
Appeared in the Proceedings of the Post-conference workshop at ICLP: Veri�cation andanalaysis of (concurrent) logic languages, June 1994, eds. F.S. de Boer and M. Gabbrielli,pp. 87{107Towards the Veri�cation of Concurrent Constraint Programs inFinite Domain ReasoningJ�org W�urtzGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3D-66123 Saarbr�uckenGermanyE-mail: wuertz@dfki.uni-sb.deAbstractCombinatorial problems occur quite often in many application areas, e.g. scheduling orcutting stock problems, and may be speci�ed as problems over �nite domains, i.e., the variablesrange over a �nite subset of the integers. Our approach taken in the concurrent constraintlanguage Oz is to support an e�ciently implementable constraint system for constraints x _2D .Using this constraint system, the programmer can add his own functionality by so calledvirtual constraints (e.g. x � y). Because the problem of satis�ability of these more complexconstraints is NP-complete, most of them are implemented incompletely by using re
ectingoperators returning the current minimum and maximum of a variable's domain.For these programs serving as the core of �nite domain reasoning, the question of veri�cationarises. Veri�cation is complicated by the operators re
ecting the current known informationabout variables. In our approach we translate the computation states into �rst order formulasby giving virtual constraints their intended semantics (the semantics of the corresponding logicconstraint). We prove that for a reduction of computation states
 !
0 the corresponding�rst order formulas are equivalent with respect to the intended model. Our approach, whichseems to be very natural in the setting of constraint languages, succeeds in proving virtualconstraints to be correct, terminating and complete (in the shown example) with respect toan intended semantics.1 IntroductionCombinatorial problems occur in many application areas, e.g. scheduling or cutting stock prob-lems. They may be speci�ed as problems over �nite domains, i.e., the variables range over a �nitesubset of the integers. On one hand, there are basic constraints x _2D , where D is a �nite subsetof the integers. For basic constraints there are e�cient and incremental algorithms for decidingsatis�ability and entailment. But on the other hand, one wants to have more complex constraintslike x � y or x + y = z , which we call virtual constraints. Because of the complexity of solvingthese constraints (NP-complete), they are usually implemented by incomplete algorithms.The language considered in this paper is a subset of Oz [HSW93, SHW93, Smo94, HMM+94]. Oz isan attempt to create a high-level concurrent programming language providing the problem solvingcapabilities of logic programming. We have implemented virtual constraints by Oz programs

[SSW94]. Hence, we have the possibility to analyze and test our algorithms on a high level beforeimplementing them (e.g. as builtins). A variety of algorithms may be designed and tested withsmall e�ort.Since algorithms for virtual constraints are at the core of languages like CHIP [DVS+88] or cc(FD)[VSD93] the question arises whether these algorithms are correct, terminating and complete.1 Inthe sequential setting general algorithms achieving arc-consistency (e.g. [Mac77, VDT92]) areproved to be correct. Nevertheless, the concurrent logic setting is the more natural one for solvingconstraint problems because of the possibility to deal with incomplete information in a reactivesystem. Whereas much work is done in the �eld of veri�cation in the setting of imperativeconcurrent languages (e.g. [MP92]), this work has just begun in the �eld of concurrent logiclanguages (see for example [dBGMP94]).The implementation of virtual constraints in Oz is based on a constraint solver for basic constraintsx _2D , the suspension mechanism of the language (ask-clauses in the CC framework [SR90]) andre
ecting operators (to the sake of e�ciency). The re
ecting operators re
ect the actual con-straints for a variable, e.g. the actual minimal value a �nite domain variable can take consistently.Our approach towards veri�cation of concurrent constraint programs comes naturally by observ-ing that virtual constraints should have a declarative speci�cation. We translate computationstates (consisting of (virtual) constraints, procedure de�nitions, applications, conditionals etc.)into a �rst order formula (observe that in this paper we only consider a subset of Oz by exclud-ing higher-order programming, deep guards and state). To this aim we de�ne a model, which isa persistent extension of the structure of the basic constraint system, by giving the proceduresoccurring in the de�nition of a virtual constraint a declarative semantics (and also the re
ectingoperators). One can prove that for a reduction of computation states
 !
 0 the obtained �rstorder formulas of
 and
 0 are equivalent with respect to this model. Beside proving correctness,one can prove termination and in special cases completeness of the considered virtual constraint,i.e., if the computation does not fail, the formula obtained from the inital state is satis�able.The paper is structured as follows. In Section 2 we outline the calculus underlying the consideredsubset of Oz, show the virtual constraints, which are subject of this paper, and sketch the usedproof techniques. The calculus is formally described in Section 3. In Section 4 the proof techniquesare elaborated further. The paper concludes with an outlook.2 OutlineIn this section we learn in an informal way the constraint system FD , explain the underlyingcomputation model of the considered subset of Oz and see a so called virtual constraint, subjectof this paper. For the sake of clarity, we chose as a virtual constraint a simple one, which can beproved to be complete. At the end of this section we sketch the techniques to prove the virtualconstraint to be correct, terminating and complete.2.1 The Constraint System FDLet Inf and Sup be integers with Inf � Sup . The constraint system FD consists of thesignature � = f _2DjD � fInf ; : : : ; Supgg of unary predicate symbols and the structure A over� , where the universe of A consists of the integers Z and x 2 _2AD i� x is an element ofD . The equality symbol := is a binary predicate that is always interpreted as identity. A basic1Languages like clp(FD) [DC93] using the concept of indexicals do not use virtual constraints in our sense butthe question for veri�cation also arises there.

constraint is de�ned as follows:�; ::= > j ? j x := y j x _2D j 9x� j � ^ :It is possible to transform a constraint 9~x� into a normal form: = x1 := y1 ^ : : :^ xn := yn ^ xn+1 _2D1 ^ : : :^ xn+m _2Dmsuch that xi; 1 � i � n+m; occurs exactly once or = ? . In case a constraint is in such anormal form, Di is called the domain of xn+i . We will say a variable x is determined in casethe normal form of a constraint contains x _2D with jDj = 1 .We now want to consider some examples. Obviously, x _2f1; 2g ^ x _2f2; 3g is satis�able (withx = 2 as sole solution), and x _2f1; 2g^ x _2f4; 7; 9g is unsatis�able in A . Obviously, x _2f2; 3g j=Ax _2f1; 2; 3g where � j=A if the structure A satis�es ~8(�!) , since each solution of x _2f2; 3gis a solution of x _2f1; 2; 3g . On the other hand, x _2f1; 2; 3g j=A :(x _2f8g) since no solution of theleft-hand side is a solution of the right-hand side and x _2f1; 2; 3g^ y _2f1; 2; 3g 6j=A x := y since e.g.the valuation fx 7!1; y 7!2g is a solution of the left-hand side but not of the right-hand side.2.2 The Computation ModelIn [Smo94] a formal model of computation in Oz is given, consisting of a calculus rewritingexpressions modulo a structural congruence relation, similar to the setup of the �-calculus [Mil91].The usual distinction between program and query is alleviated. For the purposes of this paper, wesimplify the calculus by not considering deep guards, higher-order programming and state. Thefollowing is adopted from [SSW94].A computation space consists of a number of actors connected to a blackboard. The actors readthe blackboard and reduce once the blackboard contains su�cient information. The informationon the blackboard increases monotonically. When an actor reduces, it may put new informationon the blackboard and create new actors. As long as an actor does not reduce, it does not have anoutside e�ect. The actors of a computation space are short-lived: once they reduce they dissapear.The blackboard stores a constraint and a number of abstractions. The constraint on the blackboardis always satis�able. We say that a blackboard entails a constraint if the implication � ! is valid, where � is the constraint stored on the blackboard. We say a blackboard is consistentwith a constraint if the conjunction � ^ is satis�able with respect to a given model.There are several kinds of actors. An elaborator is an actor executing an expression. Elaborationof a constraint � checks whether � is consistent with the blackboard. If this is the case, � isconjoined to the constraint on the blackboard; otherwise,the computation space is marked failedand all its actors are cancelled. Elaboration of a constraint corresponds to the eventual telloperation of CC [SR90].Elaboration of a concurrent composition �1 �2 creates two separate elaborators for �1 and �2 .Elaboration of a variable declaration local x in � end creates a new variable and an elaboratorfor the expression � . Within the expression � the new variable is referred to by x . Everycomputation space maintains a �nite set of local variables.Elaboration of a procedure de�nition proc fp x1 : : : xng � end writes the abstractionp : y1 : : : yn=� on the blackboard.Elaboration of a procedure application fp y1 : : : yng waits until the blackboard contains the ab-straction p : x1 : : :xn=� . When this is the case, an elaborator for the expression �[y1=x1 : : : yn=xn]

is created (�[y1=x1 : : :yn=xn] is obtained from � by replacing the formal arguments x1 : : : xn withthe actual arguments y1 : : : yn).Elaboration of the expression fmin x yg (fmax x yg) reduces to an actor waiting for informationon the blackboard on the lower (upper) bound of x (y). If there is information on the blackboard,this actor reduces to an elaborator for y := n (y := m), where n = max(kj� j=A x _2fk; : : : ; Supg)(m = min(kj� j=A x _2fInf; : : : ; kg)), i.e., the greatest lower bound of x (smallest upper boundof y) with respect to the actual constraint � on the blackboard.Elaboration of a (non-deterministic) conditional expression if �1 [] : : : []�n else � fi createsa conditional actor. A clause �i takes the form x1 : : : xk in � then � where the local variablesx1 : : : xk range over both the guard � and the body � of the clause. The conditional actor waitsuntil the blackboard entails either a �i or :�i . In the �rst case the actor reduces to an elaboratorfor local x1 : : : xk in � � end . In the second case, the clause is simply discarded. If all clausesof a conditional actor if �1 [] : : : []�n else � fi are discarded, the conditional reduces to anelaborator for the expression � .2.3 Virtual ConstraintsSo far we have seen basic constraints like x _2D . For basic constraints there are e�cient andincremental algorithms for deciding satis�ability and entailment. Their semantics is given purelydeclaratively. One one hand, one wants to have for solving �nite domain problems constraints likex � y or x + y = z . On the other hand, it is well known that satis�ability of conjunctions ofaddition and multiplication of integers out of a �nite domain is very costly (NP-complete). Theusual way to deal with this problem is to base the implementation of more complex constraintson incomplete algorithms. They are not fully characterized by their declarative semantics and theprogrammer must know their operational semantics. We call such constraints virtual constraintsand they are implemented as programs whose operational semantics is sound but incomplete withrespect to the declarative semantics of the corresponding logic constraint.As an example of a virtual constraint we consider x �0 y with the declarative speci�cation x � y ,which is relatively simple to implement (by a complete algorithm). Along this example we explainthe language and sketch our proof techniques. Program 2.1 is an implementation of x �0 y .Due to the speci�cation of x �0 y the computation space should be failed for x �0 y ^ x _2f4; 5g^y _2f1; 2; 3g due to the unsatis�ability of its declarative reading. For x �0 y ^ x _2f2; 3; 4g ^y _2f1; 2; 3g , the computation space must not be failed because of the satis�ability of the con-junction's declarative reading.We now want to get an idea what Program 2.1 is doing. In the procedure �0, two variablesare declared, which are bound to the current minimum of the domain of X and maximum ofthe domain of Y , respectively. greater; gec; less; lec denote constraints, which are elaborated iftheir second argument is constrained to an integer (observe that they denote unary constraints {one for each integer); we have chosen the syntax for procedure application only for convenience.fgec X V g denotes the constraint X _2fV; : : :; Supg , fgreater X V g denotes X _2fV+1; : : : ; Supgand flec X Vg denotes X _2fInf; : : : ; V g etc. Thus, the lower bound of the domain of X becomesthe (new) lower bound of Y (the upper bound of Y becomes the (new) upper bound of X).The intuition behind the procedures propLow and propUp is to watch the lower bound of X andthe upper bound of Y , respectively. E.g. the conditional in the procedure propLow waits untilthe lower bound of X is raised, i.e., is greater than the previously computed bound. If this isthe case, a new local variable U is declared and bound to the current minimum of X 's domain.fgec Y Ug will raise also the lower bound of Y . Then, the procedure is called recursively withthe new lower bound for X . In case X _2fV + 1; : : : ; Supg is disentailed, the procedure reduces

Oz-Program 2.1 X �0 Yproc {=<' X Y}local XMin YMax in{min X XMin} {max Y YMax}{gec Y XMin} {lec X YMax}{propLow X Y XMin}{propUp X Y YMax}endendproc {propLow X Y XMin}if {greater X XMin}then local U in{min X U}{gec Y U}{propLow X Y U}endelse truefiendproc {propUp X Y YMax}if {less Y YMax}then local U in{max Y U}{lec X U}{propUp X Y U}endelse truefiend

to true . Similar in procedure propUp the upper bound of Y is observed.As a concrete example considerf�0 X Y g fgec X 1g flec X 5g fgec Y 2g flec Y 4g:Elaboration of this expression will result in a blackboard such that the basic constraints are equiv-alent to X _2f1; : : : ; 4g^Y _2f2; : : : ; 4g . Elaboration of an additional constraint X _2f3; 4g leads toentailment of the conditional's clause de�ned in the procedure propLow such that Y _2f3; : : : ; Supgwill be elaborated leading to Y _2f3; 4g .2.4 Sketch of Proof TechniquesThe key idea of our veri�cation technique is to translate the computation state
 consisting ofthe blackboard, actors and the not yet elaborated expressions into a �rst-order formula. As saidin the previous section, the computation calculus consists of a set of reduction rules modulo astructural congruence (e.g. logical equivalence for constraints or �-renaming). We say that atransformation of computation states by congruence or reduction rules is an equivalence trans-formation if the corresponding �rst order formulas are equivalent with respect to a �xed model.We can prove that in the context of the considered virtual constraints the congruence and re-duction rules are equivalence transformations with respect to an intended model (e.g. the virtualconstraint x �0 y should have the semantics x � y). Note that the reduction rules are notequivalence preserving in general because of the re
ective operators min and max 2 and possiblenon-deterministic conditionals. The reason for using an intended model is that virtual constraintsshould have a concise declarative semantics and dealing with re
ective operators becomes easi-er. We prove that the considered program obeys the declarative speci�cation (correctness), theprogram terminates, and the computation space fails if the corresponding �rst order formula isunsatis�able (completeness).We �rst de�ne a persistent extension B of A (cf. Section 2.1), extended by the relations used forthe virtual constraint (e.g. fmin X Y g gets the semantics Y �A X and fpropLow X Y Zg thesemantics X �A Y ^Z �A X). To prove the correctness we show that every reduction rule is anequivalence transformation with respect to the intended model B , if the computation is startedin a state not containing min =max-operators outside of abstractions. To this aim we translatea computation state
 into a �rst-order formula. A mapping [[]] from computation states toformulas is de�ned such that[[proc fp x1 : : : xng � end]] := 8x1 : : : xn(p(x1 : : :xn)$ [[�]])[[fp x1 : : : xng]] := p(x1 : : : xn)[[if x1 : : : xn in � then � else � fi]] := 9x1 : : : xn(� ^ [[�]]) _ (:9x1 : : : xn�) ^ [[�]]for procedure de�nitions, procedure calls and deterministic conditionals. We �rst prove that forthe congruence � it holds that
 �
 0) [[
]] j=jB [[
 0]] .We then show that procedure application (also called unfolding) is an equivalence transformation.Next we prove that the used re
ective rules are equivalence transformations in the context of theconsidered virtual constraint. Since it is obvious that the other reduction rules are equivalencepreserving, it follows that
 !
 0) [[
]] j=jB [[
 0]] for all reduction steps with respect to theconsidered virtual constraint �0 . This proves the correctness. Graphically, this can be stated asshown in Figure 1.2 fmin X Y g results in Y := 5 if the current blackboard entails X _2f5; 6; 7g and results in Y := 6 if theblackboard entails X _2f6; 7g later on.

 0[[
]] [[
 0]]? ?-j=jBFigure 1: Principle of correctness proofMoreover, one can prove that the considered virtual constraint terminates (essentially by the�niteness of the domains and the right operational behavior of the re
ective operators).We call a program complete if in case the computation space is not failed during reduction, thecorresponding �rst order formula of the initial state is satis�able in the model B . In this sensethe program can be shown to be complete.In extension we are able to show that the results remain correct if we use certain non-deterministicconditionals (for all clauses must hold essentially that the consistency of two guards implies theequivalence of the respective bodies). Moreover, we can prove for the considered programs thatif the input becomes determined, there is no suspending computation left for these programs (akind of liveness criterion). Due to lack of space this is not subject of this paper.3 The CalculusIn this section we introduce a calculus providing for an operational semantics of the concurrentconstraint language considered in this paper. This language is a subset of the language Ozdeveloped at the DFKI. Ignoring the order of reduction steps leads to dropping the di�erencebetween expressions (static) and actors (dynamic) as described in Section 2.2.3 Because of there
ecting operators, we need to represent the blackboard explicitly on which constraints andabstractions are written.3.1 The Constraint System FD~x; ~y; : : : denote �nite, possibly empty sequences of variables. We write ? and > for the truth-constant \false" and \true", respectively. Conjunction is assumed to be associative and commu-tative with > as identity.In the previous section we have assumed domains to be a subset of the �nite set fInf ; : : : ; Supg(since this is what is usually implemented for �nite domain reasoning). Here we consider a moregeneral approach. Let S denote a set of set-expressions E closed under \ , i.e., E ::= D j E\E ,where \ is assumed to be associative, commutative and idempotent and D are primitive set-expressions. We assume an interpretation I to exist such that I : E ! 2Z , (E1 \E2)I =EI1 \EI2 , where Z is the set of integers. We consider only those set expressions E such that itis decidable whether EI = ; , an x is an element of EI , EI =Z, and whether EI1 � EI2 .3Observe that we do not assume the reduction-strategy to be fair. There is no order on the reduction stepsbeside the one imposed by conditionals. Since we prove the virtual constraint to terminate, fairness is not subjectof this paper. If we consider arbitrary expressions in the initial state, we have to consider notions of fairness.

x; y; z; u; v : variablep; q : de�ned predicate�; ::= ? j > j x :=y j x _2E j � ^ constraint� ::= p: ~y=� j �1 ^ �2 j > abstraction (~y linear)� ::= � j � j �1 ^ �2 blackboard� ::= p~y applicationif � else � fi conditionalmin(xy) minimummax(xy) maximum�1 ^ �2 composition> truth� ::= ! j �1 _ �2 j ? collection! ::= 9~x(� then �) clause�; �; � ::= � j � j 9x�j �1 ^ �2 expression
 ::= � 3 � j 9x
 stateFigure 2: Syntax for the calculusWe de�ne the following �rst-order language with equality. Every _2E; E 2 S; is a unary predicate.The equality symbol := is a binary predicate that is always interpreted as identity. There is nofunction-symbol, and there is no predicate symbol other than the ones above.The constraint system FD consists of the in�nite signature � = f _2EjE 2 Sg of unary predicatesymbols and the structure A over � de�ned as follows. The universe of A consists of the integersZ. x 2 _2AE i� x is an element of EI . For convenience we will write x _2E for _2E(x) (calledmembership-constraints).3.2 SyntaxThe abstract syntax of the calculus with respect to the underlying constraint system FD is shownin Figure 2. It is parameterized over an additional alphabet of distinct predicate symbols, calledde�ned predicate symbols. The translation from abstract syntax to the concrete one used inSection 2.2 should be obvious.A state consists of two parts. These parts are separated by the symbol 3 . The right part,called the expression-part, contains among others the constraints and abstractions, which are notmade `visible' so far (elaborated). The blackboard is the left part of a state and contains onlyconstraints and abstractions.We have two forms of quanti�cation: argumental quanti�cation p: ~y=� quanti�es the variables ~ywith scope �, and existential quanti�cation 9x� quanti�es x with scope � and analogously forstates. The free variables of an expression and of a state are de�ned accordingly.We assume that an expression contains for no de�ned predicate more than one abstraction andno abstraction is nested into another abstraction.3.3 Structural CongruenceThe congruence �A on expressions is a congruence satisfying the following axioms.

1. � � �0 if � and �0 are equal up to renaming of variables2. ^ is associative, commutative and satis�es � ^ > � �3. _ is associative, commutative and satis�es � _ ? � �4. (9x�) ^ � � 9x(� ^ �) if x does not occur free in �5. 9x9y� � 9y9x�6. 9x9y
 � 9y9x
7. x := y ^ � 3 � � x := y ^ �[y=x] 3 �[y=x] if y is free for x in � , and �8. � � if � j=jA .3.4 ReductionThe reduction relation ! of the calculus is the least relation on states satisfying the inferencerules
 !
 09x
 ! 9x
 0
1 �A
2
2 !
3
3 �A
4
1 !
4and the following axioms (called reduction rules).1. p : ~z=� ^ � 3 p~y ^ � ! p : ~z=�^ � 3 �[~y=~z]^ � if ~y and ~z are disjoint, of equal lengthand ~y free for ~z in � (unfolding)2. � 3 if 9~x(then �) _ � else � fi ^ � ! � 3 if � else � fi ^ � if � �A � ^ � and� j=A :9~x 3. � 3 if 9~x(then �) _ � else � fi ^ � ! � 3 9~x(^ �) ^ � if � �A � ^ � and� j=A 9~x 4. � 3 if ? else � fi^ � ! � 3 � ^ �5. � 3 9x� ! 9x(� 3 �) if x 62 V(�)6. � 3 � ^ � ! � ^ � 3 � if � 6�A >7. � 3 � ^ � ! � ^ � 3 � if � 6j=jA > and � ^ � consistent; if � ^ � is inconsistent, thecomputation space is failed8. � 3 min(xy)^ � ! � 3 y := m ^ � where � �A � ^ � and m = max(n j � j=A x � n)9. � 3 max(xy)^ � ! � 3 y := m^ � where � �A �^ � and m = min(n j � j=A x � n) .Rules 6 and 7 elaborate abstractions and constraints. Rules 8 and 9 are re
ecting the currentblackboard. If the blackboard contains more information, the result of applying these rules maychange. They make known current information about variables on the blackboard. Observe thatit is not allowed to reduce in the body of abstractions and conditionals and in the else-part ofconditionals. These positions are called protected positions. They provide us with control toprevent non-terminating computation.A �nal state is a state
 such that no more reduction is possible modulo the congruence, i.e.,8
 0
 �A
 0 : :9
 00
0 !
 00 .

The state for starting computation has an empty blackboard, i.e., > 3 � . For an example westart with the state> 3 9x9y(x _2f3; 5g ^ if x _2f3; 5; 6g then y _2f6; 9g else � fi) :> 3 9x9y(x _2f3; 5g ^ if x _2f3; 5; 6g then y _2f6; 9g else � fi)! 9x9y(> 3 x _2f3; 5g ^ if x _2f3; 5; 6g then y _2f6; 9g else � fi)! 9x9y(x _2f3; 5g ^ > 3 if x _2f3; 5; 6g then y _2f6; 9g else � fi)�A 9x9y(x _2f3; 5g3 if x _2f3; 5; 6g then y _2f6; 9g else � fi)�A 9x9y(x _2f3; 5g3 if x _2f3; 5; 6g then y _2f6; 9g else � fi ^ >)! 9x9y(x _2f3; 5g3 y _2f6; 9g ^ >)! 9x9y(y _2f6; 9g ^ x _2f3; 5g3 >)4 Veri�cation of the Virtual ConstraintIn this section we show the proof techniques and prove correctness, termination and completenessof the considered virtual constraint x �0 y . Due to space restrictions we only sketch the proofs.The details can be read in a forthcoming report. Observe that we �rst consider only deterministicconditionals; in Section 4.4 we also consider non-deterministic conditionals.4.1 CorrectnessIn this section we prove the correctness of Program 2.1 with respect to an intended model. Everystate without non-deterministic conditionals is translated into a �rst-order formula by the mapping[[]] de�ned as follows. Composition and 3 translate to conjunction, quanti�cation to existentialquanti�cation, application, abstraction and deterministic conditional as follows:[[p : ~x=�]] := 8~x(p(~x)$ [[�]])[[p~x]] := p(~x)[[if 9~x(� then �) else � fi]] := 9~x(� ^ [[�]]) _ (:9~x�) ^ [[�]]:We say that a transformation of computation states by congruence or reduction rules is an equiv-alence transformation if the corresponding �rst order formulas are equivalent with respect to agiven model.Next we de�ne a persistent extension of the structure A , also called A , with signature � =f _2E;�;�; <;>; 0;�1; 1;�2; 2; : : :g and the universe being the integers. �A etc. are the relationson the integers as usual.We now de�ne a persistent extension B of A : the intended model. The declarative semantics ofthe predicates and actors are shown in Table 1. Observe that we have x _2fv; v+ 1; : : :g j=jA x �v j=jA v � x and analogously for x _2f: : : ; v � 1; vg , i.e., these are unary constraints of FD .The following proposition states that congruence transformations are equivalence preserving in allpersistent extensions of A .Proposition 4.1 Let C be a persistent extension of A . Then,
 �A
 0) [[
]] j=jC [[
 0]] holds.

extension semantics(xv) 2 minB v �A x(xv) 2 maxB x �A v(xyv) 2 propLowB x �A y ^ v �A x(xyv) 2 propUpB x �A y ^ y �A v(xv) 2 greaterB x >A v(xv) 2 gecB x �A v(xv) 2 lessB x <A v(xv) 2 lecB x �A v(xy) 2 �0B x �A yTable 1: Persistent Extension BProof: Obvious.2The following lemma states that the chosen semantics is indeed a correct one: the �rst-order for-mulas resulting from the bodies of the abstractions are logically equivalent to the chosen semantics.Therefore, unfolding is an equivalence transformation.Lemma 4.2 If
 !
 0 by rule 1 (unfolding), then [[
]] j=jB [[
 0]] holds, if computation starts ina state containing the procedure de�nitions of Program 2.1, a �nite set of membership-constraintsand an application of the procedure �0 .Proof: We prove the claim for propLow; an analogous argumentation holds for propUp. Foran application of rule 1 we consider the reduction
 !
 0 where
 = propLow : ~x=� ^� 3 propLowxyx ^ � and
 0 = propLow : ~x=� ^ � 3 �[xyx=~x] ^ � . Translating
 we ob-tain [[
]] = [[propLow : ~x=�]]^ [[�]]^ x � y ^ x � x ^ [[�]]and by translating
 0 we obtain[[
 0]] = [[propLow : ~x=�]]^ [[�]]^ [[if x > x then : : : else >fi]]^ [[�]]:For the proof we use the translation of the conditional into the disjunctionx > x ^ 9u(u � x ^ u � y ^ x � y) _ x � x: (1)Assume the if-case, i.e., x > x . Then,(1) j=jB x > x ^ 9u(u � x ^ u � y ^ x � y) j=jB x > x ^ x � y:This proves the equivalence of [[
]] and [[
 0]] because of the assumption. Assume the else-case,i.e., x � x . The disjunction is equivalent to x � x:Now we have to consider also � and � of
 0 . Because of the use of local quanti�cation in thevirtual constraint, x can only be computed in the body of �0 or in the body of the conditional ofpropLow . In the �rst case, the constraint x � x ^ y � x was imposed (up to renaming). Thus,

[[
0]] j=B x := x^ x � y . An analogous argumentation holds in the second case. This is proves theequivalence of [[
]] and [[
 0]] because of the assumption and, thus, the claim for propLow.For procedure �0 we provex � y j=jB x � y ^ 9xy(x � x ^ x � y ^ x � y ^ y � y)j=jB 9xy(x � y ^ x � x ^ x � y ^ x � y ^ y � y)j=jB [[9x y : : :propUp xyy]]:This proves the lemma. 2Next we have to prove that reduction rules 8 and 9 are equivalence transformations in thecontext of Program 2.1. That e.g. rule 8 is not equivalence preserving in general becomes clearby considering the following example: x � 5 y � 3 3 min(xu) reduces to x � 5 y � 3 3 u = 5but their translations x � 5 ^ y � 3 ^ u � x and x � 5 ^ y � 3 ^ u := 5 are not equivalent.Lemma 4.3 If
 !
 0 by reduction rules 8 or 9 , then [[
]] j=jB [[
0]] holds, if computationstarts in a state containing the procedure de�nitions of Program 2.1, a �nite set of membership-constraints and an application of the procedure �0 .Proof: The state before and after application of rule 8 (9) is translated into a �rst order formula.We consider the case where rule 8 is applied in the reduction
 !
 0 . Assume that the constrainton the blackboard is contained in � with � j=B x � n; n = max(m j � j=B x � m) . Observethat at most one application of propLow occurs in a state. Furthermore, we need not to considerthe case, where propLow is unfolded to its body, because we have proved in Lemma 4.2 thatunfolding is an equivalence transformation (and we now consider formulas only). The equivalencebetween the two formulas [[
]F and [
 0]] can be shown as follows (� contains further expressionsof the translated state). 9~x(�^ � ^ 9u([[min(xu)]]^ y � u ^ [[propLow xyu]]))j=jB 9~x(� ^ � ^ 9u(u � x ^ y � u ^ x � y ^ u � x))j=jB 9~x(� ^ � ^ 9u(u � x ^ y � u) ^ x � y)j=jB 9~x(� ^ � ^ x � y)j=jB 9~x(� ^ � ^ x � y ^ n � x) since � j=B x � nj=jB 9~x(� ^ � ^ x � y ^ n � x ^ n � y)j=jB 9~x(� ^ � ^ 9u(u := n ^ y � u ^ x � y ^ u � x))j=jB 9~x(� ^ � ^ 9u(u := n ^ y � u ^ [[propLow xyu]]))An analogous argumentation4 holds for rule 9 in propUp and 8 / 9 in procedure �0 . 2Since it is obvious that the other reduction rules are equivalence preserving, Theorem 4.4 follows.Theorem 4.4
 !
 0) [[
]] j=jB [[
0]] for all reduction steps of Section 3.4, if computationstarts in a state containing the procedure de�nitions of Program 2.1, a �nite set of membership-constraints and an application of the procedure �0 .4.2 TerminationTermination means that no more reduction rule is applicable. Observe that in case of an in�nitenumber of reduction steps, there must be an in�nite number of unfolding steps. Since only theprocedures propLow and propUp contain recursive calls we only have to analyze these.4The careful reader may wonder why the semantics of min(xu) is chosen as u � x . In the considered examplethere are also other semantics possible. But this does not hold for virtual constraints like x + y = z where thesemantics of min is exploited to prove the equivalence of formulas (for more details see the forthcoming report).

Theorem 4.5 Program 2.1 terminates if computation starts in a state containing the procedurede�nitions of Program 2.1, a �nite set of membership-constraints and an application of the proce-dure �0 .Proof: The proof uses a lexicographic ordering based on the number of not yet unfolded applica-tions of propLow=propUp contained in the computation state, the number of variables withoutlower or upper bounds, and an integer re
ecting the current minimum and maximum of variables'domains. The �rst number is decremented if a conditional reduces to an else-case. The othernumbers are lowered if a conditional reduces to an if-case. 24.3 CompletenessLet � be a �nite set of membership-constraints, � the abstractions of a virtual constraint p withthe declarative speci�cation , i.e., [[p~x]] = , and p~x an application of the virtual constraint.Let > 3 p~x ^ � ^ � be the starting state. A virtual constraint � is called complete if in casethe computation space is not failed by reductions inititated in the starting state, then ^ � issatis�able. If the computation space is not failed, we can explicitly construct a valuation satisfying ^� . Since we have shown the reductions to be equivalence transformations, the domains on the�nal blackboard are the largest possible ones serving as a basis for solutions.Theorem 4.6 Program 2.1 can be used to decide satis�ability of a constraint x � y and a �niteset of membership-constraints.Proof: One can prove that for a �nal state
 = 9~x(� ^ � 3 �)8x(�! x � x)! (�! x � y) and 8y(�! y � y)! (�! x � y)are valid. Assume for the �nal constraint-partn = max(kj� j=B x � k) and m = max(kj� j=B y � k):A valuation for x � y can be obtained by chosing xv = n; yv = m . Now we consider the case thatx has no lower bound in � . We choose for xv the value min(min(njn � z 2 �);min(n � 1jz 6=n 2 �)) . If y has a lower bound yv , xv �B yv holds. If y has also no lower bound, take xv foryv .5 24.4 Non-deterministic ConditionalsFinally, we consider non-deterministic conditionals. Since by �rst-order formulas one cannotexpress non-determinism, it is not possible in general to give a translation for conditionals into�rst-order formulas. But if two guards are consistent, i.e., their conjunction is satis�able, and themeaning of their body in conjunction with the respective guard are equivalent, it does not matterwhich of the possible clauses of the conditional is chosen. This can be formalized by the followingtheorem.Theorem 4.7 Let C be an arbitrary structure. If for a conditional5Observe that this argumentation can be generalized to the case of more than one virtual constraint �0 .

if ~x1 in 1 then �1[] ~x2 in 2 then �2...[] ~xn in n then �nelse �n+1fiholds that C j= 9~xi i ^ 9~xj j ! (9~xi(i ^ [[�i]])$ 9~xj(j ^ [[�j]]))for all i; j , then the conditional has the declarative semantics9~x1(1 ^ [[�1]]) _ : : : _ 9~xn(n ^ [[�n]]) _ (:9~x1 1) ^ : : :^ (:9~xn n) ^ [[�n+1]]and the reduction rules 2 and 3 are equivalence transformations.It can be shown that the virtual constraint �0 can be implemented using one non-deterministicconditional. This program has the property that a �nal state contains no suspending conditionalif the inital state entails that one of input variables of the constraint is determined.5 OutlookIn this paper we have proved the correctness, termination and completeness of an algorithm inthe area of �nite domain reasoning. The proofs rely on the translation of computation states of aconcurrent constraint language into �rst-order formulas. To this aim we de�ne a model by givingthe procedures occurring in the de�nition of the virtual constraint �0 a declarative semantics(and also the re
ecting operators). We then have proved that for a reduction of computationstates
 !
 0 the obtained �rst order formulas of
 and
 0 are equivalent with respect to thismodel.The described approach succeeds in verifying the program under consideration. Nevertheless,the treatment of additional expressions in the initial state and parts of the proofs show thatthere are two tracks of veri�cation. One track exploits the �rst-order semantics for correctnessand completeness (shown in this paper). The other track exploits the operational semantics forstatements in the context of computation. We aim to bring together these two tracks. We have todesign a logic of operational behavior of expressions in Oz. Properties like correctness, terminationand completeness must be expressible in this logic. The logic must account computational contextsof Oz expressions, which can be seen as the counterpart of invariants in the setting of concurrentreduction systems. Modal logic seems to be a natural candidate for such a logic (see for example[MP92]). For the future, we want to design a calculus for this logic allowing to prove in a formalsystem operational properties of Oz expressions.Acknowledgement: I would like to thank Ralf Treinen and Gert Smolka for valuable discussions.The research reported in this paper has been supported by the Bundesminister f�ur Forschung undTechnologie (FTZ-ITW-9105).References[dBGMP94] F.S. de Boer, M. Gabbrielli, E. Marchori, and C. Palamidessi. Proving concurrentconstraint programs correct. In Proceedings of the ACM Symposium on Prin-ciples of Programming Languages, 1994.

[DC93] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD). In Pro-ceedings of the International Conference on Logic Programming, pages774{790, Budapest, Hungary, 1993. MIT Press.[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.The constraint logic programming language CHIP. In Proceedings of the Inter-national Conference on Fifth Generation Computer Systems FGCS-88,pages 693{702, Tokyo, Japan, December 1988.[HMM+94] M. Henz, M. Mehl, M. M�uller, T. M�uller, J. Niehren, R. Scheidhauer, C. Schulte,G. Smolka, R. Treinen, and J. W�urtz. The Oz Handbook. Research Report RR-94-09, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzenhausweg3, D-66123 Saarbr�ucken, Germany, 1994. Available through anonymous ftp fromduck.dfki.uni-sb.de.[HSW93] M. Henz, G. Smolka, and J. W�urtz. Oz - A programming language for multi-agentsystems. In Proceedings of the 13th International Joint Conference onArti�cial Intelligence, pages 404{409, Chamb�ery, France, August 1993. MorganKaufmann.[Mac77] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,8:99{118, 1977.[Mil91] R. Milner. The polyadic �-calculus: A tutorial. ECS-LFCS Report Series 91-180,Laboratory for Foundations of Computer Science, University of Edinburgh, Edin-burgh EH9 3JZ, October 1991.[MP92] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrentsystems. Springer Verlag, 1992.[SHW93] G. Smolka, M. Henz, and J. W�urtz. Object-oriented concurrent constraint program-ming in Oz. Research Report RR-93-16, DFKI, Stuhlsatzenhausweg 3, D-66123 Saar-br�ucken, Germany, April 1993. Will appear in: P. van Hentenryck and V. Saraswat(eds.), Principles and Practice of Constraint Programming, The MIT Press, Cam-bridge, Mass.[Smo94] G. Smolka. A calculus for higher-order concurrent constraint programming with deepguards. Research Report RR-94-03, Deutsches Forschungszentrum f�ur K�unstlicheIntelligenz, Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, February 1994.[SR90] V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proceed-ings of the 7th Annual ACM Symposium on Principles of ProgrammingLanguages, pages 232{245, San Francisco, CA, January 1990.[SSW94] C. Schulte, G. Smolka, and J. W�urtz. Encapsulated search and constraint program-ming in Oz. In Second Workshop on Principles and Practice of ConstraintProgramming, pages 116{129, Orcas Island, Washington, USA, 2-4 May 1994.[VDT92] P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency algorithmand its specializations. Arti�cial Intelligence, 57:291{321, 1992.[VSD93] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and evalua-tion of the constraint language cc(FD). Report CS-93-02, Brown University, January1993.

