
1 Mathematical Formulas as Terms

Our first concern is the logical structure of mathematical formulas. We will rep-
resent formulas in the simply typed lambda calculus, a system that provides an

abstract syntax for functions. Here are examples of mathematical formulas:

2y + z

(¬y ⇒ ¬x)⇒ (x ⇒ y)

x ∧ (x ⇒ y) = x ∧y

f0∧ (∀x∈N : fx ⇒ f (x + 1))⇒ ∀x∈N : fx

(∀x∈X : fx ∧ gx) = (∀x∈X : fx)∧ (∀x∈X : gx)

1.1 Boolean Operations

Formulas often employ Boolean operations such as conjunction (∧) and impli-

cation (⇒). We use the numbers 0 and 1 as Boolean values, where 0 may be

thought of as “false” and 1 as “true”. We define

B
def
= {0,1}

As in programming languages, we adopt the convention that expressions like

3 ≤ x yield a Boolean value. This explains the following equations:

(3 < 7) = 1

(7 ≤ 3) = 0

(3 = 7) = 0

The Boolean operations are defined as follows:

¬x = 1− x

x ∧ y = min{x,y}

x ∨ y = max{x,y}

x ⇒ y = ¬x ∨ y

x⇔ y = (x = y)

1.2 Functions and Lambda Notation

In our analysis of mathematical language, functions will play the main role.

Let X and Y be sets. A function X → Y is a set f ⊆ X × Y such that

1. ∀x ∈ X ∃y ∈ Y : (x,y) ∈ f

© G. Smolka 1 2006/5/1

2. (x,y) ∈ f ∧ (x,y′) ∈ f =⇒ y = y′

We use X → Y to denote the set of all functions X → Y . If f ∈ X → Y and x ∈ X,

then we write fx for the unique y such that (x,y) ∈ f .

The canonical means for describing functions is the so-called lambda notation

developed around 1930 by the logician Alonzo Church. Here is an example:

λx∈Z. 2x

This notation describes the function Z→ Z that doubles its argument (i.e., yields

2x for x).

Lambda notation makes it easy to describe functions that return functions as

results. As example, consider the definition

plus
def
= λx∈Z. λy∈Z. x + y

which binds the name plus to a function of type Z → (Z → Z). When we apply

plus to an argument a, we obtain a function Z→ Z. When we apply this function

to an argument b, we get the sum a+ b as result. With symbols:

(plusa)b = (λy∈Z. a+y)b = a+ b

We say that plus is a cascaded representation of the addition operation for in-

tegers. Cascaded representations are often called Curried representations, after

the American logician Haskell Curry. They first appeared 1924 in a paper by

Moses Schönfinkel on the primitives of mathematical language.

For convenience, we omit parentheses as follows:

t1 t2 t3 ⇝ (t1 t2) t3

T1 → T2 → T3 ⇝ T1 → (T2 → T3)

Using this convenience, we can write plus 3 7 = 10 and plus ∈ Z→ Z→ Z.

1.3 Terms

The syntax of formulas can be described at different levels of abstraction. While

a concrete syntax is concerned with notational aspects, an abstract syntax is

concerned with logical structure and abstains from notational aspects. It turns

out that abstract syntax is the right base for talking about the meaning of for-

mulas (i.e., semantics) and for designing algorithms manipulating formulas.

We will represent the abstract syntax of mathematical formulas with terms.

There are 4 different forms of terms whose construction can be summarized

with the grammar

t ::= c | x | t t | λx:T.t

© G. Smolka 2 2006/5/1

The grammar says that a term is either a constant c, a variable x, an application

t1 t2 formed with two term t1 and t2, or an abstraction λx:T.t formed with a vari-

able x, a type T and a term t. Every value can be used as a constant c. Variables

can be thought of as names. Types are formed according to the grammar

T ::= C | T → T

where every nonempty set can be used as a base type C .

Terms and types should be thought of as mathematical objects. It is helpful

to see terms as the objects of an abstract data structure. Eventually, we will give

a formal account of terms and types and also consider their implementation in

the prgramming language Standard ML.

We will see soon that terms provide an abstract syntax for mathematical for-

mulas. In fact, terms provide a universal abstract syntax. For instance, programs

can be represented as terms and many compilers are using a term representa-

tion.

From the grammar it is clear that terms are tree-structured objects. It is
instructive to describe terms with trees. The tree

•

•

+ x

3

represents a term, that consists of two applications represented as bullets (•),

the constants + and 3, and the variable x. The constant + should be thought of

as the cascaded representation of the addition operation.

We may also describe the above term with the linear notation x+3. The linear
description is more convenient than the tree description, but understanding it

requires more notational skills.

We will take the viewpoint that the above term represents the “formula” x+3.

Put more precisely, we will take the term as the representation of the logical

structure (i.e., abstract syntax) of the formula and neglect the notation of the

formula.

As a further example we consider the formula 3(x+y). Its abstract syntax is

given by the term

•

•

· 3

•

•

+ x

y

where the constants · and + should be thought of as cascaded representations

of the multiplication and addition operations for the underlying number system.

© G. Smolka 3 2006/5/1

1.4 De Bruijn Representation of Bound Variables

The notations λx∈N.x and λy∈N.y describe the same function. This tells us

that the choice of the argument variable of a function description does not mat-

ter. Argument variables are merely a notational device for referring to the argu-

ments of functions.

Similarly, the notations λx:T.x and λy :T.y describe the same term. This

means that a term λx:T. t does not contain the particular variable x used in its

description.

The tree description of a term represents abstractions without using argu-

ment variables. Instead, the arguments of abstractions are referred to by so-

called de Bruijn indices invented by the Dutch logician Nicolaas de Bruijn:

λT

〈0〉

λx:T.x

λS

λT

•

〈1〉 〈0〉

λf :S.λx:T. fx

•

λT

〈0〉

x

(λx:T.x)x

A de Bruijn index 〈n〉 represents the argument of the abstraction whose λ-node

appears on the path to the root encountered after skipping n λ-nodes.

To simplify our notation for abstractions, we will sometimes omit the type T
and simply write λx.t. This may be justified because the type is clear from the

context or a certain type is fixed for the particular variable x.

1.5 Free Variables

The variables contained in a term are usually referred to as the free variables

of the term. This is historical language based on the textual notation for terms

using argument variables. For instance, the notation λx:X.fxy employs x as

bound variable and f and y as free variables. The tree representation of the

term reveals that the bound variable x is a notational device that is not part of

the term:

λX

•

•

f 〈0〉

y

© G. Smolka 4 2006/5/1

1.6 Quantification

What is the term representation of the quantified formula ∀x∈Z : x ≤ y ?

Since x is a bound variable and bound variables can only be introduced by ab-

stractions, we will need an abstraction. This leads us to the term

∀Z (λx:Z. x ≤ y)

where the constant ∀Z is the following function:

∀Z ∈ (Z→ B)→ B

∀Zf = (f = (λx∈Z.1))

Note that ∀Z is a very simple function: it takes a function f as argument and

yields 1 if and only if f yields 1 for all arguments.

The functional representation of quantification is due to the American logi-

cian Alonzo Church.

1.7 Notational Issues

Let X be a set. We will use the following functions as constants in terms:

≐X ∈ X → X → B

x ≐X y = (x = y)

∀X ∈ (X → B)→ B

∀Xf = (f = (λx∈X.1))

∃X ∈ (X → B)→ B

∃Xf = (f ≠ (λx∈X.0))

We will omit the type annotations of the polymorphic constants ≐X , ∀X and ∃X
if they are clear from the context and simply write ≐, ∀ and ∃. Moreover, we will

use the abbreviations

∀x:T. t ⇝ ∀T(λx:T. t)

∃x:T. t ⇝ ∃T (λx:T. t)

Make sure that you understand the following:

• λx∈X.x describes a function.

• λx:X.x describes a term.

• ∀x∈N : 0 ≤ x describes a mathematical statement.

• ∀x:N. 0 ≤ x describes a term.

© G. Smolka 5 2006/5/1

1.8 Substitution and Instances

The notation s[x := t] denotes the term that is obtained from the term s by

replacing all occurrences of the variable x with the term t:

(x + 5)[x := 3] = 3+ 5

(x + y)[x := x + 3] = (x + 3)+ y

The operation behind s[x := t] is called substitution.

What is the result of the substitution (λx:C.y)[y := x] ? Here it is crucial

to recall that the term λx:C.y does not contain the argument variable x used

in its description. This suggests (λx:C.y)[y := x] ≠ λx:C.x. If we apply the

substitution to the tree description of λx:C.y , the problem with the conflicting

argument variable disappears:

(λx:C.y)[y := x] =

(λC

y

)

[y := x] =

(λC

x

)

= λy :C.x

Make sure that you understand every equation in this chain.

Before de Bruijn invented his indices in the 1960’s, variables where the only

means to refer to the argument of an abstraction. It is rather complicated to

give a precise definition of substitution if terms are formalized with variables as

argument references.

As a general rule keep in mind that a substitution never introduces a new
reference to the argument of an abstraction.

The fact (λx:C.y)[y := x] ≠ λx:C.x is often paraphrased as “substitution

must be capture-free”.

The instances of a term t are defined as follows:

1. t is an instance of t

2. x : T ∧ s : T =⇒ t[x := s]

3. s′ instance of s ∧ s instance of t =⇒ s′ instance of t

1.9 Semantic Equivalence

You will certainly agree that the equation

(λx∈N.2x) = (λx∈N. x + x)

holds. On the other hand, we have

(λx:N.2x) ≠ (λx:N. x + x)

since this time we compare terms rather than functions. This motivates the nota-

tion of semantic equivalence. We call two terms s and t semantically equivalent

© G. Smolka 6 2006/5/1

(written s ≡ t) if they describe the same value no matter how the values of their

free variables are chosen. Here are examples:

(λx:N.2x) ≡ (λx:N. x + x)

(λx:N. x + y) ≠ (λx:N. y + x)

(λx:N. x + y) ≡ (λx:N. y + x)

Proposition 1.1 Semantic equivalence is an equivalence relation on terms that

satisfies the following properties:

Cong s ≡ s′ ∧ t ≡ t′ =⇒ st ≡ s′t′

Sub s ≡ s′ =⇒ s[x := t] ≡ s′[x := t]

ξ s ≡ s′ =⇒ λx:T.s ≡ λx:T.s′

The properties Sub and ξ (read xi) result from the fact that s ≡ t only holds

if s and t yield the same value no matter how the values of the free variables are

chosen.

1.10 The β-Law

The β-law says that every term (λx:T.s)t satisfies the equivalence

(λx:T.s)t ≡ s[x := t]

The β-law establishes substitution as the syntactic counterpart of function ap-

plication. Here are instances of the law:

(λx:N. x + 3)7 ≡ 7+ 3

(λx:N. x + 3)(y + 2) ≡ (y + 2)+ 3

We say that a pair (s, t) is a

• β-reduction if t can be obtained from s by applying the β-law from left to

right.

• β-expansion if t can be obtained from s by applying the β-law from right to

left.

• β-conversion if (s, t) is either a β-reduction or a β-expansion.

Here are examples of β-reductions:

(λf .fa)(λxy.fxy)b ≡ (λxy.fxy)ab β

≡ (λy.fay)b β

≡ fab β

A term is called

© G. Smolka 7 2006/5/1

• a β-redex if it is an instance of the left hand side of the β-law.

• β-normal if it does not contain a β-redex.

A term t is called a β-normal form of a term s if t is β-normal and can be obtained

from s by a finite sequence of β-reductions. The sequence of β-reductions shown

above demonstrates that fab is a β-normal form of (λf .fa)(λxy.fxy)b.

Theorem 1.2 (Church, Rosser, Turing) Every term has exactly one β-normal

form.

Theorem 1.3 (Tait 1967) There is no infinite chain of β-reductions (i.e., an in-

finite sequence t1, t2, t3, . . . such that (ti, ti+1) is a β-reduction for all i =
1,2,3, . . .).

The proofs of the two theorems is not straightforward. Together they give

us a simple algorithm for computing the β-normal form of a term: Apply β-

reductions until a β-normal term is obtained. The chain of β-reductions leading

to the normal form may be very long. Rick Statman [1979] showed that deciding

whether two terms have the same β-normal form is not elementary recursive.

1.11 The η-Law

The η-law says that every term λx:T.fx where x, f are variables satisfies the

equivalence

λx:T.fx ≡ f

The η-law relies on the fact that two function X → Y are equal if they agree on

all arguments x ∈ X.

The notions of η-reduction, η-expansion, η-conversion, η-redex, η-normality,

and η-normal forms are defined for η the same way they are defined for β. Here

are examples of η-reductions:

λxy.fxy = λx.λy.(fx)y

≡ λx.fx η

≡ f η

Note that λx:T.sx ≡ s is an instance of the η-law only if x is not free in the

term s. This follows from the fact that substitution is capture-free. The fact

λx:N.x 6≡ λx:N.((+)x)x shows that the η-law cannot be generalized, and also

that capture freeness of substitution is essential for the property Sub stated by

Proposition 1.1.

Analogues of theorems 1.2 and 1.3 also hold for η-reduction.

© G. Smolka 8 2006/5/1

1.12 βη-Normal Forms

A term is βη-normal if it contains neither a β-redex nor an η-redex. A term is

called a βη-normal form of a term s if it is βη-normal and can be obtained from s
by a finite sequence of β- and η-reductions. Here is an example:

(λhx.fhx)(λx.gx)a ≡ (λhx.fhx)ga η

≡ (λh.fh)ga η

≡ fha β

Analogues of theorems 1.2 and 1.3 also hold for βη-reduction.

Theorem 1.4 (Friedman 1975) Let s and t be terms not containing constants.

Then s ≡ t if and only if s and t have the same βη-normal form.

Friedman’s theorem says that semantic equivalence of pure functional de-

scriptions is fully captured by the β- and η-law.

© G. Smolka 9 2006/5/1

	Mathematical Formulas as Terms
	Boolean Operations
	Functions and Lambda Notation
	Terms
	De Bruijn Representation of Bound Variables
	Free Variables
	Quantification
	Notational Issues
	Substitution and Instances
	Semantic Equivalence
	The -Law
	The -Law
	-Normal Forms

