

Assignment 3 Introduction to Computational Logic, SS 2008

Prof. Dr. Gert Smolka, Dr. Chad Brown www.ps.uni-sb.de/courses/cl-ss08/

Read in the lecture notes: Chapters 3 and 4

Exercise 3.1 Give finite relations \rightarrow such that:

- a) \rightarrow is confluent but not terminating.
- b) \rightarrow is terminating but not confluent.
- c) \rightarrow is not confluent and not terminating.
- d) \rightarrow is confluent, does not terminate on x, and y is a \rightarrow -normal form of x.

Exercise 3.2 Consider the relation $\rightarrow := \{ (x, y) \in \mathbb{N}^2 \mid 2 \le 2y \le x \}.$

- a) Is \rightarrow terminating?
- b) Is \rightarrow confluent?
- c) Give a \rightarrow -normal form of 7.
- d) Give all \rightarrow -normal $n \in \mathbb{N}$.

Exercise 3.3 A relation \rightarrow is *locally confluent* if for all x, y, z: $x \rightarrow y \land x \rightarrow z \Rightarrow y \downarrow z$. Find a finite relation that is locally confluent but not confluent.

Exercise 3.4 Find terms s, t such that $s \rightarrow_{\beta} t$, s contains no η -redex, and t contains an η -redex.

Exercise 3.5 Which condition in the definition of interpretations ensures that sorts are interpreted as non-empty sets?

Exercise 3.6 (Multiplication) Extend the specification of the natural number with a formula that specifies the name \cdot : *NNN* as multiplication.

Exercise 3.7 (Pairs) Let the names pair : $\sigma \tau P$, fst : $P\sigma$, and snd : $P\tau$ be given. Find a formula that is satisfied by a logical interpretation \mathcal{I} if and only if $\mathcal{I}P \cong \mathcal{I}\sigma \times \mathcal{I}\tau$ and pair, fst, and snd are interpreted as the pairing and projection functions.

Exercise 3.8 (Termination) Let $r : \alpha \alpha B$ be a name. Find a formula that is satisfied by a logical interpretation \mathcal{I} if and only if $\mathcal{I}r$ is the functional coding of a terminating relation.

Exercise 3.9 (Finiteness) Let $f : \sigma \sigma$ be a name.

- a) Find a term injective : $(\sigma\sigma)B$ such that a logical interpretation satisfies the formula injective f if and only if it interprets f as an injective function.
- b) Find a term surjective : $(\sigma \sigma)B$ such that a logical interpretation satisfies the formula surjective f if and only if it interprets f as a surjective function.
- c) Find a formula finite that is satisfied by a logical interpretation $\mathcal I$ if and only if $\mathcal I\sigma$ is a finite set.

Exercise 3.10 (Lists) Let the names nil : L, cons : σLL , hd : $L\sigma$, and tl : LL be given. Find a formula that is satisfied by a logical interpretation $\mathcal I$ if and only if L represents all lists over σ and nil, cons, hd, and tl represent the list operations. Make sure that L contains no junk elements.