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The goal of the project is developing Alice into an application-strength programming system.

Alice makes available functionality of the Mozart Programming System (futures, constraints,

concurrency, distribution, persistence) in simplified and improved form. The most significant

enhancement is the integration of that functionality into a statically typed context. This pro-

vides for the automatic verification of the consistent use of interfaces and abstractions during

program development. Such consistency checks reduce the cost of developing and extending

software. Alice has been designed as an extension of the functional programming language

Standard ML.

The current phase of the project has a largely practical orientation. The previous phase has

layed the necessary foundations for the design and implementation of Alice and delivered a

prototype. The main goal of the current phase is developing an application-strength imple-
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mentation of the system. A first version has been released in December 2002. During the

course of development, the language design has been refined and aspects of dynamic typing

and concurrency have been investigated theoretically. A novel virtual machine architecture

has been developed. The constraint functionality has been completely redesigned into a more

principled and more efficient library framework.

2.2 State of the Art at the Beginning of the Funding Period and
Original Research Issues

The starting point for NEP was the concurrent programming model OPM (Smolka, 1995b,

1995a) and its practical implementation in form of the programming language Oz and the

programming system Mozart (Mozart Consortium, 2003). OPM combines a concurrent mo-

del of computation with high-level linguistic primitives for the construction of inference com-

ponents using the constraint programming paradigm (Schulte, 2002; Van Hentenryck, Saras-

wat, et al., 1997). Since 1996, the SFB contributes significantly to the development of Oz

and Mozart. Constraint techniques are particularly suited for the syntactical and semantical

processing of natural language, which makes them interesting for the projects CHORUS (MI

4) and NEGRA (EM 6). A second aim of Mozart is providing high-level linguistic support for

persistence and distributed programming in the context of the Internet. Here, programming-

in-the-large techniques play an important role. This side of Mozart is interesting for OMEGA

(MI 4). As partners within the Mozart Consortium, two other research groups (Louvain and

SICS) participate in the development of Mozart.

Alice is an attempt to provide Mozart’s strengths on top of a statically typed functional lan-

guage. As its basis we chose Standard ML (SML), for its prominent position in programming

language research and teaching. It is a functional language with an expressive type and mo-

dule system. Since significant parts of the Mozart functionality have never been incorporated

into a typeful framework, Alice raised a number of interesting research issues.

By the end of the previous period a preliminary design and a prototype of Alice had been de-

veloped that already provided some essential elements of Mozart’s functionality. The focus of

the current period is to complete the design of Alice and turn it into a practical implementation

that can be used by other projects in the SFB. The proposal identified two main questions:

1. How can constraint programming and Internet programming be modelled elegantly in a

typed context? Which additional typing concepts are necessary?
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2. How can the implementation of a programming system for Alice be decomposed into

simple, generic, reusable and efficient components? What are the prinicple concepts for

a platform-independent virtual machine?

These primary questions have been decomposed into six working packages, which will be

addressed in Section 2.4.

2.3 Methods Applied

Investigation of programming language semantics for the Alice design relies on programming

language theory, in particular type theory and operational semantics. Constraint technology is

based on computational logic, operations research, artificial intelligence and algorithms. The

implementation of Alice requires methods from software engineering, compiler construction,

and operating systems.

2.4 Results and their Implications

The main goals formulated in the NEP project proposal have been achieved.

Type-safe open programming. Importing dynamic objects at runtime requires a form of dy-

namic typing to verify their validity. Dynamic typing has been incorporated into the statically

typed context of Alice by providing a special type of values carrying modules with dynamic

type information. These so-called packages generalise previous approaches known from lite-

rature in a flexible and convenient way. Alice is the first statically typed programming system

that provides a comparable feature.

Complementing a static type system with forms of dynamic typing requires special care: it

should not compromise safety and abstraction guarantees provided by the static type system.

We have developed a new formalisation of type abstraction (encapsulation based on types)

that is fully compatible with dynamic typing and forms the semantic basis for modules in

Alice.

Apart from the type system, the concurrent semantics of Alice have been reformulated as

a lambda calculus with futures. The practical suitability of the Alice language design has

been verified in several case studies. Moreover, most parts of the Alice system have been

implemented within the language itself.
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Implementation. Two implementations of Alice have been developed: the current release

version is based on the Mozart system and targets interoperability with existing Oz software. A

second, improved implementation addresses the issues identified in the proposal. It is based on

a new modular virtual machine architecture called SEAM (simple efficient abstract machine)

that provides a clearly defined set of services, including memory management, task manage-

ment, and portable object input/output. All services are defined in a platform-independent and

language-independent manner. Different high-level languages can be implemented on top of

them (e.g. Alice, Java). Using just-in-time native code compilation, Alice on SEAM performs

up to 4 times faster than Alice on Mozart.

Constraint programming has been decoupled completely from the language and virtual ma-

chine. A newly designed, generic constraint programming library called GECODE (generic

constraint development environment) provides an efficient constraint framework with support

for arbitrary kinds of constraint variables (e.g. finite integers, finite integer sets). Preliminary

numbers show a more than one order of magnitude performance increase for certain constraint

problems, compared to Mozart. From Alice, GECODE is accessible as a library provided for

SEAM.

Release. The Alice System was first released for public use in December 2002. Since then

there have been frequent updates. The CHORUS project already started migrating from Oz

to Alice. The current Alice release includes a comprehensive set of libraries and tools, but is

still based on the Mozart implementation. An application-strength system based on SEAM and

GECODE will be publicly available by the end of the funding period.

The following sections describe the results in more detail, in accordance to the six work packa-

ges identified in the project proposal.

2.4.1 WP1: Language, Typing, Case Studies

Alice has been conceived as a conservative extension of SML. The main extensions inherited

from Oz are high-level language support for concurrency, constraints, persistence, distributi-

on, and dynamic modules. The Alice ML language and its extensions with respect to SML

are described in detail in the Alice manual (Alice Team, 2004). As a test-bed for prelimina-

ry language design studies we developed a small reference implementation of Standard ML,

which has been released separately (Rossberg, 2002). That phase uncovered some minor in-

consistencies in the formal language specification of SML (Rossberg, 2001).
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Futures. Concurrency and laziness in Alice are uniformingly based on futures, a refinement

of logic variables. Futures are place holders for values not yet computed and allow for im-

plicit dataflow synchronisation. They enable expressing a variety of high-level concurrency

constructs, including channels, ports, and semaphores (Smolka, 1998, 1999). Furthermore,

failed futures provide for clean interaction of futures and concurrency with exceptions. We

have formalised the semantics of futures and their interaction with mutable state in an exten-

sion of the lambda calculus. We have proved safety of this calculus on basis of a linear type

system (Niehren, Schwinghammer, & Smolka, 2003; Schwinghammer, 2002).

Constraints. The constraint system underwent a complete redesign. It has been decoupled

from the language proper and moved to a library (see Section 2.4.5). Typing of constraints

turned out to be mostly straightforward. The type system distinguishes strictly between cons-

traint variables and integer values, hence avoiding a common pitfall in Oz programs. Feature

constraints have been omitted from Alice, since they are not needed for most applications.

Dynamic Typing. The conventional programming model offered by SML requires that a

program is produced from a closed set of components. In contrast, one of the central features

of Alice is its open programming model. An Alice process can import objects computed by

other processes. These objects can contain program fragments in the form of procedures. To

ensure that such objects are compatible with the type assumptions made by the importing

process, dynamic type checks are necessary.

Alice incorporates dynamic typing through packages. Packages are values encapsulating a

possibly higher-order module and a dynamic representation of its signature. Packages are

hence a generalisation of the concept of dynamics (Abadi, Cardelli, Pierce, & Rémy, 1995),

which can carry only simple values. They also represent a dynamically typed variant of reified

modules (modules as 1st-class values, Dreyer, Crary, & Harper, 2003). A package is created

by simple injection of a corresponding module/signature pair. The inverse projection dynami-

cally checks the package’s signature against an expected signature, using the subtype relation

as specified by the SML module typing rules. Unlike dynamics, packages hence require no

complex dynamic type analysis construct in the language, while still being sufficiently fle-

xible. Although package projection is the only operation performing a dynamic type check,

packages are expressive enough to type the Alice library interfaces for type-safe input/output,

inter-process communication, and the component management system.

Another advantage of packages over dynamics is that only module-level computations are

type-directed. Core language polymorphism remains fully parametric (Reynolds, 1983). Para-
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metricity provides a strong basis for reasoning about typed programs (Wadler, 1989) and ena-

bles an efficient type-erasing compilation scheme for polymorphic expressions (Pierce, 2002).

However, the loss of parametricity for modules has an impact on the theoretical interpretati-

on of type abstraction. Type abstraction is a key concept for modular software construction:

it provides encapsulation by hiding the implementation of user-defined types and allowing

access only through a set of well-defined interface operations. The standard existential type

model for type abstraction (Mitchell & Plotkin, 1988) crucially relies on parametricity. To de-

fine the semantics of packages, a new formalisation of type abstraction was hence necessary

that models type abstraction by dynamic type generation and explicit coercions between an

abstract type and its representation (Rossberg, 2003).

Components. A component is the unit of compilation and deployment. It usually depends

on a number of imports – other components residing at arbitrary locations in the Internet.

Components are loaded on demand by the runtime system (see Section 2.4.4). Files containing

pickles arise as a special case of components that do not have any imports and are in value

form. Unlike Oz, Alice hence makes pickles and components freely interchangable.

Components carry interface information in the form of a (higher-order) ML signature. When a

component is loaded, its signature is matched against the respective import signatures. Com-

ponents are hence very close to the concept of packages. The investigation of the precise

relation is currently under research and a formal model of components based on packages

will be developed in the remaining time of the period.

Type Classes and Overloading. Overloading can be formalised by an instantiation of the

generic HM(X) type inference framework (Sulzmann, Odersky, & Wehr, 1999) with cons-

traint handling rules (CHRs), a declarative language for describing incremental constraint

solvers (Frühwirth, 1995). Under some sufficient conditions, CHRs can precisely describe the

relationship between overloaded identifiers and achieve decidable type inference (Stuckey &

Sulzmann, 2002). We provide a general coherence result under such conditions. The cohe-

rence property is lost in the case of a strict language, but can be recovered by imposing a

condition similar to the value-restriction found in ML (Sulzmann & Rossberg, 2002). Fur-

thermore, we developed an encoding of most of Haskell’s type class mechanism (Wadler &

Blott, 1989; Peyton Jones, Jones, & Meijer, 1997) into a simple language based on the generic

CHR-based overloading mechanism (Rossberg & Sulzmann, 2002).

Case studies. The design of Alice and its implementation has been evaluated with several

case studies:
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• Distributed search engine: We have implemented a framework for distributing the com-

putation of a search problem over an arbitrary number of worker sites (Schulte, 2002).

The study asserted that the distribution interface based on packages is practical. It also re-

vealed that the language could profit from the addition of statically typed reified modules,

as a complement to the dynamically typed packages.

• Distributed multi-user game: A multi-user version of the Snake game makes heavy use of

inter-process communication and graphics. It showed that the HTTP-based distribution

protocol in Alice was too heavy-weight and had to be replaced by a binary one. The

abstractions utitilized in the implementation made this easy.

• Alice server pages: This application allows Alice to be used as a web scripting language

by embedding it into HTML pages, e.g. for implementing web forms. It relies on a pre-

liminary runtime interface to the Alice compiler for executing the embedded code. That

interface will be available in future versions of Alice.

Apart from that, the compiler (Section 2.4.2) and most of the runtime system (Section 2.4.4)

and tools (Section 2.4.6) have also been implemented in Alice.

2.4.2 WP2: Compiler

The Alice compiler has been written in Alice and is able to bootstrap. A runtime interface that

provides dynamic access to compilation is currently under development.

Internal Type Checking. Most compiler stages use a typed intermediate representation of

the program. We have developed an internal type checker for the typed representation and

integrated it into the compiler. It proved to be helpful with discovering and avoiding bugs

during subsequent extensions to the compiler.

Dynamic Types. The compiler uses a standard type-erasing approach to compilation (Pierce,

2002). In order to implement the type-dependent semantics of Alice, dynamic types have to be

represented via reification into terms. The type representation is abstracted as part of the runti-

me library (see Section 2.4.4). The compiler performs the respective program transformation,

which particularly includes module types.

Interoperability. Particular care has been taken to design the compilation process to the

Mozart Virtual Machine in a way that allows interoperation between components written in

Alice and Oz (Kornstaedt, 2001).
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2.4.3 WP3: Virtual Machine

SEAM (simple extensible abstract machine) is a virtual machine intended for the efficient exe-

cution of Alice and other languages. SEAMis designed to be simple and language-independent,

and based on few principled services. SEAM does not know about Alice (runtime) types, nor

does it implement any constraint functionality. The constraint system is obtained from the

GECODE library (see Section 2.4.5).

Uniform data representation and memory management. All data structures used to repre-

sent computations, including code and threads, reside in an abstract store, which represents

an abstract graph of data nodes. Language specific data structures are modelled on top of the

language-independent store structures. The store manages allocation of nodes and their effi-

cient layout in memory. Unused memory is reclaimed using a generational garbage collector.

Platform independent external representation. Store values are converted to a portable

pickle representation during export (pickling), and converted back during import (unpickling).

Pickling and unpickling has been formalised as generation, respectively execution, of pro-

grams in a simple byte code language (Tack, 2003). A language-specific transfer language is

defined to describe values independent from platform. It also defines an abstract instruction set

to represent code. Unpickling operates with respect to a language-dependent transformation.

For example, abstract code can be instantiated either to byte code or to native code.

Generic computation model. Computations are defined by a generic interface, which is

instantiated by interpreters. This allows for different code interpreters to easily be used at

the same time and interact freely. The current implementation of SEAM uses one external

code representation (the one defined in the transfer language) together with three different

interpreters: a classical interpreter, a debug interpreter used for debugging Alice programs,

and a native code interpreter providing for native code execution.

We have a running implementation of SEAM which covers most of Alice. It will be ready for

release until the end of the project. The design goals have been met successfully:

Simplicity. In total, the size of the SEAM core components is around 25 percent the size of

the respective Mozart components (Brunklaus & Kornstaedt, 2003).

Genericity. SEAM is a suitable platform for programming language research. A prototype of

the Java Virtual Machine (Lindholm & Yellin, 1999) has been implemented using SEAM with

less than three person weeks effort (Brunklaus & Kornstaedt, 2002).
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Efficiency. Standard benchmarks from Scheidhauer (1998) show that Alice on SEAM is up

to 4 times faster than Oz on Mozart. SEAM’s pickling and unpickling performance is also

superior to Mozart on all benchmarks (Brunklaus & Kornstaedt, 2003).

2.4.4 WP4: Runtime System

The runtime system comprises the non-primitive portions of the virtual machine environment

and has been written in Alice itself. It consists of three main parts.

Runtime Type Library. Implements the runtime type representation and respective ope-

rations for reifying the type language into terms. It is also used by the component manager.

The current implementation is complete but performance can degrade for large signatures. A

thorough investigation of an efficient representation and its algorithms is an open problem.

Component Manager. Performs localisation, loading, type-checking and evaluation of im-

ported components. While implemented in Alice, it uses unsafe reflection at designated points.

Distribution System. The distribution model is vastly simplified in Alice, compared to Oz.

In particular, it abstains from supporting mobility for futures and state. This had the desired

effect of reducing the size of the implementation to 2% of Mozart’s distribution subsystem.

2.4.5 WP5: Libraries

The Alice system includes a comprehensive library, providing generic data structures, data-

base access, network programming functionality, and access to Alice-specific services like

concurrency, distribution, pickling and component management. Alice allows programming

of user interfaces and graphics through a wrapper for the wide-spread Gtk library. It has been

generated semi-automatically by a generic foreign function interface tool (Section 2.4.6).

GECODE. The GECODE (generic constraint development environment) library is a modular,

language-independent framework for constraint programming. It provides generic services

for propagation and search, and interfaces to plug in specific types of constraint variables

and propagators. Modules for finite integers and finite integer sets are included, others can be

added easily.

The functionality of GECODE subsumes most of Mozart. State-of-the-art techniques like prio-

ritized propagators, iterator-based variable interfaces, and batch recomputation (Choi, Henz,
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& Ng, 2001) result in an order of magnitude performance increase for certain problems. Fi-

nite integer constraints can use either domain- or bounds-consistent propagators, allowing

optimised modelling of constraint problems (Schulte & Stuckey, 2001).

GECODE is available in Alice as a set of library components for SEAM. Spaces and different

types of constraint variables are available as first-class values with abstract types. The standard

search engines (including the Explorer, see Section 2.4.6) are implemented in Alice itself.

2.4.6 WP6: Tools

The Alice System contains a rich set of tools.

Compiler and Static Linker. The compiler architecture allows multiple backends and

currently supports code generation for Mozart, SEAM, the Java Virtual Machine, and the Mi-

crosoft .NET Common Language Runtime.

Interactive Toplevel (“Interpreter”). Every individual input is treated as a component

source, compiled, and then loaded as a dynamic component. Only few modifications to the

compiler were necessary for supporting auto loading of import signatures. An Alice mode for

integrating the toplevel into Emacs is available.

Inspector and Explorer. The graphical tools for browsing of arbitrary data structures and

for browsing search trees as known from Mozart have been reimplemented using the Gtk

library. The difficulties in reimplementing the Inspector expected in the proposal due to the

lack of object-oriented programming features in Alice did not materialise. Unlike runtime

values in Oz however, values in an Alice process are not self-describing. The Alice Inspector

hence relies on the dynamic type information provided by the dynamic typing facilities for

displaying values.

FFI Generator. For SEAM, an FFI (foreign function interface) generation tool has been

developed. It allows semi-automatic generation of Alice components interfacing C libraries.

Debugger. The SEAM version of Alice will feature a source-level debugger. The debugger

makes essential use of SEAM’s generic architecture that allows multiple code interpreters.

Like the Inspector, it also relies on dynamic type information to print program values.

Lexer and Parser. Yacc-style lexer and parser generator pre-processors for Alice will be

part of the next major release.
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2.4.7 Cooperation within the Collaborative Research Center

The Alice system has reached a sufficient state of maturity to make it useful for other pro-

jects. CHORUS (MI 2) started migrating parts of its Oz based software to Alice in 2003 and

intends to continue on that path in the next funding period. Some new CHORUS applications

are already developed with SEAM and GECODE. CHORUS makes extensive use of finite set

constraints and hence pushes the integration of these into GECODE. The performance incre-

ase for constraint programs will make Alice on SEAM a similarly attractive target for other

projects computing large constraint problems.

2.5 Comparison with Research outside of the Collaborative Research
Center

Distribution and Dynamic Typing. Sewell has presented a system that models distribu-

ted components exchanging data of abstract type (Sewell, 2001). However, unlike ours, his

system is not dynamically abstraction-safe. Recent work refines the abstraction mechanism

by identifying abstract types by a hash over their implementation (Leifer, Peskine, Sewell,

& Wansbrough, 2003). While this provides a more flexible approach to abstract types, it still

sacrifices abstraction safety in the presence of state. Weirich and others have investigated ex-

tensions of intensional type analysis, of which the unpack construct for packages can be seen

as a variant, to higher-order (Weirich, 2002) and issues of compilation (Weirich, 2001; Crary,

Weirich, & Morrisett, 2002).

Modules and Sealing. (Dreyer et al., 2003) have developed a type system for modules that

unifies previous notions of static sealing (type abstraction). Followup work by Dreyer (2004)

addresses the problem of recursive modules. Neither addresses dynamic sealing. Sumii and

Pierce have developed an untyped calculus and proof techniques for dealing with dynamic

sealing (Sumii & Pierce, 2003, 2004).

Virtual Machines. The Virtual Virtual Machine (Folliot et al., 2002) provides a core ma-

chine that defines a simple intrinsic object and memory model extensible with environment

specifications called VMlets. Unlike SEAM, it also defines a RISC-like instruction set. The Mi-

crosoft Common Language Runtime supports different programming languages (Hamilton,

2003). Unlike SEAM, it defines an object-centered, typed intermediate language. Metadata

makes programs self-describing, allowing language-independent tools. VMGen (Ertl, Gregg,

Krall, & Paysan, 2002) is designed to automatically generate efficient bytecode interpeters
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from a given description. It incorporates many state-of-the-art interpretation techniques and

could be used to generate interpreters for SEAM.

2.6 Open Issues

Given the wide range of questions that arise in the context of a new programming language

and system, some of the more interesting questions that could not be addressed within the

NEP project are the following.

Type language. The Alice type language is a higher-order recursive lambda calculus with

ad-hoc rules to ensure termination. A more thorough formal treatment is needed.

First-class modules and type classes. Case studies revealed the need for having statically

typed first-class modules. They might also be a basis for integrating type classes seamlessly.

Distribution. The distribution model is not formalised. Pickling causes runtime exceptions

on any attempt to export a value containing local resources. It is not obvious how the type

system could be extended to prevent this sort of failure.

Optimisation of futures. The necessity to dynamically test for futures (touch, Flanagan &

Felleisen, 1999) everywhere imposes a significant performance overhead. Optimising these

tests based on data-flow analysis is an open problem.

Open VM specification. The component format is not documented. A format open for third

parties requires a typeful and verifiable specification of component consistency. The untyped

nature of the lower-level component format is currently incompatible with this.

Type representation. The runtime type representation is expensive and does not maintain

minimality, which is difficult due to the complex structure and equivalence rules of the type

language. A minimal representation based on Mauborgne (2000) and optimised algorithms

are desirable, but require a non-standard reformulation of the type language.

Dynamic recompilation and caching. Runtime compilation alone cannot eliminate the

overhead of lazy linking and futures. Dynamic recompilation is used as a solution for Java

(e.g. Arnold, Hind, & Ryder, 2002). Since runtime compilation can be costly, caching of

compiled components is also desirable (Serrano, Bordawekar, Midkiff, & Gupta, 2000). It

remains an open question how either technique can be applied to Alice.
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Memory management and concurrency for native bindings. The current support for na-

tive library bindings ensures mutual exclusion and assumes that a native call does return after

a short period of time. It is not clear how these restrictions could be lifted.
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