
3 Structures and Specifications

Terms provide us with a formal specification language for set-theoretic struc-
tures. In this language, a specification is a set of equations, and a structure sat-

isfies a specification if it satisfies each of its equations. The idea is well-known

from algebra: The axioms for groups are a specification, and the groups are the

structures satisfying this specification.

3.1 Evaluation

We start with the evaluation of terms. As an example, consider the term x + 3.
It evaluates to 5 if x takes the value 2 and the names + and 3 take the values

the symbols + and 3 suggest. The example tells us that the evaluation of a

term requires a function that assigns values to names. We call such functions

interpretations and define them as follows.

An interpretation is a function I such that:

1. Dom I = Ty ∪ Con∪ Var

2. Iu ∈ I(τu)

3. I(S → T) = {f | f function IS → IT }

We require interpretations to be defined on all types, on all constants, and all

variables since this is convenient and serves the purpose. Condition (3) ensures

that functional types are interpreted as one would expect. Thus we know how an

interpretation behaves on functional types if we know how it behaves on sorts.
Conditation (2) says that the values of constants and variables must be taken

from the interpretation of their types.

Proposition 3.1 (Coincidence) If I and I′ agree on all names, then I = I′.

Proof We need to show: ∀T : IT = I′T . This can be done by induction on |T |. �

Proposition 3.2 IT ≠ 0.

Proof Let I be an interpretation and T be a type. By Axiom Inf we know that

there is a variable x with τx = T . Hence Ix ∈ I(τx) = IT . �

Given an interpretation I , a variable x and a value v ∈ I(τx), we use Ix,v to

denote the interpretation I[x:=v]. Note that Ix,v satisfies the following equa-

tions:

Ix,vT = IT

Ix,vu = if u = x then v else Iu
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Proposition 3.3 (Evaluation) For every interpretation I there exists one and only

one function Î such that:

1. Dom (Î) = Ter

2. Ît ∈ I(τt)

3. Îu = Iu

4. Î(st) = (Îs)(Ît)

5. Î(λx.t) = λv∈I(τx). Îx,vt

We call Î the evaluation function for I .

Proof To show the existence of Î , we define Î recursively according to (3), (4) and

(5), where (5) is modified such that it requires x = ϕ(λx.t). The properties (1),

(2) and the uniqueness of Î are immediate consequences of this definition. The

unmodified version of (5) can be shown with the Proposition 3.4 whose proof can

be based on our definition of Î . �

Given an interpretation I and a substitution θ, we use Iθ to denote the inter-
pretation defined as follows:

IθT = IT

Iθu = Î(θu)

Proposition 3.4 (Substitution) Î(Sθt) = Îθt.

Proof By induction on |t|. Tedious. �

Proposition 3.5 (Coincidence) If I and I′ agree on N t, then Ît = Î′t.

3.2 Signatures and Structures

When we use terms as specification language, we consider only certain sorts and

certain constants. A collection of relevant sorts and constants will be called a

signature, and an interpretation for the names of a signature will be called a

structure. The precise definitions are as follows.

A signature is a set Σ ⊆ Sor ∪ Con such that ∀c ∈ Σ : N (τc) ⊆ Σ. Note that

we require that a signature is closed in the sense that if it contains a constant, it

must also contain the sorts in the type of the constant.

A structure is a function A such that Dom A is a signature and there exists an

interpretation I such that A ⊆ I . Given a structure A, we use ΣA := Dom A to

denote the signature of A.

A type T is licensed by a signature Σ if NT ⊆ Σ. A term t is licensed by a

signature Σ if the following conditions hold:
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1. N t − Var ⊆ Σ.

2. ∀x ∈N t : N (τx) ⊆ Σ

An interpretation I is licensed by a structure A if A ⊆ I . A type or a term are

licensed by a structure if they are licensed by the signature of the structure.

Proposition 3.6 (Coincidence) Let I and I′ be licensed by A. Then:

1. If T is licensed by A, then IT = I′T .

2. If t is licensed by A and I and I′ agree on all variables in t, then Ît = Î′t.

Example 3.7 We present examples for a signature and a structure. We start with

the description of a signature Σ:

0,1 : B

→ : B → B → B

The described signature Σ consists of a sort B and three different constants 0, 1,
and → . Since we base everything on the axiomatization of terms, we cannot

name concrete sorts and constants. However, we can assume that the symbol B
denotes a concrete sort, and that the symbols 0, 1, and → denote concrete con-

stants of the types specified in the description of the signature (existence guar-

anteed by Inf). This way we get what we want together with a nice notation. We

can now define a structure B that interprets the names of Σ:

BB = B

B0 = 0

B1 = 1

B(→) = λv ∈ B. λw ∈ B. max{1− v,w} �

Two structuresA and B are isomorphic if ΣA = ΣB and for every type T licensed

by ΣA there exists a bijection γT : AT → BT such that:

1. For every constant c ∈ ΣA: γτc(Ac) = Bc.

2. For every type T1 → T2 licensed by ΣA and ever function f ∈ A(T1 → T2):
(γT1→T2)f = { (γT1v1, γT2v2) | (v1, v2) ∈ f }.

To show that two structures A and B are isomorphic, it suffices to exhibit a

bijection γC : AC → BC for every sort C ∈ ΣA. The bijections for the functional
types can then obtained by recursion according to condition (2). Of course, one

has to check that condition (1) is satisfied.

3.3 Equations

An equation of type T is a pair (s, t) of two terms s:T and t:T . If there is no

danger of confusion, we will write an equation (s, t) as s=t. An equation s=t is
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licensed by a signature Σ if s and t are licensed by Σ. We arrange the following

notations:

e ∈ Equ := { (s, t) | τs = τt } equations

N e := N s ∪N t if e = (s, t) names

I ⊨ e :⇐⇒ Îs = Ît if e = (s, t) I satisfies e

A⊨ e :⇐⇒ ∀I : A⊆ I =⇒ I ⊨ e A satisfies e

VEA := { e | A ⊨ e } valid equations

Note that a structure A satisfies an equations e if and only if all interpretations

licensed by A satisfy e. Instead of A satisfies e we also say that e is valid in A.

For the structure B from Example 3.7 we have the following:

B ⊨ 1→ x=x

B 6⊨ 0→ x=x

Proposition 3.8 Let A and B be isomorphic structures. Then A ⊨ e ⇐⇒ B ⊨ e.

3.4 Specifications and Models

A specification is a set of equations. The equations of a specification are called

the axioms of the specification. A model of a specification is a structure that

satisfies all axioms of the specification. The signature of a specification is the

least signature that licenses all axioms of the specification. We use ΣA to denote

the signature of a specification A and arrange the following notations:

A,E ⊆ Equ specifications

A ⊨ A :⇐⇒ ∀e∈A : A ⊨ e A model of A, A satisfies A

NA :=
⋃
{N e | e ∈ A }

Figure ?? shows the description of a specification Bool. Both the signature

and the axioms are described. The explicit description of the signature provides

notations for the sorts and constants of the specification. A declaration of the

variables used in the axioms is not necessary since their types can be inferred

from the axioms:

x : B

f : B → B

Convince yourself that the structure B from Example 3.7 is a model of Bool.
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Specification Bool

Sorts B

Constants 0,1: B
→ : B → B → B

Axioms 0 → x = 1 I0

1 → x = x I1

f0→ f1→ fx = 1 BCA (Boolean case analysis)

Figure 1: Specification Bool

A specification A entails an equation e semantically if every model of A satis-

fies e:

A ⊨ e :⇐⇒ ∀model A of A : A ⊨ e A entails e semantically

Our definition of models is quite liberal. In particular it admits models that

interpret a sort C with a one-element set. Such models satisfy all equations of

type C . In fact, every structure that interprets all sorts with one-element sets will

be a model of every specification.

A proper model of a specification A is a model A of A such that ΣA = ΣA and

AC has at least 2 elements for every sort C ∈ Dom A.

A specification is categorical if it has a proper model and all its proper models

are isomorphic.

Proposition 3.9 The specification Bool from Figure ?? is categorical.

Proof Let A be a proper model of Bool. It suffices to show that AB ⊆ {A0,A1}

since then AB = {A0,A1} and A0 ≠ A1 by the properness of A and hence

A(→) is determined by the axioms I0, I1.

Suppose there exists a value v ∈ AB − {A0,A1}. Then there exists an inter-

pretation I such that A ⊆ I and

Ix = v

Ifv = v

If (A0) = A1

If (A1) = A1

Since I satisfies Axiom BCA and I1, we know Î(fx) = Î1. Hence v = A1, which

contradicts our assumption. �
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We now know that the structure B from Example 3.7 is the only proper model

of Bool, up to isomorphism. This means that the specification Bool specifies

everything that is essential about B.

We arrange the following notations:

A ⊨ A′ :⇐⇒ ∀e ∈ A′ : A ⊨ e A entails A′ semantically

A ⊨ôA′ :⇐⇒ A ⊨ A′ ∧ A′ ⊨ A A, E semantically equivalent

Proposition 3.10

• A ⊨ A′ ⇐⇒ every model of A is a model of A′

• A ⊨ôA′ ⇐⇒ A and A′ have the same models

© G. Smolka 24 2006/5/24


	Equational Deduction

