
Solving Boolean Equations
with BDDs and Clause Forms

Gert Smolka

2

Abstract

Methods for solving Boolean equations
BDDs [Bryant 1986]
Clause forms [Quine 1959]

Efficient data structure and algorithms for
large finite sets (e.g. 21000)

3

Applications

Verification (e.g. model checking)
CAD of HW (e.g. circuit minimization)
Knowledge representation (e.g. truth
maintainance)

4

Why do I talk about it?

Beautiful and important
Interesting trip from logic to algorithms
Equation solving not covered in textbook
accounts of propositional logic
Had to work it out for our introductory
course on Computational Logic

5

Modelling with Boolean Equations:
Graph Coloring

Is graph bipartite?

x≠y, x≠z, y≠z

¬(x↔y) = 1, …

Is graph 4-partite?

(x1,x2) ≠ (y1,y2), …

¬(x1↔x2) ∨ ¬(y1↔y2) = 1, …

x

zy

Colorings of the graph
are the solutions of the
equations

6

Modelling with Boolean Equations:
Secrets of a Long Live

¬B→F = 1
B∧F → ¬I = 1
I∨¬B → ¬F =1

1) If I don’t drink beer, I
always eat fish

2) If I have both beer and
fish, I don’t have ice
cream

3) If I have ice cream or
do not drink beer, I
don’t have fish

B=1
¬F∨¬I =1

solved form

7

Formalities

Bool = {0,1}
x,y,z ∈ Var
s ∈ State = Var→Bool
f,g ∈ BF = State→Bool

BF ≅ P(State) {s∈State | fs=1}

a,b,c ∈ Exp
Den ∈ Exp→BF

8

Boolean Operations

Booln → Bool

x∧y = min {x,y}
x∨y = max {x,y}
¬x = 1-x

x→y = if x ≤ y then 1 else 0
x↔y = if x=y then 1 else 0

9

Solving Equation Systems

Solutions of equation system can be described
by Boolean function

P(State) ≅ BF

ESys Exp

10

Solving Equation Systems (2)

Phase 1: equation system → expression

P(State) ≅ BF

ESys Exp

11

Solving Equation Systems (3)

Phase 2: expression → good rep of BF

P(State) ≅ BF ≅ Rep

ESys Exp

12

Solving Equation Systems (4)

Extend expressions to contain good reps of BFs

P(State) ≅ BF ≅ Rep

ESys Exp ⊆ Exp’

⊆

13

Equation System → Expression

a=b ⇔ a↔b=1
a≠b ⇔ ¬a↔b=1
a≤b ⇔ a→b=1
a<b ⇔ ¬a∧b=1

a=1 and b=1 ⇔ a∧b=1
a=1 or b=1 ⇔ a∨b=1

14

Example

B ∧ (¬F∨¬E)
Conjunctive prime form

(B∧¬E) ∨ (B∧¬F)
Disjunctive prime form

B
E0

F1
01

Prime tree
Equation system

¬B→F = 1
B∧F → ¬I = 1

I∨¬B → ¬F = 1

(¬B→F) ∧ (B∧F→¬I) ∧ (I∨¬B → ¬F) = 1
Normal equation

15

Overview

Intro
BDDs [Bryant 1986]
Clause forms

16

BDDs

Decision trees
Prime trees
Algorithms
Minimal Graph Representation

17

Decision Trees
if x=0
then if y=0

then 1
else 0

else if y=0
then if z=0

then 0
else 1

else 1

x

yy

01 1z

10

Graphical Representation
of Nested Conditionals

18

Conditonal as new Operation

Bool3 → Bool

(x,y,z) = if x=0 then y else z
= (¬x→y) ∧ (x→z)
= (¬x∧¬y) ∨ (x∧z)

[Löwenheim 1910]

19

Decision Tree → DNF

(¬x∧¬y) ∨ …

x

yy

01 1z

10

20

Decision Tree → DNF

(¬x∧¬y) ∨ (x ∧¬y ∧z) ∨ …

x

yy

01 1z

10

21

Decision Tree → DNF

(¬x∧¬y) ∨ (x ∧¬y ∧z) ∨ (x∧y)

x

yy

01 1z

10

22

Decision Tree → CNF

(x∨¬y) ∧ …

x

yy

01 1z

10

23

Decision Tree → CNF

(x∨¬y) ∧ (¬x∨y∨z)

x

yy

01 1z

10

24

Reduction of Decision Trees

Based on (x,y,y) = y

x

yy

01 01

y

01

25

Ordered Decision Trees

Fix linear order on variables
x < y < z < …

Deeper variables must be larger

x

yy

01 1z

10

26

Prime Trees

Ordered and reduced decision trees
Isomorphic to Boolean functions
Perfect representation of Boolean functions

Exp ⊆ Exp’

BF ≅ PT

⊆

27

Theorem Different prime trees denote
different Boolean functions.

Proof By induction on max of sizes. Case
analysis:

1. a and b are both atomic.
2. Root variables of a and b are identical.
3. Root variable of a does not occur in b.

28

Theorem Every expression can be
translated into equivalent prime tree.

Expansion Theorem
(Boole 1854, Löwenheim 1910, Shannon 1938)

a ≡ (x, a[x:=0], a[x:=1])

29

Operations on Prime Trees

not: PT → PT
not a = π(¬a)

and: PT×PT → PT
and(a,b) = π(a∧b)

Will see efficient algorithms

30

Constructors for PTs (ADT)

0: PT
1: PT
cond: Var×PT×PT → PT
cond(x,a,b) = π(x,a,b) provided x<Va∪Vb

If a,b prime trees and x variable:

π(x,a,a) = a
π(x,a,b) = (x,a,b) if x<Va∪Vb

All algorithms will be based on these constructors

31

Algorithm for not

Based on
¬0 = 1
¬1 = 0
¬(x,y,z) = (x,¬y,¬z)

Orderedness preserved since no new variables
Reducedness preserved since not injective

32

Algorithm for and

Based on
(x,a,b) ∧ 0 = 0
(x,a,b) ∧ 1 = (x,a,b)
(x,a,b) ∧ (x,a’,b’) = (x, a∧a’, b∧b’)
(x,a,b) ∧ c = (x, a∧c, b∧c)

Orderedness preserved since no new variables
Reducedness preserved by cond

(only used if x < Vc)

33

Expression → Prime Tree

trans: Exp → PT

trans 0 = 1
trans 1 = 1
trans x = cond(x,0,1)
trans (¬a) = not(trans a)
trans (a∧b) = and(trans a, trans b)

34

As is, and is exponential

Can make it quadratic by
dynamic programming (hashing over PTs)
constant time equality test for PTs

35

Minimal Graph Representation

Every node describes a prime
tree
Graph describes a subtree-
closed set of prime trees
Graph minimal iff different
nodes describe different trees

x x

y

z1

0

36

Graph → Table

x x

y

z1

0

4 5

2

3

Number nodes of graph

37

Graph → Table

x x

y

z1

0 (x,2,3)5

(x,1,3)4

(y,1,0)3

(z,1,0)2

4 5

2

3

38

Graph → Table → Function

x x

y

z1

0 (x,2,3)5

(x,1,3)4

(y,1,0)3

(z,1,0)2
tab(i)i

4 5

2

3

Graph minimal iff tab injective

39

Constant Time Realization of cond

cond(x,n,n’) =
if n=n’ then n
else if (x,n,n’) ∈ Dom(tab-1)

then tab-1 (x,n,n’)
else let n’’ = least number not in Dom tab

in tab := tab[n’’:=(x,n,n’)] ;
n’’

Implement tab-1 with hashing

40

Overview

Intro
BDDs
Clause forms [Quine 1959]

41

Conjunctive Normal Forms

literal x, ¬x
clause C finite set of literals, not x and ¬x
clause set S finite set of clauses
cnf S new expression form

(cnf S)s = ∧ ∨ as
C∈S a∈C

(∧∅ = 1, ∨∅ = 0)

42

Conjunctive Prime Forms

C implicate of a ⇔ a ≤ ∨C
C prime implicate of a ⇔ C minimal implicate of a
Formula has only finitely many prime implicates
a ≡ cnf {C | C prime implicate of a}

Exp ⊆ Exp’

BF ≅ CPF

⊆

43

CNF → CPF

CPF can be computed from CNF by 2 rules:
delete subsumed clause
add resolvent that is not subsumed
(a∨b) ∧ (¬a∨c) ≤ (b∨c)

Equivalence transformations
Terminate with CPF

44

Example : CNF → CPF

{¬x, y} {x, z} {x, ¬z} {¬x, z} {¬y, ¬z}

{x}

{y} {z}

{¬y}

{}

45

CNF → CPF

Nice for few variables
Explosive in number of variables
By duality: DNF → DPF
Application: truth maintainance in AI (CPF)

Reiter and de Kleer 1987
Application: circuit minimization (DPF)

Quine 1959
Minimal size DNFs are subsets of DPF

46

Summary and Remarks

2 Methods for solving Boolean equations
BDDs [Bryant 1986]
clause forms [Quine 1959]

Generalizes to Boolean algebras
Generalizes to infinitely many variables
There are other methods, e.g.

Complete normal forms [Boole 1854]
[Löwenheim 1910]

47

References

Willard V. Quine.
On Cores and Prime Implicants of Truth Functions.
American Mathematical Monthly, 1959.
Randal E. Bryant.
Graph-based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers, 1986.
Gert Smolka.
Skript zur Vorlesung Einführung in die Computationale
Logik, 2003. www.ps.uni-sb.de/courses/cl-ss03

