s = =g’ "=t

Ref S Trans

s=3S ym t = s=1

s=s’ t=1t s=5s’

L ———— R ————
¢ st=st ¢ st = st’ 3 Ax.s = Ax.s'
————— x ¢ Ns
B (Ax.s)t = s[x:=t] L AX.SX =S €
Figure 2: Deduction rules

4 Equational Deduction

Given an equational specification, one can infer semantically entailed equations
by “replacing equals with equals”, a proof method known as equational deduc-
tion. Equational deduction is a syntactic proof method since it is based on syn-
tactic rules rather than semantic arguments.

Figure [2 shows the so-called deduction rules. Each deduction rule states a
pattern according to which an equation (the conclusion below the bar) can be
obtained from given equations (the premises above the bar). Formally, each rule
describes a set of pairs (E,e) (the instances of the rule) where E is the set of
premises and e is the conclusion. The rules & and n, for instance, describe the
following sets of instances:

E: {({s=5s"}, Axs=Ax.s") | xeVar A s,s' € Ter A Ts =75}
n: {0, Ax.sx=s)|seTer n x ¢ Ns}

The rules Ref, Sym and Trans provide the equivalence properties of equality.
The rules CL, CR and & provide the so-called congruence properties of equality.
They make it possible to replace equals with equals within a term. Note that
rule & exploits the fact that variables are universally quantified (x may occur in s
and s’). Rule B and n provide basic equational properties of abstractions we have
discussed before. The fundamental property of the deuction rules is soundness:

Proposition 4.1 (Soundness) If (E,e) is an instance of a deduction rule, then

E Ee.
A derivation of e from A is a tuple (eq,...,e,) such that e = e, and for every
ie{l,...,n}: e; € A or there exists a set E < {ej,...,e;_1} such that (E,e;)
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is an instance of a deduction rule. We can now define deductive entailment as
follows:

A+ e <= 3 derivation of e from A A entails e deductively
A+E < VecE: A+ e A entails E deductively

Proposition 4.2 (Soundness) A-e = AkEe
Deductive equivalence of specifications is defined as follows:
AHA = A+-A A A +A A, A’ deductively equivalent

By the soundness property we know that deductive equivalence implies semantic
equivalence:

Proposition4.3 AHA" = AHA’

Proposition 4.4 (Extensionality)
1. {Ax.s =Ax.t} H {s =t}
2. X¢N(s=t) = {sx=tx}H{s=1t}

Proof Here is a derivation that proves + of (1):

Ax.s = Ax.t

(Ax.s)x = (Ax.t)x CL
(Ax.S)x = s B
s=(Ax.s)x Sym
(Ax.t)x =t B
s=(Ax.t)x Trans
s=t Trans

The other proofs are similar. Exercise! -

Proposition 4.5 (Finiteness) If A — e, then there exists a finite subset A" < A
such that A" + e.

Example 4.6 Let fyx = a be an equation where f and a are constants and x
and y are variables such that Tx = Ty. The following outlines a derivation of
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fyx =afrom {fxy = a}.

fxy=a
HoOAx.fxy =Ax.a &
HoAyx.fxy =Ayx.a &
Fo(Ayx.fxy)x = (Ayx.a)x CL
FoAx.fx'x =Ax.a B, Sym, Trans
HoAx.fx'x)y = (Ax.a)y CL
o fyx=a B, Sym, Trans -

The example suggests that we can deduce from e every instance of e that is
obtained by instantiation of some variables of e. This property is called genera-
tivity. We will make use of the following notation:

Ker0 := {ueilnd|u +u} Kernel of 0
Proposition 4.7 (Generativity) Ker0 c Var = {e} + SOe
This proposition can be proven with the following lemma:
Lemma 4.8 O — S{x1:=51,..., Xn:=Sutt = (AX1...Xn.t)S1...5n
Proof By induction on n. -
Deductive generativity implies semantic generativity (by soundness):
Proposition 4.9 (Generativity) Ker0 < Var = {e} = S0Oe

A substitution 0 is invertible if there exists a substitution ¢ such that
Sy (SOs) = s for all terms s. A variable renaming is an invertible substitution 0
such that Ker0 < Var.

Proposition 4.10 (Variable Renaming) 6 variable renaming = {e} H {SOe}
Proof Easy consequence of Generativity. -

Another important property of the entailment relations is stability. We say
that a deduction rule is stable if for every instance (E,e) of the rule and every
substitution 0 the pair (SOE, SOe) is an instance of the rule.

Proposition 4.11 All deduction rules but & are stable.

We say that a substitution 0 is stable for an equation e if it satisfies the
following conditions:
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1. Ker0 < Con
2. VceNeVxeN(SOc): x¢& Ne

We say that a substitution 0 is stable for a set of equations E if 0 is stable for
every equation in E.

Proposition 4.12 If Ker0 < Con and Oc is closed for all constants c, then 0 is
stable for every equation.

Proposition 4.13 (Stability) Let 0 be stable for A. Then:
1. Are = SOA SOe
2. AEe = SOA = Sfe

The proof of this proposition is not straightforward.

Example 4.14 By Generativity we know { fax = x} + fay = . The substitution
0 = {a := x} is not stable for {fax = x} and in fact {fxx = x} #* fxy =1y
since there is structure A such that A = fxx = x and A # fxy = y. Exercise:
Find such a structure. -

A duality for a specification A is a substitution 6 such that:
1. 6 stable for A

2. Vs: A+ S6(Sos) =s

3. A+ S6A

Proposition 4.15 (Duality) Let 6 be a duality for A. Then:
l. Are < A Sée
2. AEe <= AESde

Proof We proof (1) as follows:

Are = SO0A+ Soe stability

= A Sde 0 duality, (3)

= SOA+ SO6(Sde) stability

= At e 0 duality, (3) and (2)
The proof of (2) is similar and exploits soundness. -
Example 4.16 6 = {0:=1, 1:=0, +:=-, -:=+} is a duality for BA that satisfies
SS(BA) = BA and S6(Sés) = s. -
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