
Solving Boolean Equations with

BDDs and Clause Forms

Gert Smolka

Abstract

• Methods for solving Boolean equations

– BDDs [Bryant 1986]

– Clause forms [Quine 1959]

• Efficient data structure and algorithms for
large finite sets (e.g. 21000)

Applications

• Verification (e.g. model checking)

• CAD of HW (e.g. circuit minimization)

• Knowledge representation (e.g. truth
maintainance)

Why do I talk about it?

• Beautiful and important

• Interesting trip from logic to algorithms

• Equation solving not covered in textbook
accounts of propositional logic

• Had to work it out for our introductory
course on Computational Logic

Modelling with Boolean Equations:

Graph Coloring

Is graph bipartite?

x≠y, x≠z, y≠z

x=¬y, …

Is graph 4-partite?

(x1,x2) ≠ (y1,y2), …

¬(x1↔ y1) ∨ ¬(x2 ↔y2) = 1, …

x

zy

Colorings of the graph

are the solutions of the

equations

Modelling with Boolean Equations:

Secrets of a Long Live

¬B→F = 1

B∧F → ¬I = 1

I∨¬B → ¬F =1

1) If I don’t drink beer, I

always eat fish

2) If I have both beer and

fish, I don’t have ice

cream

3) If I have ice cream or

do not drink beer, I

don’t have fish

B=1

¬F∨¬I =1

solved form

Formalities

Bool = {0,1}

x,y,z ∈ Var

s ∈ State = Var→Bool

f,g ∈ BF = State→Bool

BF ≅ P(State) {s∈State | fs=1}

a,b,c ∈ Exp

Den ∈ Exp→BF

Boolean Operations

Booln → Bool

x∧y = min {x,y}

x∨y = max {x,y}

¬x = 1-x

x→y = if x ≤ y then 1 else 0

x↔y = if x=y then 1 else 0

Solving Equation Systems

Solutions of equation system can be described
by Boolean function

P(State) ≅≅≅≅ BF

ESys Exp

Solving Equation Systems (2)

Phase 1: equation system → expression

P(State) ≅≅≅≅ BF

ESys Exp

Solving Equation Systems (3)

Phase 2: expression → good rep of BF

P(State) ≅≅≅≅ BF ≅≅≅≅ Rep

ESys Exp

Solving Equation Systems (4)

Extend expressions to contain good reps of BFs

P(State) ≅≅≅≅ BF ≅≅≅≅ Rep

ESys Exp ⊆⊆⊆⊆ Exp’

⊆

Equation System → Expression

a=b ⇔ a↔b=1

a≠b ⇔ ¬a↔b=1

a≤b ⇔ a→b=1

a<b ⇔ ¬a∧b=1

a=1 and b=1 ⇔ a∧b=1

a=1 or b=1 ⇔ a∨b=1

Example

B ∧ (¬F∨¬I)

Conjunctive prime form

(B∧¬I) ∨ (B∧¬F)

Disjunctive prime form

B

I0

F1

01

Prime tree

Equation system

¬B→F = 1

B∧F → ¬I = 1

I∨¬B → ¬F = 1

(¬B→F) ∧ (B∧F→¬I) ∧ (I∨¬B → ¬F) = 1

Normal equation

Overview

• Intro

• BDDs [Bryant 1986]

• Clause forms

BDDs

• Decision trees

• Prime trees

• Algorithms

• Minimal Graph Representation

Decision Trees

if x=0

then if y=0

then 1

else 0

else if y=0

then if z=0

then 0

else 1

else 1

x

yy

01 1z

10

Graphical Representation

of Nested Conditionals

Conditonal as new Operation

Bool3 → Bool

(x,y,z) = if x=0 then y else z

= (¬x→y) ∧ (x→z)

= (¬x∧¬y) ∨ (x∧z)

[Löwenheim 1910]

Decision Tree → DNF

(¬x∧¬y) ∨ …

x

yy

01 1z

10

Decision Tree → DNF

(¬x∧¬y) ∨ (x ∧¬y ∧z) ∨ …

x

yy

01 1z

10

Decision Tree → DNF

(¬x∧¬y) ∨ (x ∧¬y ∧z) ∨ (x∧y)

x

yy

01 1z

10

Decision Tree → CNF

(x∨¬y) ∧ …

x

yy

01 1z

10

Decision Tree → CNF

(x∨¬y) ∧ (¬x∨y∨z)

x

yy

01 1z

10

Reduction of Decision Trees

Based on (x,y,y) = y

x

yy

01 01

y

01

Ordered Decision Trees

• Fix linear order on variables

x < y < z < …

• Deeper variables must be larger

x

yy

01 1z

10

Prime Trees

• Ordered and reduced decision trees

• Isomorphic to Boolean functions

• Perfect representation of Boolean functions

Exp ⊆ Exp’

BF ≅ PT

⊆

Theorem Different prime trees denote
different Boolean functions.

Proof By induction on max of sizes. Case
analysis:

1. a and b are both atomic.

2. Root variables of a and b are identical.

3. Root variable of a does not occur in b.

Theorem Every expression can be
translated into equivalent prime tree.

Expansion Theorem
(Boole 1854, Löwenheim 1910, Shannon 1938)

a ≡ (x, a[x:=0], a[x:=1])

Operations on Prime Trees

not: PT → PT
not a = π(¬a)

and: PT×PT → PT
and(a,b) = π(a∧b)

Will see efficient algorithms

Constructors for PTs (ADT)

0: PT

1: PT

cond: Var×PT×PT → PT

cond(x,a,b) = π(x,a,b) provided x<Va∪Vb

If a,b prime trees and x variable:

π(x,a,a) = a

π(x,a,b) = (x,a,b) if x<Va∪Vb

All algorithms will be based on these constructors

Algorithm for not

• Based on

¬0 = 1

¬1 = 0

¬(x,y,z) = (x,¬y,¬z)

• Orderedness preserved since no new variables

• Reducedness preserved since not injective

Algorithm for and

• Based on

(x,a,b) ∧ 0 = 0

(x,a,b) ∧ 1 = (x,a,b)

(x,a,b) ∧ (x,a’,b’) = (x, a∧a’, b∧b’)

(x,a,b) ∧ c = (x, a∧c, b∧c)

• Orderedness preserved since no new variables

• Reducedness preserved by cond

(only used if x < Vc)

Expression → Prime Tree

trans: Exp → PT

trans 0 = 1

trans 1 = 1
trans x = cond(x,0,1)
trans (¬a) = not(trans a)
trans (a∧b) = and(trans a, trans b)

As is, and is exponential

• Can make it quadratic by

– dynamic programming (hashing over PTs)

– constant time equality test for PTs

Minimal Graph Representation

• Every node describes a prime

tree

• Graph describes a subtree-

closed set of prime trees

• Graph minimal iff different

nodes describe different trees

x x

y

z1

0

Graph → Table

x x

y

z1

0

4
5

2

3

Number nodes of graph

Graph → Table

x x

y

z1

0
(x,2,3)5

(x,1,3)4

(y,1,0)3

(z,1,0)2

4
5

2

3

Graph → Table → Function

x x

y

z1

0
(x,2,3)5

(x,1,3)4

(y,1,0)3

(z,1,0)2

tab(i)i4
5

2

3

Graph minimal iff tab injective

Constant Time Realization of cond

cond(x,n,n’) =

if n=n’ then n

else if (x,n,n’) ∈ Dom(tab-1)
then tab-1 (x,n,n’)

else let n’’ = least number not in Dom tab

in tab := tab[n’’:=(x,n,n’)] ;

n’’

Implement tab-1 with hashing

Overview

• Intro

• BDDs

• Clause forms [Quine 1959]

Conjunctive Normal Forms

literal x, ¬x

clause C finite set of literals, not x and ¬x

clause set S finite set of clauses

cnf S new expression form

(cnf S)s = ∧ ∨ as
C∈∈∈∈S a∈∈∈∈C

(∧∅ = 1, ∨∅ = 0)

Conjunctive Prime Forms

• C implicate of a ⇔ a ≤ ∨∨∨∨C

• C prime implicate of a ⇔ C minimal implicate of a

• Formula has only finitely many prime implicates

• a ≡ cnf {C | C prime implicate of a}

Exp ⊆ Exp’

BF ≅ CPF

⊆

CNF → CPF

• CPF can be computed from CNF by 2 rules:

– delete subsumed clause

– add resolvent that is not subsumed

(a∨b) ∧ (¬a∨c) ≤ (b∨c)

• Equivalence transformations

• Terminate with CPF

Example : CNF → CPF

{¬x, y} {x, z} {x, ¬z} {¬x, z} {¬y, ¬z}

{x}

{y} {z}

{¬y}

{}

CNF → CPF

• Nice for few variables

• Explosive in number of variables

• By duality: DNF → DPF

• Application: truth maintainance in AI (CPF)

– Reiter and de Kleer 1987

• Application: circuit minimization (DPF)

– Quine 1959

– Minimal size DNFs are subsets of DPF

Summary and Remarks

• 2 Methods for solving Boolean equations

– BDDs [Bryant 1986]

– clause forms [Quine 1959]

• Generalizes to Boolean algebras

• Generalizes to infinitely many variables

• There are other methods, e.g.

– Complete normal forms [Boole 1854]

– [Löwenheim 1910]

References

• Willard V. Quine.
On Cores and Prime Implicants of Truth Functions.

American Mathematical Monthly, 1959.

• Randal E. Bryant.

Graph-based Algorithms for Boolean Function

Manipulation. IEEE Transactions on Computers, 1986.

• Gert Smolka.

Skript zur Vorlesung Einführung in die Computationale
Logik, 2003. www.ps.uni-sb.de/courses/cl-ss03

