Solving Boolean Equations with
BDDs and Clause Forms

Gert Smolka

Abstract

» Methods for solving Boolean equations
— BDDs [Bryant 1986]
— Clause forms [Quine 1959]

« Efficient data structure and algorithms for
large finite sets (e.g. 21009)

Applications

« Verification (e.g. model checking)
« CAD of HW (e.g. circuit minimization)

« Knowledge representation (e.g. truth
maintainance)

Why do | talk about it?

» Beautiful and important
* Interesting trip from logic to algorithms

« Equation solving not covered in textbook
accounts of propositional logic

« Had to work it out for our introductory
course on Computational Logic

Modelling with Boolean Equations:

Graph Coloring

Colorings of the graph
are the solutions of the
equations

Modelling with Boolean Equations:

Secrets of a Long Live

1) If I don’t drink beer, |
always eat fish

2) If I have both beer and
fish, | don’t have ice

—-B—oF =1
BAF — -l =1
Iv—B — —F =1

Is graph bipartite”? Is graph 4-partite? cream
2y, X#z, y#z 1:X2) # (Y1,¥2), - .
o b 7 () 3) If | have ice cream or B=1
= ~ae i) v ol oY) =1, do not drink beer, | —Fv—l =1
don’t have fish solved form
Formalities Boolean Operations
Bool = {0,1} Bool" — Bool
X,y,z € Var

s e State = Var—Bool
f,g e BF = State—Bool

BF = P(State) {se State | fs=1}

a,b,c e Exp
Den e Exp—BF

XAY = min {x,y}
Xvy = max {X,y}
=X = 1-X
x—y =if x<ythen 1 else 0
x>y = if x=y then 1 else 0

Solving Equation Systems

ESys Exp

| |

P(State) = BF

Solutions of equation system can be described
by Boolean function

Solving Equation Systems (2)

ESys Exp

| |

P(State) = BF

Phase 1: equation system — expression

Solving Equation Systems (3)

ESys —— Exp

| N\

P(State) = BF = Rep

Phase 2: expression — good rep of BF

Solving Equation Systems (4)

ESys—— Exp < Exp’

l l u

P(State) = BF Rep

n

Extend expressions to contain good reps of BFs

Equation System — Expression Example

a=b & ac>b=1 B
/°\
a#b & —asb=1 —B—F =1 0) N
a<b = a—b=1 BAF — =l = 1 {
lv—B — —F =1 /" \
a<b S _'a/\b=1 Equation system 1 0
Prime tree
a=1 and b=1 = arb=1 (—B—F) A (BAF—>—l) A (Iv-B — —F) =1
a=1 or b=1 PN a\/b=1 Normal equation
B A (=Fv=l) (BA—l) v (BA—F)
Conjunctive prime form Disjunctive prime form
Overview BDDs
* Intro » Decision trees
« BDDs [Bryant 1986] * Prime trees
» Clause forms « Algorithms

Minimal Graph Representation

Decision Trees

if x=0
X then if y=0
7N then 1
/y\ /y\ else 0
o /Z\ 1 else if y=0
0 1 then if z=0
then O
Graphical Representation else 1
of Nested Conditionals else 1

Conditonal as new Operation

Bool3 — Bool

(x,y,z) = if x=0 then y else z
= (—X>Y) A (X—2)
= (—=XATY) V (XAZ)

[Lowenheim 1910]

Decision Tree — DNF

Decision Tree — DNF

(mXATY) V (X ATy AZ) V..

Decision Tree — DNF

/N /\ (mXATY) V (X ATy AZ) V (XAY)

Decision Tree — CNF

y y (Xv—y) A ...

Decision Tree — CNF

y y (Xv=y) A (mxvyvz)

Reduction of Decision Trees

Based on (x,y,y) =Yy

Ordered Decision Trees

« Fix linear order on variables
X<y<z<...
» Deeper variables must be larger

Prime Trees

» Ordered and reduced decision trees
* Isomorphic to Boolean functions
 Perfect representation of Boolean functions

Exp < Exp’
Ul
BF = PT

Theorem Different prime trees denote
different Boolean functions.

Proof By induction on max of sizes. Case
analysis:
1. a and b are both atomic.
2. Root variables of a and b are identical.
3. Root variable of a does not occur in b.

Theorem Every expression can be
translated into equivalent prime tree.

Expansion Theorem
(Boole 1854, Léwenheim 1910, Shannon 1938)

a = (x, a[x:=0], a[x:=1])

Operations on Prime Trees

not: PT — PT
not a = w(—a)

and: PTxPT — PT
and(a,b) = n(anb)

Will see efficient algorithms

Constructors for PTs (ADT)

0: PT

1:PT

cond: VarxPTxPT — PT

cond(x,a,b) = n(x,a,b) provided x<VauVb

If a,b prime trees and x variable:

n(x,a,a
7(X,a,b)

~—

a
(x,a,b) if xx<VauVb

All algorithms will be based on these constructors

Algorithm for not

* Based on
—-0=1
-1=0

=(X,Y,2) = (X,7y,—z)

» Orderedness preserved since no new variables
» Reducedness preserved since not injective

Algorithm for and

» Based on
(x,a,b) A0O=0
(x,a,b) A 1 =(x,a,b)
(x,a,b) A (x,a’,b’) = (X, ara’, bab’)
(x,a,b) A c = (X, anc, bac) (only used if x < Vc)

» Orderedness preserved since no new variables
» Reducedness preserved by cond

Expression — Prime Tree

trans: Exp —» PT

trans 0 = 1

trans 1 =1

trans x = cond(x,0,1)

trans (—a) = not(trans a)

trans (anb) = and(trans a, trans b)

As is, and is exponential

» Can make it quadratic by
— dynamic programming (hashing over PTs)
— constant time equality test for PTs

Minimal Graph Representation

» Every node describes a prime
tree

» Graph describes a subtree-
closed set of prime trees

« Graph minimal iff different
nodes describe different trees

Graph — Table

Number nodes of graph

Graph — Table

2 | (z1,0)
3| (v,1,0)
4 | (x1,3)
5| (x,2,3)

Graph — Table — Function

tab(i)

z,1,0
y,1,0
x,1,3

gl | WO N| —

(z,1,0)
(y,1,0)
(x,1,3)
(x,2,3)

X,2,3

Graph minimal iff tab injective

Constant Time Realization of cond

cond(x,n,n’) =
if n=n’ then n
else if (x,n,n’) € Dom(tab™")
then tab* (x,n,n’)
else let n” = least number not in Dom tab
in tab := tab[n”:=(x,n,n’)] ;
"

Implement tab-! with hashing

Overview

* Intro
« BDDs
« Clause forms [Quine 1959]

Conjunctive Normal Forms Conjunctive Prime Forms

literal X, =X « Cimplicate ofa & a<wVvC
clause C finite set of literals, not x and —x « C prime implicate of a < G minimal implicate of a
clause set S finite set of clauses » Formula has only finitely many prime implicates
cnf S new expression form « a=cnf{C | C prime implicate of a}
cnfS)s = A\ V as (AD=1,V@=0) Exp < Exp
CeS aeC l Ul
BF = CPF
CNF — CPF Example : CNF — CPF

» CPF can be computed from CNF by 2 rules:
— delete subsumed clause
— add resolvent that is not subsumed
(avb) A (mave) < (bve)
« Equivalence transformations
« Terminate with CPF

CNF — CPF

Nice for few variables
Explosive in number of variables
By duality: DNF — DPF

Application: truth maintainance in Al (CPF)
— Reiter and de Kleer 1987

Application: circuit minimization (DPF)

— Quine 1959

— Minimal size DNFs are subsets of DPF

Summary and Remarks

2 Methods for solving Boolean equations
— BDDs [Bryant 1986]
— clause forms [Quine 1959]

Generalizes to Boolean algebras
Generalizes to infinitely many variables

There are other methods, e.g.
— Complete normal forms [Boole 1854]
— [Lébwenheim 1910]

References

« Willard V. Quine.
On Cores and Prime Implicants of Truth Functions.
American Mathematical Monthly, 1959.

+ Randal E. Bryant.
Graph-based Algorithms for Boolean Function

Manipulation. |IEEE Transactions on Computers, 1986.

+ Gert Smolka.
Skript zur Vorlesung Einflihrung in die Computationale
Logik, 2003. www.ps.uni-sb.de/courses/cl-ss03

