

Assignment 9 Introduction to Computational Logic, SS 2008

Prof. Dr. Gert Smolka, Dr. Chad Brown www.ps.uni-sb.de/courses/cl-ss08/

Read in the lecture notes: Chapter 6

Exercise 9.1 (Ping Pong) Let I be a sort, f,g:II be variables, and x,y:I be variables. Give a tableau proof of

$$(\exists f. \forall y. f(gy) = y) \rightarrow \exists f. \forall y. \exists x. fx = y$$

(See Jitpro Exercise 5.1)

Exercise 9.2 (Double Instantiation) Let I be a sort, f: IIB be a variable, h: (IB)B be a variable, g: IB be a variable, and x: I be a variable. Give a tableau proof of

$$\exists g. \forall x. \exists h. h(fx) \land \neg hg$$

Hint: You will need to instantiate h twice. (See Jitpro Exercise 5.2)

Exercise 9.3 (Kaminski Equation (Special Case)) Let f:BB be a variable. Give a tableau proof of

$$f(f(f\perp)) = f\perp$$

assuming the lemma

$$\forall p.p = \top \lor p = \bot$$
.

In other words, complete the following tableau:

$$f(f(f\bot)) \neq f\bot$$
$$\forall p.p = \top \lor p = \bot$$

(See Jitpro Exercise 5.3)

Exercise 9.4 (Boolean Connectives) In this exercise you will use tableau to formally prove two of the solutions to Exercise 1.2 of Assignment Sheet 1 are correct. (See Jitpro Exercise 5.4) Let x, y : B be variables.

a) Give a tableau proof of

$$\forall xy.and xy = (x \land y)$$

where and is notation for

$$\lambda xy.\mathsf{neg}(x \to \mathsf{neg}y)$$

and neg is notation for

$$\lambda x.x \rightarrow \bot$$
.

2008-06-18 17:38

b) Give a tableau proof of

$$\forall xy.\mathsf{imp} xy = (x \to y)$$

where imp is notation for

$$\lambda x y . \neg x \lor y$$
.

Exercise 9.5 (Sets As Functions) In this exercise you will formally solve two parts of Exercise 1.3 of Assignment Sheet 1. (See Jitpro Exercise 5.5) Let X be a sort, f,g:XB be variables, x:X be a variable, union : (XB)(XB)XB be a variable, and subseteq: (XB)(XB)B be a variable.

a) Give a tableau proof of

$$\exists$$
union. $\forall fgx$.union $fgx = (fx \lor gx)$

b) Give a tableau proof of

$$\exists$$
subseteq. $\forall fg$.subseteq $fg = \forall x.fx \rightarrow gx$

Exercise 9.6 (Identities and Quantifiers) In this exercise you will use tableau to formally prove four of the solutions to Exercise 1.4 of Assignment Sheet 1 are correct. (See Jitpro Exercise 5.6.) Let X and Y be sorts, f: XB be a variable, x, y: X be variables, and g, h: XY be variables.

a) Give a tableau proof of

$$\forall f.allXf = \forall x.fx$$

where allX is notation for $\lambda f.f = \lambda x. \top$.

b) Give a tableau proof of

$$\forall f.\mathsf{exX} f = \exists x.fx$$

where exX is notation for $\lambda f. \neg \forall x. \neg fx$.

c) Give a tableau proof of

$$\forall gh. eq XYgh = (g = h)$$

where exXY is notation for $\lambda gh. \forall x. gx = hx$.

d) Give a tableau proof of

$$\forall xy.\mathsf{eqX} xy = (x = y)$$

where exX is notation for $\lambda x \gamma . \forall f. fx \rightarrow f \gamma$.

Exercise 9.7 (Henkin's Reduction) In this exercise you will use tableau to formally prove two of the solutions to Exercise 1.5 of Assignment Sheet 1 are correct. (See Jitpro Exercise 5.7)

a) Give a tableau proof of

$$\neg False$$

where False is notation for $(\lambda x.x) = \lambda x.\top$

b) Give a tableau proof of

$$\forall xy.\mathsf{and} xy = (x \land y)$$

where and is notation for $(\lambda g.gxy) = \lambda g.g \top \top$.