)

We recall that a path (z1,...,2;) is a permutation iff (z1,...,2;_1) is lin-
ear and z; = x;. A cycle unification problem (G —e+ F)(gy is in the
class C, if the corresponding dependency graph defines only permutations.
Let (z1y ..., 2k, 21,4), 1 <1 < n, be the n defined permutations. Fur-

thermore, let N = lem(ky, ..., k,) where lcm denotes the least common
multiple.’
®Because the permutations (w1,...,51), {#2,...,81), ..., {(21,...,3-1) are defined

by the same path in the dependency graph, we will not distinguish between them.

16

Proposition 3 Let (G — F).p € C, and N be defined as above.
Then,
T; € Tj4iN, 720, 1>0.

Proof: Assume 7; and 7j4;n to exist. First, we associate with each
variable @ occurring in a permutation precisely one permutation such that
(x) is a subpath of it. We assume (z) to be contained in the permutation
(x1,...,2p,21). Hence, 2/t depends on @/*1*P i+14+2r Because
Vi3l il k; = N, 27%! depends also on /114N and N is by definition
the least number for which this is true for all variables.

For computing a solution 7; we have to solve C7 = NUY/UX’. A subpath
(z,y) of the permutation (zy,...,z,, 1) is defined by the following sets of
equations:

(o' =y} or {y't =T} or {af 2 ¢,y 2 4}

such that the last set is equivalent to {z° = y'*', 2' = ¢}. This holds
because the cycle is non-recursive. The sets above can be derived from the
cycle-equations)Y*. Therefore, we obtain the chain of equations

+1 - j+2 J+2 . 5+3 JteN - j+1+0-N
! =40 » N =Y 3 ey yi.N_l—xj

if we follow the permutation-path associated with 2. So, 27*! is not only
depending on z/t*N hut they must be equal, i.e.,

gl = pit1+iN

which is yielded by 7- N — 1 variable-elimination steps.

Let u € Var(G). u depends on some variables Z{—H, ..., 7t such that
e {zt, ..., 2T} Forall 2/t ..., zi*! the following holds.

Assume s|, = f(...) for an occurrence® v where ur+s € 7;. Observe that

f(...) represents a constant if the arity of f is 0. From /1! = git1+iN
(which is equivalent to z/ TN = 2341y and from #[¢/T1HN] = ¢ (which
is obtained from the set of equations {R/+1+*N = [}) it follows by variable-

elimination that
it =t

is implied by €7t . On the other hand, we obtain #[z/t'] = ¢ from
{R/TY = F} of ¢7 as well. Hence, we also obtain s|, = f(...) if we

8 An occurrence is a list of natural numbers or A. Let ¢ be a term. ta = ¢. If
t = f(t1,...,tn) and v is an occurrence in &;, then t|;, = & .

17

compute the solution 74, n for Ci*+eN | Because no further operations
which are caused by remaining equations in €’t*N can make the function-
symbol f dissappear. Thus, the topmost function-symbol of s|, must be
equal for j and j+ - N iterations through the cycle.
On the other hand, assume u not to be instantiated or s|, € Var for j
iterations. Because in C’t*N we have more equations than in €7, the value
of u after j iterations must be more general than that for j4i-N iterations
if 744N exists.
This argumentation holds for each zf’l, 1 < ¢ < m, such that » depends on
it. The solutions are related by € and not by = because they are variants
of each other (observe the variable-chain of the permutation-variables). qed

One should observe that the existence of 7; does not imply the existence
of 7j4:n, e.g. for intertwined permutations like the second example below.
But it is easy to see that the non-existence of 7; implies the non-existence
of 7;4:n . Proposition 3 expresses that we only have to consider the unifier
of G and F restricted to Var(G) , if it exists, and the first N —1 iterations
through the cycle to obtain all possible most general solutions for a cycle
unification problem in the class of permutations.

As an example for a cycle unification problem in C, consider

(Pujuguzug —o Pabab)(pyrye Prvey)

which defines the dependency graph of Figure 4.

Figure 4:

e N
_/\ Y 3

Uy

The dependency graph defines the two permutations

(2,y,2) and (2,0,)

18

such that N = lem(2, 2) = 2. Considering one instance of the cycle and
solving

C% = {Pujuguzug = Potalylat, Patvlaly! = Pabab}

yields
0 = {uy1—=b, ugr—a, us—b, ug—al.

From
C! = {Pujugusug = Pvlaly'z!, Pelvlaly' = Po?a?y?a?, Pa?v?a?y? = Pabab)
we obtain the solution
7 = {uy—a, uy—b, us—a, ug—b}.
If we iterate once more, we have to solve

o2 — | Puungusug = Po'aly'el, Palolaly! = Poa®ya?,

which results again in 75 which also implies that 79 € 5.
A slight variation of the example above is the cycle unification problem
(Pujuguzug —o Pabac)(pypyee Prvey)
where we have replaced the fact Pabab with Pabac. If we want to solve
C! = {Pujugusug = Pv'aly'zt, Pelvlaly' = Poa?y?a?, Pa?v?a?y? = Pabac),

2! has to be bound simultaneously to b and ¢ such that neither 7, nor 7
exists.

As another example consider the cycle unification problem

<Pu1u2u3u4u5 ? PUIUQUBfav U4>{PywixePwywi}

which defines the dependency graph depicted in Figure 5.
We obtain N =lem(2, 3) = 6. Solving

C° = {Pujugusugus = Py'z'v'w'at, Paly'a'v'w! = Pojvyvsfa, vs)
vields the solution

10 = {uz— fa}

19

Figure 5:

S TN/ N

VA

and solving C® yields the solution
75 = {u1 = fa, ugrs fa, uz—s fa, ug fa, uses fal.

This confirms that 75 € 75. But we also observe that it is not necessary
to consider the fourth and fifth iteration at all. This holds because after
already 3 iterations all variables in the goal Pujuqusugsus are instantiated

with fa. Consider the variable z!. For 2 and 3 iterations we obtain 2! = 22
and z' = 2%, respectively. On the other hand, we obtain for 2% after 2
iterations z? = z*. Hence, the chain 2! = 22, 2?2 = 23, 2° = 2* holds.

Because all variables in the first instance depend on some z*, 1 < i < 4,
only 3 iterations are necessary since all further iterations do not change the
solution. Let L = {py, ..., p,} be the lengths of the defined permutations
minus 1. For cycles with ged(py, ..., p,)” = 1 and a dependency graph
consisting of precisely one connected component we are looking for the least
number m such that

Vi, 1<j<m,Ju: (= ippr, ik €{-1, 1}, p, € LAV0,1 <0 <u:0< Y ippy, <m).

Thus, we get a refinement of the upper limit of iterations we have to consider.

5.3 Permutations with Linear Entry-Path (C,,)

We recall that a path (z1,...,2;) is a permutation with linear entry-path
iff (x1,...,2/-1) is linear and there exists an j, 1 < j < [, such that
x; = xj. A cycle unification problem (G' —» F)._ gy is in the class

Cpip if the corresponding dependency graph defines only paths which are

Tged denotes the greatest common divisor.

20

permutations with linear entry-path or which are a subpath of a permutation

with linear entry-path. Let (z1, ..., 25, Clithis i), 1 < 1 <,
be the n defined permutations with linear entry-path. Furthermore, let
m = max(ly, ..., l,) and N =lem(ky, ..., k).

Proposition 4 Let (G —+) py € Cpp, m and N be defined as
above. Then,
Trm—1+4i € Tm—14itk-N, ¢ > 0, &> 0.

Proof: It is a straightforward conclusion from the structure of the de-
pendency graph that after m — 1 iterations through the cycle all variables
u € Var(() depend either on no variable at all or on variables ™ which are
contained in the permutation-parts of the permutations with linear entry-
path. After m — 1+ ¢ iterations through the cycle all « € Var(G) depend
either on no variable at all or on variables y”t? such that y is contained in
a permutation-part. Now we apply the same argumentation as in the proof
of Proposition 3. qed

Proposition 4 tells us that we only have to consider the unifier of &G
and F' restricted to the variables occurring in G, if it exists, and the first
m + N — 2 iterations through the cycle to obtain all possible most general
solutions for a cycle unification problem in the class Cpyp, .

As an example consider the cycle unfication problem

(Poivauzvg = Pabfe,u) (poyse rye Pusfy,f2)-

The problem defines the dependency graph illustrated in Figure 6.

Figure 6:
(15) U4
NS
x Yy
NG

z Uus

The dependency graph defines the permutation with linear entry-path

(9,2, 9).

21

We conclude N =2 from the permutation-part (y,z,y) and m = 2 from
the linear entry-path (z,y), which are defined by the cycle {Pzyfzfy
Pwafy,fz} . Therefore, we conclude by Proposition 4 that

Ti4i € Tigith2, © 20, k> 0.
As an example we compute 73 from
PU1U2U3U4 = P$1y1f217 fy17 Pwlwlfy17 le = P$2y2f227 fy27
C° =1 Pwafy?, f2* = PPy f2°, [y, Pwa® fy?, f2° = Paty* f22, fy?,
Pwz? fy*, f2* = Pabfc,u

We obtain
T3 = {vic, v fe, v 2

From solving

Cl _ PU1U2U3U4 = leyllevfylv Pwlwlfylvle = P$2y2f227fy27
- Pw?z? fy?, f2? = Pabfc,u

we obtain the solution
T = {virse, v fe, v f2R)
Hence, 7 € 73 holds.

5.4 Unifying Cycles (C,)

Unifying cycles consist of a combination of linear paths, permutations and
permutations with linear entry-path where each variable can be a starting-
point of certain kinds of paths. We assume the unifying cycle to contain p
permutations

<$1,i7 sy Ty iy xl,i>7 1 S 1 S D,

pl restricted permutations with linear entry-path

<yl,i7 e Yl Yt 1y - s Yl i yli+17i>7 1 <4< pl,

such that no subpath is a subpath of a permutation except the permutation-
part of the path itself, and [restricted linear paths

(214, - - .,ZZM% 1<i<l|,

22

such that no subpath is a subpath of a permutation. Let m = max(1, {1, ..., [y, I, ..

and N = lem(1, mqy, ..., my, nq, ..., ny). Herein, 1 is needed if there
are no linear paths and no permutations at all, respectively. We use the
abbreviations
Perm! = {96]1472»7 e xin“l |1 <i<p}
Lin’ = {lel,l’ el lel,)

l
Perm and Lin denote the sets of variables without superscribed indices.
Therefore, Perm contains only variables which occur in permutations and
Lin contains only the end-points of the restricted linear paths. Observe that
all permutation-parts of permutations with linear entry-path are contained
in the set of permutations.

Proposition 5 Let (G —+ F)pry €Cy, m and N be defined as above.
Then,

Tm—l—l—kﬁ Tm—14k+;5-N 5 k Z 07] > 0.

Proof: Due to better readability we only prove 7,_; € 7,_14;n. The
whole proof of Proposition 5 is established with the addition of one more
superscribed index.

Assume 7,,_1 and 7,_14;.N to exist. First we associate with each variable
x € Perm precisely one permutation such that (z) is a subpath of it. We
assume () to be contained in the associated permutation (yi,...,y;,y1) .
Let u € Var(G) .

First, we consider m — 1 iterations through the cycle. Assume that u
depends on a variable y/ € Lin?, j < m. Hence, all further iterations leave
the value of 3/ invariant because y depends on no other variable since it is
an end-point.

On the other hand, assume that « depends the first time on a variable
z', i < m, where z € Perm. Because of the definition of m, every path
starting in « must end in an end-point y € Lin or reach such an o € Perm
in the first m — 1 iterations. Assume ' to depend on y;j'l, 1 <5 <.
If there is a branching in the path of the permutation (or at z itself), this
cannot be caused by a derived equation of the form z* =t such that t is
no variable because of the non-recursiveness of the cycle {L+ R} .

For computing a solution 7; we have to solve C/ = NUYIUX7. A subpath
(z,y) of the permutation (zy,...,z,, 1) is defined by the following sets of

equations in Y’ :

{2y or {1 = o or o 21,y 21

23

B ll)

such that the last set is equivalent to {z® = y*t', 2° = ¢}. This holds
because the cycle is non-recursive. The sets above can be derived from the
cycle-equations Y. Therefore, we obtain after m — 1 iterations through
the cycle the chain of equations

zt = y;‘+17 SEE) y]T:Ln_—t—l = y;?n_iv Yk € {yh T 91}7 jl < k Sjm—h

if we follow the permutation-path associated with x . Hence, it follows from
this chain that

vE Y
holds. Furthermore, ' may depend on some other variables 27, ..., 27 .
This is depicted in Figure 7.8
Figure 7:
2"
u —=2¢' .
Zy

In combination with the set of equations {R™ = F'} of C"™~!, these depen-
dencies establish a set of dependencies for z*. On the other hand, we know
from the proof of Proposition 3 that after m — 1+ 5 - N iterations

holds. Since (z) is a subpath of (yi,...,y;,y1), there must exist a p such
that m—1¢ is equal to m+j-N —p (cf. Figure 8). From m—i =m+j-N—p
we conclude that p = j- N 4+ ¢ holds. It follows from the underlying chain
of equations that

pi = pd Nt

IN+¢ depends on zinﬂ v oen, 27N Wwhere 2y, ..., 2,

are the same variables as for m — 1 iterations. In combination with the set

holds. Furthermore, z

8Here and in Figure 8 the directed edges denote a path of adjacent directed edges in the
original dependency graph where the inner nodes are omitted due to better readability.

24

of equations { RN = F} of ¢~ 147N results the same set of dependen-
cies for m — 1+ j - N iterations as for m — 1 iterations. This is depicted in
Figure 8.9

Figure 8:
U 2t m pI Nt metsN
y]m—i Jm—i
m—+j5-N
21
m+5-N
T

This argumentation holds for all 2° such that () is contained in a per-
mutation. Now we consider again the cases where s|, = f(...), u is not
instantiated or s|, € Var for u+— s € 7,,_;. The proof is established
analogously to the proof of Proposition 3. qed

Proposition 5 tells us that we only have to consider the unifier of &G
and F restricted to Var(G), if it exists, and the first m 4 N — 2 iterations
through the cycle to obtain all possible most general solutions for a cycle
unification problem in the class C,. Conversely, if neither G and F are
unifiable nor any one of the sets €', 0 < i < m+N —2, is solvable, then
the cycle unification problem is unsolvable. One should observe that this
result subsumes the result of linear paths (where N = 1), of permutations
(where m = 1) and of permutations with linear entry-path. Observe that
the existence of 7,,_14) does not imply the existence of 7,,_1444;.n . But
if 7—14% does not exist, 7,145+ does not exist as well.

As an example we resume the example of Section 4, i.e., we consider the
cycle unification problem

(Pujuguzugus —o Pababa)(pyyyws Poyvyuw) -
The dependency graph of Figure 9 defines the restricted linear paths
(w, z) and (=)

®Observe that =7Vt need not to be on the path between y;. . and y

25

and the permutation

(ysv,y).
Figure 9:
(73] (15)
w / | |
us3
Uy w z Us

Here we see why we must restrict the definition of linear paths. With the
former definition we would also have to consider the paths (v,y,w, z) and
(y,w, z) . But they contain variables (v and y) which are already subpaths
of permutations. Hence, they must not contribute to m. Therefore, we
compute m = max(l, 2, 1) = 2 and N = lem(1l, 2) = 2 such that
m+ N —2 = 2. In order to compute the solution for 1 iteration through
the cycle we have to solve

{ Pujugusugus = Pylotylwlzt, Pelylolytw! = Py?o?y?w?z?, }

1_
¢ = Pz2y?v?y?w? = Pababa
which results in

7 = {uy—a, uy—b, us—a}.

If we solve
Pujugusugus = Pylotylwlzt, Pelylolytw! = Py?o?y?w?z?,
C3 = { Paly?ulyPu? = PtodyPuds?, PrlyPodydu’ = Pylotytwts?,

Pzty*vty*w* = Pababa

26

we obtain
3 = {uy—a, uy—=b, us—a},

i.e., 71 again which is implied by Proposition 5.

Let (G —+ F){1ry be a cycle unification problem in the class C, .
The following steps define a cycle unification algorithm for unifying cycles
with the help of the previous propositions. Algorithms for Cj,, C,, and C,yp,
are special cases.

Unification Algorithm for C,

1. If G and F are unifiable, then compute 7 as the most general
unifier for G and F restricted to the variables in G.

2. Compute the dependency graph for (G —+ F)(r. gy .

3. If (G = F)irery € Cy, then compute the lengths Iy, ..., [
of all defined restricted linear paths/linear entry-paths and the
lengths mq, ..., m; of all defined permutations. Let m =
max(1l, Iy, ..., l;) and N =lem(1, my —1, ..., m; —1).

4. If C* is solvable, then compute 75, as the most general unifier for
C* | restricted to the variables occurringin G', 0 < k < m+N—-2.

5. Let ¥ be the set of solutions obtained in steps (1) and (4). If
Y = (0, the problem is unsolvable. Otherwise, iteratively eliminate
a substitution « if the current set of solutions contains another
substitution § with § € o [Var(G)]. The obtained set is a minimal
and complete set of solutions for the cycle unification problem
<G —= F>{L%R}'

As an example we resume our example from above. An application of the
algorithm yields the following results.

1. Pujususugus and Pababa are unifiable by 7 = {uy—a, ugr—b, us—
a, ugr—b, us—a}.

2. The dependency graph is depicted in Figure 2.

27

3. The dependency graph defines the restricted linear paths (w, z) and (z)
and the permutation (y,v,y). Therefore, m =2 and N =2.

4. 1o = {uy — b, ug—a, us—=b, ug—al, 1 = {uy—a, ug—b, uz—
a}l, 72 = {uy — b, uy+— a, uz+— b} are the most general solutions
obtained by solving C°,C!, and C?, respectively.

5. We obtain the set {7, 72} as a minimal and complete set of solutions.

The following theorem follows immediately from the previous results.
Observe that Theorem 6 holds for Cy,, C,, and Cpj, as well because they
are subsets of C, .

Theorem 6 Let C' be a unifying cycle.
(i) (G =2+ F) is decidable.

(i) (G =&+ F) is finitary.

(iii) There exists an algorithm computing a minimal and complete set of
solutions for (G =2+ F).

6 Summary and Future Work

In this paper we firstly defined cycle unification. We then restricted our
attention to the class C, which denotes the class of cycle unification prob-
lems defining unifying cycles, i.e., cycles {L+«+ R} for which L and R are
unifiable. By considering several subclasses of C, , leading in combination
to the results for C, , we have extended known work.

Table 1 gives an overview of our results as well as of previous work. In
each row we state the decidability and the unification type for a particular
class of cycle unification problems, indicate whether there exists an algo-
rithm to compute a minimal and complete set of solutions and provide the
reference if there exists one. C denotes the class of unrestricted cycle uni-
fication problems. In C; and C, goals and facts are restricted to be linear
and ground, respectively. C,, contains only matching cycles {L+ R} such
that there exists a substitution ¢ and ¢L = R or L =oR. C,,,, contains
only non-recursive matching cycles {L+ R}, i.e., the cycle is matching and
Aiiarst € o' v € Var(l), and t # . The various classes are related as
shown in Figure 10.

Our most general result concerns the class of unifying cycles. For this
class we have shown that we only have to consider finitely many iterations

28

‘ Class ‘ Decidability ‘ Type ‘ Algorithm ‘ References ‘
C open infinitary open
C decidable | infinitary open [Dev90]
Cy decidable unitary yes [SS88]
Cm open infinitary open

Crrm decidable finitary yes [BHW91]
Cu decidable finitary ves in this paper

Table 1: Properties of cycle unification classes

Cu Cnrm

Ci

Cy

29

Figure 10: The relation between the classes C, C;, Cy, Cpiy Cppm, and Cy .

through the cycle to obtain a minimal and complete set of solutions. Further-
more, we have presented an algorithm for computing the maximal number of
necessary iterations to obtain this set. This enables us to efficiently control
the deductive process without losing completeness. Thus, we have finished
the basic research for cycle unification problems which are non-recursive.
For future work on these classes we are interested in refinements for the
upper bound of iterations through the cycle. A first approach has been
shown at the end of Section 5.2 for intertwined permutations. Further basic
research has to consider the case of recursive cycles, i.e., cycles which can
admit infinitely many independent solutions.

One of the major open problems in our restricted context is the question
whether C is decidable. C; and C, are decidable. However, there are several
results which point into the opposite direction for the case of C. In [Dau88§]
it is shown that the termination of a one rule term rewriting system, where
rewriting may occur at proper subterms, is undecidable. Similarly, we know
from [SS88] that the class of Horn clauses consisting of two clauses of the
form L+ R and two ground unit clauses is undecidable. It is, however, not
obvious, how these results could be adapted to cycle unification problems.

In the future we intend to develop heuristics to control further classes of
cycle unification problems. We are looking for a wellfounded ordering based
on a measure of complexity for instances of the cycle in order to apply an
idea similar to the one contained in [SS88]. Certain cycles {L + R} cause
some of the terms occurring in L and R to grow or shrink monotonically
in each iteration of the cycle. If there were an upper bound for these terms
defined by G or F', then one would be able to decide the cycle unification
problem (G —+ F)¢p. gy. For illustration of this idea consider the cycle
unification problem

(Plfr,e = Pufu)pssry feepPryz)-

The i-th instance of the right-hand side of the cycle {Pfffy,fz < Pfy,z} is
matched against the i+ 1-st instance of the left-hand side by o; = {y' =
[yt 2t = fzi"'l}. We observe that the depth of y and z decreases with
each iteration through the cycle. The goal and the fact define upper bounds
because of their non-linearity which correlates y and z. In [BHW91] we
have exploited this insight for the computation of the number k of iterations
through the cycle to obtain a solution. For the example above we obtain
k = 2 and the solution 75 = {z +— f°y>}. Under some circumstances,
those problems can be solved with a technique called meta-unifying which
is described in [Sal92]. We expect other useful heuristics to exist.

30

Acknowledgement: | would like to thank Wolfgang Bibel, Gerd Grofle
and Steffen Holldobler at the Technische Hochschule Darmstadt for their

valuable comments on this paper. The work was partially supported by the
ESPRIT-project MEDLAR and the Stadt Dreieich.

References

[BHWOI1] W. Bibel, S. Hélldobler, and J. Wiirtz. Cycle unification.

[Bib87]

[Bib8s]

[Daul8]

[Dev90]

[DJ91]

[DVB89]

[DVBY0]

[Ede85]

Forschungsbericht AIDA-91-15, TH Darmstadt, August 1991.

W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braun-
schweig, 2 edition, 1987.

W. Bibel. Advanced topics in automated deduction. In R. Nos-
sum, editor, Fundamentals of AI II. Springer Verlag, 1988.

M. Dauchet. Termination of rewriting is undecidable in the one—

rule case. In Mathematical Foundations of Computer Science,
pages 262-270. LNCS 324, 1988.

P. Devienne. Weighted graphs: A tool for studying the halting
problem and time complexity in term rewriting systems and logic
programming. Journal of Theoretical Computer Science, 75:157—
215, 1990.

N. Dershowitz and J.-P. Jouannaud. Notations for rewriting. In
FEATACS Bulletin, pages 162-172, 1991.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. On the exis-
tence of non—terminating queries for a restricted class of Prolog—
clauses. Artificial Intelligence, 41:237-248, 1989.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical
technique for detecting non—terminating queries for a restricted
class of horn clauses, using directed, weighted graphs. In Pro-
ceedings of the International Conference on Logic Programming,
pages 649-663, 1990.

E. Eder. Properties of substitutions and unifications. Journal of
Symbolic Computation, 1:31-46, 1985.

31

[Fut8s]

[Llo84]

[MMS2]

[MN83]

[Nau&9]

[Oh190a]

[Oh190b]

[OWSs4]

[Pfess]

[PLi90]

[Rob65]

[Sal92]

[SGGS6]

Y. Futamura. Program evaluation and generalized partial com-
putation. In Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 685-692, 1988.

J.W. Lloyd. Foundations of Logic Programming. Symbolic Com-
putation — Artificial Intelligence. Springer-Verlag, 2 edition, 1984.

A. Martelli and U. Montanari. An efficient unification algorithm.
ACM TOPLAS, 4(2):258-282, 1982.

J. Minker and J.M. Nicolas. On recursive axioms in deductive
databases. Information Systems, 8(1):1-13, 1983.

J.F. Naughton. Data independent recursion in deductive databas-
es. In Journal of Computer and System Sciences, pages 259-289,
1989.

H.J. Ohlbach. Abstraction tree indexing for terms. In Proceedings
of the Furopean Conference on Artificial Intelligence, 1990.

H.J. Ohlbach. Compilation of recursive two-literal clauses into
unification algorithms. In Proceedings of the AIMSA, 1990.

H.J. Ohlbach and G. Wrightson. Solving a problem in relevance
logic with an automated theorem prover. In Proceedings of the
Conference on Automated Deduction, pages 496-508, 1984.

F. Pfenning. Single axioms in the implicational propositional cal-
culus. In Proceedings of the Conference on Automated Deduction,
pages 710-713. Lecture Notes in Computer Science, Springer,
1988.

L. Pliimer. Termination Proofs for Logic Programs, volume 446
of Lecture Notes in Computer Science, Springer. Springer, 1990.

J.A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.

G. Salzer. The unification of infinite sets of terms and its appli-
cations. Technical report, Technische Universitat Wien, 1992.

D.E. Smith, M.R. Genesereth, and M.L. Ginsberg. Controlling
recursive inference. Artificial Intelligence, 30:343-389, 1986.

32

[Sie90]

[SS88]

[Sti85]

[UvG8S]

[Vie8T]

[WLHO1]

J. Siekmann. An introduction to unification theory. In R. B.
Banerji, editor, Formal Techniques in Artificial Intelligence, pages
369-424, 1990.

M. Schmidt-Schauf}. Implication of clauses is undecidable. Jour-
nal of Theoretical Computer Science, 59:287-296, 1988.

M.E. Stickel. Automated deduction by theory resolution. Journal
of Automated Reasoning, 1:333-355, 1985.

J.D. Ullman and A. van Gelder. Efficient tests for top—down
termination of logical rules. Journal of the ACM, 35(2):345-373,
1988.

L. Vieille. Recursive query processing: The power of logic. Tech-
nical report, ECRC, 1987.

S.S. Wei, W. Lu, and I.M. Hsu. Using multiple query optimization
technique to minimize relation searches in processing bounded
recursion. In International Symposium on Artificial Intelligence,
pages 143-149, 1991.

33

