Solving Boolean Equations with BDDs and Clause Forms

Gert Smolka

Abstract

- Methods for solving Boolean equations
 - BDDs [Bryant 1986]
 - Clause forms [Quine 1959]
- Efficient data structure and algorithms for large finite sets (e.g. 2¹⁰⁰⁰)

Applications

- Verification (e.g. model checking)
- CAD of HW (e.g. circuit minimization)
- Knowledge representation (e.g. truth maintainance)

Why do I talk about it?

- Beautiful and important
- Interesting trip from logic to algorithms
- Equation solving not covered in textbook accounts of propositional logic
- Had to work it out for our introductory course on Computational Logic

Modelling with Boolean Equations: Graph Coloring

ls graph bipartite? x≠y, x≠z, y≠z

x=¬y, ...

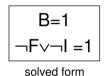
Colorings of the graph are the solutions of the equations

Is graph 4-partite? $(x_1,x_2) \neq (y_1,y_2), \dots$ $\neg (x_1 \leftrightarrow y_1) \lor \neg (x_2 \leftrightarrow y_2) = 1, \dots$

Modelling with Boolean Equations: Secrets of a Long Live

- 1) If I don't drink beer, I always eat fish
- 2) If I have both beer and fish, I don't have ice cream
- If I have ice cream or do not drink beer, I don't have fish

 $\neg B \rightarrow F = 1$ $B \land F \rightarrow \neg I = 1$ $I \lor \neg B \rightarrow \neg F = 1$



Formalities

 $\begin{array}{l} Bool = \{0,1\} \\ x,y,z \in \mbox{Var} \\ s \in \mbox{State} = \mbox{Var} {\rightarrow} Bool \\ f,g \in \mbox{BF} = \mbox{State} {\rightarrow} Bool \end{array}$

 $BF \cong P(State)$ {s \in State | fs=1}

a,b,c ∈ Exp Den ∈ Exp→BF

Boolean Operations

 $\text{Bool}^n \to \text{Bool}$

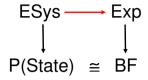
 $x \wedge y = \min \{x, y\}$ $x \vee y = \max \{x, y\}$ $\neg x = 1 - x$ $x \rightarrow y = \text{if } x \le y \text{ then } 1 \text{ else } 0$ $x \leftrightarrow y = \text{if } x = y \text{ then } 1 \text{ else } 0$

Solving Equation Systems

ESys Exp ↓ ↓ P(State) ≅ BF

Solutions of equation system can be described by Boolean function

Solving Equation Systems (2)



Phase 1: equation system \rightarrow expression

Solving Equation Systems (3)

$$ESys \longrightarrow Exp$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(State) \cong BF \cong Rep$$

Phase 2: expression \rightarrow good rep of BF

Solving Equation Systems (4)

$$\begin{array}{cccc} \mathsf{ESys} \longrightarrow \mathsf{Exp} & \subseteq & \mathsf{Exp'} \\ & & \downarrow & & \cup \\ \mathsf{P}(\mathsf{State}) & \cong & \mathsf{BF} & \cong & \mathsf{Rep} \end{array}$$

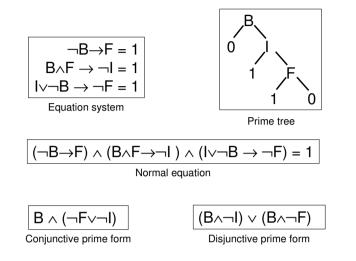
Extend expressions to contain good reps of BFs

Equation System \rightarrow Expression

a=b	\Leftrightarrow	a⇔b=1
a≠b	\Leftrightarrow	–a⇔b=1
a≤b	\Leftrightarrow	a→b=1
a <b< td=""><td>\Leftrightarrow</td><td>¬a∧b=1</td></b<>	\Leftrightarrow	¬a∧b=1
a=1 and b=1	\Leftrightarrow	a∧b=1

 $a=1 \text{ or } b=1 \iff a \lor b=1$

Example

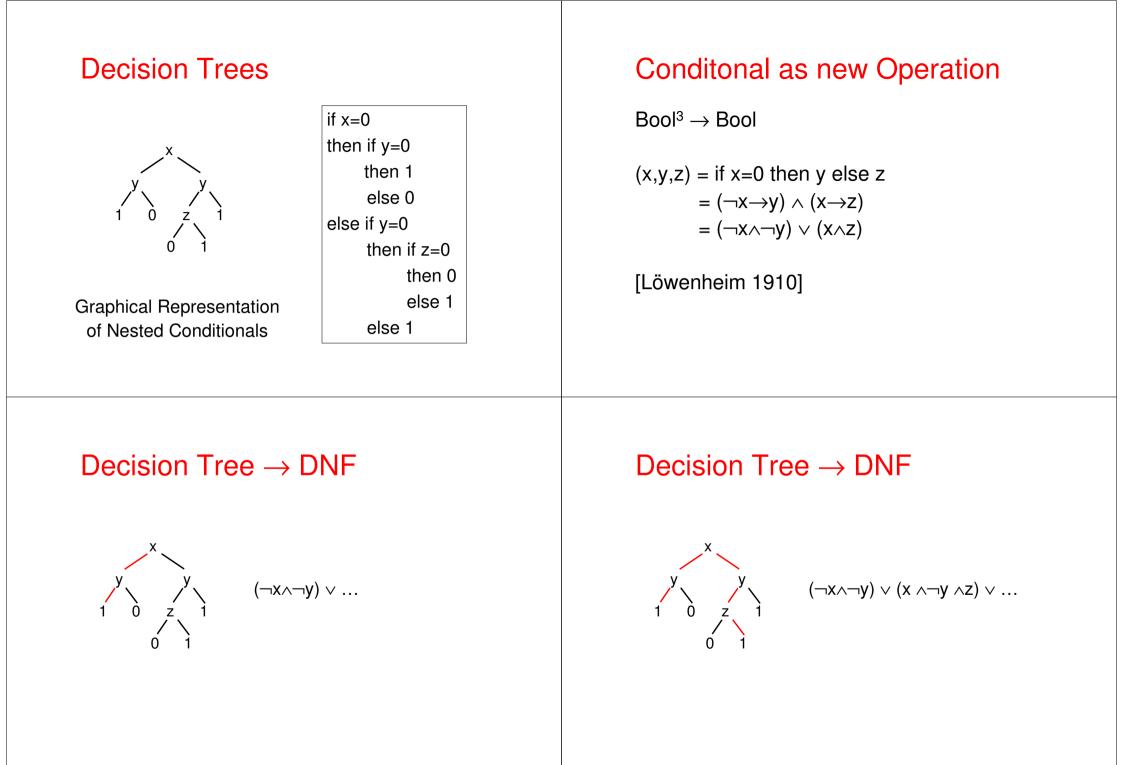


Overview

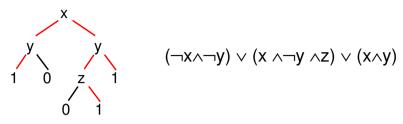
- Intro
- BDDs [Bryant 1986]
- Clause forms

BDDs

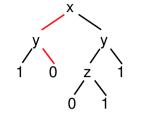
- Decision trees
- Prime trees
- Algorithms
- Minimal Graph Representation



Decision Tree \rightarrow DNF

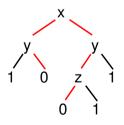


Decision Tree \rightarrow CNF



(x∨¬y) ∧ ...

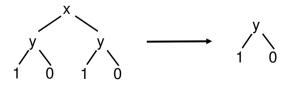
Decision Tree \rightarrow CNF



 $(x \lor \neg y) \land (\neg x \lor y \lor z)$

Reduction of Decision Trees

Based on (x,y,y) = y

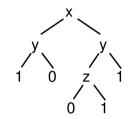


Ordered Decision Trees

• Fix linear order on variables

 $x < y < z < \dots$

• Deeper variables must be larger



Prime Trees

- · Ordered and reduced decision trees
- Isomorphic to Boolean functions
- Perfect representation of Boolean functions

 $\begin{array}{ccc} \mathsf{Exp} \subseteq \mathsf{Exp'} \\ \downarrow & \cup \\ \mathsf{BF} \cong \mathsf{PT} \end{array}$

Theorem Different prime trees denote different Boolean functions.

- Proof By induction on max of sizes. Case analysis:
 - 1. a and b are both atomic.
 - 2. Root variables of a and b are identical.
 - 3. Root variable of a does not occur in b.

Theorem Every expression can be translated into equivalent prime tree.

Expansion Theorem (Boole 1854, Löwenheim 1910, Shannon 1938)

 $a \equiv (x, a[x:=0], a[x:=1])$

Operations on Prime Trees

not: $PT \rightarrow PT$ not $a = \pi(\neg a)$

and: $PT \times PT \rightarrow PT$ and(a,b) = $\pi(a \land b)$

Will see efficient algorithms

Constructors for PTs (ADT)

0: PT 1: PT cond: Var×PT×PT \rightarrow PT cond(x,a,b) = $\pi(x,a,b)$ provided x<Va \cup Vb

If a,b prime trees and x variable:

 $\pi(x,a,a) = a$ $\pi(x,a,b) = (x,a,b)$ if x<Va \cup Vb

All algorithms will be based on these constructors

Algorithm for not

· Based on

 $\neg 0 = 1$ $\neg 1 = 0$ $\neg(x,y,z) = (x,\neg y,\neg z)$

- Orderedness preserved since no new variables
- · Reducedness preserved since not injective

Algorithm for and

· Based on

 $(x,a,b) \land 0 = 0$ $(x,a,b) \land 1 = (x,a,b)$ $(x,a,b) \land (x,a',b') = (x, a \land a', b \land b')$ $(x,a,b) \land c = (x, a \land c, b \land c)$ (only used if x < Vc)

- Orderedness preserved since no new variables
- Reducedness preserved by cond

$\mathsf{Expression} \to \mathsf{Prime} \; \mathsf{Tree}$

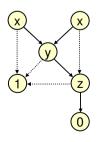
```
trans: Exp \rightarrow PT
```

```
trans 0 = 1
trans 1 = 1
trans x = cond(x,0,1)
trans (\neg a) = not(trans a)
trans (a \land b) = and(trans a, trans b)
```

As is, and is exponential

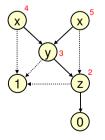
- Can make it quadratic by
 - dynamic programming (hashing over PTs)
 - constant time equality test for PTs

Minimal Graph Representation

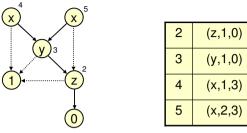


- Every node describes a prime tree
- Graph describes a subtreeclosed set of prime trees
- Graph minimal iff different
 nodes describe different trees

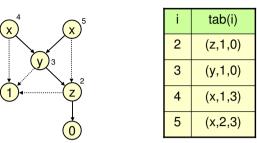
$\text{Graph} \rightarrow \text{Table}$



Number nodes of graph



$\text{Graph} \rightarrow \text{Table} \rightarrow \text{Function}$



Graph minimal iff tab injective

Constant Time Realization of cond

```
\begin{array}{l} \mbox{cond}(x,n,n') = \\ \mbox{if } n=n' \mbox{ then } n \\ \mbox{else if } (x,n,n') \in \mbox{ Dom}(tab^{-1}) \\ \mbox{ then } tab^{-1} (x,n,n') \\ \mbox{else let } n'' = \mbox{least number not in Dom } tab \\ \mbox{ in } tab := tab[n'':=(x,n,n')] ; \\ n'' \end{array}
```

Implement tab-1 with hashing

Overview

- Intro
- BDDs
- Clause forms [Quine 1959]

Conjunctive Normal Forms

literal	X, ¬X
clause C	finite set of literals, not x and $\neg x$
clause set S	finite set of clauses
cnf S	new expression form

$$(cnf S)s = \bigwedge_{C \in S} \bigvee_{a \in C} as$$

 $(\wedge \emptyset = 1, \, \vee \emptyset = 0)$

Conjunctive Prime Forms

- C implicate of a \Leftrightarrow a \leq VC
- C prime implicate of a \Leftrightarrow C minimal implicate of a
- · Formula has only finitely many prime implicates
- $a \equiv cnf \{C \mid C \text{ prime implicate of } a\}$

 $\begin{array}{ccc} \mathsf{Exp} & \subseteq & \mathsf{Exp'} \\ \downarrow & & \cup \\ \mathsf{BF} & \cong & \mathsf{CPF} \end{array}$

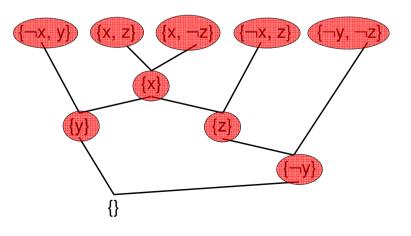
$\mathsf{CNF}\to\mathsf{CPF}$

- CPF can be computed from CNF by 2 rules:
 - delete subsumed clause
 - add resolvent that is not subsumed

 $(a \lor b) \land (\neg a \lor c) \leq (b \lor c)$

- Equivalence transformations
- Terminate with CPF

$\mathsf{Example}:\mathsf{CNF}\to\mathsf{CPF}$



$\mathsf{CNF}\to\mathsf{CPF}$

- · Nice for few variables
- Explosive in number of variables
- By duality: $\mathsf{DNF} \to \mathsf{DPF}$
- Application: truth maintainance in AI (CPF)
 - Reiter and de Kleer 1987
- Application: circuit minimization (DPF)
 - Quine 1959
 - Minimal size DNFs are subsets of DPF

Summary and Remarks

- 2 Methods for solving Boolean equations
 - BDDs [Bryant 1986]
 - clause forms [Quine 1959]
- · Generalizes to Boolean algebras
- · Generalizes to infinitely many variables
- There are other methods, e.g.
 - Complete normal forms [Boole 1854]
 - [Löwenheim 1910]

References

- Willard V. Quine.
 On Cores and Prime Implicants of Truth Functions.
 American Mathematical Monthly, 1959.
- Randal E. Bryant.
 Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, 1986.
- Gert Smolka.
 Skript zur Vorlesung Einführung in die Computationale Logik, 2003. www.ps.uni-sb.de/courses/cl-ss03