
Fachrichtung 6.2 – Informatik
Naturwissenschaftlich-Technische Fakultät I
– Mathematik und Informatik –
Universität des Saarlandes

Studies in Higher-Order Equational Logic

Bachelorarbeit

Angefertigt unter der Leitung von
Prof. Dr. Gert Smolka

Mark Kaminski

Mai 2005

Verfasser: Mark Kaminski

Erstgutachter: Prof. Dr. Gert Smolka

Zweitgutachter: Prof. Bernd Finkbeiner, Ph.D.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Bachelorarbeit
selbstständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel verwendet habe.

Saarbrücken, den 9. Mai 2005

Mark Kaminski

Abstract

We show that higher-order logic (HOL) can be axiomatized in S, the simply
typed λ-calculus with equational deduction. Unlike traditional formulations
of HOL, S does not rely on pre-defined semantics of logical constants.

First we show how deduction in traditional HOL can be simulated with-
in S, thus proving S to be a general-purpose higher-order logical system.
Afterwards we prove the completeness of S for first-order axioms.

An important task of the thesis is to investigate in how far the usual
logical constants and semantic structures can be axiomatized within S. We
start by considering Boolean algebras, i.e. systems generated by Boolean
axioms and show how they can be axiomatically extended by quantification.
We define the identity test and show some important properties of identity
in S. We axiomatize in S the usual semantic structure of HOL, thus showing
that the semantic expressiveness of S matches that of traditional higher-
order formalisms.

Finally we analyze the deductive power of S in more detail and obtain
interesting incompleteness results for specific instances of the system.

Acknowledgements

I would like to express my deepest gratitude to Prof. Dr. Gert Smolka for
his guidance. Our extensive discussions have made me see a lot of things in
a completely new light. His advice on scientific writing has been enormously
helpful in improving the readability of this thesis.

Contents

1 Basics 9
1.1 Types and Terms . 9
1.2 Deduction . 11
1.3 Logical Axioms . 11

2 S(HOL) 15
2.1 AHOL . 15
2.2 HOL and its Deductive Closure 16

2.2.1 Logical Axioms . 17
2.2.2 Andrews’ Axioms . 18
2.2.3 Conclusion . 19

2.3 Alternatives . 19
2.3.1 S

.
= . 20

2.3.2 SId . 21
2.4 Descriptions . 22

3 Long Normal Forms 23

4 First-Order Completeness 27

5 Standard Models 31
5.1 Set Algebras . 32
5.2 Quantification . 32
5.3 Identity . 34
5.4 The Two-Valued Boolen Algebra T2 36

5.4.1 Axiomatization . 36
5.4.2 Expressiveness . 38

5.5 Beyond T2 . 38
5.5.1 Binary Values . 38
5.5.2 Predicates . 39
5.5.3 Finite Domains . 42
5.5.4 The Natural Numbers 42

5.6 HOL and its Semantic Closure 46

4

6 General Models 49
6.1 Henkin’s Theorem . 49
6.2 Deductive Power of LAx2 . 50
6.3 Dependent Models . 53

6.3.1 K0 and Finite Models 54
6.3.2 K and Identity . 56

7 Conclusion and Further Work 61

5

Introduction

Overview

Higher-order logic, also known as type theory, has been introduced in 1908
by Bertrand Russell [33] as a formal basis for mathematical reasoning, based
on a functional view of logic originally developed by Gottlob Frege [13]. In
its modern form, type theory is based on Alonzo Church’s simply typed λ-
calculus [8] and the formulations by Leon Henkin [22] and Peter Andrews [4].
Over the years type theory has become an integral part of every subject of
study that is in some way concerned with the relationship between com-
putation and logical reasoning. In computer science, higher-order logic has
lots of applications, including proof assistant systems like e.g. Isabelle [28]
or PVS [29].

Classical formulations of type theory employ rules of inference depending
on some dedicated logical constants. Consider, for instance, the well-known
rule “Modus ponens”, commonly formulated as:
From A and A → B infer B.

The rule involves the constant → and is therefore specific to logical systems
where such a constant is built in.

This thesis studies in how far semantic and deductive strengths of higher-
order logic can be achieved without building in logical constants and without
using custom rules of inference. We consider a simple higher-order system S,
which is the simply typed λ-calculus with equational deduction (compare
to [6, 44]). In particular, S introduces no logical constants with pre-defined
semantics.

We evaluate S with respect to two important properties: deductive power
and semantic expressiveness. In both cases we need a reference formalism to
which S can be compared. This role will be played by Andrews’ higher-order
logic (AHOL) as described in his textbook [4]. To keep our considerations
more compact, most of the time when talking about AHOL, we will ignore
the description operator and the corresponding Axiom of Descriptions, both
of which are parts of the full system Q0 by Andrews. Descriptions are
largely independent from most of the other constants and, as it turns out,
can be easily axiomatized in S. Andrews’ full system will be treated briefly
in Chapter 2.

6

Chapter 1 introduces some basic terms, propositions and notational con-
ventions which will be used by us when we consider S in detail.

After a brief overview of AHOL, in Chapter 2 we show how deduction in
Andrews’ logic can be simulated in S. We present a set of axioms HOL and
prove S(HOL) having at least the deductive power of AHOL. We also discuss
an alternative approach to simulating the deduction in AHOL, namely to
introduce an additional rule of inference reflecting the special semantics of
the identity constant. We discuss two possible extensions of S that integrate
this rule of inference into the initial system.

In Chapter 3 we prove that every term in S can be rewritten to a βη-
normal form, which is exploited by us in Chapter 4 when we prove a prac-
tically useful property of S, namely its completeness for first-order axioms.

In Chapter 5 we explore the semantic expressiveness of S with respect
to standard interpretations. Starting with higher-order Boolean algebras,
which can easily be axiomatized in S, we axiomatically extend Boolean logic
by quantification and study some semantic consequences of this extension.
We observe that Boolean algebras satisfying the additional quantifier axioms
are complete. Since we can axiomatize quantifiers, we follow the approach
used by Russell and Church and define the identity test in terms of universal
quantification according to Leibniz’ criterion for equality.

Next, we ask ourselves how to axiomatize the semantic structure of
AHOL within S. We observe that in order to represent the set {0, 1} of
truth values we first need to exclude from consideration the trivial Boolean
algebra. After doing so, we can easily make the interpretations of S isomor-
phic to those of AHOL with the help of an additional axiom.

Furthermore, we study the expressiveness of the logic we obtain with-
out the restriction of semantic isomorphism to AHOL. We observe that the
set {0, 1} still can be represented as the range of the identity test, which
eventually leads us to the conclusion that with respect to semantic expres-
siveness S is not inferior to AHOL, even if we do not enforce a two-valued
interpretation of the truth values. We demonstrate this by providing a finite
axiomatization of the natural numbers within S, thus showing the incom-
pleteness of deduction.

In Chapter 6 we investigate some deductive properties of S parameterized
by a specific set of axioms LAx2 that, just like HOL, was shown in Chapter 5
to be sufficient in order to axiomatize traditional HOL. Comparing S(LAx2)
and AHOL, we discover that, unlike S(HOL), S(LAx2) is in fact less powerful
than Andrews’ logic in so far as deduction is concerned.

Finally we briefly summarize our results and outline several issues that
can be addressed within further investigation of S and related systems.

7

Contributions

This thesis makes the following contributions:
1. Investigation of the semantic expressiveness of S with respect to standard

interpretations (Chapter 5).
(a) Axiomatization of universal and existential quantification in Boolean

algebras, based on an axiomatization of (higher-order) Boolean logic
in S. Observation and proof that the the quantifier axioms enforce
the completeness of underlying Boolean lattices.

(b) Observation and proof that in a Boolean algebra with quantifiers, the
identity test defined with the help of Leibniz’ criterion for equality
has the range {0, 1}, independent of whether the algebra contains
further Boolean values.

(c) Axiomatization of the two-valued Boolean algebra T2. (Resulting
system: S(LAx2).) Observation that the usual semantic structure of
HOL can be axiomatized in S if we restrict ourselves to considering
non-trivial Boolean algebras.

(d) Investigation of the semantic expressiveness of general (not neces-
sarily two-valued) Boolean algebras. Encoding of the usual predicate
semantics within Boolean logic with quantifiers.

(e) Finite axiomatization of the natural numbers within Boolean logic
with quantifiers. Proof that the semantic closure of finite sets of
axioms may be not semi-decidable.

2. Investigation of the deductive power of S and its comparison to deduction
in AHOL (Chapters 2, 4, 5 and 6).
(a) Presentation of the axiom system HOL and proof that S(HOL) has

exactly the deductive power of AHOL.
(b) Presentation of two alternative systems based on S, which have at

least the deductive power of AHOL, with corresponding proofs.
(c) Proof that S is complete for first-order axioms.
(d) Proof that the predicate encoding for Boolean logic with quantifiers

has no influence on deduction in T2.
(e) Observation and proof that, when appropriately instantiated, S al-

lows finite non-standard models.
(f) Independent proof that Boolean logic with quantifiers (represented

by S(LAx2)) admits non-extensional models. (Originally proved by
Andrews [2].)

(g) Observation and proof that S(LAx2) is deductively strictly less pow-
erful than AHOL.

(h) Observation and proof that in S(LAx2) the internal and the external
identity are not equivalent with respect to deduction.

8

Chapter 1

Basics

The definitions below are based on notation and terminology introduced in
lecture notes by Gert Smolka [37].

1.1 Types and Terms

Definition Let (TC ,VC , ty) be a signature and Var the set of all vari-
ables. A context Γ is a partial function that maps variables to types
(Γ ∈ Var ⇀ Ty(TC)).

Notation Γ[x := T] def= λy ∈ Var .if y = x then T else Γy

Definition Let

B ∈ TC
x ∈ V ar
c ∈ VC
T ∈ Ty = B base type

| T → T function type

The set of pre-terms PT is defined by

t ∈ PT = x variable
| c constant
| (t t) application
| λx : T.t abstraction

Since they have no proper components, variables and constants are called
primitive. Applications and abstractions are called compound. We write
t1 t2 t3 as an abbreviation for ((t1 t2) t3). We use infix notation whenever
appropriate, e.g. x ∨ y for ((∨x)y).

9

Definition Let Γ be a context. A pre-term t is called a Γ-term iff there
exists a type T such that Γ ` t : T .

A pre-term t is called a term iff there exists a context Γ such that t is
a Γ-term.

TerT Γ def= {t ∈ PT |Γ ` t : T}

Ter Γ def=
⋃

T∈Ty

TerT Γ

Convention When considering terms relative to a signature, we always
assume the existence of a global context Γ, which is defined together with
the particular signature. When it leads to no confusion, we may write

t : T for Γ ` t : T

x : T for Γx = T

Notational Convention Unless otherwise stated, index variables like m,
n, p etc. are always assumed ≥ 0.

Definition The order of a type T (ord(T)) is defined as follows:

ord(B) = 1
ord(T1 → T2) = max{ord(T1) + 1, ord(T2)}

Remark ord(T1 → . . . → Tn → B) = max{ord(Ti) | 1 ≤ i ≤ n}+ 1

Definition Let the function ran be defined as follows:

ran(B) = B

ran(T1 → T2) = ran(T2)

For a term t with Γ ` t : T , let ran t = ran(T).

Remark ran(T1 → . . . → Tn → B) = B

10

Ref
t = t

Sym
s = t
t = s

Trans
s = s′ s′ = t

s = t

Rep
s′ = t′

t[s′] = t[t′]
Sub

s = s′

s[x := t] = s′[x := t]

β
(λx : T.t)y = t[x := y]

η
λx : T.fx = f

Figure 1.1: Equality rules

1.2 Deduction

Definition The rules of inference in S are defined as shown in Figure 1.1.

Notation Given a set of equations A we write [t]A for {s|A ` s = t}.

Proposition 1.1 Let s, t : T → T ′, x : T . If x 6∈ FV s ∪ FV t then

sx = tx ` s = t

Proof

sx = tx ` λx : T.sx = λx : T.tx
` s = t η �

1.3 Logical Axioms

In the following, we consider logical systems parameterized with different
sets of axioms. By using the notation L(A) we refer to some system L
parameterized with the axioms in A. We call A a parameter of L.

When A is used to parameterize a logical system, its elements are called
(equational) axioms.

Definition (Standard Model/Standard Interpretation) Given a sig-
nature (TC ,VC , ty), a standard interpretation D, also called a stan-
dard model, is a function with the following properties:
1. D provides denotations for type and value constants:

TC ∪VC ⊆ Dom D
2. Type constants are mapped onto non-empty sets:

∀B ∈ TC : DB 6= ∅

11

3. Function types are mapped onto the corresponding functional spaces:
D(T1 → T2) = DT1 → DT2

4. Value constants of type T are mapped onto elements of DT :
∀c ∈ VC : Dc ∈ D(ty c)

5. On the set of pre-terms D is defined recursively as follows:

Dcσ = Dc
Dxσ = σx if x ∈ Dom σ

D(st)σ = Dsσ(Dtσ) if Dtσ ∈ Dom(Dsσ)
D(λx : T.t)σ = λv ∈ DT.Dt(σ[x := v])

Convention Until we consider non-standard interpretations for the first
time in Chapter 6, when talking about interpretations we always mean stan-
dard interpretations.

Definition Let (TC ,VC , ty) be a signature and D, E be interpretations. D
is isomorphic to E (D ∼= E) iff there exists a family of bijections indexed
by types

φT : DT → ET

such that φty c(Dc) = Ec for all c ∈ VC .

Definition 1.1 Given a signature (TC ,VC , ty) such that
• 0, 1,¬,∧,∨ ∈ VC ; B ∈ TC
• it holds

0, 1 : B
¬ : B → B

∧,∨ : B → B → B

we define the Boolean axioms BAx as depicted in Figure 1.2.
An interpretation D is called a Boolean algebra iff D � BAx .

Definition Given two Boolean algebras D and E , E is called a subalgebra
of D if
1. EB ⊆ DB

2. E¬ ⊆ D¬, E∧ ⊆ D∧, E∨ ⊆ D∨

Definition 1.2 Assume a signature like in Definition 1.1, with the following
additional constraints for every type T :
• ∀T ∈ VC
• ∀T : (T → B) → B

Let the set QAx of quantifier axioms consist of two axioms for every
type T , as defined in Figure 1.2.

We define the set LAx of logical axioms to be BAx ∪QAx .

12

Boolean Axioms (BAx)
for distinct variables x, y, z : B:

x ∧ y = y ∧ x x ∨ y = y ∨ x
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ ¬x = 0 x ∨ ¬x = 1
x ∧ 1 = x x ∨ 0 = x

Quantifier Axioms (QAx)
for every type T , distinct x, u : T and f : T → B:

∀T f = ∀T f ∧ fx (∀IT)
∀T (λx : T.fx ∨ u) = ∀T f ∨ u (∀∨T)

Figure 1.2: Logical axioms

Notational Convention
• We will omit type annotations from quantifiers when it leads to no con-

fusion.
• All constants are assumed left associative.
• We assume the usual precedence conventions for Boolean constants.
• We introduce the following abbreviations:

x → y
def= ¬x ∨ y

x ↔ y
def= (x → y) ∧ (y → x)

∀x.t
def= ∀(λx : T.t) if Γx = T

∃x.t
def= ¬∀x.¬t

Proposition 1.2 (∀E) LAx ` ∀x.u = u

Proof

∀x.u = ∀x.0 ∨ u BAx
= ∀x.(λx : B.0)x ∨ u η
= ∀(λx : B.0) ∨ u ∀∨
= ∀(λx : B.0) ∧ (λx : B.0)0 ∨ u ∀I
= ∀(λx : B.0) ∧ 0 ∨ u β
= u BAx �

Proposition 1.3 (∀∧) LAx ` ∀x.fx ∧ u = ∀f ∧ u

13

∀f = ∀f ∧ fx (∀I) ∃f = ∃f ∨ fx (∃I)
∀x.fx ∨ u = ∀f ∨ u (∀∨) ∃x.fx ∧ u = ∃f ∧ u (∃∧)

∀x.u = u (∀E) ∃x.u = u (∃E)
∀x.fx ∧ u = ∀f ∧ u (∀∧) ∃x.fx ∨ u = ∃f ∨ u (∃∨)

Figure 1.3: Quantifier Theorems

Proof

∀x.fx ∧ u = (∀x.fx ∧ u) ∨ 0 BAx
= (∀x.fx ∧ u) ∨ (u ∧ ¬u) BAx
= ((∀x.fx ∧ u) ∨ u) ∧ ((∀x.fx ∧ u) ∨ ¬u) BAx
= ((∀x.fx ∧ u) ∨ u) ∧ (∀x.fx ∧ u ∨ ¬u) ∀∨
= ((∀x.fx ∧ u) ∨ u) ∧ (∀x.fx ∨ ¬u) BAx
= ((∀x.fx ∧ u) ∨ u) ∧ (∀f ∨ ¬u) ∀∨
= ∀f ∧ (∀x.fx ∧ u) ∨ ∀f ∧ u BAx
= ∀f ∧ ((∀x.fx ∧ u) ∨ u) BAx
= ∀f ∧ ∀x.fx ∧ u ∨ u ∀∨
= ∀f ∧ ∀x.u BAx
= ∀f ∧ u ∀E �

Proposition 1.4 DC (LAx) contains the equations in Figure 1.3.

Proof So far, we have proved the theorems for ∀. We proceed by straight-
forward application of BAx and the definition of ∃. ∃I can be deduced from
∀I, ∃E from ∀E, ∃∧ from ∀∨ and ∃∨ from ∀∧. �

14

Chapter 2

S(HOL)

Unlike in AHOL, deduction in S relies entirely on the equality rules, without
committing to any constants. In this chapter we show how deduction in
AHOL can be simulated in S. We present a set of axioms HOL and show
that this set suffices to derive all the axioms of AHOL as well as to simulate
Andrews’ only rule of inference R. By doing so, we prove S(HOL) being
a general-purpose higher-order logical system with at least the deductive
power of AHOL.

Afterwards, we discuss some alternatives to S(HOL), which extend the
equality rules by an additional rule Id. Although Id does not share the
general nature of the equality rules, it allows us to achieve the deductive
power of S(HOL) with a reduced set of axioms.

Finally we consider Andrews’ system with the Axiom of Descriptions
and propose an adequate axiomatization of this system in S.

2.1 AHOL

Before we compare the deductive power of S with that of AHOL, we should
learn a little bit more about the latter system. First, let us consider Andrews’
axioms in so far as they are relevant to our system. We formulate them in
our formalism as axiom schemata relatively to arbitrary types T and T ′ such
that

p : B → B
q : T → B

x, y : T
f, g : T → T ′
.=T : T → T → B

We assume the usual typing for the Boolean and the quantifier constants,
which is given in Definition 1.2. The value constant .=T is assumed to
denote the identity test on DT . The identity test is known to be sufficient
in order to define all constants of traditional higher-order logic apart from

15

the description operator. Boolean constants and quantifiers can be seen
as abbreviations of terms where the only constants being used are those
denoting identity relations on different type domains. Henkin [22, 23] was
the first to use identity as the only logical primitive. Andrews’ definition of
higher-order logic follows Henkin’s idea. In AHOL identity is introduced as
a family of logical constants.

When using .= we assume the identity test to take precedence over the
Boolean operators. As usual, we omit type annotations when it leads to no
confusion.

The set AAx (to stand for “Andrews’ axioms”) looks as follows:

(p1 ∧ p0) .= ∀p = 1 (A1)
x

.= y → qx
.= qy = 1 (A2)

(f .= g) .= (∀x.fx
.= gx) = 1 (A3)

A1 expresses the idea that there are only two truth values. A2 reflects a
fundamental congruence property of identity. A3 formulates the principle
of extensionality.

Andrews’ only rule of inference R can be stated as follows:

s′
.= t′ = 1 t[s′] = 1

t[t′] = 1

Note how the correctness of this formulation of R depends on the semantics
of .= and 1. The key insight needed to simulate AHOL in S is to understand
how this relation can be expressed in terms of equational axioms. This is
what we do next.

2.2 HOL and its Deductive Closure

We use the following notation:

∀FV t′.t
def= ∀x1. . . .∀xn.t where {x1, . . . , xn} = FV t′

∀FV .t
def= ∀FV t.t

We introduce HOL as an extension of BAx additionally containing the
following axioms schemata:

x
.= x = 1 (Ref)
∀T q = q

.= (λx : T.1) (D∀)
p1 ∧ p0 = ∀p (Bin)

f
.= g = ∀x.fx

.= gx (Ext)
(∀FV .s′

.= t′) ∧ t[s′] = (∀FV .s′
.= t′) ∧ t[t′] (Rep)

x
.= y ∧ qx = x

.= y ∧ qy (Rep ′)

The schemata are defined for all types T, T ′ such that:

16

• for all terms t, s′, t′ it holds

t : B
s′, t′ : T

• for variables x, y, p, q, f, g it holds

x, y : T
p : B → B
q : T → B

f, g : T → T ′

• .=T : T → T → B

Ref formalizes the reflexivity of the identity test. D∀ defines the universal
quantifier in terms of identity. Bin and Ext are obvious adaptations of A1
and A3 respectively. Rep and Rep ′ express the intended semantics of .= with
respect to replacement.

In order to prove that S(HOL) has the deductive power of AHOL, we
have to derive AAx from HOL. Furthermore, we must show that S(HOL)
can simulate Andrews’ rule of deduction R. But first we need to prove some
auxiliary statements.

2.2.1 Logical Axioms

We show that LAx can be derived from HOL. (actually, even from a smaller
set of axioms – we need neither Ext nor Rep).

Lemma 2.1 BAx ,Ref ,Rep ′ ` x
.= y = x

.= y ∧ fx
.= fy

Proof

x
.= y = x

.= y ∧ 1 BAx
= x

.= y ∧ fx
.= fx Ref

= x
.= y ∧ (λy : T.fx

.= fy)x β
= x

.= y ∧ (λy : T.fx
.= fy)y Rep ′

= x
.= y ∧ fx

.= fy β �

Lemma 2.2 BAx ,Ref ,D∀,Rep ′ ` ∀f = ∀f ∧ ∀x.fx
.= 1

Proof

∀f = f
.= λx : T.1 D∀

= f
.= (λx : T.1) ∧ fx

.= 1 Lem. 2.1 with λf : T → B.fx
= ∀f ∧ fx

.= 1 D∀ �

Proposition 2.3 BAx ,Ref ,D∀,Rep ′ ` ∀I

17

Proof

∀f = ∀f ∧ fx
.= 1 by Lemma 2.2

= ∀f ∧ fx
.= 1 ∧ 1 BAx

= ∀f ∧ fx
.= 1 ∧ fx Rep ′ with λx : B.x

= ∀f ∧ fx by Lemma 2.2 �

Proposition 2.4 BAx ,Bin ` ∀∨
Proof

∀x.fx ∨ u = (f0 ∨ u) ∧ (f1 ∨ u) Bin
= f0 ∧ f1 ∨ u BAx
= ∀f ∨ u Bin �

Corollary 2.5 BAx ,Ref ,D∀,Bin,Rep ′ ` LAx

2.2.2 Andrews’ Axioms

First, we derive A2 as follows:

Proposition 2.6 BAx ,Ref ,Rep ′ ` A2

Proof

x
.= y → qx

.= qy = ¬(x .= y ∧ ¬(qx .= qy)) BAx
= ¬(x .= y ∧ ¬(qx .= qx)) Rep ′

= ¬(x .= y ∧ ¬1) Ref
= 1 BAx �

To derive A1 and A3, we observe a notable deductive property of .=:

Proposition 2.7 For all terms s, t : LAx , s = t ` s
.= t = 1

Proof

s
.= t = ∀f.fs → ft def .=

= ∀f.ft → ft s = t
= ∀f.1 BAx
= 1 ∀E �

Remark The opposite direction

LAx , s
.= t = 1 ` s = t

does not hold, which follows from a stronger claim we prove later (Theo-
rem 11).

Corollary 2.8 BAx ,Ref ,D∀,Bin,Rep ′, s = t ` s
.= t = 1

Corollary 2.9 BAx ,Ref ,D∀,Bin,Rep ′ ` A1

Corollary 2.10 BAx ,Ref ,D∀,Bin,Ext ,Rep ′ ` A3

18

2.2.3 Conclusion

The axiom schema Rep seems to be crucial if we want to simulate R, since R
assumes the same kind of semantic relation between replacement and inter-
nal identity as it is expressed by the axiom. Indeed, once we have Rep, we
can easily express deduction based on R using the equality rules:

Lemma 2.11 LAx , t = 1 ` ∀FV .t = 1

Proof

∀FV .t = ∀FV t.1 t = 1
= 1 ∀E �

Proposition 2.12 S(BAx ,Rep) can simulate deduction based on R.

Proof We show BAx ,HOL− {Ext}, s′ .= t′ = 1, t[s′] = 1 ` t[t′] = 1.

t[t′] = 1 ∧ t[t′] BAx
= (∀FV .s′

.= t′) ∧ t[t′] by Lemma 2.11
= (∀FV .s′

.= t′) ∧ t[s′] Rep
= ∀FV .s′

.= t′ t[s′] = 1,BAx
= 1 by Lemma 2.11 �

From what we have seen so far, we can say:

Theorem 1 S(HOL) has exactly the deductive power of AHOL.

Proof By Proposition 2.12, 2.6, Corollary 2.9 and 2.10, S(HOL) has at least
the deductive power of AHOL.

By Andrews’ [4] Propositions 5200–5232, AHOL (with a number of fur-
ther axioms specifying basic properties of β-reduction) has at least the de-
ductive power of S(HOL). �

2.3 Alternatives

We have seen how deduction in AHOL can be simulated using Rep. Observe
that unlike the rest of HOL, this axiom schema has infinitely many instances
for every type. In this section we present two alternative systems based on S
that have at least the deductive power of AHOL without making use of Rep
or of Rep ′.

Both systems extend the equality rules by the following rule of inference:

Id
s

.= t = 1
s = t

Obviously, Id is consistent with the usual semantics of the identity test.
Now we can easily simulate the rule R:

19

Proposition 2.13 Deduction using R can be simulated by deduction using
the equality rules and Id.

Proof

Trans

Rep

Id
s′

.= t′ = 1
s′ = t′

Sym
t[s′] = t[t′]
t[t′] = t[s′] t[s′] = 1

t[t′] = 1

�

Remark Id differs from the equality rules in an important aspect. The rule
contains the derived constant .=, which reflects the special status of the corre-
sponding constant in AHOL. Therefore, Id cannot be generally considered
sound or useful and does not fit well into general higher-order equational
logic. A possible way to avoid this inconsistence is strengthening the ex-
pressiveness of axioms by admitting conditional equations, i.e. equations
of the following form:

E1, . . . , En ⇒ E

A conditional equation is to hold for an assignment σ if either of the
following two statements is true:
1. E holds for σ.
2. There exists i ∈ {1, . . . , n} such that Ei does not hold for σ.

Note that an ordinary (unconditional) equation is just a conditional one
with n = 0.

The two systems we want to present, integrate Id into S in two different
ways.

2.3.1 S
.
=

In the first approach, we define the usual constants in terms of .=, in the
same way as it is done in AHOL. We do not have to define the semantics
of .= explicitly. Partly, this task is accomplished implicitly by Id , the condi-
tional axiom corresponding to Id. Further relevant properties of .= can be
easily axiomatized with the help of appropriate parameters. Let us call the
resulting system S

.
=.

Since by Proposition 2.13, S
.
= can simulate R, when parameterized with

either AAx or HOL − {Rep,Rep ′}, the system clearly has at least the de-
ductive power of AHOL.

Certainly, S
.
= is much closer to AHOL than S. Nevertheless, S

.
= and S

share two important properties:

20

1. Neither S nor S
.
= rely on any built-in semantics of the identity predicate.

S specifies .= with the help of LAx , whereas in S
.
= relevant properties

of identity are encoded in the rule Id and in A2. On the contrary,
AHOL provides an informal description of the identity test and explicitly
requires its identity constant to satisfy this specification.

2. Neither in S nor in S
.
= do we explicitly require DB to be two-valued since

this restriction can be easily axiomatized whenever needed.

2.3.2 SId

Another possibility to increase the deductive power of S is integrating the
rule Id into a system, where the identity test is defined as a derived opera-
tion:

.=T
def= λx : T.λy : T.∀T→Bf.fx → fy

In this case, Id must be interpreted as a notational abbreviation of the
following rule:

∀f.¬fs ∨ ft = 1
s = t

We call the resulting system SId. Since Id uses Boolean operators and
quantifiers, we should ensure that the corresponding constants are properly
defined by requiring our system to satisfy LAx . Therefore, we will only
consider systems SId(A) with A ⊇ LAx .

Remark Observe that Id implicitly constrains the semantics of ¬, ∨ and ∀.
We may ask ourselves in how far this semantics is consistent with the ax-
iomatic definition of the constants. We can show the compatibility of Id with
LAx by proving the rule correct with respect to interpretations satisfying
LAx . We will be able to do so in Chapter 5 (Proposition 5.7).

We can show that A2 can be derived from the definition of .=:

Lemma 2.14 LAx ` x
.= y → qx

.= qy = 1

Proof

x
.= y → qx

.= qy
= (¬∀f.¬fx ∨ fy) ∨ ∀g.¬g(qx) ∨ g(qy) def .=, →
= (∃f.fx ∧ ¬fy) ∨ ∀g.¬g(qx) ∨ g(qy) def∃, BAx
= ∀g.(∃f.fx ∧ ¬fy) ∨ ¬g(qx) ∨ g(qy) ∀∨
= ∀g.(∃f.fx ∧ ¬fy) ∨ ¬g(qx) ∨ g(qy)

∨ g(qx) ∧ ¬g(qy) ∃I
= ∀g.1 BAx
= 1 ∀E �

By our previous results, we conclude:

21

Theorem 2 SId(LAx ∪ {Bin,Ext}) has at least the deductive power of
AHOL.

Proof By Proposition 2.7, LAx ,Bin,Ext ` A1, A3. By Lemma 2.14, A2 can
be inferred from LAx . Deduction in AHOL can be simulated by Proposition
2.13. �

2.4 Descriptions

So far, we have considered Andrews’ higher-order logic without the descrip-
tion operator. However, we can easily extend our system by a family of
constants ιC and a corresponding axiom schema:

ιC(λx : C.y
.= x) = y (Des)

According to Andrews, we need an instance of Des with x, y : C for every
base type C 6= B. In S

.
=(AAx) or in SId(LAx ∪ {Bin,Ext}), Des can be

proved deductively equivalent to Andrews’ Axiom of Descriptions:

ιC(.= y) .= y = 1 (A5)

In S(HOL), by Proposition 2.7, A5 is still a deductive consequence of Des.
We have not examined whether the reverse direction holds as well.

We conclude that S and its derivates can be extended by descriptions
without further difficulties.

22

Chapter 3

Long Normal Forms

In the following chapters we will make use of a special normal form for terms
that results from a combination of β-reduction and (restricted) η-expansion.
In accordance with Terese [44], we call this form βη-normal.

Combinations of β-reduction and η-conversion have been studied by sev-
eral authors (see bibliographic remarks at the end of the chapter). Neverthe-
less, in the following we will provide a mostly self-contained proof showing
that every term can be rewritten to a βη-normal form by some sequence of
αβη-conversions. Unlike most of the related results from other sources, it
applies directly to our formalism.

Definition 3.1 We define the long η-normal form (η-normal form) recur-
sively as follows:
Let Γ ` t : T1 → . . . → Tn → B. If

t = λx1 : T1.λxn : Tn.t0t1 . . . tm

and
1. t1, . . . , tm are η-normal terms
2. t0 is either primitive or a η-normal abstraction
then t is η-normal.

Definition 3.2 A term t is βη-normal iff t is η-normal and β-normal.

Remark For every βη-normal term t of type T1 → . . . → Tn → B there exist
1. m ≥ 0
2. a primitive term t0

3. βη-normal terms t1, . . . , tm

such that
t = λx1 : T1.λxn : Tn.t0t1 . . . tm

23

Proposition 3.1 Given a term

s = λx1 : T1.λxm : Tm.s′

such that Γ ` s : T1 → . . . → Tn → B where 0 ≤ m ≤ n, there exists a term

t = λx1 : T1.λxn : Tn.s′xm+1 . . . xn

such that ` s = t.

Proof We choose some variables xm+1, . . . , xn 6∈ FV s′ such that

Γxm+1 = Tm+1, . . . ,Γxn = Tn

and obtain t by repeated application of η-expansion on s. �

Lemma 3.2 Given a primitive term s, there exists a βη-normal term t such
that ` s = t.

Proof Let Γ ` s : T . By induction on the order of T :
1. ord(T) = 1 (T = B): We are done since s is already βη-normal.
2. ord(T) = k (T = T1 → . . . → Tn → B):

We notice that max{ord(T1), . . . , ord(Tn)} < k. Let x, x1, . . . , xn be
different. Then

` s = λx1 : T1.λxn : Tn.sx1 . . . xn ηn

= λx1 : T1.λxn : Tn.st1 . . . tn by induction hypothesis
t1, . . . , tn βη-normal �

Lemma 3.3 For every term s there exists an η-normal term t such that
` s = t.

Proof By induction on the structure of s: Let Γ ` s : T1 → . . . → Tn → B.
1. s = x or s = c: The claim holds by Lemma 3.2.
2. s = (s1s2): By Proposition 3.1

` s1s2 = λx1 : T1.λxn : Tn.s1s2x1 . . . xn

By induction hypothesis

` s1 = t1 where t1 η-normal
` s2 = t2 where t2 η-normal
` x1 = tx,1 where tx,1 η-normal

...
` xn = tx,n where tx,n η-normal

=⇒ ` s1s2 = λx1 : T1.λxn : Tn.t1t2tx,1 . . . tx,n

24

3. s = λx1 : T1.s
′: Obviously Γ[x1 := T1] ` s′ : T2 → . . . → Tn → B. By

induction hypothesis

` s′ = λx2 : T2.λxn : Tn.t′

where λx2 : T2.λxn : Tn.t′ η-normal,
w.l.o.g. x1, . . . , xn different

⇐⇒ ` s = λx1 : T1.λxn : Tn.t′ �

Lemma 3.4 If Γ ` λx : T1.s
′ : T1 → T2, Γ ` t : T1 and both s and t are

η-normal, then s′[x := t] is a η-normal term.

Proof By induction on the structure of s′:
1. s′ = c or s′ = y 6= x: Obviously, s′ is η-normal. So is s′[x := t] since

s′[x := t] = s′.
2. s′ = x: s′[x := t] = x[x := t] = t

3. s′ = s0s1 . . . sn where s0 is either primitive or η-normal and s1 . . . sn are
η-normal:
(a) s0 = c or s0 = y 6= x:

s′[x := t] = s0[x := t](s1[x := t]) . . . (sn[x := t])
= s0(s1[x := t]) . . . (sn[x := t])

and our claim holds by induction.
(b) s0 = x:

s′[x := t] = s0[x := t](s1[x := t]) . . . (xn[x := t])
= x[x := t](s1[x := t]) . . . (sn[x := t])
= t(s1[x := t]) . . . (sn[x := t])

and our claim holds by induction.
(c) s0 η-normal:

s′[x := t] = s0[x := t](s1[x := t]) . . . (sn[x := t])

and our claim holds by induction.
4. s′ = λy : T.s′′, w.l.o.g. x 6= y:

s′[x := t] = λy : T.s′′[x := t]

and our claim holds by induction. �

Lemma 3.5 If s is a η-normal term, then every term t with s →β t is again
η-normal.

25

Proof By induction on the structure of s: Let

s = λx1 : T1.λxn : Tn.s′s1 . . . sp

where s′ is either primitive or η-normal. If s contains a β-redex, then either
at top level, i.e. s′s1 →β t′ for some t′, or in one of the subterms s′, s1, . . . , sp.
Since s1, . . . , sp are η-normal, as well as s′ if it contains a β-redex, the
second case is handled by induction. In the first case s′ has to be an η-
normal abstraction. Lemma 3.4 states that t′ is η-normal, which means
that t = λx1 : T1.λxn : Tn.t′s2 . . . sp is η-normal as well. �

Lemma 3.6 Let s be a term and s′ an η-normal form of s. Let t be the
β-normal form of s′. Then ` s = t and t is a βη-normal term.

Proof ` s = t is obvious, since ` s = s′ and ` s′ = t. We prove the second
claim by contradiction. Let Γ ` t : T1 → . . . → Tn → B. By Lemma 3.5, t
is η-normal, i.e.

t = λx1 : T1.λxn : Tn.t′t1 . . . tp

where t′ 6= (t′1t
′
2). We note that

Γ[x1 := T1, . . . , xn := Tn] ` t′t1 . . . tp : B (∗)

Now we consider two cases:
1. t′ = x or t′ = c: contradiction since t′ primitive
2. t′ = λx : T ′.t′′: Because of (∗) p ≥ 1 and t′t1 is a β-redex. Thus, t is not

β-normal. =⇒ contradiction �

Theorem 3 For every term s there exists a βη-normal term t such that
` s = t.

Proof Follows immediately from Lemmas 3.3 and 3.6. �

Bibliographic Remarks

• Termination of→η proved in Akama [1], Lemma 6. There it is attributed
also to Mints and Cubric.

• Combination of β-reduction and η-expansion studied by di Cosmo and
Kesner [11], shown to be confluent and terminating.

• The fact that η-normal forms are closed under β-reduction is stated in
van Oostrom [46], Proposition 3.2.10.

• De Vrijer [10] proves strong normalization of λβητ -calculus by associ-
ating with every typed λ-term M an increasing functional. Other inde-
pendent proofs can be found in Dragalin [12], Gandy [15], Hinata [24],
Hanatani [19], Tait et al. [43].

26

Chapter 4

First-Order Completeness

Skolem [35, 36] shows that it is impossible to characterize the natural num-
bers by any denumerable system of first-order axioms (i.e. first-order vari-
ables and any set of functional constants). By restricting ourselves to first-
order axioms we can hope to obtain systems that are semantically weak
enough to be complete.

In this chapter we will prove the completeness of a family of higher-order
logical systems. These systems are obtained by parameterizing S with first-
order axioms. A notable member of this family is S(BAx), a logical system
that may be called higher-order Boolean logic. The precise demands on the
form of the axioms will become clear later.

The proof is based on Statman’s results for the simply-typed lambda
calculus [40, 41], which are in turn based on Friedman [14] and Plotkin
[31, 32].

Definition 4.1 (Standard Term Model) Given (TC ,VC , ty), a context
Γ and a set of axioms A, a standard term model DA is an interpretation
such that

∀B ∈ TC : DA(B) = {[t]A|Γ ` t : B}

Definition 4.2 Let Γ ` t : B. We call t basic if
1. t is combinatoric
2. ∀x ∈ FV t : ord(Γx) = 1
An equation s = t is called basic if both terms are basic. If A is a set of
basic equations, A is called basic as well.

Convention The following considerations always assume a signature of or-
der ≤ 2, i.e.

∀c ∈ VC : ord(ty c) ≤ 2

Furthermore we assume a fixed set of axioms A defined relatively to a con-
text Γ. Therefore, we can write T for TA and [t] for [t]A. Some results will
require A to be basic.

27

Definition 4.3 (T) Let A be a set of equations. We define the interpre-
tation TA to be the unique standard term model such that for any constant
c ∈ V C with Γ ` c : B1 → ... → Bn → B it holds

TAcσ[t1]A . . . [tn]A = [ct1 . . . tn]A

Lemma 4.1 Let
1. t be a basic term,
2. σ ∈ Sta(T ,Γ),
3. θ be a substitution such that ∀x ∈ FV t : σx = [θx].
Then

T tσ = [θt]

Proof By induction on the structure of t:
1. t = x:

T tσ = T xσ
def T= σx

def θ= [θx] = [θt]

2. t = ct1...tn:

T tσ = T (ct1...tn)σ
= T cσ(T t1σ)...(T tnσ) def T
= T cσ[θt1]...[θtn] by induction hypothesis
= [c(θt1)...(θtn)] def T
= [θt] �

Proposition 4.2 (Soundness) Let A be basic. Then T � A.

Proof Let σ be an arbitrary assignment and θ a substitution such that
∀x ∈ FV t : σx = [θx]. Let s, t be two basic terms such that A ` s = t (e.g.
(s, t) ∈ A). Then

A ` s = t
=⇒ A ` θs = θt
⇐⇒ [θs] = [θt]
⇐⇒ T sσ = T tσ by Lemma 4.1

By the transitivity of ` and by congruence axioms for the typed λ-calculus
we then obtain T sσ = T tσ for arbitrary terms s, t with A ` s = t. �

Definition Let us define a function ρ : P(Ter Γ) → Ter Γ such that

∀v ∈ P(Ter Γ) : |v| ≥ 1 =⇒ ρv ∈ v

Definition Now we define a special assignment σ0 and a family of functions
(τT)T∈Ty where

τT ∈ T (T) → P(TerT Γ)

by mutual recursion on the order of the argument type T :

28

T = B:
σ0x = [x]
τT v = v

T = T1 → . . . → Tn → B:
σ0x = λv1 ∈ T (T1).λvn ∈ T (Tn).[x(ρ(τT1v1)) . . . (ρ(τTnvn))]
τT v = {t ∈ TerT Γ | ∀x1, . . . , xn 6∈ FV t :

x1, . . . , xn different, Γx1 = T1, . . . ,Γxn = Tn

=⇒ [tx1 . . . xn] = v(σ0x1) . . . (σ0xn)}

Proposition 4.3 s, t ∈ τT v =⇒ A ` t = t′

Proof Let T = T1 → . . . → Tn → B. Choose different variables x1, . . . , xn

such that Γx1 = T1, . . . ,Γxn = Tn and x1, . . . , xn 6∈ FV s ∪ FV t. Then

[sx1 . . . xn] = [tx1 . . . xn] def τT

⇐⇒ A ` sx1 . . . xn = tx1 . . . xn

=⇒ A ` s = t by Proposition 1.1 �

Corollary 4.4 t ∈ τT v =⇒ A ` t = ρ(τT v)

Lemma 4.5 For any βη-normal term t such that Γ ` t : B it holds

T tσ0 = [t]

Proof By induction on the structure of t:
1. t = x:

T tσ0
def T= σ0t

defσ0= [t]

2. t = c:
T tσ0

def T= [c]

3. t = xt1 . . . tn: Let Γ ` t1 : T1, . . . ,Γ ` tn : Tn.

T tσ0 = T xσ0(T t1σ0) . . . (T tnσ0) def T
= [x(ρ(τT1(T t1σ0))) . . . (ρ(τTn(T tnσ0)))] def σ0

= [xt1 . . . tn] by Corollary 4.4
= [t]

4. t = ct1 . . . tn:

T tσ0 = T cσ0(T t1σ0) . . . (T tnσ0) def T
= T cσ0[t1] . . . [tn] by induction hypothesis

since ∀1 ≤ i ≤ n : Γ ` ti : B
= [ct1 . . . tn] def T
= [t]

�

29

Lemma 4.6 Let A be basic. Let Γ ` t : B. Then T tσ0 = [t].

Proof Let t′ be a βη-normal form to t. Then

T tσ0 = T t′σ0 by Proposition 4.2 (soundness)
= [t′] by Lemma 4.5
= [t] since A ` t = t′ �

Lemma 4.7 Let A be basic. Then

∀s, t ∈ Ter Γ : T � s = t =⇒ A ` s = t

Proof Let Γ ` s : T1 → . . . → Tn → B. Choose distinct variables x1, . . . , xn

such that Γx1 = T1, . . . ,Γxn = Tn and x1, . . . , xn 6∈ FV s ∪ FV t. Then

T � s = t
=⇒ T � sx1 . . . xn = tx1 . . . xn

=⇒ T (sx1 . . . xn)σ0 = T (tx1 . . . xn)σ0

⇐⇒ [sx1 . . . xn] = [tx1 . . . xn] by Lemma 4.6
⇐⇒ A ` sx1 . . . xn = tx1 . . . xn

=⇒ A ` s = t by Proposition 1.1 �

Theorem 4 (Completeness) Given a signature of order ≤ 2 and a set of
equations A which is basic relatively to a context Γ, the following holds

∀s, t ∈ Ter Γ : A � s = t =⇒ A ` s = t

Proof

A � s = t
=⇒ TA � s = t since TA � A
=⇒ A ` s = t by Lemma 4.7 �

Open Problem 1 The completeness result for higher-order Boolean logic
seems not to carry over to the two-valued Boolean algebra T2 as defined
by BAx ∪ {B2}. It seems that though T2 � fx = f(f(fx)) obviously holds,
which can be verified by checking all possible values for f and x, this equal-
ity cannot be proved deductively: BAx , B2 6` fx = f(f(fx)). Although we
have a strong intuition supporting our claim, a formal proof has not yet
been obtained.

30

Chapter 5

Standard Models

In this chapter we investigate the semantic expressiveness of S, showing that
our system can adequately represent every property that can be expressed
in AHOL. When doing so, we make two implicit assumptions about the
semantics of S:
1. We investigate the expressiveness of S with respect to standard interpre-

tations. Standard interpretations are the most appropriate context for
evaluating the expressiveness of logical systems since they are the type
of models implicitly used in mathematics.

2. We require the interpretations of S to be non-trivial. The exact meaning
of this restriction will be explained and motivated in Section 5.4.
We do not consider HOL directly, but study first the semantic expres-

siveness of smaller sets of axioms implied by HOL, like BAx and LAx .
We begin by studying the role of QAx in Boolean algebras. We observe

that quantifiers as defined by QAx are closely related to infinite intersec-
tions and infinite unions of subsets of DB. This observation leads us to the
conclusion that extending Boolean algebras by quantification enforces their
completeness.

Then, we focus our attention on the identity test as the primitive opera-
tion in AHOL. We show how identity can be axiomatized in S(LAx) using
Leibniz’ criterion for equality and point out several important properties of
this axiomatization.

We proceed by considering a special Boolean algebra, the two-valued
algebra T2. T2 is used for the representation of truth values in AHOL. We
show that T2 and all the essential operations of T2 can be axiomatized in S.
Thus, we prove that S has at least the semantic expressiveness of AHOL.

We show that the semantic expressiveness of AHOL can also be achieved
without sticking to T2. In order to do so, we exploit some semantic prop-
erties of the identity test that do not depend on the exact structure of the
underlying Boolean algebra.

31

In the course of our discussion we present a finite axiomatization of the
natural numbers in S.

Finally, we show how the results can be carried over to S(HOL).

5.1 Set Algebras

The following considerations will rely on some fundamental semantic prop-
erties of S(BAx). Interpretations satisfying BAx , also known as Boolean
algebras, are well-understood. For a detailed account on the subject, see [9].
Here we just want to state briefly our assumptions concerning the semantics
of Boolean algebras.

Let (TC ,VC , ty) be a signature like in Definition 1.1, where the Boolean
constants are defined relatively to the base type B ∈ TC .

A typical Boolean algebra is a power set algebra looking as follows:

D 0 = ∅
D 1 = S
D¬ = λx ∈ P(S).S − x
D∧ = λx ∈ P(S).λy ∈ P(S).x ∩ y
D∨ = λx ∈ P(S).λy ∈ P(S).x ∪ y

This characterization defines a family of power set algebras differing from
one another by the choice of the underlying set S. Stone [42] showed that
every Boolean algebra is isomorphic to a set algebra, i.e. a subalgebra of a
power set algebra. Therefore, when talking about Boolean algebras, we lose
no generality by considering only the above interpretations for constants.

5.2 Quantification

Let us now extend Boolean algebras by universal quantification. On the
one hand we add some quantifier constants to our signature, on the other
hand we define their semantics by introducing new axioms. Definition 1.2
specifies both extensions formally.

Before we can use the extended algebras in new settings, we should ask
ourselves two questions:
1. What impact do the new axioms have on the the structure of admissible

models?
Basically, three cases are possible:
(a) Every Boolean algebra can be extended by quantification, i.e. the

new axioms describe properties that are shared by all Boolean alge-
bras.

(b) LAx describes properties shared by some non-trivial Boolean alge-
bras. In this case, we want to characterize these special properties as
precisely as possible.

32

(c) LAx is inconsistent, i.e. the only Boolean algebra satisfying the new
axioms is T1.

We want to show that a Boolean algebra can be extended to satisfy LAx
if and only if it is complete.

2. What is the semantics of quantifier constants in interpretations satisfying
LAx?
We want to show that all interpretations satisfying LAx interpret ∀ by
a function with well-known semantic properties.
We claim that for every type T , LAx uniquely determines D∀T as follows:

D∀T f = inf{fv|v ∈ DT}

In order to prove the claim we show that
1. D∀f is a lower bound of {fv|v ∈ DT}
2. every lower bound of {fv|v ∈ DT} is smaller or equal D∀f

Lemma 5.1 For all v ∈ DT , f ∈ D(T → B)

D∀f ⊆ fv

Proof Assume a context Γ such that Γx = B and Γg = T → B.

LAx ` ∀g ∧ gx = ∀g ∀I
=⇒ D(∀g ∧ gx)σ = D(∀g)σ for every σ
⇐⇒ D(∀g)σ ⊆ D(gx)σ for every σ
⇐⇒ D∀f ⊆ fv for all f, v �

Lemma 5.2 If there exists some value u ∈ DT such that for all v ∈ DT ,
f ∈ D(T → B) it holds

u ⊆ fv

then
u ⊆ D∀f

Proof Assume a context Γ such that Γx = Γy = B and Γg = T → B.
Assume further u ⊆ fv for all f and v. Observe that

u ⊆ fv for all f, v
⇐⇒ σy ⊆ D(gx)σ for every σ with σy = u
⇐⇒ D(y ∧ gx)σ = σy for every σ with σy = u

Take an arbitrary σ with σy = u and σg = f . Then

D(y ∧ ∀g)σ = D(∀x.y ∧ gx)σ ∀∧
= D(∀x.y)σ by assumption
= σy ∀E

⇐⇒ σy ⊆ D(∀g)σ
⇐⇒ u ⊆ D∀f �

33

Proposition 5.3 A Boolean algebra D satisfies LAx if and only if the fol-
lowing equations are satisfied for every type T :

D∀T f = inf{fv|v ∈ DT}
D∃T f = sup{fv|v ∈ DT}

Proof
• “⇒”: The result for ∀ is an immediate consequence of Lemmas 5.1 and

5.2. The result for ∃ follows by duality.
• “⇐”: The result for ∀ can be obtained by reverting the direction of the

proofs of Lemmas 5.1 and 5.2. Again, the result for ∃ follows by duality.�

Theorem 5 A Boolean algebra can be extended to satisfy LAx if and only
if it is complete.

Proof
• “⇒”: By the definition of D, D∀T and D∃T exist for all types T and

are interpreted by functions from D(T → B) to DB. Let T = B → B.
Then |DT | ≥ |DB|. Consequently, every subset of DB can be described
as {fv|v ∈ DT} for some f ∈ D(T → B). Therefore, the infimum D∀T f
and the supremum D∃T f exist for every subset of DB.

• “⇐”: Whenever we have a complete Boolean algebra, we can give quan-
tifier constants the denotations required by Proposition 5.3. �

Corollary 5.4 Every Boolen algebra satisfying LAx is complete.

Remark According to our representation of Boolean algebras, the interpre-
tation of the universal quantifier over DT is uniquely determined by

D∀T σ = λf ∈ D(T → B).
⋂

v∈DT

fv

Remark The above results were obtained by Gert Smolka in September 2004.

5.3 Identity

We know so far that the Boolean constants need not be introduced in terms
of logical constants. Instead, their semantics can be defined by means of
Boolean axioms. Now we want to show that if we restrict ourselves to
considering standard interpretations for Boolean algebras, we can define the
identity test in terms of Boolean constants and quantifiers, in the same way
it can be done in Church’s formulation of higher-order logic [8] (and in the
same way we did it in SId).

34

We define a family of constants .=T indexed by a type T as follows:

.=T
def= λx : T.λy : T.∀T→Bf.fx → fy

The definition formalizes the characterization of equality by Leibniz, who
observed that two values should be considered equal if and only if they have
the same properties. We claim that two values of any domain are identical if
and only if they are equal with respect to Leibniz’ criterion for equality, i.e.
if u and v are two values from the same domain, exactly one of the following
statements holds
• u and v are identical, in which case u

.= v denotes D1
• u and v differ and u

.= v denotes D0
We prove the two cases separately.

Lemma 5.5 If s, t : B, then for any assignment σ it holds

Dsσ = Dtσ =⇒ D(s → t)σ = D1

Proof

D(s → t)σ = D(¬s ∨ t)σ def →
= (S −Dsσ) ∪ Dtσ def D¬, D∧
= (S −Dsσ) ∪ Dsσ Dsσ = Dtσ
= S set theory
= D1 �

Proposition 5.6 Dsσ = Dtσ =⇒ D(s .= t)σ = D1

Proof Let s, t : T , f : T → B such that f 6∈ FV s ∪ FV t.

Dsσ = Dtσ ⇒ D(fs)σ = D(ft)σ regardless of σf
⇒ D(fs → ft)σ = D1 by Lemma 5.5
⇒ D(∀f.fs → ft)σ = D1 by Lemma 5.2
⇔ D(s .= t)σ = D1 def .= �

Proposition 5.7 Dsσ 6= Dtσ =⇒ D(s .= t)σ = D0

Proof Let Dsσ = u and Dtσ = v. By assumption u 6= v. Consider the
function g = λz ∈ DB.if z = u then S else ∅. Then

D(s .= t)σ = D(∀f.fs → ft)σ def .=
⊆ D(fs → ft)σ[f := g] def D and Lemma 5.1
= ∅ def g, def →
= D0 �

35

.= takes two values from an arbitrary domain and returns a value from
{D0,D1}, dependent on whether the two values are identical. Note that
Boolean axioms ensure that the two values differ in every non-trivial algebra.

Proposition 5.8 BAx ∪ {0 = 1} ` x = 0

Proof

x = x ∧ 1 BAx
= x ∧ 0 0 = 1
= 0 BAx �

5.4 The Two-Valued Boolen Algebra T2

It is usual practice to impose an additional restriction on Boolean algebras
when they are used to represent truth values. They are required to be built
on a two-element set. The two values are then interpreted as truth and
falsehood. This is the approach used in AHOL. According to our picture of
Boolean algebras, this restriction can be seen equivalent to requiring |S| = 1.
Thus, we obtain a finite Boolean algebra. It is known that every finite
Boolean algebra is isomorphic to a power set algebra (see [9] for reference).
Let us write T2 for such a power set algebra with |S| = 1. T2 is unique up
to isomorphism.

As it turns out, the requirement that T2 is the only Boolean algebra
can be weakened without compromising the expressiveness of the resulting
system.

Setting S = ∅ results in an algebra T1 built on an single-valued set P(S).
In T1, all domains contain exactly one element, which means that all terms
of the same type are given the same denotation. We call T1 the trivial
Boolean algebra. Clearly, T1 is too weak if we want to specify any non-
trivial properties.

However, setting S to be an arbitrary non-empty set actually gives us
models that are at least as expressive as T2. We prove this claim by showing
that T2 can be axiomatized within the more general system.

Convention In the following, we will always assume Boolean algebras to
be non-trivial.

5.4.1 Axiomatization

In order to obtain T2, we extend BAx by one additional axiom:

f0 ∧ f1 = f0 ∧ f1 ∧ fx (B2)

where f : B → B.
We claim that in conjunction with the Boolean axioms, B2 constrains

the admissible interpretations to be isomorphic to T2:

36

Lemma 5.9 Every interpretation satisfying BAx ∪ {B2} is isomorphic to
T2.

Proof By contradiction: Let D � BAx ∪ {B2} and |S| ≥ 2.

|S| ≥ 2 =⇒ |P(S)| ≥ 4
=⇒ ∃v ∈ P(S) : D0 = ∅ 6= v 6= S = D1

Choose an assignment σ such that
• σx = v

• σf = λv ∈ P(S).if v = ∅ ∨ v = S then S else ∅
and we obtain

D(f0 ∧ f1)σ = S 6= ∅ = D(f0 ∧ f1 ∧ fx)σ

Thus D 6� B2. =⇒ contradiction �

Of course, B2 is not the only way of axiomatizing T2. Another possibility
would have been to use Bin as we know it from HOL. Let us prove this claim
by by showing the deductive, and therefore semantic, equivalence of B2 and
Bin.

Proposition 5.10 LAx , B2 ` Bin

Proof

f1 ∧ f0 = ∀x.f1 ∧ f0 ∀E
= ∀x.f1 ∧ f0 ∧ fx B2
= ∀f ∧ f1 ∧ f0 ∀∧
= ∀f ∀I �

Proposition 5.11 LAx ,Bin ` B2

Proof

f0 ∧ f1 = ∀f Bin
= ∀f ∧ fx ∀I
= f0 ∧ f1 ∧ fx Bin �

Let us introduce the set LAx2 as an extension of LAx by B2. LAx2
axiomatizes two-valued Boolean algebras with quantification:

Definition LAx2 def= LAx ∪ {B2}

37

5.4.2 Expressiveness

B2 ensures that {D0,D1} are the only values in DB. Thus, .= has exactly
the semantics of Andrews’ identity constant Q.

Since the identity constant is the only logical constant needed to define
the semantics of higher-order logic as defined by Andrews, we have shown
that S(LAx2) has at least the expressiveness of traditional higher-order logic.
Every property specified in the traditional system can be translated to our
system by using .= and operations derived from the identity test.

Remark Of course, the validity of this translation depends on .= having the
intended semantics. We have shown this for standard models, but as soon
as we allow non-standard models, which will be introduced in Chapter 6,
the semantics of .= may change. In particular, if we drop the extensionality
requirement, .= obviously no longer denotes identity.

Defining Boolean constants and quantifiers in terms of .= would intro-
duce a second version of these operators. We can easily check that in T2

the derived operators behave in exactly the same way as the original ones.
Therefore, we can continue using the original constants without losing ex-
pressiveness.

We conclude that with LAx2 we have successfully axiomatized the se-
mantics of traditional mathematical logic.

5.5 Beyond T2

5.5.1 Binary Values

Definition A value v ∈ M1 → . . . → Mn → DB is called binary if for all
v1 ∈ M1, . . . , vn ∈ Mn it holds

vv1 . . . vn ∈ {D0,D1}

If n ≥ 1, we call v a binary function. Binary terms are terms that are
always interpreted as binary values. Binary equations are equations where
both terms are binary.

When applied to binary values, the Boolean operators as well as quan-
tifiers are guaranteed to yield binary values as results. Indeed, it is not
difficult to see that in AHOL all the typical constants behave on binary
arguments in exactly the same way as they do in T2, which can easily be
checked by using truth tables or some other technique for analysing finite
functions. Thus, when dealing with binary terms, their semantics corre-
spond precisely to our intuition for two-valued Boolean logic. In order to
keep our subsequent proofs simple, we will rely on this intuition as often as
possible.

38

What does it mean to “be equal according to .=” if DB contains more
than two values? The answer to this question is quite obvious, since actually
we have already seen that the equality test is binary:

Proposition 5.12 .= is binary.

Proof Follows immediately from Propositions 5.6 and 5.7. �

We observe that .= has the semantics of Andrews’ identity constant re-
gardless of the cardinality of DB.

We have shown that .= has proper semantics in S(LAx). Now we can use
.= to show that S(LAx) is as expressive as S(LAx2).

Again, we can introduce a second version of the common logical ope-
rators in terms of .=. Unlike in T2, the derived operators behave in a way
differing from the semantics of the constants used to axiomatize .=. Like
.=, they are binary regardless of the cardinality of DB, whereas the original
constants display the typical behaviour of Boolean operations in complete
set algebras. However, when dealing with binary values, we can use on the
original constants without having to worry about a possible loss of expres-
siveness. The reason has already been stated before. The behaviour of the
original constants on binary values matches that of the derived ones.

But first, we have to find a way to transform ordinary terms with
ran t = B to binary terms. This is what we will do next.

5.5.2 Predicates

The set {D0,D1} obviously corresponds to the set of truth values in Andrews’
formulation of higher-order logic, while the set of individuals can be chosen
arbitrarily from {DT |T ∈ Ty}.

In AHOL it is possible to represent functions whose range is the set of
truth values. Such functions are commonly called predicates. By what we
have seen so far, in our system predicates correspond to binary values. In
higher-order predicate logic, predicates are considered first-class, just like
ordinary values. Thus, we need a way to represent variables over predicates.
In order to enforce the binarity of a target function, we can use the identity
test:

Definition 5.1 Let Γf = T1 → . . . → Tn → B. Then

f̂
def= λx1 : T1. . . . λxn : Tn.fx1 . . . xn

.= 1

It is not hard to see that the denotation of f̂ is always binary. Moreover,
Df̂σ depends solely on the value of σ for its only free variable f . Indeed,

39

by properly instantiating f , the denotation of f̂ can represent every binary
function in D(T1 → . . . → Tn → B).

Let us extend our notation such that we can represent predicates over
truth values:

Definition 5.2 Let Γf = B → . . . → B → B. Then

f̌
def= λx1 : B. . . . λxn : B.f(x1

.= 1) . . . (xn
.= 1) .= 1

We can prove that in S(LAx2) the encoded terms are deductively equiv-
alent to the original terms, i.e. LAx2 ` t̂ = t and LAx2 ` ť = t hold for
all terms t of appropriate types. This means, when considering S(LAx2),
we can just substitute terms using predicate encoding by their non-accented
versions.

Let us proceed by proving the claimed deductive equivalence. First, we
observe that .= has some notable deductive properties:

Proposition 5.13 For all s, t : B it holds LAx , s
.= t = 1 ` s = t

Proof

s = 1 ∧ s BAx
= s

.= t ∧ s s
.= t = 1

= (∀f.fs → ft) ∧ s def .=
= (∀f.fs → ft) ∧ s ∧ (s → t) ∧ (t → s) ∀I with λx : B.x,¬
= (∀f.fs → ft) ∧ s ∧ t BAx
= (∀f.fs → ft) ∧ t ∧ (s → t) ∧ (t → s) BAx
= (∀f.fs → ft) ∧ t ∀I
= 1 ∧ t def .=, s

.= t = 1
= t �

Proposition 5.14 LAx ` x
.= x = 1

Proof

x
.= x = ∀f.fx → fx def .=

= ∀f.1 BAx
= 1 ∀E �

From this we can conclude the following:

Lemma 5.15 LAx2 ` 0 .= 1 = 0

40

Proof

0 .= 1
= 0 .= 1 ∧ 1 BAx
= 0 .= 1 ∧ 1 .= 1 Prop. 5.14
= ∀x.x

.= 1 Prop. 5.10
= ∀x.∀f.fx → f1 def .=
= (∀x.∀f.fx → f1) ∧ ∀f.f0 → f1 ∀I with 0
= (∀x.∀f.fx → f1) ∧ (∀f.f0 → f1) ∧ (¬0 → ¬1) ∀I with ¬
= 0 BAx �

Lemma 5.16 LAx2 ` ∀x.(x .= 1) .= x = 1

Proof

∀x.(x .= 1) .= x
= (0 .= 1) .= 0 ∧ (1 .= 1) .= 1 by Proposition 5.10
= (1 ∧ 1) .= 1 .= 1 by Lemma 5.15, Proposition 2.7
= 1 ∧ 1 by Propositions 5.14 and 2.7
= 1 BAx �

Lemma 5.17 LAx2 ` (x .= 1) .= x = 1

Proof

(x .= 1) .= x = 1 ∧ (x .= 1) .= x BAx
= (∀x.(x .= 1) .= x) ∧ (x .= 1) .= x by Lemma 5.16
= ∀x.(x .= 1) .= x ∀I
= 1 by Lemma 5.16

�

Lemma 5.18 LAx2 ` x
.= 1 = x

Proof By Lemma 5.17 and Proposition 5.13. �

Theorem 6 Let Γf = B → . . . → B → B. Then

LAx2 ` f̌ = f

Proof

f̌ = λx1 : B. . . . λxn : B.f(x1
.= 1) . . . (xn

.= 1) .= 1 def ˇ
= λx1 : B. . . . λxn : B.fx1 . . . xn

.= 1 Lem. 5.18
= λx1 : B. . . . λxn : B.fx1 . . . xn Lem. 5.18
= f η �

41

Corollary 5.19 Let Γf = T1 → . . . → Tn → B. Then

LAx2 ` f̂ = f

Remark Proposition 5.14, Lemma 5.15 and Lemma 5.17 correspond to
Andrews’ [4] Propositions 5210, 5217 and 5218 respectively. While the
proofs of the two lemmas basically resemble the corresponding proofs by
Andrews, note that in order to prove 5210 and 5217 he makes use of his
extensionality axiom, whereas our proofs work without any extensionality
assumptions.

Let us demonstrate with two examples how we can adapt classical results
to our system without requiring DB to be two-valued.

5.5.3 Finite Domains

Axiomatization of T2 we did before is just a special case of a more general
setting, which is axiomatization of finite domains.

Let us assume, we are working with a signature (TC ,VC , ty) such that
c1, . . . , cm ∈ VC and ty c1 = . . . = ty cm = T for some type T . Let D be a
non-trivial Boolean algebra based on a type B. We want to restrict DT to
contain exactly n elements. This can be done with the help of the following
axiom:

∃x1. . . .∃xn.
∧

1≤i<j≤n

¬xi
.= xj ∧ ∀x.

∨
1≤i≤n

x
.= xi = 1 (FDom n)

where we assume Γx = Γxm+1 = . . . = Γxn = T .
FDom n states that DT must contain n distinct values and that DT has

no other elements apart from these n values.
If we further want c1, . . . , cm to denote pairwise distinct values, we can

easily achieve this goal as follows:∧
1≤i<j≤m

¬ci
.= cj = 1

As we see, both axioms are binary, which means, that the classical ap-
proaches for showing the appropriateness of the axioms can be used without
restrictions.

5.5.4 The Natural Numbers

We have seen how to axiomatically represent arbitrary finite domains. How
can we generalize the approach to handle infinite domains? Let our next
task be the axiomatization of the natural numbers. We extend the Boolean
signature (TC ,VC , ty) as follows:

42

• TC ⊇ {N,B}
• VC ⊇ {0, 1,¬,∧,∨, ȯ, ṡ} ∪ {∀T |T ∈ Ty}
• ty is defined by the following table:

0, 1 : B
¬ : B → B

∧,∨ : B → B → B
ȯ : N
ṡ : N → N
∀T : (T → B) → B for all T ∈ Ty

Let the set Ṅ be the domain of our new type constant N. We want the set
Ṅ to contain exactly the natural numbers. It is widely known that the struc-
ture of Ṅ can be axiomatized by means of Peano’s postulates. Informally
they can be stated as follows:

Let M be a set such that

(N0) M contains a dedicated element 0.

(NS) For every element m in M there exists a successor element Sm. m is
called the predecessor of Sm.

(N1) 0 has no predecessor.

(N2) The mapping S is injective.

(N3) The principle of mathematical induction holds on M ordered by the
successor relation.

Then M is isomorphic to the natural numbers.

The following formalization of the last three postulates (NAx) assumes
x, y : N.

¬ṡx
.= ȯ = 1 (N1)

(ṡx .= ṡy) → (x .= y) = 1 (N2)
f̂ ȯ ∧ (∀x.f̂x → f̂(ṡx)) → f̂y = 1 (N3)

Notice that N0 and NS are automatically satisfied by every standard
interpretation of our system and hence need not be stated formally.

Let us show that NAx in conjunction with BAx is indeed an axiomati-
zation of the natural numbers, i.e. Ṅ ∼= N. In order to prove this claim we
need to take a closer look at interpretations D � LAx ∪NAx .

Lemma 5.20 It holds:
1. Dȯ 6∈ Ran(Dṡ)
2. Dṡ is injective

43

Proof Both claims are easy to prove because of the binarity of N1 and
N2. �

Lemma 5.21 Let f ∈ M → M be injective and let x ∈ M − Ran f . Then
it holds for all m, n ≥ 0

fmx = fnx ⇐⇒ m = n

Proof We prove “⇒”. The inverse direction is obvious. Assume f injective,
x 6∈ Ran f and m 6= n. Let w.l.o.g. m > n. We show fmx 6= fnx by
induction on n ∈ N:
• n = 0: By assumption x 6∈ Ran f . Since m ≥ 1, fmx ∈ Ran f . Therefore

fnx = x 6= fmx.
• n− 1 → n: By induction hypothesis fm−1x 6= fn−1x. Since f injective,

we conclude fmx 6= fnx. �

Lemma 5.22 For any assignment σ and for any m,n ≥ 0 it holds

D(ṡmȯ)σ = D(ṡnȯ)σ ⇐⇒ m = n

Proof By Lemma 5.20, Dȯ and Dṡ have all the properties needed to derive
the claim from Lemma 5.21. �

Lemma 5.22 shows that syntactically distinct terms built up from the
constants ȯ and ṡ have distinct denotations. Since there exist countably
infinitely many such terms, it is not difficult to see that with respect to set
isomorphism it holds

N ∼=
∞⋃

n=0

(Dṡ)n(Dȯ)

Obviously,
⋃∞

n=0(Dṡ)n(Dȯ) ⊆ Ṅ. Thus, we have shown N isomorphic to
a subset of Ṅ. It remains to show this subset to be the whole set Ṅ.

This is intended to be accomplished by the binary axiom N3. N3 is
equivalent to the usual formalization of induction in higher-order logic, which
is known to be sufficient in order to enforce the desired property.

Lemma 5.23

Ṅ ⊆
∞⋃

n=0

(Dṡ)n(Dȯ)

Proof By contradiction: Let v ∈ Ṅ−
⋃∞

n=0(Dṡ)n(Dȯ). Let
• σy = v

• σf = λx ∈ Ṅ.if ∃n ≥ 0 : x = (Dṡ)n(Dȯ) then D1 else D0
Clearly, σf is a binary function, i.e. we have Df̂σ = σf . We observe:

44

• D(f̂ ȯ ∧ (∀x.f̂x → f̂(ṡx)))σ = D1
• D(f̂y)σ = D0
Therefore D(f̂ ȯ ∧ (∀x.f̂x → f̂(ṡx)) → f̂y)σ = D0 6= D1, which is a contra-
diction to N3. �

Proposition 5.24 Ṅ ∼= N

Proof Follows immediately from Lemmas 5.22 and 5.23. �

Let us interpret the constants 0N,SN,+N, ∗N as the natural zero, the
function (λx ∈ N.x + 1), the addition and the multiplication over naturals
respectively.

We complete our axiomatization of the natural numbers by establishing
a structural isomorphism between our formalization of the naturals and the
algebra 〈N, 0N,SN,+N, ∗N〉.

Our system can easily be extended by formal equivalents of addition and
multiplication. We add the constants + and ∗ to VC and extend ty such
that ty + = ty ∗ = N → N → N. Also, we have to provide an axiomatic
definition (NOpAx) of the new constants. The definition is based on the
theory of primitive recursive arithmetic, originating in Skolem’s work [34].
Relatively to a type environment Γ with Γx = Γy = N, NOpAx can be
stated as follows:

x + ȯ = x x ∗ ȯ = ȯ
x + (ṡy) = (ṡx) + y x ∗ (ṡy) = x + (x ∗ y)

Lemma 5.25 〈Ṅ, ȯ, ṡ,+, ∗〉 ∼= 〈N, 0N,SN,+N, ∗N〉

Proof We define a mapping φ : 〈Ṅ, ȯ, ṡ,+, ∗〉 → 〈N, 0N,SN,+N, ∗N〉 such
that:

c ȯ ṡ + ∗
φc 0N SN +N ∗N

By straightforward inductive reasoning we can verify that φ is a homomor-
phism. By Proposition 5.24, φ is bijective. �

Definition We say an interpretation D contains the natural numbers
if for some T ∈ Ty and for some value constants ȯ, ṡ,+, ∗ ∈ VC with

ȯ, ṡ : T
+, ∗ : T → T → T

it holds 〈DT, ȯ, ṡ,+, ∗〉 ∼= 〈N, 0N,SN,+N, ∗N〉

45

Definition Let A be a set of equations. We call A an axiomatization of
an interpretation D if for every interpretation E it holds:

E � A ⇐⇒ E ∼= D

A axiomatizes a family of interpretations F if

E � A ⇐⇒ ∃D ∈ F : E ∼= D

Theorem 7 Interpretations containing the natural numbers can be finitely
axiomatized.

Proof To apply Lemma 5.25, we need BAx , the axioms ∀IT and ∀∨T for
T ∈ {B → B,N,N → B}, NAx and NOpAx . �

Remark If we extend the above axiomatization by B2, we can replace N3
by its non-accented version

fȯ ∧ (∀x.fx → f(ṡx)) → fy = 1

thus making redundant the two quantifier axioms for B → B. By doing so,
we obtain an axiomatization of T2 containing the natural numbers.

We have shown that we can encode the natural numbers within S. By
Gödel’s first incompleteness theorem [16], this means that, when parame-
terized with the above axioms, S becomes essentially incomplete, i.e. the
semantic closure of the axioms is no longer recursively enumerable.

Corollary 5.26 There exist finite sets of axioms A such that SC (A) is not
recursively enumerable.

5.6 HOL and its Semantic Closure

We finish our investigations of the semantic expressiveness of S by consider-
ing SC (HOL). We have already seen that LAx2 is at least as expressive as
AHOL. By showing SC (HOL) = SC (LAx2), are able to make an equivalent
statement for HOL.

Remark We take the consistency of LAx2 for granted. We do this relying
on the consistency of AHOL, since every axiom from LAx2 can be proved a
theorem of Andrews’ logic.

We begin by proving SC (HOL) ⊇ SC (LAx2). Since we already know
that HOL ` LAx2 (by Corollary 2.5, Proposition 5.11), it suffices to verify
that the constants of S(LAx2) really correspond to that of S(HOL). This is
clearly the case for the Boolean constants and for quantifiers. The situation

46

is different for .=. In S(HOL), .= is a primitive constant, whose semantics is
mainly defined by Ref and Rep. In S(LAx2), .= is a notational abbreviation
derived from quantification.

Thus, we have no formal correspondence between .= in S(HOL) and the
identity test based on Leibniz’ characterization, as it was studied in this
chapter. So, let us establish the missing correspondence.

Proposition 5.27 HOL ` .= = λx : T.λy : T.∀f.fx → fy

Proof Note that, again by Corollary 2.5 and Proposition 5.11, we may use
LAx2. Then

x
.= y = x

.= y ∧ 1 BAx
= x

.= y ∧ (x .= y → (∀f.fx → fx) .= ∀f.fx → fy) Con
= x

.= y ∧ (∀f.fx → fx) .= ∀f.fx → fy BAx
= x

.= y ∧ (∀f.1) .= ∀f.fx → fy BAx
= x

.= y ∧ 1 .= ∀f.fx → fy ∀E
= x

.= y ∧ ∀f.fx → fy Lem. 5.18
= (x .= x → x

.= y) ∧ ∀f.fx → fy BAx
= ∀f.fx → fy ∀I

⇐⇒ .= = λx : T.λy : T.∀f.fx → fy �

In order to show SC (HOL) = SC (LAx2) we still need to prove the inclu-
sion SC (HOL) ⊆ SC (LAx2). To do so, it suffices to show HOL ⊆ SC (LAx2).
Clearly, we have Ext ∈ SC (∅), since standard interpretations are exten-
sional by definition. Ref ∈ SC (LAx) holds by Propositions 5.6 and 5.7.
Bin ∈ SC (LAx2) follows immediately from Proposition 5.10. It remains to
check the validity of D∀, Rep and Rep ′.

Lemma 5.28 LAx2,Ext ` D∀

Proof

∀ = λf : T → B.∀x.fx η
= λf : T → B.∀x.fx

.= 1 by Lemma 5.18
= λf : T → B.∀x.fx

.= (λx : T.1)x η
= λf : T → B.f

.= (λx : T.1) Ext �

Lemma 5.29 For all interpretations D satisfying LAx, for all terms t, s′, t′

such that t : B and for every assignment σ:

D((∀FV .s′
.= t′) ∧ t[s′])σ = D((∀FV .s′

.= t′) ∧ t[t′])σ

Proof By Propositions 5.6, 5.7 and Lemma 5.1, we need to distinguish two
cases:

47

1. D(∀FV .s′
.= t′)σ = D0: Then

D((∀FV .s′
.= t′) ∧ t[s′])σ = D0 ∩ D(t[s′])σ defD

= D0 defD0
= D0 ∩ D(t[t′])σ defD0
= D((∀FV .s′

.= t′) ∧ t[t′])σ defD

2. D(∀FV .s′
.= t′)σ = D1: By Proposition 5.7 and Lemma 5.1, we obtain

Ds′σ′ = Dt′σ′ (∗)

for every assignment σ′. Then

D((∀FV .s′
.= t′) ∧ t[s′])σ

= D1 ∩ D(t[s′])σ defD
= D(t[s′])σ defD1
= D(t[t′])σ by (∗) and congruence
= D1 ∩ D(t[t′])σ defD1
= D((∀FV .s′

.= t′) ∧ t[t′])σ defD �

Lemma 5.30 For all interpretations D satisfying LAx and for every σ:

D(x .= y ∧ fx)σ = D(x .= y ∧ fy)σ

Proof Again, we need to distinguish two cases:
1. D(x .= y)σ = D0: Then

D(x .= y ∧ fx)σ = D0 ∩ D(fx)σ defD
= D0 defD0
= D0 ∩ D(fy)σ defD0
= D(x .= y ∧ fy)σ defD

2. D(x .= y)σ = D1: By Proposition 5.7, we obtain

σx = σy (∗)

Then
D(x .= y ∧ fx)σ = D1 ∩ σf(σx) defD

= σf(σx) defD1
= σf(σy) by (∗)
= D1 ∩ σf(σy) defD1
= D(x .= y ∧ fx) defD �

Proposition 5.31 SC (HOL) = SC (LAx2)

Proof Follows from SC (HOL) ⊇ SC (LAx2) in conjunction with Proposi-
tions 5.6, 5.7, 5.10, Lemmas 5.28, 5.29 and 5.30. �

Theorem 8 Every semantic property representable in AHOL can be ex-
pressed in S(HOL).

Proof Follows from Proposition 5.31. �

48

Chapter 6

General Models

We continue our studies of S by introducing a type of non-standard mod-
els known as Henkin models or general models. These models allow us to
analyse the process of formal deduction by means of semantic reasoning.

We use general models to study the deductive power of S(LAx2). Al-
though S(LAx2) is as powerful as AHOL with respect to semantic expres-
siveness, we find out that the deductive closure of LAx2 is strictly smaller
than that of HOL. This result motivates the choice of the latter set of axioms
for general-purpose applications of S as a logical system.

Finally we introduce a special kind of general models and use them to
obtain an important incompleteness result for S(LAx2) unrelated to AHOL.

6.1 Henkin’s Theorem

In his doctoral thesis, Henkin [20] (also in [21]) introduces general models as
a new interpretation for the higher-order calculus. He observes that with re-
spect to general models, higher-order axiom systems are complete. Although
Henkin only consideres a restricted set of deduction systems in detail, with
a more or less fixed set of axioms and with custom-built rules of inference,
it is easy to use his results within more general settings, including S.

Definition 6.1 (General Interpretation) Given (TC ,VC , ty), a gene-
ral interpretation H is a function with the following properties:
1. H provides denotations for type and value constants:

TC ∪VC ⊆ DomH
2. Types are mapped onto non-empty sets:

∀T ∈ Ty : HT 6= ∅

49

3. On the set of pre-terms H is defined recursively as follows:

Hcσ = Hc
Hxσ = σx if x ∈ Dom σ

H(st)σ = Hsσ(Htσ) if Htσ ∈ Dom(Hsσ)
H(λx : T.t)σv = Ht(σ[x := v]) for all v ∈ HT

Definition 6.2 (General Model) A general interpretation H is a gene-
ral model if it provides denotations for all terms:

∀T ∈ Ty∀t ∈ TerT Γ∀σ ∈ Sta(H,Γ) : Htσ ∈ HT

Remark In standard interpretations, for all types T1 and T2, D(T1 → T2)
is the set of all functions from DT1 to DT2. Therefore, every standard
interpretation is a model.

Let us formulate one of Henkin’s most important results on general mod-
els in a form that will be useful to us later:

Theorem 9 (Henkin’s Completeness and Soundness Theorem)
For every set of axioms A and for every equation E it holds

A ` E ⇐⇒ for every general model H : H � A ⇒ H � E

Proof Essentially obtained by Friedman [14]. Friedman’s proof in its orig-
inal form applies to the simply typed λ-calculus with no value constants,
parameterized with an empty set of axioms, but his approach can easily be
generalized to S. �

We will use general models in conjunction with Henkin’s Soundness
Theorem to show non-provability of equations and incompleteness of logical
systems. Whenever we want to show that an equation E is not provable
from a set of axioms A we can achieve this by making use of Henkin’s theo-
rem. All we need to do is to find a general model satisfying A but not E.
By the soundness result, we conclude A 6` E.

6.2 Deductive Power of LAx2

We know now that every semantic property we can represent in AHOL can
also be formalized using S(LAx2). Of course, this does not automatically
mean that every theorem in Andrews’ logic can also be derived from LAx2.
Indeed, LAx2 alone turns out to have a deductive closure that does not even
contain all of Andrews’ axioms.

If we wanted to show that the deductive closure of LAx2 contained all
the theorems of AHOL, we had to prove AAx being theorems of our system.

50

Furthermore, we needed to show that our axioms and rules of inference
suffice in order to simulate inference in Andrews’ system.

A1 can be derived from LAx2 by Proposition 5.10 and Proposition 2.7.
By Lemma 2.14, the same holds for A2. However, as we show in the fol-
lowing, general models satisfying LAx2 need not be extensional. Therefore,
LAx2 6` A3.

We prove our claim by constructing a non-extensional general model
satisfying LAx2.

Definition 6.3 Let N be the general interpretation defined as follows:
• NB = {0, 1}
• N (T1 → T2) contains every function from NT1 → NT2 twice, i.e. for

every f ∈ NT1 → NT2, N (T1 → T2) contains two distinct objects f1

and f2 such that
∀x ∈ NT1 : f1x = f2x = fx

N (T1 → T2) contains no further objects.
• N0 = 0, N1 = 1
• N (B → B) contains two appropriate denotations for Boolean negation.

Let N¬ be either of them.
• Let ∧ and ∨ denote an arbitrary function representing conjunction and

disjunction respectively. In both cases we can choose from four denota-
tions.

• Let f ∈ N (T → B) for some type T . Since NT is finite, we know that
inf{fx|x ∈ NT} exists.
Therefore, N ((T → B) → B) contains two functions g1 and g2 satisfying

∀f ∈ N (T → B) : g1f = g2f = inf{fx|x ∈ NT}

Let N∀T be either of them.
• Whenever there is a choice for N tσ between f1 and f2, choose f1.

Proposition 6.1 N is a general model.

Proof Let Γ ` t : T where T = T1 → . . . → Tn. Let σ ∈ Sta(N ,Γ). We
show that N provides a denotation for t relatively to σ by induction on the
structure of t:
1. t = x: N tσ = σx ∈ NT by the definition of Sta(N ,Γ).
2. t = c: N tσ = N c ∈ NT by Definition 6.1.
3. t = (t1t2): Let Γ ` t1 : T ′ → T . By induction, N t1σ ∈ N (T ′ → T) and

N t2σ ∈ NT ′. By Definition 6.3, there exists a function f ∈ NT ′ → NT
such that

∀x ∈ NT ′ : N t1σx = fx

Then
N tσ = N t1σ(N t2σ) = f(N t2σ) ∈ NT

51

4. t = λx : T1.t
′: By induction hypothesis, N t′σ ∈ N (T2 → . . . → Tn).

Therefore, N t′(σ[x := v]) ∈ N (T2 → . . . → Tn) for all v ∈ N (Γx). By
Definition 6.1

N tσv = N (λx : T1.t
′)σv = N t′(σ[x := v]) ∈ N (T2 → . . . → Tn)

for all v ∈ NT1. By Definition 6.3, NT contains two objects f1, f2

satisfying
∀v ∈ NT1 : f1v = f2v = N tσv

Then, again by Definition 6.3, N tσ = f1. In particular, N tσ exists. �

Proposition 6.2 N � LAx2

Proof Is an immediate consequence of Definition 6.3. �

Proposition 6.3 N 6� A3

Proof Let f ′ ∈ NT1 → NT2 for some types T1, T2. Let f1, f2 ∈ N (T1 → T2)
be two distinct values such that

∀x ∈ NT1 : f1x = f2x = f ′x

Let σ be an assignment such that
• σf = f1

• σg = f2

• σhv = if v = f1 then 0 else 1
Then

N (f .= g)σ = N (∀h.hf → hg)σ def .=
= N ((∀h.hf → hg) ∧ (hf → hg))σ ∀I
= N ((∀h.hf → hg) ∧ (0 → 1))σ defσ
= N0 BAx

We know
N (fx)σ = f1(σx) = f2(σx) = N (gx)σ

Proposition 5.6 holds for N as it does for standard models. The generaliza-
tion of the proof is straightforward. By applying Proposition 5.6 we obtain

N (fx
.= gx)σ = N1

=⇒ N (∀x.fx
.= gx)σ = N (∀x.1)σ

= N1 ∀E

Thus, we have
N (f .= g)σ = N0 (∗)

N (∀x.fx
.= gx)σ = N1 (∗∗)

52

N (f .= g
.= ∀x.fx

.= gx)σ
= N (∀i.i(f .= g) → i(∀x.fx

.= gx))σ def .=
= N (∀i.i0 → i1)σ by (∗), (∗∗)
= N ((∀i.i0 → i1) ∧ (0 → 1))σ ∀I
= N0 BAx
6= N1 �

Proposition 6.4 LAx2 6` A3

Proof Follows immediately from Proposition 6.3 and Theorem 9. �

Remark Andrews [2] obtains an analogous result for the system used by
Henkin [21] in his proof of Theorem 9. However, our proof is completely
independent from Andrews’ approach. Moreover, the general model con-
structed within our proof contradicts Andrews’ claim that every general
model H of Henkin’s system is extensional if H(T → T → B) contains the
identity test for every type T .

Theorem 10 The deductive closure of LAx2 in S is strictly smaller than
that of Andrews’ axioms in AHOL.

Proof The claim is implied by the the following three statements:
1. Every axiom from LAx2 can be derived from Andrews’ axioms using R.
2. R can simulate every rule of inference in S.
3. Proposition 6.4.
The first two statements are for the most part proved by Andrews [4]. The
remaining proofs are straightforward. �

Corollary 6.5 The deductive closure of LAx2 is strictly smaller than that
of HOL.

Open Problem 2 We are able to deduce A1 from LAx2, whereas it does
not seem possible to obtain the same result from LAx alone by restricting
quantification to binary functions. While we have proved that B2 con-
tributes nothing to the semantic expressiveness of a logical system, systems
including B2 seem to have a greater deductive power than those without.

6.3 Dependent Models

Since general interpretations allow smaller functional spaces than standard
interpretations, it is often not obvious, whether a general interpretation is
a model or not. Andrews [3] discusses certain closure conditions that are
satisfied by an interpretation if and only if it is a model. Nevertheless,
constructing general models stays a difficult task.

53

To facilitate this task, we develop a special construction principle for
general interpretations. We do not build a general interpretation H from
scratch, but use a well-understood standard interpretation D as a basis, such
that
• ∀T ∈ Ty : HT ⊆ DT

• ∀t ∈ Ter Γ, σ ∈ Sta(H,Γ) : Htσ = Dtσ

We call such interpretations dependent since their semantic structure de-
pends on the underlying standard interpretation.

The tricky part in the definition of a dependent interpretation H is the
characterization of its domains. These are constructed with the help of D
as follows:

HT = {Dtσ|σ ∈ Sta(D,Γ), Γ ` t : T, P (t)}

where P (t) is some constraint imposed on the structure of t.
Why do we need P (t)? Suppose, we dropped it. Then t would be allowed

to be any term. In particular, we would allow t = x for any variable x : T .
Clearly,

{σx|σ ∈ Sta(D,Γ), Γx = T} = DT

So, we need P (t) to enforce HT (DT at least for some T .
The way we construct the domains of H gives us a relatively convenient

way to determine whether H is a model. What we need to check is whether
every term, regardless of its structure, denotes a value that can be denoted
by some term satisfying P .

In the following, we want to construct two dependent models. The first
one, K0, serves mainly to explain the construction principle, whereas the
second one, K, is later used to prove an interesting incompleteness result
concerning S(LAx2).

6.3.1 K0 and Finite Models

Henkin [22] proves that in higher-order logic with identity and descriptions
every finite model is standard. This restriction does not apply to our system
in general. This is not surprising, since we neither require every instance
of S to include identity or descriptions, nor do we restrict S to allow only
extensional models. Nevertheless, we want to prove that S allows finite non-
standard models by constructing such a model for a simple instance of S.

How do we construct a finite non-standard model? Consider the finite
domain structure of T2. Apparently, negation in T2 cannot be represented by
any term containing no value constants if all its free variables are first-order.
We construct an interpretation K0 based on denotations of such terms in
a standard finite model and show the constructed interpretation being a
model. If we succeed in proving that we cannot represent negation by terms
t with max{ord(Γx)|x ∈ FV t} = 1, the constructed model is indeed non-
standard.

54

Definition 6.4 Let (TC ,VC , ty) be a signature such that TC = {B} and
VC = ∅. Let DB be the standard interpretation built on the set {0, 1}, i.e.
DBB = {0, 1}. We define the general interpretation K0 as follows:
• K0T = {DBtσ |σ ∈ Sta(DB,Γ),

Γ ` t : T,
max{ord(Γx)|x ∈ FV t} = 1}

• K0tσ = DBtσ

Remark Observe that since K0T ⊆ DBT holds for all types T , it also holds
Sta(K0,Γ) ⊆ Sta(DB,Γ). Therefore, DBtσ is well-defined for every term t
and every σ ∈ Sta(K0,Γ).

Remark K0 is indeed a general interpretation since DB is one. The only re-
quirement in the definition of a general interpretation which is not obviously
satisfied is the second one. However, if we consider an assignment σ with
σy = 0, we easily see that for all types T = T1 → . . . → Tn → B

K0T ⊇ {DB(λx1 : T1. . . . λxn : Tn.y)σ} 6= ∅

Proposition 6.6 K0 is finite

Proof Since K0T ⊆ DBT for all types T and DB is finite, K0 is finite as
well. �

In order to prove K0 being a model, we will make use of the following
substitution lemma:

Lemma 6.7 Let H be an arbitrary general model, t be a term with y 6∈ FV t,
Γx = Γy and x ∈ Dom σ. Then

Htσ = H(t[x := y])(σ[y := σx])

Proof By induction on the structure of t. �

Proposition 6.8 K0 is a general model

Proof We show that if Γ ` t : T , K0tσ ∈ K0T holds for any σ ∈ Sta(K0,Γ)
by induction on the structure of t:
1. t primitive, i.e. t = x: Then K0tσ = σx. By definition of Sta(K0,Γ),

σx ∈ K0T .
2. t compound: Let FV t = {x1, . . . , xn}. By induction hypothesis, for all

i ∈ {1, . . . , n} it holds σxi ∈ K0(Γxi), i.e. there exists an assignment σi

and a term ti with max{ord(Γx)|x ∈ FV ti} = 1 such that σxi = K0tiσi.
By Lemma 6.7, we can assume without loss of generality that

∀i, j : i 6= j ⇒ FV ti ∩ FV tj = ∅

55

Then there exists a single assignment σ′ such that for all i it holds
K0tiσ

′ = K0tiσi. Let t′ = t[x1 := t1] . . . [xn := tn]. Then K0tσ = K0t
′σ′.

Observe that max{ord(Γx)|x ∈ FV t′} = 1.
It holds K0tσ = K0t

′σ′ = DBt′σ′. Therefore, K0tσ ∈ K0T . �

Lemma 6.9 Let Γ ` t : B → B. Let σ be an assignment. Then there exists
an assignment σ′ and a term t′ such that
• t′ = λx : B.y with x and y not necessarily distinct
• K0tσ = DBt′σ′

Proof By the definition of K0, there exists an assignment σ′ and a term t′′

with ∀x ∈ FV t′′ : ord(Γx) = 1 such that K0tσ = DBt′′σ′.
Let t′ = λx : B.yt1 . . . tn be a βη-normal form of t′′. Since FV t′ ⊆ FV t′′,

it holds ∀x ∈ FV t′ : ord(Γx) = 1. Observe that ord(Γy) = 1 since
• either y = x and ord(Γx) = 1,
• or y 6= x, but then y ∈ FV t′ and consequently ord(Γy) = 1.
Since Γ[x := B] ` yt1 . . . tn : B, n = 0. �

Proposition 6.10 Let t be a term and σ an assignment. Then

K0tσ 6= λv ∈ K0B.1− v

Proof Let w.l.o.g. Γ ` t : B → B. Otherwise, the claim holds trivially. Let
us write f for λv ∈ K0B.1 − v. Notice that since 0 and 1 are distinct, f
satisfies the following two inequalities:
• f0 6= f1
• ∀v ∈ K0B : fv 6= v

By Lemma 6.9, the denotation of t equals to that of a term t′ = λx : B.y.
Let us write g for the denotation of t′. We need to consider two cases:
1. x = y: Then g = λv ∈ K0B.v =⇒ gv = v

2. x 6= y: Then g = λv ∈ K0B.w where w ∈ K0B =⇒ g0 = g1 = w

Therefore, in both cases we have g 6= f , which completes the proof. �

Corollary 6.11 K0 is non-standard.

6.3.2 K and Identity

Leibniz’ criterion is certainly appropriate in order to specify the identity
test in standard models. However, when we consider non-standard models,
we cannot rely on the criterion to be a sufficient characterization of identity.
As a consequence, certain propositions that are obviously valid in standard
models turn out to be non-provable. We have seen an example for this
in Section 2.2, when we stated the non-validity of the reverse direction of
Proposition 2.7. Let us now consider why it is the case.

56

Definition Let the function tc be defined as follows:

tc(B) = {B}
tc(T1 → T2) = tc(T1) ∪ tc(T2)

Remark tc(T) returns the set of type constants occuring in T .

Definition 6.5 Let (TC ,VC , ty) be a signature such that
• TC = {B,C}
• VC = {0, 1,¬,∧,∨} ∪ {∀T |T ∈ Ty}
• ty is defined as follows:

0, 1 : B
¬ : B → B

∧,∨ : B → B → B
∀T : (T → B) → B for all T ∈ Ty

We define a standard Boolean algebra DK and a general interpretation K
by mutual recursion on the order of the type T in KT :
• DKB = P(S) where S = {∅}
• DKC = {⊥,>}
• DK0 = ∅
• DK1 = S

• DK¬ = λx ∈ DKB.S − x

• DK∧ = λx ∈ DKB.λy ∈ DKB.x ∩ y

• DK∨ = λx ∈ DKB.λy ∈ DKB.x ∪ y

• DK∀T = λf ∈ DK(T → B).inf{fv|v ∈ KT}
• KT = {DKtσ|σ ∈ Sta(DK,Γ),

Γ ` t : T,
ran t = B =⇒ ∀x ∈ FV t : C 6∈ tc(Γx)}

• Ktσ = DKtσ

Remark Note that DK∀ always exists since both DK and K are finite and
therefore complete.

Remark As in the case of Definition 6.4, we can easily verify that KT 6= ∅
holds for every type T .

Lemma 6.12 Let t be a βη-normal term with ran t = B, S ⊆ Var. If

∀x ∈ FV t− S : ran(Γx) = B =⇒ C 6∈ tc(Γx)

then
∀x ∈ FV t− S : C 6∈ tc(Γx)

57

Proof By induction on the structure of t:
1. t = x: Since ran t = B, ran(Γx) = B. By assumption, C 6∈ tc(Γx).
2. t = c: FV t− S ⊆ FV t = ∅. Thus, the claim is trivially true.
3. t = λx1 : T1. . . . λxn : Tn.t0t1 . . . tm: Let Γ′ = Γ[x1 := T1, . . . , xn := Tn],

S′ = S ∪ {x1, . . . , xn}. By assumption and induction hypothesis, for all
i ∈ {1, . . . ,m} it holds

∀x ∈ FV ti − S′ : C 6∈ tc(Γ′x)

By the definition of βη-normal form, t0 is primitive. We consider two
cases:
(a) t0 = c: Then FV t ⊆

⋃m
i=1 FV ti and we are done.

(b) t0 = x: Let w.l.o.g. x ∈ FV t, otherwise FV t ⊆
⋃m

i=1 FV ti and
we are done. Since Γ′ ` t0t1 . . . tm : B, it holds ran(Γ′x) = B. By
assumption, C 6∈ tc(Γ′x) and we are done. �

Proposition 6.13 K is a general model

Proof We show that if Γ ` t : T , Ktσ ∈ KT holds for any σ ∈ Sta(K,Γ).
We need to consider two cases:
• ran(T) = C: Let t′ be a βη-normal form of t. Then

Ktσ = Kt′σ = DKt′σ ∈ KT

• ran(T) = B: We proceed by induction on the structure of t:
1. t = x: Then Ktσ = σx. By the definition of Sta(K,Γ), σx ∈ KT .
2. t = c: By Definition 6.1, Ktσ = Kc ∈ KT .
3. t compound: Let

{x1, . . . , xm} = {x|x ∈ FV t, ran(Γx) = B}

By induction hypothesis, for all i ∈ {1, . . . ,m} it holds σxi ∈ K(Γxi).
In particular, there exists an assignment σi and a βη-normal term ti
with ∀x ∈ FV ti : C 6∈ tc(Γx) such that σxi = Ktiσi.
By Lemma 6.7, we can assume without loss of generality that

∀i, j : i 6= j ⇒ FV ti ∩ FV tj = ∅

Then there exists a single assignment σ′ such that for all i it holds
Ktiσ

′ = Ktiσi. Let t′ = t[x1 := t1] . . . [xm := tm]. Then

Ktσ = Kt′σ′

Observe that

∀x ∈ FV t′ : ran(Γx) = B =⇒ C 6∈ tc(Γx)

58

Let t′′ be a βη-normal form of t′. Then FV t′′ ⊆= FV t′ and the above
statement holds for t′′ as well. By Lemma 6.12, it holds

∀x ∈ FV t′′ : C 6∈ tc(Γx)

Then
Ktσ = Kt′′σ′ = DKt′′σ′ ∈ KT �

Proposition 6.14 K � LAx2.

Proof Like DK, K is a finite and therefore complete Boolean algebra built
on a two-valued set. It remains to show that K satisfies QAx . By the
definition of DK, it holds

K∀T f = DK∀T f = inf{fv|v ∈ KT}

for all f ∈ K(T → B). Since K is a set algebra, Lemma 5.3 can be generalized
to K. �

Lemma 6.15 For every f ∈ K(C → B) and for every v, w ∈ KC it holds

fv = fw

Proof Let f ∈ K(C → B). Then there exists some term t and an assignment
σ such that f = Ktσ. Let

t′′ = λx : C.t′ where t′ = t0t1 . . . tn

be a βη-normal form of t. Then FV t′ ⊆ FV t′′ ∪ {x} ⊆ FV t ∪ {x}. By
Definition 6.5, we have

∀x ∈ FV t : C 6∈ tc(Γx)

Let Γ′ = Γ[x := C]. Since ran (Γ′x) = C, we still have

∀x ∈ FV t′ : ran(Γ′x) = B =⇒ C 6∈ tc(Γ′x)

By Lemma 6.12, we obtain

∀x ∈ FV t′ : C 6∈ tc(Γ′x)

Since C ∈ tc(Γ′x), this implies x 6∈ FV t′. Therefore, for every v, w ∈ KC it
holds:

fv = Ktσv = Kt′(σ[x := v]) = Kt′(σ[x := w]) = Ktσw = fw �

59

Proposition 6.16 Let s, t : C. Then for every assignment σ it holds

K(s .= t)σ = K1

Proof Let g = σf , v = Ksσ and w = Ktσ.

K(fs → ft)σ = (S − gv) ∪ gw
= (S − gv) ∪ gv by Lemma 6.15
= S set theory
= K1 (∗)

Then
K(s .= t)σ = K(∀f.fs → ft)σ

= K(∀f.1)σ by (∗)
= K1 ∀I �

We now have everything neccesary to prove that the reverse direction of
Proposition 2.7 does not hold.

Theorem 11 There exist terms s, t such that LAx2, s
.= t = 1 6` s = t

Proof Let x, y be distinct variables with Γx = Γy = C. By Propositions 6.14
and 6.16, K � LAx2 ∪ {x .= y = 1}.

Let σ be an assignment with σx = ⊥ and σy = >. Then

Kxσ = ⊥ 6= > = Kyσ
=⇒ K 6� x = y

The claim follows by Theorem 9. �

Open Problem 3 So far we do not know whether HOL, s
.= t = 1 ` s = t.

Our intuition suggests that this is not the case. A corresponding proof could
possibly be obtained by showing K � HOL.

60

Chapter 7

Conclusion and Further
Work

We have presented S as an alternative definition of higher-order logic. As
we have seen, S instantiated with different sets of axioms generates logical
systems with differing structure and expressivity. In particular, we consid-
ered S(HOL) and showed this system deductively equivalent to AHOL. The
equivalence in semantic expressiveness was observed even for a deductively
weaker set of the logical axioms LAx . Thus, we have shown S to be an
adequate formulation of higher-order logic, well-suited for general-purpose
application.

Amongst other things, we considered systems based on S instantiated
with first-order axioms and proved them complete with respect to standard
models. When using such higher-order systems, like S(BAx), we can rely
on the fact that any valid equality of the logical system can be formally
proved within the system, which obviously increases the system’s practical
applicability.

The investigation of S and related systems is far from complete. Al-
though we now have some understanding of our system’s expressiveness
with respect to standard models, we have not much knowledge about the
semantics of our system for general models. This knowledge is important
since it would allow us to draw further conclusions about deduction in S.
Of particular interest might be the role of descriptions and their influence
on the semantics of the internal identity test for non-standard models.

We have seen that in S(LAx2) the internal identity test, though seman-
tically equivalent to external identity relative to standard models, is weaker
than external identity with respect to deduction. The proof was obtained
using a specially constructed general model K. It is not yet clear whether the
same difference between internal and external identity exists in S(HOL). It
may be possible to extend K to satisfy HOL, thus proving this assumption.
This would include showing K being extensional. If K cannot be extended

61

to satisfy HOL, perhaps we can construct a more appropriate model or show
the deductional equivalence of the two types of identity.

By extending the equality rules with Id we destroy the generic nature
of deduction in S. As we have noticed, this generic nature can be regained
at a higher level of abstraction by introducing conditional equations [44].
In such an extended system, rules of inference could be derived in the same
way we do it in S for ordinary equations. Such a formalism could find useful
application in proof assistants and other practically valuable systems. It is
certainly an interesting extension of our system that should be explored in
detail.

We have shown the completeness of S for first-order axioms, but we did
not obtain any results about whether the validity of equations in S is decid-
able. Finding an algorithm to efficiently decide the validity of propositions in
certain subsystems of S would be an important contribution to the system’s
usefulness. Research in this area could possibly be based on Meinke’s re-
sults on term rewriting in higher-order equational logic [27] or on Statman’s
work [39, 41].

Further, we could weaken some restrictions on the form of the axioms in
our completeness result, like e.g. admitting constants of order greater than 2,
and analyze the consequences, possibly obtaining a stronger version of the
completeness theorem. A stronger result might also be obtained by modify-
ing Friedman’s completeness proof for the simply typed λ-calculus [14].

62

Bibliography

[1] Akama, Y. On Mints’ reduction for ccc-calculus. In Proceedings of the
International Conference on Typed Lambda Calculi and Applications
(TLCA ’93) (1993), M. Bezem and J. Groote, Eds., vol. 664 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 1–12.

[2] Andrews, P. B. General models and extensionality. Journal of Sym-
bolic Logic 37 (1972), 395–397.

[3] Andrews, P. B. General models, descriptions and choice in type
theory. Journal of Symbolic Logic 37 (1972), 385–394.

[4] Andrews, P. B. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof, second ed., vol. 27 of Applied Logic
Series. Kluwer Academic Publishers, 2002.

[5] Andrews, P. B., and Bishop, M. On sets, types, fixed points, and
checkerboards. In Theorem Proving with Analytic Tableaux and Related
Methods. 5th International Workshop. (TABLEAUX ’96) (May 1996),
P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, Eds., vol. 1071
of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 1–15.

[6] Baader, F., and Nipkow, T. Term Rewriting and All That.
Cambridge University Press, 1998.

[7] Boolos, G. Logic, logic and logic. Harvard University Press, 1998.

[8] Church, A. A formulation of the simple theory of types. Journal of
Symbolic Logic 5, 1 (1940), 56–68.

[9] Davey, B. A., and Priestley, H. A. Introduction to Lattices and
Order, second ed. Cambridge University Press, 2002.

[10] de Vrijer, R. C. Exactly estimating functionals and strong normal-
ization. Indagationes Mathematicae 49, 4 (1987), 479–493.

[11] di Cosmo, R., and Kesner, D. Simulating expansions without ex-
pansions. Mathematical Structures in Computer Science 4 (1994), 315–
362.

63

[12] Dragalin, A. G. The computability of primitive recursion terms of fi-
nite type, and primitive recursive realization. Seminars in Mathematics
(1968), 32–45. In Russian.

[13] Frege, G. Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Halle, 1879. Translated in [45],
pp. 1–82.

[14] Friedman, H. Equality between functionals. In Proceedings of the
Logic Colloquium 72-73 (1975), R. Parikh, Ed., vol. 453 of Lecture
Notes in Mathematics, Springer-Verlag, pp. 22–37.

[15] Gandy, R. O. Proofs of strong normalization. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, J. R.
Hindley and J. P. Seldin, Eds. Academic Press, 1980, pp. 457–477.

[16] Gödel, K. Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme, I. Monatshefte für Mathematik und
Physik 38 (1931), 173–198. Translated in [45], pp. 596–616.

[17] Gödel, K. Über die Länge von Beweisen. Ergebnisse eines Mathema-
tischen Kolloquiums 7 (1936), 23–24. Translated in [18], pp. 396–399.

[18] Gödel, K. Collected Works, Volume I. Oxford University Press, 1986.

[19] Hanatani, Y. Calculabilité des fonctionelles récursives primitives de
type fini sur les nombres naturels. Annals of the Japan Association for
Philosophy of Science 3 (1966), 19–30.

[20] Henkin, L. The completeness of formal systems. Thesis in candidacy
for the degree of doctor of philosophy, Princeton University, 1947.

[21] Henkin, L. Completeness in the theory of types. Journal of Symbolic
Logic 15, 2 (June 1950), 81–91.

[22] Henkin, L. A theory of propositional types. Fundamenta Mathemati-
cae 52 (1963), 323–344.

[23] Henkin, L. Identity as a logical primitive. Philosophia 5 (1975), 31–45.

[24] Hinata, S. Calculability of primitive recursive functionals of finite
type. Science Reports of the Tokyo Kyoiku Daigaku A 9 (1967), 218–
235.

[25] Hindley, J. R. Basic Simple Type Theory, vol. 42 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1997.

[26] Kamareddine, F., Laan, T., and Nederpelt, R. A Modern Per-
spective on Type Theory. From its Origins until Today, vol. 29 of Applied
Logic Series. Kluwer Academic Publishers, 2004.

64

[27] Meinke, K. Proof theory of higher-order equations: conservativity,
normal forms and term rewriting. Journal of Computer and System
Sciences 67 (2003), 127–173.

[28] Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, vol. 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[29] Owre, S., Rushby, J. M., and Shankar, N. PVS: A prototype
verification system. In 11th International Conference on Automated
Deduction (CADE) (Saratoga, NY, June 1992), D. Kapur, Ed., vol. 607
of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 748–752.

[30] Pierce, B. C. Types and Programming Languages. The MIT Press,
2002.

[31] Plotkin, G. D. Lambda-definability and logical relations. Memoran-
dum SAI-RM-4, University of Edinburgh, 1973.

[32] Plotkin, G. D. Lambda-definability in the full type theory. In To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism, J. R. Hindley and J. P. Seldin, Eds. Academic Press, 1980,
pp. 365–373.

[33] Russell, B. Mathematical logic as based on the theory of types.
American Journal of Mathematics 30 (1908), 222–262.

[34] Skolem, T. Begründung der elementaren Arithmetik durch die rekur-
rierende Denkweise ohne Anwendung scheinbar Veränderlichen mit
unendlichem Ausdehnungsbereich. Videnskapsselskapets skrifter, I.
Matematisk-naturvidenskabelig klasse, 6 (1923), 1–38. Translated in
[45], pp. 302–333.

[35] Skolem, T. Über die Unmöglichkeit einer vollständigen Charak-
terisierung der Zahlenreihe mittels eines endlichen Axiomensystems.
Norskmatematisk forenings skrifter 2, 10 (1933), 73–82.

[36] Skolem, T. Über die Nicht-charakterisierbarkeit der Zahlenreihe mit-
tels endlich oder abzählbar unendlich vieler Aussagen mit ausschließlich
Zahlenvariablen. Fundamenta mathematicae 23 (1934), 150–161.

[37] Smolka, G. Introduction to Computational Logic: Lecture Notes.
Universität des Saarlandes, 2004. www.ps.uni-sb.de/courses/cl-ss04/
script/.

[38] Statman, R. Bounds for proof search and speed-up in the predicate
calculus. Annals of Mathematical Logic 15 (1978), 225–287.

65

http://www.ps.uni-sb.de/courses/cl-ss04/script/
http://www.ps.uni-sb.de/courses/cl-ss04/script/

[39] Statman, R. Completeness, invariance and λ-definability. Journal of
Symbolic Logic 47, 1 (1982), 17–26.

[40] Statman, R. Equality between functionals revisited. In Harvey Fried-
man’s Research on the Foundations of Mathematics, L. A. Harrington
et al., Eds. North-Holland, 1985, pp. 331–338.

[41] Statman, R., and Dowek, G. On statman’s finite completeness theo-
rem. Tech. Rep. CMU-CS-92-152, Carnegie Mellon University, 1992.

[42] Stone, M. H. The representation theorem for Boolean algebras.
Transactions of the American Mathematical Society 40 (1936), 37–111.

[43] Tait, W. Intensional interpretations of functionals of finite type I.
Journal of Symbolic Logic 32 (1967), 198–212.

[44] Terese. Term Rewriting Systems, vol. 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

[45] van Heijenoort, J., Ed. From Frege to Gödel: A Source Book in
Mathematical Logic, 1879–1931. Source Books in the History of the
Sciences. Harvard University Press, 2002.

[46] van Oostrom, V. Confluence for Abstract and Higher-Order Rewrit-
ing. Dissertation, Vrije Universiteit, Amsterdam, 1994.

66

Index

∗, 45
+, 45
β, 11
η, 11
Γ, 9
↔, 13
→, 13
∼=, 12
∃, 13
∃∧, 14
∃E, 14
∃I, 14
∃∨, 14
∀, 13
∀∧, 13
∀E, 13
∀I, 13
∀∨, 13
ι, 22
0N, 45
SN, 45
.=, 15, 21, 35
ρ, 28
∗N, 45
+N, 45
σ0, 28
τT , 28
[t], 27
[t]A, 11

A1, 16
A2, 16
A3, 16
A5, 22
AAx , 16
abstraction, 9

application, 9
axiom, 11
axiomatization, 46

B2, 36
base type, 9
basic, 27
BAx , 12
Bin, 16
binary, 38
B, 12
Boolean

algebra, 12
axioms, 12

C, 57
compound, 9
conditional equation, 20
constant, 9
context, 9

global, 10

D, 11
D∀, 16
DA, 27
DB, 55
Des, 22
description operator, 22

Ext , 16

FDom, 42
f̂ , 39
f̌ , 40
function type, 9

general
interpretation, 49

67

model, 50

Id, 19
interpretation, 12
isomorphic, 12

K, 57
K0, 55

LAx , 12
LAx2, 37
logical axioms, 12

N1, 43
N2, 43
N3, 43
N, 43
NAx , 43
N , 51
Ṅ, 43
NOpAx , 45
normal form

η-, 23

ȯ, 43
ord, 10
order, 10

parameter, 11
pre-term, 9
primitive, 9
PT , 9

Q, 38
QAx , 12
quantifier axioms, 12

R, 16
ran, 10
Ref , 11
Ref , 16
Rep, 11
Rep, 16
Rep ′, 16

ṡ, 43

standard
interpretation, 11
model, 11
term model, 27

subalgebra, 12
Sub, 11
Sym, 11
S

.
=, 20

SId, 21

T , 28
T1, 36
T2, 36
tc, 57
Ter , 10
term, 10
TerT , 10
Trans, 11

variable, 9

68

	Basics
	Types and Terms
	Deduction
	Logical Axioms

	S(HOL)
	AHOL
	HOL and its Deductive Closure
	Logical Axioms
	Andrews' Axioms
	Conclusion

	Alternatives
	S=.
	SId

	Descriptions

	Long Normal Forms
	First-Order Completeness
	Standard Models
	Set Algebras
	Quantification
	Identity
	The Two-Valued Boolen Algebra T2
	Axiomatization
	Expressiveness

	Beyond T2
	Binary Values
	Predicates
	Finite Domains
	The Natural Numbers

	HOL and its Semantic Closure

	General Models
	Henkin's Theorem
	Deductive Power of LAx2
	Dependent Models
	K0 and Finite Models
	K and Identity

	Conclusion and Further Work

