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1 Introduction

This course is an introduction to constructive type theory and interactive theo-

rem proving. It also covers classical first-order logic. For most of the course we

use the proof assistant Coq.

Constructive type theory provides a programming language for expressing

mathematical and computational theories. Theories consist of definitions and

theorems stating logical consequences of the definitions. Every theorem comes

with a proof justifying it. If the proof of a theorem is correct, the theorem

is correct. Constructive type theory is designed such that the correctness of

proofs can be checked automatically. Thus a computer program can check the

correctness of theorems and theories.

Coq is an implementation of a constructive type theory known as the calculus

of inductive definitions. Coq is designed as an interactive system that assists the

user in developing theories. The most interesting part of the interaction is the

construction of proofs. The idea is that the user points the direction while Coq

takes care of the details of the proof.

Coq is a mature system whose development started in the 1980’s. In recent

years Coq has become a popular tool for research and education in formal the-

ory development and program verification. Landmarks are a proof of the four

color theorem and the verification of a compiler for a subset of the programming

language C.

Coq is the applied side of this course. On the theoretical side we explore the

basic principles of constructive type theory, which are essential for programming

languages, logical languages, and proof systems.

We also consider classical first-order logic. First-order logic matters in prac-

tice since it comes with powerful automated theorem provers. First-order logic

can be seen as a fragment of constructive type theory that trades expressivity for

automation. First-order logic comes with a natural set-theoretic semantics that

provides a basis for arguing the soundness and completeness of proof systems.
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2 Types and Functions

In this chapter, we take a first look at Coq and its mathematical programming

language. Using types and functions, we define basic data structures such as

booleans, natural numbers, and lists. Based on our definitions, we prove equa-

tional theorems, constructing the proofs in interaction with the Coq interpreter.

Frequently, the functions we define are recursive and the proofs we construct

are inductive.

2.1 Booleans

We start with the boolean values true and false and the boolean operations nega-

tion and conjunction. We first define these objects in ordinary mathematical

language. To start with, we fix two different values true and false and define the

set bool := {true, false}. Next we define the operations negation and conjunction

by stating their types and defining equations.

¬ : bool → bool ∧ : bool → bool → bool

¬true = false true∧ y = y

¬false = true false∧ y = false

In general, there is more than one possibility to choose the defining equations of

an operation. We require that for every application of an operation exactly one of

the defining equations applies from left to right. For instance, given true∧ false,

the first defining equation of ∧ applies and yields true∧ false = false.

Our presentation of the booleans translates into three definitions in Coq.

Inductive bool : Type :=

| true : bool

| false : bool.

Definition negb (x : bool) : bool :=

match x with

| true => false

| false => true

end.

3



2 Types and Functions

Definition andb (x y : bool) : bool :=

match x with

| true => y

| false => false

end.

The first definition (starting with the keyword Inductive) defines a type bool that

has two members false and true. The remaining two definitions (starting with

the keyword Definition) define two functions negb and andb representing the

operations negation and conjunction. The defining equations of the operations

are expressed with so-called matches. Altogether, the definitions introduce 5

identifiers, each equipped with a unique type:

bool : Type

true : bool

false : bool

negb : bool → bool

andb : bool → bool → bool

It is time that you start a Coq interpreter. Enter the 3 definitions one after the

other. Each time Coq checks the well-formedness of the definition. Once Coq

has accepted the definitions, you can explore the defined objects by entering

commands that check and evaluate terms (i.e., expressions).

Check negb true.

% negb true : bool

Compute negb true.

% false : bool

Compute negb (negb true).

% true : bool

Compute andb (negb false) true.

% true : bool

Note that functions are applied without writing parentheses and that multiple

arguments are not separated by commas. Functions that take more than one

argument can also be applied to a single argument.

Check andb (negb false).

% andb(negb false) : bool → bool

Compute andb (negb false).

% fun y : bool ⇒ y : bool → bool

The term fun y : bool ⇒ y decribes a function bool → bool that returns its argu-

ment. Terms that start with the keyword fun are called abstractions and can be

used freely in Coq.

4 2012-7-18



2.2 Proof by Case Analysis and Simplification

Compute (fun x : bool => andb x x) true

% true : bool

2.2 Proof by Case Analysis and Simplification

From our definitions it seems clear that the equation ¬¬x = x holds for all

booleans x. To verify this claim, we perform a case analysis on x.

1. x = true. We have to show ¬¬true = true. This follows with the defining

equations of negation: ¬¬true = ¬false = true.

2. x = false. We have to show ¬¬false = false. This follows with the defining

equations of negation: ¬¬false = ¬true = false.

To carry out the proof with Coq, we state the claim as a lemma.

Lemma negb_negb (x : bool) :

negb (negb x) = x.

The identifier negb_negb serves as the name of the lemma. Once you enter the

lemma, Coq switches to proof mode and you see the initial proof goal. Here is a

proof script that constructs the proof of the lemma.

Proof. destruct x. simpl. reflexivity. simpl. reflexivity. Qed.

At this point, it is crucial that you step through the proof script with Coq. The

script begins with the command Proof and ends with the command Qed. The

commands between Proof und Qed are called tactics. The tactic destruct x does

the case analysis and replaces the initial goal with two subgoals, one for x = false

and one for x = true. Once you have entered destruct x, you will see the first

subgoal on the screen. The tactic simpl simplifies the equation we have to prove

by applying the definition of negb. For the first subgoal, we are now left with the

trivial equality false = false, which is established with the tactic reflexivity . The

second subgoal is established analogously.

It is important that you step back and forth in the proof script with Coq and

observe what happens. This way you can see how the proof advances. At each

point in the proof you are confronted with a proof goal, which consists of some

assumptions (possibly none) and a claim. Here is the sequence of proof goals

you will see when you step through the proof script.

x : bool

negb (negb x) = x negb (negb true) = true true = true

negb (negb false) = false false = false

2012-7-18 5



2 Types and Functions

In each goal, the assumptions appear above and the claim appears below the

rule. We can shorten the proof script by combining the tactics destruct x and

simpl with the semicolon operator.

Proof. destruct x ; simpl. reflexivity. reflexivity . Qed.

The semicolon operator applies simpl to each of the two subgoals generated by

destruct x. Given the symmetry of the two subgoals, we can shorten the proof

script further.

Proof. destruct x ; simpl ; reflexivity. Qed.

Since the tactic reflexivity first simplifies the equation it is applied to, we can

shorten the proof script even further.

Proof. destruct x ; reflexivity. Qed.

The short proof script has the drawback that you don’t see much when you step

through it. For that reason we will often give proof scripts that are longer than

necessary.

A word on terminology. In mathematics, theorems are usually classified into

propositions, lemmas, theorems, and corollaries. This distinction is a matter of

style and does not matter logically. When we state a theorem in Coq, we will

mostly use the keyword Lemma. Coq also accepts the keywords Proposition,

Theorem, and Corollary, which are treated as synonyms.

Exercise 2.2.1 (Commutativity of conjunction) Prove x ∧y = y ∧ x in Coq.

Exercise 2.2.2 (Disjunction) A boolean disjunction x∨y yields false if and only

if both x and y are false.

a) Define disjunction as a function orb : bool → bool → bool in Coq.

b) Prove the de Morgan law ¬(x ∨y) = ¬x ∧¬y in Coq.

2.3 Natural Numbers and Structural Recursion

Dedekind and Peano discovered that the natural numbers can be obtained with

two constructors O and S. The idea is best expressed with the definition of a type

nat in Coq.

Inductive nat : Type :=

| O : nat

| S : nat −> nat.

The constructor O represents the number 0, and the constructor S yields the

successor of a natural number (i.e., Sn = n + 1). Expressed with O and S, the

6 2012-7-18



2.3 Natural Numbers and Structural Recursion

natural numbers 0, 1, 2, 3, . . . look as follows:

O, S O, S(S O), S(S(S O)), . . .

We say that the elements of nat are obtained by iterating the successor function S

on the initial number O. This is a form of recursion. The recursion makes it

possible to obtain infinitely many values from finitely many constructors.

Here is a function that yields the predecessor of a positive number.

Definition pred (x : nat) : nat :=

match x with

| O => O

| S x’ => x’

end.

Compute pred (S(S O)).

% S O : nat

Given the constructor represention of the natural numbers, we can define the

operations addition and multiplication:

+ : nat → nat → nat · : nat → nat → nat

0+y = y 0 ·y = O

Sx +y = S(x +y) Sx ·y = x ·y +y

The defining equations become clear if one thinks of Sx as x + 1. Here is a

computation that applies the defining equations for +:

S(S(SO))+y = S(S(SO)+y) = S(S(SO +y)) = S(S(Sy))

One says that the operations + and · are defined by structural recursion over the

first argument. The recursion comes from the second defining equation where

the operation to be defined also appears on the right. Since each recursion step

strips off a constructor S, the recursion must terminate. The mathematical defi-

nitions of addition and multiplication carry over to Coq:

Fixpoint plus (x y : nat) : nat :=

match x with

| O => y

| S x’ => S (plus x’ y)

end.

Fixpoint mult (x y : nat) : nat :=

match x with

| O => O

| S x’ => plus (mult x’ y) y

end.

2012-7-18 7



2 Types and Functions

We use the keyword Fixpoint in place of the keyword Definition to enable recur-

sion. Coq permits only structural recusion. This way Coq makes sure that the

evaluation of recursive functions always terminates. Structural recursion always

happens on an argument taken from an inductive type (a type defined with the

keyword Inductive). Each recursion step in the definition of a recursive function

must take off at least one constructor.

Here is the definition of a comparison function leb : nat → nat → bool that

tests whether its first argument is less or equal than its second argument.

Fixpoint leb (x y: nat) : bool :=

match x with

| O => true

| S x’ => match y with

| O => false

| S y’ => leb x’ y’

end

end.

A shorter, more readable definition of leb looks as follows:

Fixpoint leb (x y: nat) : bool :=

match x, y with

| O, _ => true

| _, O => false

| S x’, S y’ => leb x’ y’

end.

Coq translates the short form automatically into the long form. One says that

the short form is syntactic sugar for the long form. The underline character used

in the short form serves as wildcard pattern that matches everything. The order

of the rules in sugared matches is significant. Without the order sensitivity the

second rule in the sugared match would be incorrect.

You cannot define the same identifier twice in a Coq session. Thus you can

enter either the long or the short definition of leb, but not both. If you want

to have both definitions, choose a different name for the second definition you

enter.

Exercise 2.3.1 Define functions as follows.

a) A function power : nat → nat → nat that yields xn for x and n.

b) A function fac : nat → nat that yields n! for n.

c) A function evenb : nat → bool that tests whether its argument is even.

d) A function mod3 : nat → nat that yields the remainder of x on division by 3.

e) A function minus : nat → nat → nat that yields x −y for x ≥ y .

8 2012-7-18



2.4 Proof by Structural Induction and Rewriting

f) A function gtb : nat → nat → bool that tests x > y .

g) A function eqb : nat → nat → bool that tests x = y . Do not use leb or gtb.

2.4 Proof by Structural Induction and Rewriting

Consider the proof goal

x : nat

px

where px is a claim that depends on x. By structural induction on x we can

reduce the goal to two subgoals.

pO

x : nat
IHx : px

p(Sx)

This reduction is like a case analysis on the structure of x, but has the added

feature that the second subgoal comes with an extra assumption IHx known as

inductive hypothesis. We think of IHx as a proof of px. If we can prove both

subgoals, we have established the initial claim px for all x : nat. This can be

seen as follows.

1. The first subgoal gives us a proof of pO.

2. The second subgoal gives us a proof of p(SO) from the proof of pO.

3. The second subgoal gives us a proof of p(S(SO)) from the proof of p(SO).

4. After finitely many steps we arrive at a proof of px.

This reasoning is valid since the proof of the second subgoal is a function that

given an x and a proof of px yields a proof of p(Sx). Here is our first inductive

proof in Coq.

Lemma plus_O (x : nat) : plus x O = x.

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

If you step through the proof script with Coq, you will see the following proof

goals.

x : nat

plus x O = x O = O

x : nat
IHx : plus x O = x

S(plus x O) = Sx

x : nat
IHx : plus x O = x

Sx = Sx

induction x ; simpl reflexivity rewrite IHx reflexivity

Of particular interest is the application of the inductive hypothesis with the tactic

rewrite IHx. The tactic rewrites a subterm of the claim with the equation IHx.
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Doing inductive proofs with Coq is fun since Coq takes care of the bureau-

cratic aspects of such proofs. Here is our next example.

Lemma plus_S (x y : nat) : plus x (S y) = S (plus x y).

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

Note that the proof scripts for the lemmas plus_S and plus_O are identical. When

you run the script for each of the two lemmas, you see that they generate differ-

ent proofs.

Note that the lemmas plus_O and plus_S provide the symmetric versions of

the defining equations of plus. Using the lemmas, we can prove that addition is

commutative.

Lemma plus_com (x y : nat) : plus x y = plus y x.

Proof. induction x ; simpl.

rewrite plus_O. reflexivity.

rewrite plus_S. rewrite IHx. reflexivity. Qed.

Note that the lemmas are applied with the rewrite tactic. Given that the definition

of plus is not symmetric, the commutativity of plus is an interesting result. Next

we prove that addition is associative.

Lemma plus_asso (x y z: nat) : plus (plus x y) z = plus x (plus y z).

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

Rewriting with plus_com can be tricky since the lemma applies to every sum.

This can be resolved by instantiating the lemma. Here is an example.

Lemma plus_AC (x y z : nat) :

plus y (plus x z) = plus (plus z y) x.

Proof. rewrite (plus_com z). rewrite (plus_com x). rewrite plus_asso. reflexivity. Qed.

Note that the instantiated lemma plus_com z can only rewrite terms of the form

plus z _. Here is a more involved example using the tactic f_equal and (partially)

instantiated lemmas.

Lemma plus_AC’ (x y z : nat) :

plus (plus (mult x y) (mult x z)) (plus y z) =

plus (plus (mult x y) y) (plus (mult x z) z).

Proof. rewrite plus_asso. rewrite plus_asso. f_equal.

rewrite (plus_com _ (plus _ _)). rewrite plus_asso. f_equal.

rewrite plus_com. reflexivity. Qed.

Run the proof script to see the effects of the tactics. The tactic f_equal reduces a

claim st = su to t = u. The first rewrite with plus_com requires that the second

argument of plus is of the form plus _ _.
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Exercise 2.4.1 Prove Lemma plus_com by induction on y .

Exercise 2.4.2 Prove the following lemmas.

Lemma mult_O (x : nat) : mult x O = O.

Lemma mult_S (x y : nat) : mult x (S y) = plus (mult x y) x.

Lemma mult_com (x y : nat) : mult x y = mult y x.

Lemma mult_dist (x y z: nat) : mult (plus x y) z = plus (mult x z) (mult y z).

Lemma mult_asso (x y z: nat) : mult (mult x y) z = mult x (mult y z).

Exercise 2.4.3 Often a claim must be generalized before it can be proven by

induction. For instance, it seems impossible to prove plus (plus x x) x =

plus x(plus x x) without using lemmas. However, a more general claim ex-

pressing the associativity of addition with three variables has a straightforward

inductive proof (see lemma plus_asso).

2.5 Pairs and Implicit Arguments

Given two values x and y , we can form the ordered pair (x,y). Given two

types X and Y , we can form the product type X × Y containing all pairs whose

first component is an element of X and whose second component is an element

of Y . This leads to the Coq definition

Inductive prod (X Y : Type) : Type :=

| pair : X −> Y −> prod X Y.

which fixes two functions

prod : Type → Type → Type

pair : forall X Y : Type, X → Y → prod X Y

for constructing products and pairs. The pairing function takes four arguments,

where the first two arguments determine the types of the components of the pair

to be constructed. Here are typings explaining the type of the pairing function.

pair nat : forall Y : Type, nat → Y → prod nat Y

pair nat bool : nat → bool → prod nat bool

pair nat bool O : bool → prod nat bool

pair nat bool O true : prod nat bool

One says that pair is a polymorphic function. This addresses the fact that the

types of the third and fourth argument are given as first and second argument.
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While the logical analysis is conclusive, the resulting notation for pairs is te-

dious. As is, we have to write pair nat bool O true for the pair (O, true). Fortu-

nately, Coq comes with a type inference feature making it possible to just write

pair O true and leave it to the interpreter to insert the missing arguments. One

speaks of implicit arguments. With the command

Set Implicit Arguments.

we tell Coq to make all arguments implicit that can be derived from other argu-

ments. If the definition of products and pairs appears after this command, the

first two arguments of pair are automatically treated as implicit arguments.

Check pair O true.

% pair O true : prod nat bool

The implicit arguments of a function can be still be given explicitly if we prefix

the name of the function with the character @:

Check @pair nat.

% @pair nat : forall Y : Type, nat → Y → prod nat Y

Check @pair nat bool O.

% @pair nat bool O : bool → prod nat bool

We can see that Coq automatically inserts implicit arguments by telling Coq to

not use notational conveniences when displaying terms.

Set Printing All.

Check pair O true.

% @pair nat bool O true : prod nat bool

Unset Printing All.

Here are functions that yield the first and the second component of a pair.

Definition fst (X Y : Type) (p : prod X Y) : X :=

match p with pair x _ => x end.

Definition snd (X Y : Type) (p : prod X Y) : Y :=

match p with pair _ y => y end.

Compute fst (pair O true).

% O : nat

Compute snd (pair O true).

% true : bool

Note that the first two arguments of fst and snd are implicit. We prove the so-

called eta law for pairs.

Lemma pair_eta (X Y : Type) (p : prod X Y) :

pair ( fst p) (snd p) = p.
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Proof. destruct p. reflexivity. Qed.

Here is a function that swaps the components of a pair:

Definition swap (X Y : Type) (p : prod X Y) : prod Y X := pair (snd p) (fst p).

Compute swap (pair O true).

% pair true nat : prod bool nat

Lemma swap_swap (X Y : Type) (p : prod X Y) :

swap (swap p) = p.

Proof. destruct p. unfold swap. simpl. reflexivity. Qed.

Note the use of the tactic unfold. We use it since simpl does not simplify appli-

cations of functions that do not involve a match. Since reflexivity does all the

required simplification automatically, we may omit the unfold and simplification

step.

Exercise 2.5.1 An operation taking two arguments can be represented either as

a function taking its arguments one by one (cascaded representation) or as a

function taking both arguments bundled in one pair (cartesian representation).

While the cascaded representation is natural in Coq, the cartesian representation

is common in mathematics. Define functions

car : forall X Y Z : Type, (X → Y → Z)→ (prod X Y → Z)

cas : forall X Y Z : Type, (prod X Y → Z)→ (X → Y → Z)

that translate between the cascaded and cartesian representation and prove the

following lemmas.

Lemma car_P (X Y Z :Type) (f : X −> Y −> Z) (x :X) (y :Y) : car f (pair x y) = f x y.

Lemma cas_P (X Y Z :Type) (f : prod X Y −> Z) (x :X) (y :Y) : cas f x y = f (pair x y).

The type arguments of car and cas are assumed to be implicit.

2.6 Iteration

We now define a function iter that takes a natural number n, a type X, a function

f : X → X, and a value x : X, and yields the value obtained by applying the

function f n times to x. The defining equations for iter are as follows (type

argument suppressed):

iter 0 f x = x

iter (Sn) f x = f (iter n f x)

The Coq definition is now straightforward:
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Fixpoint iter (n : nat) (X : Type) (f : X −> X) (x : X) : X :=

match n with

| O => x

| S n’ => f ( iter n’ f x)

end.

With iter we can give non-recursive definitions of addition and multiplication.

Definition plusi (x y : nat) : nat := iter x S y.

Definition multi (x y : nat) : nat := iter x (plusi y) O.

The function plusi obtains x + y by iterating the function S x times on y . The

function multi obtains x ·y by iterating the function +y x times on 0.

Lemma iter_plus (x y : nat) :

plus x y = iter x S y.

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

We can see iter n as a functional representation of the number n that carries with

it the structural recursion coming with n. The following definitions implement

this idea.

Definition Nat := forall X : Type, (X −> X) −> X −> X.

Definition encode : nat −> Nat := iter.

Definition decode : Nat −> nat := fun f => f nat S O.

Compute decode (encode (S (S O))).

% S(S O) : nat

Lemma iter_coding (x : nat) :

decode (encode x) = x.

Proof. unfold encode. unfold decode. induction x ; simpl.

reflexivity . rewrite IHx. reflexivity. Qed.

A higher-order function is a function that takes a function as argument. The

function iter is our first example of a higher-order function. It formulates a

recursion scheme known as iteration or primitive recursion. Note that iter is also

polymorphic.

Exercise 2.6.1 Prove mult x y = iter x (plus y) O for all numbers x and y .

Exercise 2.6.2 Define a function power recursively (see Exercise 2.3.1) and prove

power x n = iter n (mult x) (S O) for all x,n : nat.

Exercise 2.6.3 Prove the following lemma.

Lemma iter_move (X : Type) (f : X −> X) (x : X) (n : nat) :

iter (S n) f x = iter n f (f x).
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2.7 Factorials with Iteration

Exercise 2.6.4 (Subtraction with Iteration) Prove the following lemmas about a

subtraction function defined with iter .

Definition minus (x y : nat) : nat := iter y pred x.

Lemma minus_O (y : nat) : minus O y = O.

Lemma minus_O’ (x : nat) : minus x O = x.

Lemma minus_SS (x y : nat) : minus (S x) (S y) = minus x y.

Lemma minus_SP (x y : nat) : minus x (S y) = pred (minus x y).

Lemma minus_SP’ (x y : nat) : minus x (S y) = minus (pred x) y.

Lemma minus_PS (x y : nat) : minus x y = pred (minus (S x) y).

Hint: Do unfold minus as first step in your proofs.

2.7 Factorials with Iteration

We define the factorial n! of a natural number n by a recursive function:

Fixpoint fac (n : nat) : nat :=

match n with

| O => S O

| S n’ => mult n (fac n’)

end.

We can compute factorials with iter if we iterate on pairs:

(0,0!)→ (1,1!)→ (2,2!)→ ·· · → (n,n!)

We realize the idea with two definitions.

Definition step (p : prod nat nat) : prod nat nat :=

match p with pair n f => pair (S n) (mult (S n) f) end.

Definition ifac (n : nat) : nat := snd (iter n step (pair O (S O))).

To verify the correctness of the iterative computation of factorials, we would like

to prove ifac n = fac n for n : nat. An attempt to prove the claim directly fails

miserably. The problem is that we need to account for both components of the

pairs computed by iter . To do so, we prove the following lemma.

Lemma iter_fac (n : nat) :

pair n (fac n) = iter n step (pair O (S O)).

Proof.

induction n. reflexivity.

simpl iter. rewrite <− IHn. unfold step. reflexivity.

Qed.
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To avoid large and unreadable terms, the proof simplifies only the application

of iter . The command unfold step can be omitted; it is included to help your

understanding when you step through the proof.

It is now straightforward to prove that ifac and fac agree on all arguments.

Exercise 2.7.1 Prove the following lemmas.

Lemma ifac_fac (n : nat) : ifac n = fac n.

Lemma ifac_step (n : nat) : step (pair n (fac n)) = pair (S n) (fac (S n)).

2.8 Lists

Lists represent finite sequences [x1, . . . , xn] with two constructors nil and cons.

Inductive list (X : Type) : Type :=

| nil : list X

| cons : X −> list X −> list X.

All elements of a list must be taken from the same type. The constructor nil

represents the empty sequence, and the constructor cons represents nonempty

sequences.

[] ֏ nil

[x] ֏ cons x nil

[x,y] ֏ cons x (cons y nil)

[x,y, z] ֏ cons x (cons y (cons z nil))

Coq does not automatically treat the type argument of nil as implicit argument

since there is no other argument where the type can be obtained from. So we

force Coq to treat the argument of n as implicit:

Implicit Arguments nil [X].

Now Coq will try to derive the argument of nil from the context surrounding an

occurrence of nil. Here are functions defining the length, the concatenation, and

the reversal of lists.

Fixpoint length (X : Type) (xs : list X) : nat :=

match xs with

| nil => O

| cons _ xr => S (length xr)

end.
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Fixpoint app (X : Type) (xs ys : list X) : list X :=

match xs with

| nil => ys

| cons x xr => cons x (app xr ys)

end.

Fixpoint rev (X : Type) (xs : list X) : list X :=

match xs with

| nil => nil

| cons x xr => app (rev xr) (cons x nil)

end.

Using informal notation for lists, we have the following.

length [x1, . . . , xn] = n

app [x1, . . . , xm] [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn]

rev [x1, . . . , xn] = [xn, . . . , x1]

Properties of the list operations can be shown by structural induction on lists,

which has much in common with structural induction on numbers.

Lemma app_nil (X : Type) (xs : list X) : app xs nil = xs.

Proof. induction xs ; simpl. reflexivity. rewrite IHxs. reflexivity. Qed.

Exercise 2.8.1 Prove the following lemmas.

Lemma app_asso (X : Type) (xs ys zs : list X) :

app (app xs ys) zs = app xs (app ys zs).

Lemma length_app (X : Type) (xs ys : list X) :

length (app xs ys) = plus (length xs) (length ys).

Lemma rev_app (X : Type) (xs ys : list X) :

rev (app xs ys) = app (rev ys) (rev xs).

Lemma rev_rev (X : Type) (xs : list X) :

rev (rev xs) = xs.

2.9 Linear List Reversal

We will now see inductive proofs where the inductive hypothesis carries a univer-

sal quantification. Such proofs are needed for the verification of the correctness

of tail-recursive procedures for list reversal and list length. The proofs will em-

ploy the tactics revert and intros.

If you are familiar with functional programming, you will know that the func-

tion rev takes quadratic time to reverse a list since each recursion step involves
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an application of the function app. One can write a tail-recursive function that

reverses lists in linear time. The trick is to accumultate the elements of the main

list in an extra argument.

Fixpoint revi (X : Type) (xs ys : list X) : list X :=

match xs with

| nil => ys

| cons x xr => revi xr (cons x ys)

end.

The following lemma gives us a non-recursive characterization of revi.

Lemma revi_rev (X : Type) (xs ys : list X) :

revi xs ys = app (rev xs) ys.

We prove this lemma by induction on xs. For the induction to go through, the

inductive hypothesis must hold for all ys. To get this property, we move the

universal quantification for ys from the assumptions to the claim before we issue

the induction. We do this with the tactic revert ys.

Proof. revert ys. induction xs ; simpl.

intros ys. reflexivity .

intros ys. rewrite IHxs. rewrite app_asso. reflexivity. Qed.

Step through the proof script to see how it works. The tactic intros ys moves the

universal quantification for ys from the claim back to the assumptions.

Exercise 2.9.1 Prove the following lemma.

Lemma rev_revi (X : Type) (xs : list X) :

rev xs = revi xs nil.

The lemma tells us how we can reverse lists with revi.

Exercise 2.9.2 Here is a tail-recursive function that obtains the length of a list

with an accumulator argument.

Fixpoint lengthi (X : Type) (xs : list X) (a : nat) :=

match xs with

| nil => a

| cons _ xr => lengthi xr (S a)

end.

Proof the following lemmas.

Lemma lengthi_length (X : Type) (xs : list X) (a : nat) :

lengthi xs a = plus (length xs) a.

Lemma length_lengthi (X : Type) (xs : list X) :

length xs = lengthi xs O.
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Exercise 2.9.3 Define a tail-recursive function faci that computes factorials.

Prove fac n = faci n O for n : nat. Hint: First you need a lemma that charac-

terizes faci non-recursively using fac.

2.10 Options and Finite Types

An empty type can be defined as an inductive type that has no constructors.

Inductive void : Type := .

Computationally, void seems useless. Logically, however, void is dynamite. If

we assume that void has a member, we can prove that every equation holds. In

other words, if we assume that void is inhabited, logical reasoning crashes.

Lemma void_vacuous (v : void) (X : Type) (x y : X) : x=y.

Proof. destruct v. Qed.

The proof is by case analysis on the assumed member v of void. To prove a

claim by case analysis on a member of an inductive type, we need to prove the

claim for every constructor of the type. Since void has no constructor, the claim

follows vacuously.1 Vacuous reasoning is a basic logical principle.

Next we consider a type constructor option that adds a new element to a type.

Inductive option (X : Type) : Type :=

| Some : X −> option X

| None : option X.

The constructor Some yields the old elements and the constructor None yields

the new element (none of the old elements). The elements of an option type are

called options.

Option types can be used to represent partial functions. Here is such a repre-

sentation of the subtraction function.

Implicit Arguments None [X].

Fixpoint subopt (x y : nat) : option nat :=

match x, y with

| _, O => Some x

| O, _ => None

| S x’, S y’ => subopt x’ y’

end.

1 From Wikipedia: A vacuous truth is a truth that is devoid of content because it asserts some-

thing about all members of a class that is empty or because it says “If A then B” when in fact A

is inherently false. For example, the statement “all cell phones in the room are turned off” may

be true simply because there are no cell phones in the room. In this case, the statement “all

cell phones in the room are turned on” would also be considered true, and vacuously so.
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If one iterates the type constructor option on void n times, one obtains a type

with n elements.

Definition fin (n : nat) : Type := iter n option void.

Here are definitions naming the elements of the types fin(S O), fin(S(S O)), and

fin(S(S(S O))).

Definition a11 : fin (S O) := None.

Definition a21: fin (S (S O)) := Some a11.

Definition a22 : fin (S (S O)) := None.

Definition a31: fin (S (S (S O))) := Some a21.

Definition a32 : fin (S (S (S O))) := Some a22.

Definition a33 : fin (S (S (S O))) := None.

Exercise 2.10.1 Define a predecessor function nat → option nat.

Exercise 2.10.2 Prove the following lemma.

Lemma fin_SO (x : fin (S O)) : x = None.

Exercise 2.10.3 One can define a bijection between bool and fin(S(S O)). Show

this fact by completing the definitions and proving the lemmas shown below.

Definition tofin (x : bool) : fin (S(S O)) :=

Definition fromfin (x : fin (S(S O))) : bool :=

Lemma bool_fin (x : bool) : fromfin (tofin x) = x.

Lemma fin_bool (x : fin (S(S O))) : tofin (fromfin x) = x.

Exercise 2.10.4 One can define a bijection between nat and option nat. Show

this fact by completing the definitions and proving the lemmas shown below.

Definition tonat (x : option nat) : nat :=

Definition fromnat (x : nat) : option nat :=

Lemma opnat_nat (x : option nat) : fromnat (tonat x) = x.

Lemma nat_opnat (x : nat) : tonat (fromnat x) = x.

2.11 Fun and Fix

Coq has terms describing functions. The definitions of functions we have seen

so far all reduce to plain declarations

Definition x : t := s.

where x is the name of the function, t is the type of the function, and s is a term

describing the function. Here are two examples.
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Definition plus2 : nat −> nat :=

fun x : nat => S (S x).

Definition double : nat −> nat :=

fix f (x : nat) : nat :=

match x with

| O => O

| S x’ => S (S ( f x’))

end.

Terms starting with the keyword fun are used to describe non-recursive func-

tions, and terms starting with the keyword fix are used to describe recursive

functions. While terms with fun do not specify a name for the function de-

scribed, terms with fix do so that recursion can be expressed. Terms with fix

also specify the return type of the function described.

Coq’s print command displays the definition of a name. When you print the

previously defined names andb and plus, you will observe that Coq has translated

our definitions to plain definitions.

Print andb.

andb =

fun x y : bool => match x with

| true => y

| false => false

end

: bool −> bool −> bool

Print plus.

plus =

fix plus (x y : nat) : nat :=

match x with

| O => y

| S x’ => S (plus x’ y)

end

: nat −> nat −> nat

2.12 Standard Library

Coq comes with an extensive library that provides all the data types we have seen

in this chapter. So there is no need to define these types. You may use the print

command to display the definition of predefined names. When using Print, you

will see a few things we have not explained so far. For instance, Coq may say Set

where we have written Type. For now, just think of Set as a synonym for Type.

For natural numbers, Coq’s library provides the usual notations. For in-

stance, you may write 2 + 3 ∗ 2 for plus (S(S O)) (mult (S(S(S O))) (S(S O))).
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For boolean matches, Coq’s library provides the if-then-else notation. For in-

stance, you may write

Definition andb (x y : bool) : bool :=

if x then y else false.

You may use the command Set Printing All to get rid of the notational sugar.

Set Printing All.

Check 2+3*2.

% plus (S(S O)) (mult (S(S(S O))) (S(S O))) : nat

Check if false then 0 else 1.

% match false return nat with true ⇒ O | false ⇒ S O end

If you execute the above commands in an environment where you have defined

your own versions of nat, plus, and times, you will see that the notations 2, 3, +,

and ∗ still refer to the predefined objects from the library.

2.13 Discussion and Remarks

A basic feature of Coq’s language are inductive types. We have introduced in-

ductive types for booleans, natural numbers, pairs, and lists. The elements of

inductive types are obtained with so-called constructors. Inductive types gen-

eralize the constructor representation of the natural numbers employed in the

Peano axioms. Inductive types are also a basic feature of functional program-

ming languagues (e.g., ML, Haskell).

Inductive types are accompanied by structural case analysis, structural recur-

sion, and structural induction. Typical examples of recursive functions are addi-

tion and multiplication of numbers and concatenation and reversal of lists. We

have also seen a higher-order function iter that formulates a recursion scheme

known as iteration.

Coq is designed such that evaluation always terminates. For this reason Coq

restricts recursion to structural recursion on inductive types. Every recursion

step must strip off at least one constructor of a given argument.

Coq’s language is very regular. Both functions and types are first-class values,

and functions can take types and functions as arguments.

Coq provides for the formulation and proof of theorems. So far we have seen

equational theorems. As it comes to proof techniques, we have used simplifi-

cation, case analysis, induction, and rewriting. Proofs are constructed by proof

scripts, which are obtained with commands called tactics. A tactic either re-

solves a trivial proof goal or reduces a proof goal to one or several subgoals.

Proof scripts are constructed in interaction with Coq, where Coq applies the

proof rules and maintains the open subgoals.
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Proof scripts are programs that construct proofs. To understand a proof,

one steps with the Coq interpreter through the script constructing the proof and

looks at the proof goals obtained with the tactics. Eventually, we will learn that

Coq represents proofs as terms. If you are curious, use the command Print L to

see the term serving as the proof of a lemma L.

2.14 Tactics Summary

destruct x Do case analysis on x

induction x Do induction on x

rewrite [<-] s Rewrite claim with an equation obtained from s

f_equal Reduce claim st = su to t = u

simpl [x | t] Simplify [applications of x | subterm t] in claim

unfold x Unfold definition of x in claim

intros x Move universal quantification from claim to assumptions

revert x Move universal quantification for x from assumptions to claim

reflexivity Establish the goal by computation and reflexivity of equality

t1 ; t2 Combines tactics t1 and t2 into one tactic
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3 Propositions and Proofs

Logical statements are called propositions in Coq. So far we have only seen

equational propositions. We now extend our repertoire to propositions involving

connectives and quantifiers.

3.1 Logical Operations

When we argue logically, we often combine primitive propositions into com-

pound propositions using logical operations. The logical operations include con-

nectives like implication and quantifiers like “for all”. Here is an overview of the

logical operations we will consider.

Operation Notation Reading

conjunction A∧ B A and B

disjunction A∨ B A or B

implication A→ B if A, then B

equivalence A↔ B A if and only if B

negation ¬A not A

universal quantification ∀x :T .A for all x in T , A

existential quantification ∃x :T .A for some x in T , A

There are two different ways of assigning meaning to logical operations and

propositions. The classical approach commonly used in mathematics postulates

that every proposition has a truth value that is either true or false. The more

recent constructive approach defines the meaning of propositions in terms of

their proofs and does not rely truth values. Coq and our presentation of logic

follow the constructive approach. The cornerstone of the constructive approach

is the BHK-scheme,1 wich relates proofs and logical operations as follows.

• A proof of A∧ B consists of a proof of A and a proof of B.

• A proof of A∨ B is either a proof of A or a proof of B.

• A proof of A→ B is a function that for every proof of A yields a proof of B.

• A proof of ∀x :T .A is a function that for every x :T yields a proof of A.

1 The name BHK-scheme reflects the origin of the scheme in the work of the mathematicians

Luitzen Brouwer, Arend Heyting, and Andrey Kolmogorov in the 1930’s.
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3 Propositions and Proofs

• A proof of ∃x :T .A consists of a term s : T and a proof of Axs .

The notation Axs stands for the proposition obtained from the proposition A by

replacing the variable x with the term s. One speaks of a substitution and says

that s is substituted for x. Equivalence and negation are missing in the above

list since they are definable with the other operations:

A↔ B := (A→ B)∧ (B → A)

¬A := A→ ⊥.

The symbol ⊥ represents the primitive proposition false that has no proof. To

give a proof of ¬A we thus have to give a function that yields for every proof

of A a proof of ⊥. If such a function exists, no proof of A can exist since no

proof of false exists.

In this chapter we will learn how Coq accommodates the logical operations

and the concomitant proof rules. We start with implication and universal quan-

tification.

3.2 Implication and Universal Quantification

Example: Symmetry of Equality

We begin with the proof of a proposition saying that equality is symmetric.

Goal forall (X : Type) (x y : X), x=y −> y=x.

Proof. intros X x y A. rewrite A. reflexivity. Qed

The command Goal is like the command Lemma but leaves it to Coq to choose

a name for the lemma. The tactic intros takes away the universal quantifications

and the implication of the claim by representing the respective assumptions as

explicit assumptions of the proof goal.

X : Type

x : X

y : X

A : x = y

y = x

The rest of the proof is straightforward since we have the assumption A : x = y

saying that A is a proof of the equation x = y . The proof A can be used to

rewrite the claim y = x into the trivial equation y = y .

Recall the revert tactic and note that revert can undo the effect of intros.

Exercise 3.2.1 Prove the following goal.

Goal forall x y, andb x y = true −> x = true.

26 2012-7-18



3.3 Predicates

Example: Modus Ponens

Our second example is a proposition stating a basic law for implication known

as modus ponens.

Goal forall X Y : Prop, X −> (X −> Y) −> Y.

Proof. intros X Y x A. exact (A x). Qed.

The proposition quantifies over all propositions X and Y since Prop is the type

of all propositions. The proof first takes away the universal quantifications and

the outer implications2 leaving us with the goal

X : Prop

Y : Prop

x : X

A : X → Y

Y

Given that we have a proof A of X → Y and a proof x of X, we obtain a proof of

the claim Y by applying the function A to the proof x.3 Coq accommodates this

reasoning with the tactic exact.

Example: Transitivity of Implication

Goal forall X Y Z : Prop, (X −> Y) −> (Y −> Z) −> X −> Z.

Proof. intros X Y Z A B x. exact (B (A x)). Qed.

Exercise 3.2.2 Prove that equality is transitive.

3.3 Predicates

Functions that eventually yield a proposition are called predicates. With predi-

cates we can express properties and relations. Here is a theorem involving two

predicates p and q and a nested universal quantification.

Goal forall p q : nat −> Prop,

p 7 −> (forall x, p x −> q x) −> q 7.

Proof. intros p q A B. exact (B 7 A). Qed.

2 Like the arrow for function types the arrow for implication adds missing parentheses to the

right, that is, X → (X → Y)→ Y elaborates to X → ((X → Y)→ Y).
3 Recall from Section 3.1 that proofs of implications are functions.
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3 Propositions and Proofs

Think of p and q as properties of numbers. After the intros we have the goal

p : nat → Prop

q : nat → Prop

A : p 7

B : ∀x, p x → qx

q 7

The proof now exploits the fact that B is a function that yields a proof of q 7

when applied to 7 and a proof of p 7.

3.4 The Apply Tactic

The tactic apply applies proofs of implications in a backward manner.

Goal forall X Y Z : Prop, (X −> Y) −> (Y −> Z) −> X −> Z.

Proof. intros X Y Z A B x. apply B. apply A. exact x. Qed.

The tactic apply also works for universally quantified implications.

Goal forall p q : nat −> Prop, p 7 −> (forall x, p x −> q x) −> q 7.

Proof. intros p q A B. apply B. exact A. Qed.

Step through the proofs with Coq to understand.

Exercise 3.4.1 Prove the following goals.

Goal forall X Y,

( forall Z, (X −> Y −> Z) −> Z) −> X.

Goal forall X Y,

( forall Z, (X −> Y −> Z) −> Z) −> Y.

Exercise 3.4.2 Prove the following goals, which express essential properties of

booleans, numbers, and lists.

Goal forall (p : bool −> Prop) (x : bool),

p true −> p false −> p x.

Goal forall (p : nat −> Prop) (x : nat),

p O −> (forall n, p n −> p (S n)) −> p x.

Goal forall (X : Type) (p : list X −> Prop) (xs : list X),

p nil −> (forall x xs, p xs −> p (cons x xs)) −> p xs.

Hint: Use case analysis and induction.

28 2012-7-18



3.5 Leibniz Characterization of Equality

3.5 Leibniz Characterization of Equality

What does it mean that two objects are equal? The mathematician and philoso-

pher Leibniz answered this question in an interesting way: Two objects are equal

if they have the same properties. We know enough to prove in Coq that Leibniz

was right.

Goal forall (X : Type) (x y : X),

( forall p : X −> Prop, p x −> p y) −> x=y.

Proof. intros X x y A. apply (A (fun z => x=z)). reflexivity. Qed.

Run the proof with Coq to understand. After the intros we have the goal

X : Type

x : X

y : X

A : ∀p : X → Prop. px → py

x = y

Applying the proof A to the predicate λz.x=z gives us a proof of the implication

x=x → x=y .4 Backward application of this proof reduces the claim to the trivial

claim x=x, which can be established with reflexivity.

Exercise 3.5.1 Prove the following goals.

Goal forall (X : Type) (x y : X),

x=y −> forall p : X −> Prop, p x −> p y.

Goal forall (X : Type) (x y : X),

( forall p : X −> Prop, p x −> p y) −>

forall p : X −> Prop, p y −> p x.

3.6 Propositions are Types

You may have noticed that Coq’s notations for implications and universal quan-

tifications are the same as the notations for function types. This goes well with

our assumption that the proofs of implications and universal quantifications are

functions (see Section 3.1). The notational coincidence is profound and reflects

the propositions as types principle, which accommodates propositions as types

taking the proofs of the propositions as members. The propositions as types

principle is also known as Curry-Howard correspondence after two of its inven-

tors.

4 λz. x=z is the mathematical notation for the function fun z => x=z, which for z yields the

equation x=z.
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3 Propositions and Proofs

There is a special universe Prop that takes exactly the propositions as mem-

bers. Universes are types that take types as members. Prop is a subuniverse of

the universe Type. Consequently, every member of Prop is a member of Type.

An function type s → t is actually a function type∀x : s. t where the variable x

does not occur in t. Thus an implication s → t is actually a quantification∀x : s. t

saying that for every proof of s there is a proof of t. Note that the reduction

of implications to quantifications rests on the ability to quantify over proofs.

Constructive type theory has this ability since proofs are first-class citizens that

appear as members of types in the universe Prop.

The fact that implications are universal quantifications explains why the tac-

tics intros and apply are used for both implications and universal quantifications.

Given a function type∀x : s. t, we call x a bound variable. What concrete name

is chosen for a bound variable does not matter. Thus the notations ∀X : Type.X

and ∀Y : Type.Y denote the same type. Moreover, if we have a type ∀x : s. t

where x does not occur in t, we can omit x and just write s → t without losing

information. That the concrete names of bound variables do not matter is a basic

logic principle.

Exercise 3.6.1 Prove the following goals in Coq. Explain what you see.

Goal forall X : Type,

(fun x : X => x) = (fun y : X => y)

Goal forall X Y : Prop,

(X −> Y) −> forall x : X, Y.

Goal forall X Y : Prop,

( forall x : X, Y) −> X −> Y.

Goal forall X Y : Prop,

(X −> Y) = (forall x : X, Y).

3.7 Falsity and Negation

Coq comes with a proposition False that by itself has no proof. Given certain

assumptions, a proof of False may however become possible. We speak of in-

consistent assumptions if they make a proof of False possible. There is a basic

logic principle called explosion saying that from a proof of False one can obtain

a proof of every proposition. Coq provides the explosion principle through the

tactic contradiction.

Goal False −> 2=3.

Proof. intros A. contradiction A. Qed.
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3.8 Conjunction, Disjunction, and Equivalence

We also refer to the proposition False as falsity. The logical notation for False

is ⊥. With falsity Coq defines negation as ¬s := s → ⊥. So we can prove ¬s by

assuming a proof of s and constructing a proof of ⊥.

Goal forall X : Prop, X −> ~~X.

Proof. intros X x A. exact (A x). Qed.

The proof script works since Coq automatically unfolds the definition of nega-

tion. The double negation ¬¬X unfolds into (X → ⊥) → ⊥. Here is another

example.

Goal forall X : Prop,

(X −> ~X) −> (~X −> X) −> False.

Proof. intros X A B. apply A.

apply B. intros x. exact (A x x).

apply B. intros x. exact (A x x). Qed.

Sometimes the tactic exfalso is helpful. It replaces the claim with ⊥, which is

justified by the explosion principle.

Goal forall X:Prop,

~~X −> (X −> ~X) −> X.

Proof. intros X A B. exfalso. apply A. intros x. exact (B x x). Qed.

Exercise 3.7.1 Prove the following goals.

Goal forall X : Prop, ~~~X −> ~X.

Goal forall X Y : Prop, (X −> Y) −> ~Y −> ~X.

3.8 Conjunction, Disjunction, and Equivalence

The tactics for conjunctions are destruct and split.

Goal forall X Y : Prop, X /\ Y −> Y /\ X.

Proof. intros X Y A. destruct A as [x y]. split. exact y. exact x. Qed.

The tactics for disjunctions are destruct, left, and right.

Goal forall X Y : Prop, X \/ Y −> Y \/ X.

Proof. intros X Y A. destruct A as [x|y]. right. exact x. left . exact y. Qed.

Run the proof scripts with Coq to understand. Note that we can prove a con-

junction s ∧ t if and only if we can prove both s and t, and that we can prove a

disjunction s ∨ t if and only if we can prove either s or t.

The intros tactic destructures proofs when given a destructuring pattern. This

leads to shorter proof scripts.
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3 Propositions and Proofs

Goal forall X Y : Prop, X /\ Y −> Y /\ X.

Proof. intros X Y [x y]. split . exact y. exact x. Qed.

Goal forall X Y : Prop, X \/ Y −> Y \/ X.

Proof. intros X Y [x|y]. right. exact x. left . exact y. Qed.

Nesting of destructuring patterns is possible:

Goal forall X Y Z : Prop,

X \/ (Y /\ Z) −> (X \/ Y) /\ (X \/ Z).

Proof. intros X Y Z [x|[y z ]].

split ; left ; exact x.

split ; right. exact y. exact z. Qed.

Coq defines equivalence as s ↔ t := (s → t) ∧ (t → s). Thus an equivalence

s ↔ t is provable if and only if the implications s → t and t → s are both provable.

Coq automatically unfolds equivalences.

Goal forall X Y : Prop, X /\ Y <−> Y /\ X.

Proof. intros X Y. split.

intros [x y]. split . exact y. exact x.

intros [y x]. split . exact x. exact y. Qed.

Goal forall X Y : Prop, ~(X \/ Y) <−> ~X /\ ~Y.

Proof. intros X Y. split.

intros A. split .

intros x. apply A. left. exact x.

intros y. apply A. right. exact y.

intros [A B] [x|y]. exact (A x). exact (B y). Qed.

Exercise 3.8.1 Prove the following goals.

Goal forall X Y : Prop,

X /\ (X \/ Y) <−> X.

Goal forall X Y : Prop,

X \/ (X /\ Y) <−> X.

Goal forall X : Prop,

~(X \/ ~X) −> X \/ ~X.

Goal forall X : Prop,

(X \/ ~X −> ~(X \/ ~X)) −> X \/ ~X.

Goal forall X:Prop,

(X −> ~X) −> X <−> ~~X.

Goal forall X Y Z W : Prop,

(X −> Y) \/ (X −> Z) −> (Y −> W) /\ (Z −> W) −> X −> W.
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Exercise 3.8.2 (Impredicative Characterizations) It turns out that falsity, nega-

tions, conjunctions, disjunctions, and even equations are all equivalent to propo-

sitions obtained with just implication and universal quantification. Prove the fol-

lowing goals to get familiar with this so-called impredicative characterizations.

Goal False <−> forall Z : Prop, Z.

Goal forall X : Prop,

~X <−> forall Z : Prop, X −> Z.

Goal forall X Y : Prop,

X /\ Y <−> forall Z :Prop, (X −> Y −> Z) −> Z.

Goal forall X Y : Prop,

X \/ Y <−> forall Z : Prop, (X −> Z) −> (Y −> Z) −> Z.

Goal forall (X : Type) (x y : X),

x=y <−> forall p : X −> Prop, p x −> p y.

3.9 Automation Tactics

Coq provides various automation tactics that help in the construction of proofs.

In a proof script, an automation tactic can always be replaced by a sequence of

basic tactics.

A simple automation tactic is assumption. This tactic solves goals whose claim

appears as an assumption.

Goal forall X Y : Prop, X /\ Y −> Y /\ X.

Proof. intros X Y [x y]. split ; assumption. Qed.

The automation tactic auto is more powerful. It uses the tactics intros, apply,

assumption, reflexivity and a few others to construct a proof. We may use auto

to finish up proofs once the goal has become obvious.

Goal forall (X : Type) (p : list X −> Prop) (xs : list X),

p nil −> (forall x xs, p xs −> p (cons x xs)) −> p xs.

Proof. induction xs ; auto. Qed.

The automation tactic tauto solves every goal that can be solved with the

tactics intros and reflexivity, the basic tactics for falsity, implication, conjunction,

and disjunction, and the definitions of negation and equivalence.

Goal forall X : Prop, ~ (X <−> ~X).

Proof. tauto. Qed.
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3.10 Existential Quantification

The tactics for existential quantifications are destruct and exists.

Goal forall (X : Type) (p q : X −> Prop),

(exists x, p x /\ q x) −> exists x, p x.

Proof. intros X p q A. destruct A as [x B]. destruct B as [C _].

exists x. exact C. Qed.

Run the proof scripts with Coq to understand.

Russell’s law is a simple fact about nonexistence that has amazing conse-

quences.5 One such consequence is the undecidability of the halting problem.

We state Russell’s law as follows:

Definition Russell : Prop := forall (X : Type) (p : X −> X −> Prop),

~ exists x, forall y, p x y <−> ~ p y y.

If X is the type of all Turing machines and pxy says that x halts on the string

representation of y , Russell’s law says that there is no Turing machine x such

that x halts on a Turing machines y if and only if y does not halt on its string

representation.

The proof of Russell’s law is not difficult.

Lemma circuit (X : Prop) : ~ (X <−> ~X).

Proof. tauto. Qed.

Goal Russell.

Proof. intros X p [x A]. apply (@circuit (p x x)). exact (A x). Qed.

We can prove Russell’s law without a lemma if we use the tactic specialize.

Goal Russell.

Proof. intros X p [x A]. specialize (A x). tauto. Qed.

A disequation s≠t is a negated equation ¬(s=t). Coq’s notation for disequa-

tions is s<>t. We prove the correctness of a characterization of disequality that

employs existential quantification.

Goal forall (X : Type) (x y : X),

x <> y <−> exists p : X −> Prop, p x /\ ~p y.

Proof. split.

intros A. exists (fun z => x = z). now auto.

intros [p [A B]] C. apply B. rewrite <− C. apply A. Qed.

5 One amazing consequence of Russell’s law is that naive set theory is inconsistent. In naive set

theory the Russell set {x|x 6∈ x} violates Russell’s law. If one can form such a Russell set in a

theory, the inconsistency result is known as Russell’s paradox.
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3.10 Existential Quantification

The proof uses two features of Coq’s tactic language we have not seen so far.

First, note that split tacitly introduces X, x, and y . Second, note the now in front

of the auto. The proof will go through if we omit the now, but with the now we

make explicit that auto must solve the current goal. The now modifies auto into

a solve-or-fail tactic like reflexivity, exact, assumption, or tauto. The solve-or-fail

tactics appear in red color in our typesetting of Coq code.

Exercise 3.10.1 Prove the De Morgan law for existential quantification.

Goal forall (X : Type) (p : X −> Prop),

~(exists x, p x) <−> forall x, ~ p x.

Exercise 3.10.2 Prove the exchange rule for existential quantifications.

Goal forall (X Y : Type) (p : X −> Y −> Prop),

(exists x, exists y, p x y) <−> exists y, exists x, p x y.

Exercise 3.10.3 (Impredicative Characterization) Prove the following goal. It

shows that existential quantification can be expressed with implication and uni-

versal quantification.

Goal forall (X : Type) (p : X −> Prop),

(exists x, p x) <−> forall Z : Prop, (forall x, p x −> Z) −> Z.

Exercise 3.10.4 Below are characterizations of equality and disequality based on

reflexive relations. Prove the correctness of the characterizations.

Goal forall (X : Type) (x y : X),

x = y <−> forall r : X −> X −> Prop, (forall z : X, r z z) −> r x y.

Goal forall (X : Type) (x y : X),

x <> y <−> exists r : X −> X −> Prop, (forall z : X, r z z) /\ ~r x y.

Hint for first goal: Use the tactic specialize and simplify the resulting assumption

with simpl in A where A is the name of the assumption.

Exercise 3.10.5 Prove the following goal.

Goal forall (X: Type) (x : X) (p : X −> Prop), exists q : X −> Prop,

q x /\ ( forall y, p y −> q y) /\ forall y, q y −> p y \/ x = y.

Exercise 3.10.6

a) Prove the following goal.

Goal forall (X : Type) (Y : Prop) ,

X −> Y <−> (exists x : X, True) −> Y.

b) Explain why s → t is a proposition if s is a type and t is a proposition.
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s ⇒ t

s → t

s → t s

t

x : s ⇒ t

∀x : s. t

∀x : s. t u : s

txu

⊥

u

s t

s ∧ t

s ∧ t s, t ⇒ u

u

s

s ∨ t

t

s ∨ t

s ∨ t s ⇒ u t ⇒ u

u

u : s txu

∃x : s. t

∃x : s. t x : s , t ⇒ u

u

Figure 3.1: Basic proof rules

3.11 Basic Proof Rules

By now we have conducted many proofs in Coq. In this chapter we mostly proved

general properties of the logical operations. The proofs were constructed with

a small set of tactics, where every tactic performs a basic proof step. The proof

steps performed by the tactics can be described by the proof rules appearing in

Figure 3.1. We may say that the rules describe basic logic principles and that the

tactics implement these principles.

Each proof rule says that a proof of the conclusion (the proposition appearing

below the line) can be obtained from proofs of the premises (the items appearing

above the line). The notation s ⇒ t used in some premises says that there is a

proof of t under the assumption that there is a proof of s. The notation u : s

says that the term u has type s, and the notation sxt stands for the proposition

obtained from s by replacing x with t.

We explain one of the proof rules for disjunctions in detail.

s ∨ t s ⇒ u t ⇒ u

u
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The rule says that we can obtain a proof of a proposition u if we are given a

proof of a disjunction s ∨ t, a proof of u assuming a proof of s, and a proof of u

assuming a proof of t. The rule is justified since a proof of the disjunction s ∨ t

gives us a proof of either s or t. Speaking more generally, the rule tells us that

we can do a case analysis if we have a proof of a disjunction. Coq implements

the rule in a backward fashion with the tactic destruct.

A : s ∨ t

u destruct A as [B|C]

B : s

u

C : t

u

Each row in Figure 3.1 describes the rules for one particular family of propo-

sitions. The rules on the left are called introduction rules, and the rules on the

right are called elimination rules. The introduction rule for a logical operation O

tells us how we can directly prove propositions obtained with O, and the elim-

ination rule tells us how we can make use of a proof of a proposition obtained

with O. For most families of propositions there is exactly one introduction and

exactly one elimination rule. The exceptions are falsity (no introduction rule) and

disjunctions (two introduction rules). Coq realizes the rules in Figure 3.1 with

the following tactics.

introduction elimination

→ intros apply, exact

∀ intros apply, exact

⊥ contradiction, exfalso

∧ split destruct

∨ left, right destruct

∃ exists destruct

There are no proof rules for negation and equivalence since these logical op-

erations are defined on top of the basic logical operations.

¬s := s → ⊥

s ↔ t := (s → t)∧ (t → s)

The proof rules in Figure 3.1 were first formulated and studied by Gerhard

Gentzen in 1935. They are known as intuitionistic natural deduction rules.

Exercise 3.11.1 Above we describe the elimination rule for disjunction in detail

and relate it to a Coq tactic. Make sure that you can discuss each rule in Figure 3.1

in this fashion.
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3.12 Proof Rules as Lemmas

Coq can express proof rules as lemmas. Here are the lemmas for the introduction

and the elimination rule for conjunctions.

Lemma AndI (X Y : Prop) :

X −> Y −> X /\ Y.

Proof. tauto. Qed.

Lemma AndE (X Y U : Prop) :

X /\ Y −> (X −> Y −> U) −> U.

Proof. tauto. Qed.

To apply the proof rules, we can now apply the lemmas.

Goal forall X Y : Prop, X /\ Y −> Y /\ X.

Proof. intros X Y A.

apply (AndE A). intros x y.

apply AndI. exact y. exact x. Qed.

If you look at the applications of the lemmas in the above proofs, it becomes

clear that in Coq the name of a lemma is actually the name of the proof of the

lemma. Since the statement of a lemma is typically universally quantified, the

proof of a lemma is typically a proof generating function. Thus lemmas can be

applied as you see it in the above proof scripts. When we represent a proof rule

as a lemma, the proposition of the lemma formulates the rule as we see it, and

the proof of the lemma is a function constructing a proof of the conclusion of

the rule from the proofs required by the premises of the rule.

Next we represent the proof rules for existential quantifications as lemmas.

Given a proposition ∃x : s.t, we face a bound variable x that may occur in the

term t. To preserve the binding, we represent the proposition t as the predicate

λx : s.t.

Lemma ExI (X : Type) (p : X −> Prop) :

forall x : X, p x −> exists x, p x.

Proof. intros x A. exists x. exact A. Qed.

Lemma ExE (X : Type) (p : X −> Prop) (U : Prop) :

(exists x, p x) −> (forall x, p x −> U) −> U.

Proof. intros [x A] B. exact (B x A). Qed.

We can now prove propositions involving existential quantifications without us-

ing the tactics exists and destruct.

Goal forall (X : Type) (p q : X −> Prop),

(exists x, p x /\ q x) −> exists x, p x.
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Proof. intros X p q A.

apply (ExE _ A). intros x B.

apply (AndE B). intros C _.

apply (ExI _ x). exact C. Qed.

Note the underlines in the applications of ExE and ExI . They delegate it to Coq

to fill in the predicates needed as arguments.

Exercise 3.12.1 Fill in the underlines in the above proof script.

Exercise 3.12.2 Formulate the introduction and elimination rules for disjunc-

tions as lemmas and use the lemmas to prove the commutativity of disjunction.

Exercise 3.12.3 The tactics reflexivity and rewrite implement the following proof

rules for equations.

s = s

s = t uxt

uxs

a) Formulate a lemma EqI expressing the introduction rule for equations.

b) Formulate a lemma EqE expressing the elimination rule for equations.

c) Prove symmetry and transitivity of equality using the lemmas EqI and EqE .

Do not use the tactics reflexivity and transitivity.

3.13 Inductive Propositions

Recall that Coq provides for the definition of inductive types. So far we have used

this facility to populate the universe Type with types providing booleans, natural

numbers, lists, and a few other families of values. It is also possible to populate

the universe Prop with inductive types. We will speak of inductive propositions

following the convention that types in Prop are called propositions. Here are the

definitions of two inductive propositions from Coq’s standard library.6

Inductive True : Prop :=

| I : True.

Inductive False : Prop := .

Recall that the proofs of a proposition A are the members of the type A. Thus

the proposition True has exactly one proof (i.e., the proof constructor I ), and the

proposition False has no proof (since we defined False with no proof constructor).

By case analysis over the constructors of True we can prove that True has

exactly one proof.

6 Use the command Print to look up the definitions
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Goal forall x y : True, x=y.

Proof. intros x y. destruct x. destruct y. reflexivity. Qed.

By case analysis over the constructors of False we can prove that from a proof of

False we can obtain a proof of every proposition.

Goal forall X : Prop, False −> X.

Proof. intros X A. destruct A. Qed.

The case analysis over the proofs of False immediately succeeds since False has

no constructor. We have discussed this form of reasoning in Section 2.10 where

we considered the type void.

Coq defines conjunction and disjunction as inductive predicates (i.e., induc-

tive type constructors into Prop).7

Inductive and (X Y : Prop) : Prop :=

| conj : X −> Y −> and X Y.

Inductive or (X Y : Prop) : Prop :=

| or_introl : X −> or X Y

| or_intror : Y −> or X Y.

Note that the inductive definitions of conjunction and disjunction follow exactly

the BHK-scheme: A proof of X∧Y consists of a proof of X and a proof of Y , and

a proof of X ∨ Y consists of either a proof of X or a proof of Y . Also note that

the definition of conjunction mirrors the definition of the product operator prod

in Section 2.5.

Coq defines existential quantification as an inductive predicate that takes a

type and a predicate as arguments:

Inductive ex (X : Type) (p : X −> Prop) : Prop :=

| ex_intro : forall x : X, p x −> ex p.

With this definition an existential quantification ∃x : s.t is represented as the

application ex (λx : s.t). This way the binding of the local variable x is delegated

to the predicate λx : s.t. We have used this technique before to formulate the

introduction and elimination rules for existential quantifications as lemmas (see

Section 3.12).

Negation and equivalence are defined with plain definitions in Coq’s standard

library:

Definition not (X : Prop) : Prop := X −> False.

Definition iff (X Y : Prop) : Prop := (X −> Y) /\ (Y −> X).

7 Use the commands Set Printing All and Print to find out the definitions of the infix notations

“∧” and “∨”.
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There is only one family of propositions left for which we have not said how

it is represented in Coq: Equations. Coq represents equations s = t as inductive

propositions eq s t where only trivial equations eq s s have proofs.

Inductive eq (X : Type) (x : X) : X −> Prop :=

| eq_refl : eq x x.

The tactic reflexivity is realized as application of the proof constructor eq_refl,

and the rewriting tactic is realized by case analysis on the proofs of equations.

Study the following example to understand.

Goal forall (X : Type) (x y : X), x=y −> y=x.

Proof. intros X x y A. destruct A. exact (eq_refl x). Qed.

Keep the following facts in mind when stepping through the above proof.

1. By the inductive definition of eq only trivial equations s=s have proofs.

2. Given a proof of an equation s=t, we thus know that the terms s and t are

equal up to simplification and unfolding of definitions.

3. When you destructure a proof of an equation s=t when proving a goal, Coq

replaces every occurrence of the term t in the claim and the assumptions

of the goal with the term s. This is justified since s and t are equal up to

simplification and unfolding of definitions.

Exercise 3.13.1 Prove True ≠ False.

Exercise 3.13.2 Prove the commutativity of disjunction without using the tactics

left and right.

Exercise 3.13.3 Prove the transitivity of equality without using the tactics

reflexivity and rewrite.

Exercise 3.13.4 Define you own versions of the logical operations and prove that

they agree with Coq’s predefined operations. Choose names different from Coq’s

predefined names to avoid conflicts.

Exercise 3.13.5 One can characterize negation with the following introduction

and elimination rules not using falsity.

x : Prop, s ⇒ x

¬s

¬s s

u

The introduction rule requires a proof an arbitrary proposition x under the as-

sumption that a proof of s is given.

a) Formulate the rules as lemmas and prove the lemmas.

b) Give an inductive definition of negation based on the introduction rule.

c) Prove the elimination lemma for your inductive definition of negation.
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3.14 An Observation

Look at the introduction rules for conjunction, disjunction, and existential quan-

tification. If we formulate these rules as lemmas, we get exactly the types of the

proof constructors of the inductive definitions of the respective logical opera-

tions.

Given the inductive definition of a logical operation, we can proof the elim-

ination lemma for the operation. Since the inductive definition is only based

on the introduction rule of the operation, we can see the elimination rule as a

consequence of the introduction rule.

We can also go from the elimination rules to the introduction rules. Look at

the impredicative characterization of the logical operations in terms of implica-

tion and universal quantification appearing in Exercises 3.8.2 and 3.10.3. These

characterizations reformulate the elimination rules of the logical operations. If

we define a logical operation based on its impredicative characterization, we can

prove the corresponding introduction and elimination lemmas. For conjunction

we get the following development.

Definition AND (X Y : Prop) : Prop :=

forall Z : Prop, (X −> Y −> Z) −> Z.

Lemma ANDI (X Y : Prop) :

X −> Y −> AND X Y.

Proof. intros x y Z. auto. Qed.

Lemma ANDE (X Y Z: Prop) :

AND X Y −> (X −> Y −> Z) −> Z.

Proof. intros A. exact (A Z). Qed.

Lemma AND_agree (X Y : Prop) :

AND X Y <−> X /\ Y.

Proof. split.

intros A. apply A. now auto.

intros [x y] Z A. apply A ; assumption. Qed.

Exercise 3.14.1 Define disjunction with a plain definition based on the impred-

icative characterization in Exercise 3.8.2. Prove an introduction, an elimination,

and an agreement lemma for your disjunction. Carry out the same program for

the existential quantifier.

3.15 Excluded Middle

In Mathematics, one assumes that every proposition is either false or true. Con-

sequently, if X is a proposition, the proposition X ∨ ¬X must be true. The

42 2012-7-18



3.15 Excluded Middle

assumption that X ∨¬X is true for every proposition X is known as principle of

excluded middle, XM for short. Here is a definition of XM in Coq.

Definition XM : Prop := forall X : Prop, X \/ ~X.

Coq can neither prove XM nor ¬XM . This means that we can consistently

assume XM in Coq. The philosophy here is that XM is a basic mathematical as-

sumption but not a basic proof rule. By not building in XM , we can make explicit

which proofs rely on XM . Logical systems that build in XM are called classical,

and systems not building in XM are called constructive or intuitionistic.

Exercise 3.15.1 Prove the following goals. They state consequences of the De

Morgan laws for conjunction and universal quantification whose proofs require

the use of excluded middle.

Goal forall X Y : Prop,

XM −> ~(X /\ Y) −> ~X \/ ~Y.

Goal forall (X : Type) (p : X −> Prop),

XM −> ~(forall x, p x) −> exists x, ~p x.

Exercise 3.15.2 Prove that the following propositions are equivalent. There are

short proofs if you use tauto.

Definition XM : Prop := forall X : Prop, X \/ ~X. (* excluded middle *)

Definition DN : Prop := forall X : Prop, ~~X −> X. (* double negation *)

Definition CP : Prop := forall X Y : Prop, (~Y −> ~X) −> X −> Y. (* contraposition *)

Definition Peirce : Prop := forall X Y : Prop, ((X −> Y) −> X) −> X. (* Peirce’s Law *)

Exercise 3.15.3 (Drinker’s Paradox) Consider a bar populated by at least one

person. Using excluded middle, one can prove that one can pick some person

in the bar such that everyone in the bar drinks Whiskey if this person drinks

Whiskey. Do the proof in Coq.

Lemma drinker (X : Type) (d : X −> Prop) :

XM −> (exists x : X, True) −> exists x, d x −> forall x, d x.

Exercise 3.15.4 (Glivenko’s Theorem) A proposition is pure if it is either a vari-

able, falsity, or an implication, negation, conjunction, or disjunction of pure

propositions. Valery Glivenko showed in 1929 that a pure proposition is prov-

able classically if and only if its double negation is provable intuitionistically.

That is, if s is a pure proposition, then XM → s is provable in Coq if and only if

¬¬s is provable in Coq. This tells us that tauto can prove the following goals.

Goal forall X : Prop,

~~(X \/ ~X).
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Goal forall X Y : Prop,

~~(((X −> Y) −> X) −> X).

Goal forall X Y : Prop,

~~(~(X /\ Y) <−> ~X \/ ~Y).

Goal forall X Y : Prop,

~~((X −> Y) <−> (~Y −> ~X)).

Do the proofs by hand and try to find out why the outer double negation can

replace excluded middle.

Exercise 3.15.5 (Decidable Propositions) A proposition s is decidable if the

proposition s ∨¬s is provable. Show that the following propositions are de-

cidable.

a) forall X : Prop, ~(X \/ ~X)

b) exists X : Prop, ~(X \/ ~X)

c) forall P : Prop, exists f : Prop −> Prop, forall X Y : Prop,

(X /\ P −> Y) <−> (X −> f Y)

d) forall P : Prop, exists f : Prop −> Prop, forall X Y : Prop,

(X −> Y /\ P) <−> (f X −> Y)

3.16 Discussion and Remarks

Our treatment of propositions and proofs is based on the constructive approach,

which sees proofs as first-class objects and defines the meaning of propositions

by relating them to their proofs. In contrast to the classical approach, no notion

of truth value is needed. Our starting point is the BHK-scheme, which identifies

the proofs of implications and quantifications as functions. The BHK-scheme is

refined by the propositions as types principle, which models implications and

universal quantification as function types such that the proofs of a proposition

appear as the members of the type representing the proposition. As it turns out,

universal quantification alone suffices to express all logical operations (impred-

icative characterizations).

The ideas of the constructive approach developed around 1930 and led to the

BHK-scheme (Brouwer, Heyting, Kolmogorov). A complementary achievement is

the system of natural deduction (i.e., basic proof rules) formulated in 1935 by

Gerhard Gentzen. While the BHK-scheme starts with proofs as first-class objects,

Gentzen’s approach takes the proof rules as starting point and sees proofs as

derivations obtained with the rules. Given the BHK-scheme, the correctness of

the proof rules can be argued. Given the proof rules, the correctness of the

BHK-scheme can be argued.
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3.17 Tactics Summary

A formal model providing functions as assumed by the BHK-scheme was de-

veloped in the 1930’s by Alonzo Church under the name lambda calculus. The

notion of types was first formulated by Bertrand Russell around 1900. A typed

lambda calculus was published by Alonzo Church in 1940. Typed lambda calcu-

lus later developed into constructive type theory, which became the foundation

for Coq.

The correspondence between propositions and types was recognized by Curry

and Howard for pure propositional logic and first reported about in a paper from

1969. The challenge then was to formulate a type theory strong enough to model

quantifications as propositions. For such a type theory dependent function types

are needed. Dependently typed type theories were developed by Nicolaas de

Bruijn, Per Martin-Löf, and Jean-Yves Girard around 1970. Coq’s type theory

originated in 1985 (Coquand and Huet) and has been refined repeatedly.

3.17 Tactics Summary

intros x1 . . . xn introduces implications and universal quantifications

apply t reduces claim by backward application of proof function t

exact t Solves goal with proof t

contradiction t Soves goal by explosion if t is proof of False

exfalso Changes claim to False (explosion)

split splits conjunctive claim

left reduces disjunctive claim to left constituent

right reduces disjunctive claim to right constituent

exists t instantiates existential claim with witness t

specialize (x t) instantiates assumption x with t

assumption solves goals whose claim appears as assumption

auto tries to solve goal with intros, apply, assumption, reflexivity, . . .

tauto solves goals solvable by pure propositional reasoning

now t makes tactic t a solve-or-fail tactic
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Type theories are defined as syntactic systems. In this chapter we study a pro-

totypical syntactic system known as untyped lambda calculus. Untyped lambda

calculus was invented by Alonzo Church in the 1930’s as a model of functional

computation. It features lambda abstractions, bound variables, substitution, and

beta reduction. Modern type theories can be seen as typed elaborations of un-

typed lambda calculus.

4.1 Outline

The terms of untyped lambda calculus are described by the following grammar

where the letter x ranges over symbols called variables.

s, t ::= x | λx.s | st

Terms of the form λx.s are called abstractions and describe functions. The

argument variable x is local to the abstraction. Terms of the form st are called

applications and describe the application of the function described by the term s

to the object described by the term t. There are a few notational conventions.

stu ⇝ (st)u

λx.st ⇝ λx.(st)

λxy.s ⇝ λx.λy.s

λxyz.s ⇝ λx.λy.λz.s

Terms of the form (λx.s)t are called beta redexes.1 A beta redex (λx.s)t can be

reduced to the term sxt . Here is a sequence of beta reductions.

(λfx.f (fx)) (λx.x)

→β λx.(λx.x)((λx.x)x)

→β λx.(λx.x)x

→β λx.x

1 Redex is an artificial word introduced by Church. It stands for “reducible expression”.
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A term is normal if it contains no beta redex. We write s →∗
β t if t can be obtained

from the term s by n ≥ 0 beta reductions. A term t is a normal form of a term s

if t is normal and s →∗
β t. The above series of beta reductions reduces a term to

a normal form.

Modern type theories are arranged such that every term has a unique normal

form. This is not the case for untyped lambda calculus since there are terms for

which beta reduction does not terminate. Here is the canonical example:

(λx.xx) (λx.xx) →β (λx.xx) (λx.xx)

The term λx.xx is known as ω. Note that we have ωω →β ωω. A term is

diverging if there is an infinite sequence of beta reductions starting from it.

There are diverging terms where the term grows larger with each reduction step.

(λx.f (xx)) (λx.f (xx)) →β f ((λx.f (xx)) (λx.f (xx)))

There are diverging terms that have a normal form.

(λxy.y)(ωω)→β (λxy.y)(ωω)→β (λxy.y)(ωω)→β · · ·

(λxy.y)(ωω)→β λy.y

Untyped lambda calculus has the property that a term has at most one normal

form. The uniqueness of normal forms follows from a property known as con-

fluence: If we have s →∗
β s1 and s →∗

β s2, then there always exists a term t such

that s1 →
∗
β t and s2 →

∗
β t.

A variable x is free in a term s if it occurs in s as a subterm that is not in the

scope of a binder λx. For instance, x is free in the term (λx.x)x. We say that x

has a bound and a free occurrence in the term (λx.x)x. A term t is open if there

is a variable that is free in t, and closed if it is not open.

Exercise 4.1.1 Use beta reduction to derive normal forms of the following terms.

a) (λxy.fyx)ab

b) (λfxy.fyx)(λxy.yx)ab

c) (λx.xx)((λxy.y)((λxy.x)ab))

d) (λxy.y)((λx.xx)(λx.xx))a

e) (λxx.x)yz

Exercise 4.1.2 Find terms true, false, and if such that if true x y →∗
β x and

if false x y →∗
β y. Hint: Represent true and false as two-argument functions re-

turning their first and second argument, respectively.

Exercise 4.1.3 Find terms pair , fst, and snd such that fst (pair x y)→∗
β x and

snd (pair x y)→∗
β y. Hint: Represent a pair (x,y) as the function λf .fxy .
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4.2 What Exactly Is A Term?

Modern type theories work with nameless terms where the concrete names of

bound variables do not matter.2 For instance, λxy.yx and λab.ba are seen

as two different notations for the same term. Related is the requirement that

substitution must be capture-free. For instance, (λx.y)
y
x = λz.x but (λx.y)

y
x ≠

λx.x. What is lacking is a precise definition of terms that distinguishes between

notation and the real syntactic object.

Consider the notation λfxy.fx(λy.fyx). From what we have said in the

previous section it is clear that this notation parses into the following tree (bul-

lets represent applications).

λf

λx

λy

•

•

f x

λy

•

•

f y

x

If we replace the argument variables with numeric backward references, we ob-

tain a faithful representation of the term described by the notation.

λ

λ

λ

•

•

2 1

λ

•

•

3 0

2

An argument reference n says that the λ responsible for this argument can be

found as the n+1th λ one encounters on the unique path to the root of the tree.

2 Church worked with a term representation where the concrete names of bound variables did

matter. In such a representation two terms are alpha equivalent if they are equal up to re-

naming of bound variables. In the nameless representation alpha equivalent terms appear as

identical terms.
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The nameless representation of terms was invented by Nicolaas de Bruijn in

the late 1960’s in the context of the Automath project, which designed and im-

plemented a type-theoretic language and system for representing and checking

mathematical proofs. One speaks of the de Bruijn representation of terms. Ar-

gument references are sometimes called de Bruijn indices.

Exercise 4.2.1 Draw the nameless tree representations of the following terms.

a) λxyz.x

b) λxyz.z(λx.xz)

4.3 Formalization of Terms and Substitution

We now see that the real grammar for terms is

s, t ::= n | λs | st

where n ranges over natural numbers. Based on this grammar we formalize

terms in Coq with the following inductive definition.

Inductive ter : Type :=

| R : nat −> ter

| L : ter −> ter

| A : ter −> ter −> ter.

In Coq’s notation the term λfx.fxx can now be written as

L (L (A (A (R 1) (R 0)) (R 0)))

Now that we have a rigorous definition of terms, our next goal is the precise def-

inition of substitution and beta reduction. In the fancy notation beta reduction

and substitution look as follows:

(λx.s)t →∗
β s

x
t

We aim at a function subst : nat → ter → ter → ter such that

A (L s) t →β subst 0 s t

Finding such a function is a rather interesting puzzle to solve. We note the

following.

1. subst d s t must replace the reference d in s with the term t.

2. subst d s t must decrement all references n > d in s by 1. This is necessary

since a reference n > d is free in the original term A (L s) t and beta reduction

removes the lambda above s.
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3. Whenever subst descends into the body of an abstraction, the reference d to

be replaced must be incremented by 1. Since subst starts with d = 0, the value

of d says how many lambda nodes are above the current subterm.

4. When subst replaces the reference d with the term t, all free references in t

must be incremented by d since they must skip the lambdas subst has de-

scended through. This operation is called shifting.

For subst and also for shifting we need a comparison operation for numbers.

Inductive order : Type :=

| Less : order

| Equal : order

| Greater : order.

Fixpoint order_nat (m n : nat) : order :=

match m,n with

| O, O => Equal

| O, S _ => Less

| S _, O => Greater

| S m, S n => order_nat m n

end.

We first write the shifting operation subst : nat → nat → ter → ter . An applica-

tion shift d k s yields the term obtained from s by incrementing every free refer-

ence n ≥ d in s by k.

Fixpoint shift (d k : nat) (s : ter) :=

match s with

| A s1 s2 => A (shift d k s1) (shift d k s2)

| L s’ => L (shift (S d) k s’)

| R n => match order_nat n d with

| Less => R n

| _ => R (n + k)

end

end.

Note that a reference n is free in the original term if and only if n ≥ d. We can

now write the substitution operation.

Fixpoint subst (d : nat) (s t : ter) :=

match s with

| A s1 s2 => A (subst d s1 t) (subst d s2 t)

| L s’ => L (subst (S d) s’ t)

| R n => match order_nat n d with

| Less => R n

| Equal => shift 0 d t

| Greater => R (pred n)

end

end.
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For the beta reduction

(λxy.xy) (λx.x) →β λy.(λx.x)y

we obtain the following term.

Compute subst 0 (L (A (R 1) (R 0))) (L (R 0)).

% L(A (L (R 0)) (R 0))

Exercise 4.3.1 Write a function free : nat → nat → ter → bool such that free 0 n t

yields true if and only if the reference n is free in t.

4.4 Formalization of Beta Reduction

We now formalize beta reduction. In mathematical notation we may define beta

reduction by the following rules.

(λx.s)t →β s
x
t

s →β s
′

λx.s →β λx.s
′

s →β s
′

st →β s
′t

t →β t
′

st →β st
′

The rules with premises make it possible to descent to beta redexes appear-

ing as subterms. In Coq, we formalize the mathematical definition with a test

beta : ter → ter → bool such that beta s t yields true if and only if s →β t. We

start with equality tests for numbers and terms.

Definition eq_nat (m n : nat) : bool :=

match order_nat m n with Equal => true | _ => false end.

Fixpoint eq_ter (s t : ter) : bool :=

match s, t with

| R m, R n => eq_nat m n

| A s1 s2, A t1 t2 => andb (eq_ter s1 t1) (eq_ter s2 t2)

| L s’, L t’ => eq_ter s’ t’

| _, _ => false

end.

Definition beta_top (s u : ter) : bool :=

match s with

| A (L s) t => eq_ter (subst 0 s t) u

| _ => false

end.

Fixpoint beta (s t : ter) : bool :=

orb (beta_top s t)

match s, t with

| R _ , _ => false
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| L s’, L t’ => beta s’ t’

| A s1 s2, A t1 t2 => orb (andb (beta s1 t1) (eq_ter s2 t2))

(andb (beta s2 t2) (eq_ter s1 t1))

| _, _ => false

end.

We can now prove that ωω beta reduces to itself.

Definition omega : ter := L (A (R 0) (R 0)).

Goal beta (A omega omega) (A omega omega) = true.

Proof. reflexivity. Qed.

Our next goal is the definition of a normal form predicate. We first write a test

that checks whether a term is normal.

Fixpoint normal (s : ter) : bool :=

match s with

| R _ => true

| L s’ => normal s’

| A (L _) _ => false

| A s1 s2 => andb (normal s1) (normal s2)

end.

Next we need a formalization of the reduction relation s →∗
β t. Since this relation

is known to be computationally undecidable, we cannot work with a boolean test

here. Instead we define an inductive predicate red : ter → ter → Prop such that

red s t is provable if and only if s →∗
β t.

Inductive red : ter −> ter −> Prop :=

| redR : forall s, red s s

| redS : forall t s u, beta s t = true −> red t u −> red s u.

The proof constructor redR gives us proofs for all propositions red s s. The

proof constructor redS gives us proofs for all propositions red s u such that

there is some term t such that beta s t = true and red t u are provable. In math-

ematical notation the inductive definition of red may look as follows.

s →∗
β s

s →β t t →∗
β u

s →∗
β u

Lemma beta_red s t :

beta s t = true −> red s t.

Proof. intros A. apply (@redS t). exact A. apply redR. Qed.

The definition of the normal form predicate is now routine.

Definition normal_form (s t : ter) : Prop :=

normal t = true /\ red s t.
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Consider the following derivation of a normal form where the free variable x is

represented as the reference 7.

(λf .f (fx)) (λy.y) (λ(0(0 8))) (λ0)

→β (λy.y) ((λy.y)x) (λ0) ((λ0)7)

→β (λy.y)x (λ0)7

→β x 7

In Coq, we can verify the derivation as follows.

Goal normal_form

(A (L (A (R 0) (A (R 0) (R 8)))) (L (R 0)))

(R 7).

Proof. split. reflexivity .

apply (@redS (A (L (R 0)) (A (L (R 0)) (R 7)))). reflexivity .

apply (@redS (A (L (R 0)) (R 7))). reflexivity .

apply beta_red. reflexivity. Qed.

Exercise 4.4.1 For each of the following terms s find a normal form t and prove

normal_form s t in Coq. Use the references 0 and 1 for the free variables.

a) (λf .fxy)(λxy.x)

b) (λfxy.fyx)(λxy.yx)ab

4.5 Church-Girard Programming

We will now see an extreme form of functional programming where numbers

are represented as functions. The idea is due to Church who came up with the

following functional representations of booleans and numbers in the untyped

lambda calculus.

false := λxy. y

true := λxy. x

0 := λxf . x

1 := λxf . fx

2 := λxf . f (fx)

3 := λxf . f (f (fx))

It turns out that all computable functions on natural numbers can be expressed

as closed terms in the untyped lambda calculus. The terms coding the numbers

are called Church numerals.
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Girard showed that Church’s codings carry over to constructive type theory.3

The boolean values and the numbers now appear as values of function types in

the universe Prop.4

Definition Bool : Prop := forall X : Prop, X −> X −> X.

Definition true : Bool := fun X x y => x.

Definition false : Bool := fun X x y => y.

Definition Nat : Prop := forall X : Prop, X −> (X −> X) −> X.

Definition O : Nat := fun X x f => x.

Definition one : Nat := fun X x f => f x.

Definition two : Nat := fun X x f => f (f x).

Note that a number n is represented as a function that applies a given function

n-times to a given value. It is easy to write a successor function and an addition

function.

Definition S (n : Nat) : Nat := fun X x f => n X (f x) f .

Definition plus (m n : Nat) : Nat := m Nat n S.

Compute plus two (S two).

% fun X x f => f (f (f (f (f x))))

A multiplication function is also not difficult.

Definition times (m n : Nat) : Nat := m Nat O (plus n).

Exercise 4.5.1 Write a function power : Nat → Nat → Nat that for two numbers

m and n yields the power mn (numbers represented as Church numerals).

Exercise 4.5.2 The following type represents pairs as functions:

Definition Prod (X Y : Prop) : Prop :=

forall Z : Prop, X −> Y −> Z.

Write functions pair , fst, and snd that construct and decompose pairs.

Exercise 4.5.3 Write a function fac : Nat → Nat that computes the factorial n! of

a number n (numbers represented as Church numerals). Hint: Iterate on pairs

(n,n!) starting with (0,0!).

Exercise 4.5.4 Write a function pred : Nat → Nat that computes the predecessor

of a number (numbers represented as Church numerals). Hint: Iterate on pairs

(n,n−1) starting with (0,0).

3 In fact, Girard constructed the polymorphic lambda calculus, the first type theory that can

express Church’s codings.
4 There is a reason that we work in the universe Prop and not in the universe Type. We will

explain this issue later.
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A type theory is a syntactic system that features functions and types. Functions

are described with typed lambda abstractions carrying a term describing the type

of the argument. There is a typing relation distinguishing well-typed terms from

ill-typed terms. Things are arranged such that beta reduction always terminates.

We look at a subsystem of the type theory underlying Coq. This system come

with dependent function types and accommodate types as first-class objects. We

first study a basic system and then add a universe for propositions.

5.1 Terms

The terms of our basic type theory provide for functions, dependent function

types, and universes. Universes serve as types of function types and universes.

Terms are obtained with the grammar

s, t ::= x | λx : s.t | s t | ∀x : s.t | U

where x ranges over variables and U ranges over universes. Syntactically, uni-

verses can be seen as atomic symbols. Bound variables are introduced by lambda

abstractions (terms of the form λx : s.t) and function types (terms of the form

∀x : s.t). Both constructs carry a term s describing the type of the argument.

Terms of the form st are called applications. We have already seen the Coq

notations for lambda abstractions and function types:

λx : s.t ⇝ fun x : s ⇒ t

∀x : s.t ⇝ forall x : s, t

We adopt the following notations.

s t u ⇝ (s t)u

s → t ⇝ ∀x : s.t provided x does not occur in t

s → t → u ⇝ s → (t → u)

λxy : s.t ⇝ λx : s.λy : s.t analogous for 3 and more variables

∀xy : s.t ⇝ ∀x : s.∀y : s.t analogous for 3 and more variables
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Note that the familiar arrow types s → t are function types where the result type

does not depend on the actual argument.

Check forall X : Type, Type.

% Type → Type : Type

Check forall X Y : Type, Type.

% Type → Type → Type : Type

Check forall X Y : Type, Y.

% Type → forall Y : Type : Y

A function type ∀x : s.t is called dependent if x is free in t. A dependent func-

tion type of the form ∀x :U.t is called polymorphic. Two straightforward ex-

amples of polymorphic function types are ∀x :U.x and ∀x :U.x → x. For more

practical examples consider the types of the pair constructor pair and the pro-

jection functions fst and snd in Section 2.5.

The formalization of terms in Coq follows the ideas we have seen for the

untyped lambda calculus.

Inductive ter : Type :=

| R : nat −> ter

| L : ter −> ter −> ter

| A : ter −> ter −> ter

| F : ter −> ter −> ter

| U : uni −> ter.

The definition assumes that the universes appear as members of some type uni.

Arguments of function types and lambda abstraction are referred to by numeric

references. The argument x of a lambda abstraction λx : s.t or a function type

∀x : s.t is invisible in the argument type s but visible in the body t. Thus the

nameless tree representation of the term

λX : U .∀f : X→U .∀x : X .fx

looks as follows.

λ

U ∀

∀

0 U

∀

1 •

1 0

A formal account of the binding structure of terms can be given with a free

reference test.
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Fixpoint free (d n : nat) (s : ter) : bool :=

match s with

| R k => eq_nat k (d + n)

| L s1 s2 => orb (free d n s1) (free (S d) n s2)

| A s1 s2 => orb (free d n s1) (free d n s2)

| F s1 s2 => orb (free d n s1) (free (S d) n s2)

| U _ => false

end.

The test is defined such that free d n s yields true if and only if n is a free

reference in the term s. Note that free increments the binder depth d for the

right constituents (the bodies) of lambda abstractions and function types but

not for the left constituents (the argument types).

Exercise 5.1.1 Draw the nameless tree representation of the following term.

λxyz :U. x → (∀u :x. z → y)

Exercise 5.1.2 Decide for each pair of term notations whether the two terms are

identical.

a) ∀x :U.x → x and ∀y :U.y → y

b) λxy :U.x → y → x and λyx :U.y → x → y

c) λxyz :U.x → (∀u :x.z → y) and λyxz :U.y → (∀u :x.z → x)

d) λx :U.x and ∀x :U.x

e) (λxy :U.y)x and (λx :U.λz :U.z)x

Exercise 5.1.3 Determine the free variables of the following terms.

a) λx : y.λz :x. zx

b) λx : y.∀z :x. x → x′

Exercise 5.1.4 Write a substitution function subst : nat → ter → ter → ter . Fol-

low the definition of the substitution function for untyped lambda calculus (Sec-

tion 4.3) and the definition of the free variable test above.

5.2 Reduction

Beta reduction is defined as in the untyped lambda calculus

(λx : u.s)t →β sxt

(λu.s)t →β subst 0 s t

where a beta redex can be replaced in any subterm position.
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Later we will add constructs to the type theory that require additional reduc-

tion rules. In anticipation of such extensions we will write s ⊲1 t for a one-step

reduction and s ⊲ t for a n ≥ 0 step reduction. For the basic type theory we are

considering now ⊲1 is exactly →β and ⊲ is exactly →∗
β .

A term s is normal or irreducible if there is no term t such that s⊲t. A term t

is a normal form of a term s if s ⊲t and t is normal. A term s terminates if there

is no infinite reduction sequence s⊲1 s1⊲1 s2⊲1 · · · . Note that every terminating

term has a normal form.

A basic design principle for type theories is that reduction must be confluent:

If we have s ⊲ s1 and s ⊲ s2, then there always exists a term t such that s1 ⊲ t

and s2 ⊲ t. All the type theories we will consider are confluent. If reduction is

confluent, then a term has at most one normal form.

One says that two terms s and t are convertible if s ⊲ u and t ⊲ u for some

term u. We write s ≈ t to say that s and t are convertible. It follows from the

confluence of reduction that convertibility is an equivalence relation.

Exercise 5.2.1 Determine the normal forms of the following terms.

a) (λx :U.λg :U → U → U. (λf :U → U.∀x :U.fx)(gx))U

b) λx :U.(λf :x → x → x.λyz :x.f (fyz)(fzy))(λyz :x.z)

Exercise 5.2.2 Explain why terms have at most one normal form.

Exercise 5.2.3 Explain why convertibility of terms is an equivalence relation.

Exercise 5.2.4 Give a term of the untyped lambda calculus that has a normal

form but does not terminate.

5.3 Typing

A type theory can be defined in three steps:

1. Define the terms of the theory.

2. Define a confluent reduction relation on terms.

3. Define a typing relation “Γ ⊢ s : t".

The typing relation relates a context Γ with two terms s and t. A statement

“Γ ⊢ s : t" says that s has type t in Γ . A context is a sequence of typing assump-

tions x : s for variables. Contexts are defined with the grammar

Γ ::= 0 | Γ , x : s
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where 0 is called the empty context. We impose the side condition that a context

contains at most one assumption per variable.1

Given a typing relation, we can make some basic definitions. If Γ ⊢ s : t, we

say that s has type t in Γ , and that s is a member of t in Γ . Let Γ be a context. A

term s is well-typed in Γ if there exists t such that Γ ⊢ s : t. A term s is a type in

Γ if there exists a universe U such that Γ ⊢ s : U . We say that a term is well-typed

if it is well-typed in some context, and that a term is a type if it is a type in some

context. We say that a type t is inhabited if there is term s such that 0 ⊢ s : t.

We say that a type t in 0 is empty if there is no term s such that 0 ⊢ s : t.

We now list important properties one requires for typing relations in general.

We will define several concrete typing relations satisfying these properties.

Propagation

1. If Γ ⊢ s : t, then there exists a universe U such that Γ ⊢ t : U .

2. If Γ , x :u ⊢ s : t, then there exists a universe U such that Γ ⊢ u : U .

Slogan: Only types can appear on the right.

Preservation

If Γ ⊢ s : t and s ⊲ s′, then Γ ⊢ s′ : t.

Slogan: Typing respects reduction on the left.

Convertibility

If Γ ⊢ s : t and t ≈ t′ and Γ ⊢ t′ : U , then Γ ⊢ s : t′.

Slogan: Typing respects conversion on the right.

Strong Normalization

If Γ ⊢ s : t, then s terminates.

Slogan: Reduction of well-typed terms terminates.

Decidability

There is an algorithm that given Γ and s decides whether there is a term t such

that Γ ⊢ s : t.

Slogan: Type checking is decidable.

Consistency

For every universe U there is an empty type t in U . That is, for every universe U

there is a term t such that 0 ⊢ t : U and there is no s such that 0 ⊢ s : t.

Slogan: All universes have an empty type.

Exercise 5.3.1 Explain the following.

a) If Γ ⊢ s : t, then t terminates.

1 In a formal account, numeric references would take the place of variables, and contexts would

be represented as stacks of terms where a reference indicates a position in the stack.
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b) If Γ , x : u, Γ ′ ⊢ s : t, then u terminates.

Exercise 5.3.2 (Oracle Functions) Given a universe U , the members of the type

∀x :U.x are functions that yield a member for every type in U . We call such

functions oracle functions. Explain why a consistent type theory does not admit

oracle functions (i.e., no type ∀x :U.x is inhabited).

5.4 Basic Dependent Type Theory Without Prop

We now return to our concrete type theory. Before we define the typing relation,

we first fix infinitely many universes T0,T1,T2, . . . . The typing relation will

be defined such that we obtain the hierarchy T0 : T1 : T2 : · · · . The infinite

hierarchy is needed since every universe needs to be a member of some universe

and a cycle U : · · · : U would result in an inconsistent type theory.

The typing relation is defined with a proof system that derives syntactic ob-

jects called judgements. Judgements take the form Γ ⇒ s : t. The statement

Γ ⊢ s : t now means that the judgement Γ ⇒ s : t can be derived with the proof

system.

Figure 5.1 shows the rules of the proof system for our basic dependent type

theory. We refer to the rules as basic typing rules. The first two rules derive

typings for universes and variables. The weakening rule Weak makes it possi-

ble to add further assumptions to the context. Keep in mind that there is the

tacit assumption that a context contains at most one assumption per variable.

The rules Lam, App, and Fun derive typings for lambda abstractions, applica-

tions, and function types. Note that the rule for function types ensures that

every universe is closed under taking function types. The conversion rule Conv

establishes convertibility of types. The subsumption rule makes the universe

hierarchy cumulative: T0 ⊆ T1 ⊆ T2 ⊆ · · · . The cumulativity extends to function

types that target universes.

Basic dependent type theory is fully implemented in Coq. The lowest uni-

verse T0 is written Set in Coq. The remaining universes T1, T2, T3, . . . are all

summarized under the keyword Type. Behind the curtain Coq assigns levels to

the occurrences of Type and makes sure that no cycle Tk : · · · : Tk occurs. Which

levels are exactly assigned does not matter.

The definition of the typing relation is such that basic dependent type theory

satisfies all the requirements we have listed for the typing relation in Section 5.3.

Furthermore, the following canonical form property holds.2

Canonical Form

If 0 ⊢ s : t and s and t are both normal, then one of the following holds:

2 In a type theory with inductive types the canonical form property needs to be adapted.
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Uni
0⇒ Tn : Tn+1

Var
Γ ⇒ s : U

Γ , x : s ⇒ x : s
Weak

Γ ⇒ s : t Γ ⇒ u : U

Γ , x :u⇒ s : t

Lam
Γ , x : s ⇒ t : u

Γ ⇒ λx : s.t : ∀x : s.u
App

Γ ⇒ s : ∀x :u.v Γ ⇒ t : u

Γ ⇒ s t : vxt

Fun
Γ ⇒ s : U Γ , x : s ⇒ t : U

Γ ⇒ ∀x : s.t : U

Conv
Γ ⇒ s : t Γ ⇒ t′ : U

Γ ⇒ s : t′
t ≈ t′

Sub
Γ ⇒ s : ∀x1 : t1 · · ·∀xk : tk.Tm

Γ ⇒ s : ∀x1 : t1 · · ·∀xk : tk.Tn
k ≥ 0 and m < n

Figure 5.1: Basic typing rules

1. s and t are both universes and s is lower than t.

2. s is a function type and t is a universe.

3. s is a lambda abstraction and t is a function type.

Exercise 5.4.1 Derive the following judgements.

a) 0⇒ T3 : T5

b) 0⇒ λx : T0. x : ∀x : T0.T0

c) 0⇒ λx : T0. x : T0 → T0

d) x : T0 ⇒ (λx : T0. x)x : T0

e) 0⇒ T3 : (λx : T6.x)T5

Exercise 5.4.2 Make sure that you can reconstruct and explain the typing rules

Lam, App, and Fun.

Exercise 5.4.3 Find terms s, s′, t, t′ such that 0 ⊢ s : t, 0 ⊢ s′ : t′, s ⊲ s′ and

0 6⊢ s : t′.

Exercise 5.4.4 Answer the following questions and explain your answers.
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a) Is there a nonterminating term that reduces to a terminating term?

b) Is there an ill-typed term that reduces to a well-typed term?

c) Is there a well-typed term that reduces to an ill-typed term?

d) Suppose Γ ⊢ s : t and t ⊲ u. Does this imply Γ ⊢ s : u?

e) Is 0⇒ T1 : T0 derivable?

f) Is ∀x : T0.∀y :x. y well-typed?

Exercise 5.4.5 Explain the following type error.

Definition T : Type := forall X : Type, X −> X.

Check fun f : T => f T.

% Error : Universe inconsistency.

5.5 Adding Propositions

We now add an additional universe Prop to our basic type theory satisfying a

stronger closure property than the ordinary universes. This property is estab-

lished with the additional typing rule

FunProp

Γ , x : s ⇒ t : Prop

Γ ⇒ ∀x : s.t : Prop

Speaking logically, the rule FunProp closes Prop under quantification over all

types.3 One says that the universe Prop is impredicative, and that the ordinary

universes Tn are predicative. The impredicative characterizations of the logical

operations (Exercise 3.8.2) depend on the impredicativity of Prop. Church-Girard

programming (Section 4.5) also exploits the impredicativity of Prop.

There are two additional typing rules for Prop making Prop a member of T1

and a subtype of T0.

UniProp
0⇒ Prop : T1

SubProp

Γ ⇒ s : ∀x1 : t1 · · ·∀xk : tk.Prop

Γ ⇒ s : ∀x1 : t1 · · ·∀xk : tk.T0

k ≥ 0

The rule SubProp makes Prop a subuniverse of all other universes. In fact, we have

Prop ⊆ T0 ⊆ T1 ⊆ T2 ⊆ · · · . Things are arranged such that Prop is not a member

of T0. The canonical form property for the basic dependent type theory carries

over unchanged if we consider Prop a lower universe than T1.

For easy reference the typing rules for Prop are summarized in Figure 5.2.

3 An ordinary universe Tn is not even closed under quantification over Tn. For instance,∀x : Tn. x

is not a member of Tn. That is, the judgement 0⇒ ∀x : Tn. x : Tn is not derivable.
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UniProp
0⇒ Prop : T1

SubProp

Γ ⇒ s : ∀x1 : t1 · · ·∀xk : tk.Prop

Γ ⇒ s : ∀x1 : t1 · · ·∀xk : tk.T0

k ≥ 0

FunProp

Γ , x : s ⇒ t : Prop

Γ ⇒ ∀x : s.t : Prop

Figure 5.2: Typing rules for Prop

TRUE := ∀X : Prop. X → X

FALSE := ∀X : Prop. X

NOT := λX : Prop. X → FALSE

AND := λXY : Prop. ∀Z : Prop. (X → Y → Z)→ Z

OR := λXY : Prop. ∀Z : Prop. (X → Z)→ (Y → Z)→ Z

EXn := λX : Tn.λp :X → Prop. ∀Z : Prop. (∀x :X.p x → Z) → Z

EQn := λX : Tn.λxy :X. ∀p :X → Prop. p x → py

Figure 5.3: Impredicative definitions of logical operations

Definition TRUE : Prop := forall X : Prop, X −> X.

Definition FALSE : Prop := forall X : Prop, X.

Definition NOT (X : Prop) : Prop := X −> FALSE.

Definition AND (X Y : Prop) : Prop :=

forall Z : Prop, (X −> Y −> Z) −> Z.

Definition OR (X Y : Prop) : Prop :=

forall Z : Prop, (X −> Z) −> (Y −> Z) −> Z.

Definition EX (X : Type) (p : X −> Prop) : Prop :=

forall Z :Prop, (forall x:X, p x −> Z) −> Z.

Definition EQ (X : Type) (x y : X) : Prop :=

forall p : X −> Prop, p x −> p y.

Figure 5.4: Impredicative definitions of logical operations in Coq
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A proposition is a term t such that 0 ⊢ t : Prop. A proof term for a proposi-

tion t is a term s such that 0 ⊢ s : t. We now have a type theory with propositions

where implication and universal quantification are native logical operations. The

remaining logical operations can be expressed using the impredicative charac-

terizations we have seen in Exercises 3.8.2 and 3.10.3. We will use the notational

definitions shown in Figure 5.3 and speak of the impredicative definitions. Note

that we define equality and existential quantification for every universe Tn. Fig-

ure 5.4 realizes the impredicative definitions in Coq. Note that the universe levels

of EQ and EX are handled automatically by Coq.

We have now arrived at a type theory in which we can prove propositions

with proof terms and where proof checking is obtained as type checking. Coq

implements an extension of this theory. We can use Coq to check whether a term

is a proof term for a proposition.

Goal forall X Y : Prop, X −> Y −> AND X Y.

Proof. exact (fun X Y x y Z f => f x y).

Show Proof. Qed.

Note that we leave it to Coq to derive the argument types of the proof term. The

full proof term will be shown by the command Show Proof .4 Here are further

examples.

Goal forall X Y : Prop, AND X Y −> Y.

Proof. exact (fun X Y A => A Y (fun _ y => y)).

Show Proof. Qed.

Goal forall X : Prop, (X −> NOT X) −> (NOT X −> X) −> FALSE.

Proof. exact (fun X A B => (fun x => A x x) (B (fun x => A x x))).

Show Proof. Qed.

Goal NOT (EQ TRUE FALSE).

Proof. intros A. apply (A (fun z => z)). exact (fun X x => x).

Show Proof. Qed.

Exercise 5.5.1 Check that the following judgements are derivable.

a) 0⇒ TRUE : Prop

b) 0⇒ FALSE : Prop

c) 0⇒ NOT : Prop → Prop

d) 0⇒ AND : Prop → Prop → Prop

4 The command Show Proof can be used in proof scripts before the full proof term is con-

structed. It then displays the partial proof term constructed so far and connects it to the

open subgoals.
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e) 0⇒ OR : Prop → Prop → Prop

f) 0⇒ EQn : ∀X : Tn.X → X → Prop

g) 0⇒ EXn : ∀X : Tn.(X → Prop)→ Prop

Exercise 5.5.2 Let X and Y be variables.

a) Verify that EXnX (λx : X.Y) and ANDX Y are convertible.

b) Is there a term t such that X : Prop ⊢ EXnX : t?

c) Is there a term t such that X : Prop, Y : Prop ⊢ EXnX (λx : X.Y) : t?

Exercise 5.5.3 Find proof terms for the following propositions. Check your find-

ings with the tactic exact.

(a) TRUE

(b) NOT FALSE

(c) OR TRUE FALSE

(d) forall X Y : Prop, X −> OR X Y

(e) forall (X : Type) (x : X), EQ x x

(f) forall (X : Type) (x y : X), EQ x y −> EQ y x

(g) forall (X : Type) (p : X −> Prop) (x : X), p x −> EX p

Exercise 5.5.4 Rewrite the Church-Girard definitions in Section 4.5 such that

Type is used instead of Prop. Coq will then reject the definition of plus with

the error message “universe inconsistency” since there is no consistent level as-

signment. Find out why this is the case.

Exercise 5.5.5 Argue that the type theory is consistent if and only if the type

FALSE is empty. Recall Exercise 5.3.2.

5.6 Remarks

We have now seen the full development of a basic dependent type theory with

an impredicative universe for propositions. Coq implements an extension of this

theory. The theory is such that we can represent propositions and proofs and

that type checking acts as proof checking.

It is perfectly possible to make T0 impredicative and omit the extra universe

Prop. It is for historical reasons that Coq does not realize this simpler solution. It

is however impossible to make any universe higher than T0 impredicative since

this results in an inconsistent theory. Inconsistency also results if one works

with a single universe that is a member of itself.
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The impredicative universe Prop has considerable computational power, as

can be seen from the fact that it can accommodate Church-Girard programming

(see Section 4.5). As it comes to proving, the Church-Girard coding of numbers is

however inadequate since we cannot even prove basic facts such as 0 ≠ 1. Thus

Coq represents the natural numbers with an inductive type.

Coq represents all proofs as proof terms. Coq’s tactics provide a convenient

means to construct proof terms interactively. The (partial) proof term con-

structed with a proof script can be displayed with the command Show Proof .

The command Qed type checks the proof term that has beed constructed by the

preceding script. There are some cases where the tactics fail to construct a fully

well-typed proof term. In this case Qed will fail.

A command “Lemma x : t” announces the attempt to construct a term of

type t. If such a term s is successfully constructed, the lemma command together

with the proof script has the same effect as the command “Definition x : t := s”,

except that Coq will not unfold the name x. The exact behavior of the definition

“Definition x : t := s” can be obtained by ending the proof script with the com-

mand Defined rather than Qed. The command “Lemma x : t” can be used for any

type t, not just propositions.

The type theory presented in this chapter is known as calculus of construc-

tions. The original version of the calculus of construction was given in 1985

by Coquand and Huet as the foundation of the initial Coq system. We recom-

mend the Luo’s [1994] book in case you want to know more about the calculus

of constructions.
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We now extend the basic dependent type theory of the last chapter with inductive

types bool and nat for booleans and natural numbers. For each of the two types

we add constructors and a match providing for case analysis. For nat we also add

a fix providing for recursion. The typing rules for nat are complemented by a

guardedness condition ensuring termination. To provide for proof terms for case

analysis and induction, the theory comes with dependent matches generalizing

the simple matches we have seen so far.

6.1 Dependent Matches

Consider the following proof of the case analysis principle for booleans.

Goal forall p : bool −> Prop,

p true −> p false −> forall x : bool, p x.

Proof. intros p A B x. destruct x. exact A. exact B. Show Proof. Qed.

The proof term displayed involves a dependent match with return annotation.1

We prove the principle once more by stating the proof term explicitly.

Goal forall p : bool −> Prop, p true −> p false −> forall x : bool, p x.

Proof. exact (fun p A B x => match x as z return p z with

| true => A

| false => B

end).

Qed.

The as and return annotations determine the return function λz : bool. pz of the

dependent match. A boolean match for a term s with a return function ϕ is

type-checked as follows:

1. The type of the match is ϕs.

2. The body of the rule for true must have the type ϕtrue.

3. The body of the rule for false must have the type ϕfalse.

1 Coq will display boolean matches with the if-then-else notation.
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The typing rule for boolean matches states this discipline in full detail.

Γ ⇒ s : bool Γ , z : bool ⇒ t :U Γ ⇒ u : tztrue Γ ⇒ v : tzfalse

Γ ⇒ match s as z return t with true ⇒ u | false ⇒ v end : tzs

The return function of the match in the typing rule is λz.t. We say that the match

is dependent if z is free in t, and that the match is simple otherwise. For simple

matches the return annotation is usually omitted. Coq can also infer the return

function for some dependent matches.

When we check the match in our proof of the boolean case analysis principle,

we can assume the context

Γ = [p : bool→Prop, A :p true, B :p false, x : bool]

The typing rule will give the match the required type px if the following judge-

ments are derivable:

• Γ ⇒ x : bool

• Γ , z : bool ⇒ p z : Prop

• Γ ⇒ A : p true

• Γ ⇒ B : p false.

6.2 Adding Bool as Inductive Type

We now extend the basic type theory of the last chapter with an inductive type

bool for booleans.

Terms

In order to extend the type theory to include bool, we first extend the syntax

for terms to include three constructors bool, true and false as well as the match

construct. The grammar for terms is

s, t,u,v ::= x | λx : s.t | s t | ∀x : s.t | U

| bool | true | false

| match s asz return t with true ⇒ u | false ⇒ v end

where x and z range over variables, and U ranges over the universes Prop

and T0,T1,T2, . . . . In a match of the form

match s asz return t with true ⇒ u | false ⇒ v end

the variable z is bound in the term t. Substitution is defined to respect this

binding structure.
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Reduction

We next extend the reduction relation. In addition to the usual beta reduction,

we include reductions for the match. There are two ways a match can reduce:

match true as z return t with true ⇒ u | false ⇒ v end ⊲1 u

match false as z return t with true ⇒ u | false ⇒ v end ⊲1 v

A simple example of a function defined with a match is negb from Chapter 2.

As a Coq definition, negb was defined as

Definition negb (x : bool) : bool :=

match x with

| true => false

| false => true

end.

In our type theory the corresponding term is

λx : bool. match x as z return bool with true ⇒ false | false ⇒ true end

Since this is a simple match we may omit the annotations and simply write

λx : bool. match x with true ⇒ false | false ⇒ true end

Let negb denote this term. We have

negb true

⊲1 match true with true ⇒ false | false ⇒ true end by beta reduction

⊲1 false by match reduction

Exercise 6.2.1 Explain why negb false⊲true holds. Does negb false⊲1true hold?

Exercise 6.2.2 What is the return function in the match defining negb?

Typing

We finish the definition of the type theory with bool by stating the typing rules

for the new constructs in Figure 6.1. The typing relation Γ ⊢ s : t for the type

theory with bool holds if the judgement Γ ⇒ s : t is derivable using the rules in

Figures 5.1, 5.2 and 6.1.

The Canonical Form Theorem extends to the type theory with bool as follows.

Canonical Form for the Type Theory with Bool

If 0 ⊢ s : t and s and t are both normal, then one of the following holds:
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6 Adding Bool and Nat

bool
0⇒ bool : T0

true
0⇒ true : bool

false
0⇒ false : bool

Match
Γ ⇒ s : bool Γ , z : bool ⇒ t :U Γ ⇒ u : tztrue Γ ⇒ v : tzfalse

Γ ⇒ match s as z return t with true ⇒ u | false ⇒ v end : tzs

Figure 6.1: Typing rules for bool

1. s and t are both universes and s is lower than t.

2. s is a function type and t is a universe.

3. s is a lambda abstraction and t is a function type.

4. s is bool and t is Tn for some n.

5. s is true and t is bool.

6. s is false and t is bool.

6.3 Proving that true and false are Different

We can use a simple match to prove that true and false are different. In order

to remain within the basic type theory we use the impredicative definitions from

Figure 5.3. The proposition we wish to prove is

NOT (EQ bool true false).

A term which has this type is

λA : EQ bool true false.

A (λx : bool. matchx with true ⇒ EQ bool true false | false ⇒ FALSE end)A

Since the match is simple, we omit the return type annotation. We briefly explain

why this term has the intended type. Note that

EQ bool true false ⊲ ∀p : bool → Prop. p true → p false

Let Γ = [A : EQ bool true false] and let s be the term

λx : bool. matchx with true ⇒ EQ bool true false | false ⇒ FALSE end.
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It is easy to check that Γ ⊢ s : bool → Prop and so Γ ⊢ As : s true → s false. Note

s true ⊲ EQ bool true false

and

s false ⊲ FALSE .

By the conversion rule we have

Γ ⊢ As : EQ bool true false → FALSE

Consequently, Γ ⊢ As A : FALSE as desired.

We now construct this proof term with a Coq proof script using the conver-

sion tactic change. We use the impredicative definitions of the logical operations

from Figure 5.4.

Goal NOT (EQ true false).

Proof. intros A.

change (match false with true => EQ true false | false => FALSE end).

apply (A (fun x => match x with true => EQ true false | false => FALSE end)).

exact A. Show Proof. Qed.

The conversion tactic change will change the goal to any proposition which is

convertible to the current claim. At the point where change is used in the proof

above, the goal is to prove FALSE. Since

match false with true ⇒ EQ true false | false ⇒ FALSE end ⊲ FALSE

we can use change so that the goal becomes

match false with true ⇒ EQ true false | false ⇒ FALSE end.

Note that using change corresponds to using the conversion rule Conv in Fig-

ure 5.1. By the conversion rule, a proof of

match false with true ⇒ EQ true false | false ⇒ FALSE end

will also be a proof of FALSE . After using change we can use the assumed equa-

tion with the appropriate term of type bool → Prop to rewrite false to true so that

the goal becomes

match true with true ⇒ EQ true false | false ⇒ FALSE end

which reduces in one step to EQ true false. Note that the assumption A is a proof

of EQ true false.
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Consider the following variant of case analysis using negb:

∀p : bool → Prop.∀x : bool.p x → p (negb x) → p true.

A possible proof term is

λ p : bool → Prop. λ x : bool.

matchx asz returnp z → p (negb z) → p true with

true ⇒ λA : p true. λB : p(negb true). A

| false ⇒ λA : p false. λB : p(negb false). B

end

Exercise 6.3.1 What is the return type function of the match used to prove

true 6= false?

Exercise 6.3.2 Give terms that have the following types in the empty context.

a) ∀p : bool → Prop.∀x : bool. p x → p (negb x) → p false

b) ∀p : bool → Prop.∀xy : bool. p x → p (negb x) → p y

Exercise 6.3.3 Let n ≥ 0 be given. Give a type of the term

∀p : bool → Tn.p true → p false → ∀x : bool. p x

in the empty context? Give a term which has this type in the empty context.

Exercise 6.3.4 Give a term of type

∀p : bool → Prop.∀x : bool.p x → p (negb (negbx))

in the empty context.

Exercise 6.3.5 Prove the following results in Coq using only the tactic exact. You

may use the first two lemmas in the third proof term.

Lemma true_NOTEQ_false : NOT (EQ true false).

Lemma false_NOTEQ_true : NOT (EQ false true).

Goal forall x:bool, NOT (EQ (negb x) x).

6.4 Adding Nat as an Inductive Type

We next extend the type theory to include an inductive type nat of natural num-

bers. We could easily include both bool and nat, but we omit bool for simplicity.

To include nat, we need not only a match construct, but also a fix construct for

recursion.
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Terms

We first extend the language of terms to include three constructors (nat, O and S)

as well as a match construct for case analysis and a fix construct for recursion.

As before, the match will be annotated to give a return function. The grammar

for terms is

s, t,u,v ::= x | λx : s.t | s t | ∀x : s.t | U

| nat | O | S

| match s asz return t with O ⇒ u | S x ⇒ v end

| fix f (x : nat) : s := t

where f , x and z range over variables, and U ranges over the universes Prop

and T0,T1,T2, . . . . The binding structure of the match for nat is analogous to

the one for bool. There is one new bound variable: the x in the S case. In a match

of the form

match s asz return t with O ⇒ u | S x ⇒ v end

the variable z is bound in the term t and the variable x is bound in the term v .

In a fix of the form

fixf (x : nat) : s := t

the x is bound in s and both the f and x are bound in t. Substitution is defined

to respect this binding structure.

Reduction

We next extend the reduction relation. In addition to the usual beta reduction,

we include reductions for the match and fix. As with boolean matches, there are

two ways a match for nat can reduce:

match O asz return t with O ⇒ u | S x ⇒ v end ⊲1 u

match S s asz return t with O ⇒ u | S x ⇒ v end ⊲1 vxs

The reader should carefully study the role of x in the second match reduction.

There are also two reduction rules for a fix:

(fix f (x : nat) : s := t)O ⊲1 (t
f

fix f (x : nat) : s := t
)xO

(fix f (x : nat) : s := t)(S u) ⊲1 (t
f

fix f (x : nat) : s := t
)xS u

That is, when a fix is applied to a term of the form O or S u, then the fix is

reduced by substituting x with the argument and f with the fix itself.
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nat
0⇒ nat : T0

O
0⇒ O : nat

S
0⇒ S : nat → nat

Match
Γ ⇒ s : nat Γ , z : nat ⇒ t :U Γ ⇒ u : tzO Γ , x : nat ⇒ v : tzSx

Γ ⇒ match s as z return t with O ⇒ u | S x ⇒ v end : tzs

Fix
Γ , f :∀x : nat.s, x : nat ⇒ t : s

Γ ⇒ fix f (x : nat) : s := t : ∀x : nat.s

Figure 6.2: Typing rules for nat

Typing

We give the additional typing rules in Figure 6.2. The typing rules in Fig-

ures 5.1, 5.2 and 6.2 define a notion of being well-typed. However, this does

not yet ensure termination. Consider the term

fixf (x : nat) : nat := f x

It is easy to use the typing rules to derive the judgement

0⇒ (fixf (x : nat) : nat := f x)O : nat

However, it is also easy to see that the term (fixf (x : nat) : nat := f x)O does

not terminate. In order to ensure termination, we need an extra condition called

guardedness.

Guardedness

We say a fix term fix f (x : nat) : s := t is guarded if every occurrence of f in t

is applied to an argument resulting from stripping off at least one constructor

from x with a match. Note that

fixf (x : nat) : nat := f x

is not guarded. On the other hand,

fixf (x : nat) : nat := matchx with O ⇒ O | S y ⇒ S (S (f y)) end

is guarded.
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We define the typing relation Γ ⊢ s : t to hold if every fix term in Γ , s and t is

guarded and the judgement Γ ⇒ s : t is derivable using rules in Figures 5.1, 5.2

and 6.2.

The Canonical Form Theorem extends to the type theory with nat as follows.

Canonical Form for the Type Theory with Natural Numbers

If 0 ⊢ s : t and s and t are both normal, then one of the following holds:

1. s and t are both universes and s is lower than t.

2. s is a function type and t is a universe.

3. s is a lambda abstraction and t is a function type.

4. s is nat and t is Tn for some n.

5. s is O and t is nat.

6. s is S u (for some term u) and t is nat.

Exercise 6.4.1 Let ⊲̃ be an extension of ⊲1 which includes the more general fix

reduction

(fix f (x : nat) : s := t)u ⊲1 (t
f

fix f (x : nat) : s := t
)xu

Give an example of a term s such that 0 ⊢ s : t and yet there is an infinite ⊲̃

reduction sequence starting from s.

Exercise 6.4.2 Without the guardedness condition there is a non-terminating

term that is a proof term for FALSE . Hence the such generalized type theory

is inconsistent and thus logically useless (recall Exercise 5.5.5).

a) Find a term ϕ such that

i) 0⇒ϕ : nat → Prop is derivable

ii) ϕO reduces to NOT (ϕO).

b) Check that the following judgements are derivable.

i) 0⇒ λx :ϕO. xx : ϕO → False

ii) 0⇒ λx :ϕO. xx : False

iii) 0⇒ (λx :ϕO. xx)(λx :ϕO. xx) : FALSE

c) There is a much shorter term ϕ such that the judgement 0 ⇒ ϕ : FALSE is

derivable. Try to find it. Hint: Exploit that a nonterminating fix may have any

return type.

d) Find a term ϕ such that ϕO ⊲ S(ϕO) and the judgement 0 ⇒ ϕO : nat is

derivable.
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6.5 Constructor Disjointness and Injectivity

We can prove O 6= S O using the same techniques we used to prove true 6= false.

We write 1 for S O.

Goal NOT (EQ O 1).

Proof.

exact (fun A => A (fun x => match x with O => EQ O 1 | S y => FALSE end) A).

Qed.

Let s be the term

λx : nat. match x with O ⇒ EQ nat O 1 | S y ⇒ FALSE end.

The term λA.As A has the intended type since

A : EQ nat O 1 ⊢ A s : EQ nat O 1 → FALSE

Next we prove that the constructor S is injective. The proof uses Coq’s pre-

defined predecessor function.

Goal forall x y : nat,

EQ (S x) (S y) −> EQ x y.

Proof. intros x y A p. exact (A (fun z => p (pred z))). Qed.

Exercise 6.5.1 Do the proof that the constructor S is injective with paper and

pencil in the basic type theory with nat.

Exercise 6.5.2 Prove the following goal using only exact.

Goal forall x:nat, NOT (EQ O (S x)).

6.6 Inductive Proofs are Recursive Proofs

Here is a proof of the so-called induction principle for nat.

Goal forall p : nat −> Prop,

p O −> (forall x : nat, p x −> p (S x)) −> forall x : nat, p x.

Proof. exact (fun p A B => fix f x :=

match x as z return p z with

| O => A

| S x’ => B x’ (f x’)

end).

Qed.
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Note that the proof term employs a recursion on x using a fix. Whenever we

use the tactic induction for a variable of type nat, Coq will synthesize the proof

term with a lemma nat_ind taking the proposition of the goal as type. Here is an

example.

Goal forall x, EQ (x + 0) x.

Proof. intros x. induction x. exact (fun p A => A).

intros p. exact (IHx (fun z => p (S z))).

Show Proof. Qed.

This script synthesizes the following proof term (argument types deleted):

fun x => nat_ind

(fun z => EQ (z + 0) z)

(fun p (A : p 0) => A)

(fun x (IHx : EQ (x + 0) x) => fun p => IHx (fun z => p (S z)))

x

It takes some effort to verify the proof term by hand. The important message to

take home here is that inductive proofs in Coq are recursive proofs with fix and

match.

Exercise 6.6.1 Prove the following goals in Coq using only exact.

Goal forall p : nat −> Prop,

p O −> (forall x : nat, p x −> p (S x)) −> forall x : nat, p x.

Goal forall (p : nat −> Prop) (x : nat),

p O −> (forall x : nat, p x −> p (S x)) −> p x.

Goal forall p : nat −> Prop,

p O −> p (S O) −> (forall x : nat, p x −> p (S (S x))) −> forall x : nat, p x.

Goal forall p : nat −> Prop,

p O −> (forall x : nat, p (S x)) −> forall x : nat, p x.

Exercise 6.6.2 Here is the so-called inversion principle for nat.

Goal forall x : nat,

x = 0 \/ exists y, x = S y.

Writing a proof script for this goal is straightforward. Things become more chal-

lenging if we reformulate the goal with the impredicative definitions of disjunc-

tion, equality, and existential quantification.

Goal forall x : nat, OR (EQ x O) (EX (fun y => EQ x (S y))).

Coming up with a proof term for this goal with paper and pencil is tedious.

Things are more enjoyable if you synthesize the proof term interactively with a

Coq proof script.
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6.7 Regular Inductive Types

What we have learned about bool and nat generalizes to a class of inductive types

we call regular inductive types. In Coq, the definition of a regular inductive type

takes the form

Inductive c (x1 : s1) · · · (xm : sm) : U := c1 : t1 | · · · | cn : tn .

where m,n ≥ 0 and U ranges over the universes. The definition introduces a

type constructor c and member constructors c1, . . . , cn. The argument variables

x1, . . . , xm given for the type constructor c are called parameters. The essential

constraint for regular inductive types says that the constructor c can occur only

in the leftmost position of an application cx1 . . . xm in the terms t1, . . . , tn spec-

ifying the types of the member constructors. The type of a member constructor

ci is in fact ∀x1 : s1 · · ·∀xm : sm. ti.

Things will become clearer if you review the inductive type we have seen so

far. The types bool, nat, False, and True are regular inductive types without

parameters. The type constructors prod, list, option, and, or , and ex are regular

inductive type constructors with one or two parameters. The inductive type

constructor eq for equations is not regular. We will study non-regular inductive

types later. The matches for non-regular inductive types take a special form

where the return function takes additional arguments.

6.8 The Elim Restriction

We call inductive type constructors that target the universe Prop inductive pred-

icates, and their member constructors proof constructors. There is a restriction

on the form of matches for inductive predicates known as elim restriction. The

elim restriction is needed for consistency and can be seen as the price to pay

for the impredicativity of Prop. The elim restriction says that a match on proof

terms must not leak information to non-propositional types. A match whose

return type is a proposition always satisfies the elim restriction. On the other

hand, the match

Check fun X : True \/ True =>

match X with

| or_introl _ => true

| or_intror _ => false

end.

% Error : Incorrect elimination of "X " in the inductive type "or"

violates the elim restriction since it discriminates on proofs and returns

booleans.
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6.9 Remarks

We have now arrived at an explicit definition of a dependent type theory with in-

ductive types for bool and nat. The theory can define many functions on natural

numbers and at the same time prove many results about natural numbers. All

functions definable in the theory are computable and terminating. The restric-

tion to terminating recursion ensures consistency of the theory and decidability

of type checking (which subsumes proof checking).

The formulation of computational type theories is a major achievement of the

second half of the 20th century. The enterprise started with Gödel’s System T in

the late 1950’s. Gödel’s system can express many computable functions on nat-

ural numbers but cannot express propositions and proofs. Further steps were

the discovery of the propositions-as-types principle and the development of de-

pendent type theories. The accommodation of the natural numbers as inductive

type started with the work of Martin-Löf in the 1970’s and took its current form

with match and fix and the guardedness condition around 1990.

2012-7-18 81



6 Adding Bool and Nat

82 2012-7-18



7 More Fun with Bool and Nat

In this chapter we prove various theorems about booleans and numbers making

full use of Coq’s tactics and notational devices. This should give you an impres-

sion of how mathematical results can be established in Coq. The topics of this

chapter include complete induction, primitive recursion, and Cantor’s theorem.

7.1 Disjointness and Injectivity of Constructors

Recall the proofs of the disjointness and injectivity of the member constructors

of nat you have seen in the last chapter.

Goal forall x, S x <> 0. (* Disjointness *)

Proof. intros x A. change (match S x with 0 => True | S _ => False end).

rewrite A. auto. Qed.

Goal forall x y, S x = S y −> x = y. (* Injectivity *)

Proof. intros x y A. change (pred (S x) = y). rewrite A. reflexivity. Qed.

Coq’s tactics discriminate and injection can do this sort of proofs automatically

(that is, synthesize suitable proof terms).

Goal forall x, S x <> 0.

Proof. intros x A. discriminate A. Qed.

Goal forall x y, S x = S y −> x = y.

Proof. intros x y A. injection A. auto. Qed.

Exercise 7.1.1 Prove the following goal twice: Once with discriminate and once

with change and without discriminate.

Goal forall (X : Type) (x : X) (xs : list X),

cons x xs <> nil.

Exercise 7.1.2 Prove the following goals twice: once with injection and once with

change and without injection.

(a) Goal forall (X : Type) (x y x’ y’ : X),

pair x y = pair x’ y’ −> y = y’.
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(b) Goal forall (X : Type) (x x’ : X) (xs xs’ : list X),

cons x xs = cons x’ xs’ −> xs = xs’.

Exercise 7.1.3 Prove the following goals.

(a) Goal forall x, negb x <> x.

(b) Goal forall x, S x <> x.

(c) Goal forall x y z, x + y = x + z −> y = z.

(d) Goal forall x y : nat, x = y \/ x <> y.

7.2 Booleans as Propositions

The types bool and Prop are very different: While bool is an inductive type with

exactly two elements, Prop is the universe of propositions. However, there is a

canonical embedding of bool into Prop.

Coercion bool2Prop (x : bool) := if x then True else False.

The command Coercion defines bool2Prop as a function that is automatically

inserted when a term of type bool is used in a context where a proposition is

required.

Compute ~false.

% False → False

Set Printing All.

Check ~false.

% not (bool2Prop false) : Prop

Unset Printing All.

From now on we will always assume that the coercion bool2Prop is active.

Goal forall X : Prop,

(exists b : bool, b <−> X) <−> X \/ ~X.

Proof. unfold bool2Prop. split.

intros [b A]. destruct b ; tauto.

intros [A|A]. exists true. tauto. exists false. tauto. Qed.

The proof unfolds the coercion bool2Prop explicitly since the tactic tauto will not

do it.

Exercise 7.2.1 Prove the following goals.

(a) Goal forall x : bool, ~x <−> negb x.

(b) Goal forall x y : bool, x /\ y <−> andb x y.

(c) Goal forall x y : bool, x \/ y <−> orb x y.

(d) Goal forall (b : bool) (X : Prop), (b <−> X) −> (~b <−> ~X).
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7.3 Boolean Equality Tests

It is not difficult to write a boolean equality test for nat.

Fixpoint eq_nat (x y : nat) : bool :=

match x, y with

| 0, 0 => true

| S x’, S y’ => eq_nat x’ y’

| _, _ => false

end.

We prove that boolean equality on nat agrees with Coq’s equality.

Goal forall x y : nat,

eq_nat x y <−> x = y.

Proof. induction x ; destruct y ; split ; simpl ; intros A ; try tauto ; try discriminate A.

f_equal. apply IHx. exact A.

apply IHx. injection A. auto. Qed.

The proof script uses several advanced features of Coq’s tactic language and

deserves careful studying. The initial induction, case analysis, and split leave

us with 8 subgoals. Four of them are solved by tauto, and 2 of them are solved

by discriminate. Note the use of the tactical try. It is needed since tauto and

discriminate will fail on some of the goals. A command try t behaves like the

tactic t if t succeeds but leaves the goal unchanged and succeeds if t fails. For

the remaining two subgoals, the inductive hypothesis is applied. Note that IHx is

a proof of a quantified equivalence and that the tactic apply is smart enough to

choose the correct implication from the equivalence.

Exercise 7.3.1 Write boolean equality tests for the following types and prove

that they agree with Coq’s equality.

a) bool

b) list nat

7.4 Boolean Order on Nat

We define the canonical order on nat as a boolean test.

Fixpoint leb (x y: nat) : bool :=

match x, y with

| O, _ => true

| S _, O => false

| S x’, S y’ => leb x’ y’

end.
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We use Coq’s notation command to define the usual notations for comparisons.1

Notation "s >= t" := (leb t s).

Notation "s <= t" := (leb s t).

Notation "s > t" := (leb (S t) s).

Notation "s < t" := (leb (S s) t ).

We can now write the following.

Compute 7 > 5.

% true : bool

Compute 4 < 3 −> False.

% False → False : Prop

Set Printing All.

Check 1 < 0 −> False.

% bool2Prop (leb (S(SO)) O)→ False : Prop

We prove some simple facts about comparisons.

Lemma le_refl x :

x <= x.

Proof. induction x ; simpl ; auto. Qed.

Lemma le_trans x y z :

x <= y −> y <= z −> x <= z.

Proof. revert y z. induction x ; simpl. now auto.

destruct y ; simpl. now auto.

destruct z ; simpl. now auto.

exact (IHx _ _). Qed.

Goal forall x y z,

x < y −> y < z −> S x < z.

Proof. intros x y z. exact (le_trans (S (S x)) (S y) _). Qed.

Goal forall x y,

~ (x < y /\ y <= x).

Proof. induction x ; destruct y ; try (simpl ; tauto). exact (IHx _). Qed.

In the above proofs conversion plays a major role. Make sure you understand

every detail.

Exercise 7.4.1 Prove the following goals.

(a) Goal forall x, ~ x < x.

(b) Goal forall x y, x <= y −> x < y \/ x = y.

1 We overwrite Coq’s definitions of these notations. Coq defines the order on nat in a different

way we will explain later.

86 2012-7-18



7.5 Complete Induction and Size Induction

(c) Goal forall x y, x<y \/ y<=x.

(d) Goal forall x y, negb (x <= y) = (x > y).

(e) Goal forall x y, x = y <−> x <= y /\ y <= x.

(f) Goal forall x y, x < y \/ x = y \/ x > y.

(g) Goal forall x y z, x < y <−> z + x < z + y.

(h) Goal forall x y, x <= y <−> exists z, x + z = y.

7.5 Complete Induction and Size Induction

Recall the basic induction principle for nat.

Lemma nat_ind (p : nat −> Prop) :

p 0 −> (forall n, p n −> p (S n)) −> forall n, p n.

Proof. intros A B.

exact (fix f x := match x as z return p z with 0 => A | S x’ => B x’ (f x’) end). Qed.

This principle is applied whenever the tactic induction is used. It can be used

to establish the seemingly stronger principle of complete induction, which says

that in the induction step it suffices to prove pn under the assumption that pm

is provable for all m < n. The reformulated induction step subsumes the base

case.

Lemma complete_induction (p: nat−>Prop) :

( forall n, ( forall m, m < n −> p m) −> p n) −> forall n, p n.

Proof. intros A n. apply A. induction n ; simpl. tauto.

intros m B. apply A. intros k C. apply IHn.

exact (le_trans _ _ _ C B). Qed.

The proof is remarkable in that it first reduces the claim to a proposition that

can be shown by ordinary induction.

A further generalization of complete induction is size induction. Size induc-

tion works for any type X and any predicate p : X → Prop provided there is a

size function f : X → nat. It suffices to prove px under the assumption that

there is a proof of py for all y smaller than x.

Lemma size_induction (X : Type) (f : X −> nat) (p: X −>Prop) :

( forall x, ( forall y, f y < f x −> p y) −> p x)

−> forall x, p x.

Proof. intros A x. apply A. induction (f x) ; simpl. tauto.

intros y B. apply A. intros z C. apply IHn.

exact (le_trans _ _ _ C B). Qed.
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The proof script is similar to the proof script for complete induction, with the

remarkable difference that the induction tactic is applied to the term fx, which

is not a variable. This means that a local lemma is created that is applied to fx

after it has been shown by induction. Here is a proof script that explicitly states

the auxiliary lemma with the tactic assert.

Goal forall (X : Type) (f : X −> nat) (p: X −>Prop),

( forall x, ( forall y, f y < f x −> p y) −> p x)

−> forall x, p x.

Proof. intros X f p A x. apply A.

assert (L : forall n y, f y < n −> p y).

clear x. induction n ; simpl. tauto.

intros y B. apply A. intros z C. apply IHn.

exact (le_trans _ _ _ C B).

exact (L (f x)). Qed.

Note the use of the tactic clear . It clears away an assumption that is not needed

for the proof of L.

Exercise 7.5.1 Prove the following proposition in two ways.

Goal forall p : nat −> Prop,

p 0 −> p 1 −> (forall n, p n −> p (S (S n))) −> forall n, p n.

a) With a proof term using fix and match.

b) With complete induction. After a few steps you will be left with the claim

n ≤ Sn. Prove this claim inline with the induction tactic. Use the tactic clear

to clear away unnecessary assumptions before you apply the induction tactic.

Exercise 7.5.2 Prove complete induction using size induction.

Exercise 7.5.3 Prove the basic induction principle for nat using complete induc-

tion.

Exercise 7.5.4 Prove the following goal formulating a principle we may call

zigzag induction. Use the induction tactic.

forall p : nat −> Prop,

p O −>

( forall x, p x −> p (S (S x))) −>

( forall x, p (S x) −> p x) −>

forall x, p x.
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7.6 Case Analysis with case_eq

Kaminski’s equation takes the form f(f(f x)) = f x and holds for every func-

tion f : bool → bool and every boolean x. The proof proceeds by repeated boolean

case analysis: First on x and then on f true and f false. If we do the proof with

destruct, we face the problem that destruct (f true) does not provide the equa-

tions f true = true and f true = false coming with the case analysis. Fortunately,

there is a variant of destruct called case_eq providing the equations.

Goal forall (f : bool −> bool) (x : bool),

f (f (f x)) = f x.

Proof. destruct x ; case_eq (f true) ; case_eq (f false) ; congruence. Qed.

Note the use of congruence, an automation tactic that does simple equational

proofs. Replace the semicolon before congruence with a period and solve the 8

subgoals by hand to understand.

For boolean case analyses, the tactic case_eq can be simulated with the fol-

lowing lemma.

Lemma case_eq_bool (p : bool −> Prop) (x : bool) :

(x = true −> p true) −> (x = false −> p false) −> p x.

Proof. destruct x ; auto. Qed.

To apply the lemma, we use the tactic pattern to identify the predicate p.

Goal forall (f : bool −> bool) (x : bool),

f (f (f x)) = f x.

Proof. destruct x ;

pattern (f true) ; apply case_eq_bool ;

pattern (f false) ; apply case_eq_bool ;

congruence. Qed.

Replace the semicolons with periods and solve the subgoals by hand to under-

stand.

Exercise 7.6.1 Prove the following variant of Kaminski’s equation.

Goal forall (f g : bool −> bool) (x : bool),

f (f (f (g x))) = f (g (g (g x ))).

7.7 Specification of Functions

In Chapter 2 we specified functions on bool and nat by systems of characteristic

equations. In Coq we can express such specifications as predicates. Here is a

specification of addition.
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Definition addition (f : nat −> nat −> nat) : Prop :=

forall x y,

f 0 y = y /\

f (S x) y = S (f x y).

Given the specification of addition, there are two questions:

1. Does Coq’s predefined addition function plus satisfy the specification?

2. Are any two functions satisfying the specification equivalent in the sense that

they yield the same results for the same arguments?

We answer both questions positively.

Goal addition plus.

Proof. unfold addition. simpl. auto. Qed.

Goal forall f g x y,

addition f −> addition g −> f x y = g x y.

Proof. intros f g x y A B. induction x.

destruct (A 0 y) as [C _]. destruct (B 0 y) as [D _]. congruence.

destruct (A x y) as [_ C]. destruct (B x y) as [_ D]. congruence. Qed.

Note that we need fix and match to show that addition has a solution. We also

need fix and match to show that addition has at most one solution up to equiva-

lence. This is the case since we need induction to establish this fact, and fix and

match are needed to establish induction.

Next we specify a function known as Ackermann’s function.2

Definition ackermann (f : nat −> nat −> nat) : Prop :=

forall m n,

f O n = S n /\

f (S m) O = f m 1 /\

f (S m) (S n) = f m (f (S m) n).

Ackermann argued the existence and uniqueness of his function as follows. Since

for any two arguments exactly one of the equations applies, f exists and is

unique if the application of the equations terminates. This is the case since

either the first argument is decreased, or the first argument stays the same and

the second argument is decreased.

Ackermann’s termination argument is outside the scope of Coq’s termination

checker. Coq will insist that for every fix there is a single argument that is struc-

turally decreased by every recursive application. The problem can be resolved

by formulating Ackermann’s function with two nested recursions.

2 Ackermann’s function grows rapidly. For example, for 4 and 2 it yields a number of 19,729

decimal digits. It was designed as a terminating recursive function that cannot be computed

with first-order primitive recursion. In Exercise 7.8.2 you will show that Ackermann’s function

can be computed with higher-order primitive recursion.
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Definition ack : nat −> nat −> nat :=

fix f m := match m with

| O => S

| S m’ => fix g n := match n with

| O => f m’ 1

| S n’ => f m’ (g n’)

end

end.

Note that ack is defined as a recursive function that returns a recursive function.

Each of the two recursions is structural on its single argument. The correctness

proof for ack is straightforward.

Goal ackermann ack.

Proof. unfold ackermann. auto. Qed.

We can also show that any two functions satisfying the specification Ackermann

agree on all arguments.

Goal forall f g x y,

ackermann f −> ackermann g −> f x y = g x y.

Proof. intros f g x y A B ; revert y ; induction x ; intros y.

destruct (A 0 y) as [C _]. destruct (B 0 y) as [D _]. congruence.

induction y.

destruct (A x 0) as [_ [C _]]. destruct (B x 0) as [_ [D _]]. congruence.

destruct (A x y) as [_ [_ C]]. destruct (B x y) as [_ [_ D]]. congruence. Qed.

Exercise 7.7.1 Specify multiplication and subtraction and prove that Coq’s pre-

defined functions satisfy the specifications. Also prove that two functions agree

on all arguments if they satisfy one of the specifications.

7.8 Primitive Recursion

The following function known as primitive recursion captures most of the

power of guarded recursion for nat.3

Definition primrec (t : nat −> Type) (A : t 0) (B : forall n, t n −> t (S n))

: forall n : nat, t n

:= fix f n := match n as z return t z with

| 0 => A

| S n’ => B n’ (f n’)

end.

3 What we define here is higher-order primitive recursion. Higher-order primitive recursion is

much more powerful than first-order primitive recursion as used in recursion theory.
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If we are allowed only a single use of fix for nat, we would define primrec and

then express all further recursions with primrec. To start with, primitive recur-

sion gives us the basic induction principle for nat.

Check fun p : nat −> Prop => primrec p.

% forall p : nat → Prop, p 0 → (forall n : nat, p n → p (S n)) → forall n : nat, p n

Note that the application of primrec to p type checks due to the subsumption

rule (see Section 5.4).

The definition of addition with primitive recursion is straightforward.

Definition add := primrec

(fun _ => nat −> nat)

(fun y => y)

(fun _ r y => S (r y )).

Compute add 3 7.

% 10

We prove that add satisfies the specification addition.

Goal addition add.

Proof. intros x y ; simpl. auto. Qed.

Exercise 7.8.1 Write a multiplication function using primitive recursion. Prove

that your function agrees with Coq’s multiplication function mult.

Exercise 7.8.2 Write an Ackermann function using primrec twice. Prove that

your function satisfies the specification ackermann.

Exercise 7.8.3 We specify primitive recursion as follows.

Definition primitive_recursion

(f : forall t : nat −> Type, t 0 −> (forall n, t n −> t (S n)) −> forall n, t n) : Prop :=

forall t A B n,

f t A B 0 = A /\

f t A B (S n) = B n (f t A B n).

Show that primrec satisfies this specification and that any two functions satisfy-

ing the specification are equivalent.

7.9 Bool and Nat Are Not Equal

We now prove that the types bool and nat are not equal. For this we need a

predicate on types that distinguishes bool and nat. For this we use the property

that a type has at most two elements.
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Goal bool <> nat.

Proof. intros A.

pose (p X := forall x y z : X, x=y \/ x=z \/ y=z).

assert (B : ~ p nat).

intros B. destruct (B 0 1 2) as [C|[C|C]] ; discriminate.

apply B. rewrite <− A. intros [] [] [] ; auto. Qed.

The tactic pose provides for local definitions.4 We use it to define the discriminat-

ing predicate p. The tactic assert is used to establish a proof B of ¬p nat. Once

we have B, we apply it to the claim, which leaves us with the claim p nat. Rewrit-

ing with the assumed proof A of bool = nat yields the claim p bool. Proving this

claim is routine.

Here is a proof of a disequation between propositions making clever use of

the tactics assert and tauto.

Goal forall X : Prop, (~X) <> X.

Proof. intros X A.

assert (B : ~(~X <−> X)) by tauto.

apply B. rewrite A. tauto. Qed.

Exercise 7.9.1 Prove the following goals.

(a) Goal bool <> option bool.

(b) Goal option bool <> prod bool bool.

(c) Goal bool <> False.

7.10 Cantor’s Theorem

Cantor’s theorem says that the power set of a set is always strictly larger than

the set. For the proof of his theorem Cantor used a technique known as diago-

nalisation. It turns out that Cantor’s result carries over to type theory.

Given two types X and Y , we call X smaller than Y if there exists no surjection

from X to Y .5

Definition smaller (X Y : Type) : Prop :=

~ exists f : X −> Y, forall y, exists x, f x = y.

We show that every type X is smaller than X → bool.

Goal forall X : Type, smaller X (X −> bool).

4 The tactic pose constructs a proof term with a let expression accommodating the local defini-

tion.
5 A surjection from X to Y is a function from X to Y that reaches all members of Y .
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Proof. intros X [f A].

pose (g x := negb (f x x)).

destruct (A g) as [a B].

absurd (f a a = g a).

unfold g. destruct (f a a) ; discriminate.

rewrite B. reflexivity . Qed.

The proof assumes a surjection f from X to X → bool and constructs a proof of

False. To do so, the proof defines a spoiler function g : X → bool that cannot be

reached by f . The trick is to define g in terms of f such that for the a such that

fa = g (exists by assumption) the equation faa = ga is disprovable. This is the

case if we define g as gx := negb(fxx). We use the tactic pose to define g and the

tactic absurd to disprove faa = ga. In general, a command absurd s replaces

the current goal with goals for ¬s and s.

Exercise 7.10.1 Prove that two types X and Y are different if X is smaller than Y .

Goal forall X Y : Type, smaller X Y −> X <> Y.

Exercise 7.10.2 Use the diagonalisation technique to prove the following goals.

In each case define the spoiler function as in the example above where negb is

replaced by some other function.

(a) Goal smaller nat (nat −> nat).

(b) Goal smaller nat (nat −> Prop).

Exercise 7.10.3 Prove the following generalized diagonalisation theorem. All

diagonalisation results stated so far can be obtained as instances of the general

result. The theorem shows that diagonalisation can be formulated as a purely

logical result not depending on the inductive types bool and nat.

Definition strong (X : Type) : Prop :=

exists f : X −> X, forall x, f x <> x.

Theorem Cantor (X Y : Type) :

strong Y −> smaller X (X −> Y).

Exercise 7.10.4 The predicate smaller is not a well-behaved order predicate if

the right type is False. We fix the problem with a reflexive and transitive greater-

equal predicate for types.

Definition ge (X Y : Type) : Prop :=

Y −> exists f : X −> Y, forall y, exists x, f x = y.

a) Explain why s → t is a proposition if s is a type and t is a proposition.
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b) Prove the following goal.

Goal forall (X : Type) (Y : Prop) ,

X −> Y <−> (exists x : X, True) −> Y.

c) Prove that ge is reflexive and transitive.

d) Prove ge X False for all types X.

e) Prove ¬ge X Y → X ≠ Y for all types X and Y .

f) Prove Y → smaller X Y → ge X Y → False for all types X and Y .

Exercise 7.10.5 Using diagonalisation one can show that there is no injective

function from the power set of a set back to the set. To come up with the right

spoiler function for this proof is much harder than for the proof of the surjective

Cantor Theorem. Complete the following proof of a similar result in type theory.

Definition injective (X Y : Type) (f : X−>Y) : Prop :=

forall x x’ : X, f x = f x’ −> x = x’.

Goal forall (X : Type) (f : (X −> Prop) −> X), ~injective f.

Proof. intros X f A.

pose (g x := exists h, f h = x /\ ~ h x).

absurd (~ g (f g)). · · ·

7.11 Projections

We call a function arithmetic if it has a type nat → ·· · → nat with n ≥ 1 ar-

rows. An arithmetic function is constant if it always returns the same value. An

arithmetic function is a projection if it always returns one of its arguments.

We can write functions that yield constant functions and projections for a

given number of arguments. We start with a function AF that given a number n

yields the type nat → ·· · → nat with n arrows.

Fixpoint AF (n : nat) : Type :=

match n with

| O => nat

| S n’ => nat −> AF n’

end.

Compute AF 3

% nat → nat → nat → nat

We now write a function K that given n and c returns a constant function tak-

ing n arguments and returning c.
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Fixpoint K (n c : nat) : AF n :=

match n as z return AF z with

| O => c

| S n’ => fun _ => K n’ c

end.

Compute K 3 7.

% fun _ _ _ : nat ⇒ 7 : AF 3

Note that K employs a dependent match and that the dependency cannot be

avoided since the return type depends on the first argument of K.

Exercise 7.11.1 Write a function P : ∀n : nat. nat → AF n that given two argu-

ments n and k returns a projection returning its k+1-th argument. For instance,

P 4 2 should reduce to fun _ _ x _ : nat ⇒ x.

Exercise 7.11.2 Write a function K′ that is equivalent to K using primitive recur-

sion. Prove the equivalence.

7.12 Tactics Summary

change t Converts the claim to term t.

pattern t Converts the claim to a beta redex s t

by abstracting out all subterms t.

pose (x := t) Local definition.

assert (x : t) Local lemma.

absurd t Replaces current goal with goals for ¬t and t.

discrimate t Solves goal if t is a proof of a disequation contradicting

constructor disjointness.

injection t Weakens claim by equations following by constructor

injectivity from the equation proved by t.

case_eq t Like destruct t but adds equation t = . . . to claims.

congruence Tries to solve current goal by equational reasoning.

clear x Deletes assumption x.

try t Applies tactic t. If t fails, try t succeeds and

leaves the goal unchanged.
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with Proper Arguments

In this chapter we will further study inductively defined predicates (i.e., inductive

types which live in the universe Prop). The logical operations such as conjunction

and existential quantification were defined as inductive predicates. The induc-

tive predicates we consider in this chapter will have so-called proper arguments.

Equality is an example of an inductive predicate with a proper argument. The

inclusion of proper arguments means we must include a further annotation on

dependent matches in order to specify the return type.

8.1 Inductive Predicates

In Coq, the definition of an inductive predicate takes the form

Inductive c (x1 : s1) · · · (xm : sm) : ∀xm+1 : sm+1. . . . ∀xm+k : sm+k.Prop :=

| c1 : t1

· · ·

| cn : tn .

where m,k,n ≥ 0. As with regular inductive types, the definition introduces a

type constructor c and member constructors c1, . . . , cn. As explained in Sec-

tion 6.8 (see also Section 3.13) we also call type constructors such as c inductive

predicates and call the member constructors c1, . . . , cn proof constructors. An

inductive proposition is a term of the form c u1 · · ·um+k of type Prop where

c is an inductive predicate. The variables x1, . . . , xm in the definition are called

the parameters of the inductive definition. Likewise, the first m arguments of c

are called parameteric arguments. The last k arguments of c are called proper

arguments. That is, given an inductive proposition c u1 · · ·umum+1 · · ·um+k,

u1, . . . , um are parametric arguments and um+1, . . . , um+k are proper arguments.

In this case, we say the inductive predicate has m parameters and k proper ar-

guments. There are restrictions on how c can occur in each type ti (e.g., “strict

positivity”), but we will not discuss these restrictions here.

In general, we will speak of introduction principles and elimination princi-

ples for inductive predicates. This terminology corresponds to the introduction
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and elimination rules for logical operations as described in Section 3.11. An in-

troduction principle describes how we can prove an inductive proposition. An

elimination principle describes how we can use an assumed inductive proposi-

tion. We will sometimes also refer to an elimination principle as an induction

principle when there is recursion involved. Each inductive predicate will have

an introduction principle given by each proof constructor. Also, each inductive

predicate will have an elimination principle which we will identify and prove as

a lemma using a match and possibly a fix.

Recall the inductive definition of equality.

Inductive eq (X : Type) (x : X) : X−> Prop :=

| eq_refl : eq x x.

Note that the inductive predicate eq has two parameters (the first of which is

implicit) and one proper argument.

A simpler inductive predicate that is very similar to eq is a test for zero.

Inductive zerop : nat −> Prop :=

| zerop_I : zerop O.

Note that zerop has one proper argument and no parameters.

Inductive predicates can also be recursive. For example, the even numbers

can be defined as an inductive predicate as follows.

Inductive even : nat −> Prop :=

| evenO : even 0

| evenS : forall n, even n −> even (S (S n)).

The type constructor even has one proper argument an no parameters. We may

express this definition informally with two inference rules.

even 0

even n

even (S(S n))

In this chapter we will consider these examples of inductive predicates. We

will also consider an inductive predicate giving the ≤ relation on nat. Along the

way, we will learn some new Coq tactics.

8.2 Singleton Zero Predicate

Consider the inductive predicate zerop with one proper argument.

Inductive zerop : nat −> Prop :=

| zeropI : zerop O.

The proof constructor zeropI justifies that 0 satisfies the predicate.
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Goal zerop 0.

Proof. exact zeropI. Qed.

In fact, zeropI is the (only) introduction principle for zerop.

How do we know that 1 does not satisfy the zerop predicate? In order to

prove 1 does not satisfy zerop, we need an elimination principle for zerop. Such

an elimination principle comes from the match for zerop.

Since zerop has a proper argument, the return type of the match for zerop

will have a new kind of dependency. Here is a match for zerop.

Check

fun (p:nat −> Type) A n (B:zerop n) =>

match B in zerop z return p z with zeropI => A end.

% forall p : nat -> Type,

% p O ->

% forall n : nat, zerop n -> p n

Note that z is a local variable connecting the proper argument of zerop with the

return type. The reduction rule for the match for zerop is simple.

match zeropI in zerop z return t with zeropI ⇒ u end ⊲1 u

The typing rule for the match for zerop is also straightforward.

Γ ⇒ s : zerop s1 Γ , z : nat ⇒ t :U Γ ⇒ u : tz0

Γ ⇒ match s in zerop z return t with zeropI ⇒ u end : tzs1

There is one subtlety: The return type t is allowed to live in any universe U . In

general, the elim restriction (see Section 6.8) would mean the universe in this

typing rule must be Prop. In some special cases, the elim restriction does not

apply; zerop is one of these cases.

We now prove an elimination principle for zerop.

Lemma zeropE :

forall p:nat −> Prop, p 0 −> forall x:nat, zerop x −> p x.

Proof.

exact (fun p A x B => match B in zerop z return p z with zeropI => A end).

Qed.

We can also prove this using tactics. In particular, destruct will build the match

for us.

Lemma zeropE :

forall p:nat −> Prop, p 0 −> forall x:nat, zerop x −> p x.

Proof. intros p A x B. destruct B. exact A. Qed.

Now that we have an elimination principle, we return to the question of how

we can prove that 1 does not satisfy the predicate. It is enough to give a property

p which 0 satisfies but 1 does not. We can easily do this with a match.
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Goal ~zerop 1.

Proof. intros A.

exact (zeropE (fun n => match n with O => True | S _ => False end) I A).

Qed.

Remember

One might expect that it is possible to prove that 1 does not satisfy zerop using

destruct. For example, we could start the proof as follows.

Goal ~zerop 1.

Proof. intros A. destruct A.

Unfortunately, this leads to a dead end. The reason is that the assumption A

has type zerop 1 and 1 is not a variable. Whenever there is a non-variable in the

proper argument position of zerop, destruct will forget information. One can

explicitly remember that 1 was in this position using the remember tactic. The

remember tactic replaces every occurrence of a given term by a fresh variable and

assumes an equation between the variable and the term. Consider the following

proof script.

Goal ~zerop 1.

Proof. remember 1. intros A. destruct A. discriminate Heqn. Qed.

After remember 1 the assumptions are n:nat and Heqn:n = 1 and the claim is

zerop n. After we introduce the assumption A:zerop n we can get more informa-

tion from destruct. Since there is a variable (namely, n) in the proper argument

position, destruct can substitute the appropriate term for this n for each con-

structor of the inductive predicate. In the case of zerop, the n will be replaced

by 0. Hence the assumption Heqn will be 0 = 1 and we can finish the proof using

discriminate.

We often need to manipulate assumptions of inductive predicates with proper

arguments so that the proper arguments are distinct variables. We call this lin-

earizing the arguments. The tactic remember is one way of linearizing the argu-

ments. Another way is to use an assert to form an appropriate lemma.

Goal ~zerop 1.

Proof. intros A.

assert (B:forall n:nat, zerop n −> n <> 1).

intros n C. destruct C. discriminate.

apply (B 1). exact A. reflexivity.

Qed.

One can also prove the lemma given by the assert using the elimination principle.

This is not surprising since destruct and the elimination principle zeropE both

contain the essential information given by a match for zerop.
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Goal ~zerop 1.

Proof. intros A.

assert (B:forall n:nat, zerop n −> n <> 1).

apply zeropE. discriminate.

apply (B 1). exact A. reflexivity.

Qed.

Inversion

The easiest way to prove the goal is to use the tactic inversion. The inversion

tactic is like destruct but keeps more information. In particular, inversion derives

equations and then processes these equations using discriminate and injection.

Goal ~zerop 1.

Proof. intros A. inversion A. Qed.

Decidability

A proposition s is decidable if the proposition s ∨¬s is provable. Show that the

following propositions are decidable. We can generalize this to predicates. For

example, we say s : u→ Prop is decidable if ∀x : u→ Prop.sx∨¬sx is provable.

This generalizes in an evident way to predicates taking n arguments.

We now prove the predicate zerop is decidable. An easy way to accomplish

this is to define an equivalent boolean test.

Definition zerob (n:nat) : bool :=

match n with

| O => true

| S _ => false

end.

The equivalence of zerob and zerop follows by an easy case analysis on the

natural number n and inversion.

Lemma zerob_zerop n : zerob n <−> zerop n.

Proof. destruct n; simpl.

split . intros _. exact zeropI. tauto.

split . tauto. intros A. inversion A. Qed.

Decidability of zerop follows easily.

Lemma zerop_dec n : zerop n \/ ~zerop n.

Proof.

assert (A:zerob n <−> zerop n). now apply zerob_zerop.

assert (B:zerob n \/ ~zerob n). destruct (zerob n); simpl; tauto.

tauto. Qed.
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Exercise 8.2.1 Prove the following in four different ways: using exact, using

assert, using remember and using inversion.

Goal ~zerop 2.

Exercise 8.2.2 Suppose X : nat → Type, n : nat and A : zerop n. One can use

A to cast between the types X n and X 0. Show this by defining two functions

and proving the lemmas below. (We assume the argument n to zerop_cast1 and

zerop_cast2 are implicit.)

Definition zerop_cast1 (X:nat −> Type) (n:nat) : zerop n −> X O −> X n :=

Definition zerop_cast2 (X:nat −> Type) (n:nat) : zerop n −> X n −> X O :=

Lemma zerop_cast1_eq X (x:X O) :

zerop_cast1 X zeropI x = x.

Lemma zerop_cast2_eq X (x:X O) :

zerop_cast2 X zeropI x = x.

Lemma zerop_cast12_eq X n (A:zerop n) (x:X O) :

zerop_cast2 X A (zerop_cast1 X A x) = x.

Lemma zerop_cast21_eq X n (A:zerop n) (x:X n) :

zerop_cast1 X A (zerop_cast2 X A x) = x.

Exercise 8.2.3 Consider the following inductive predicate.

Inductive bitp : nat −> Prop :=

| bitp0 : bitp 0

| bitp1 : bitp 1.

Give the two reduction rules and typing rule for the match.

8.3 Equality

Equality was inductively defined as follows.

Inductive eq (X : Type) (x : X) : X−> Prop :=

| eq_refl : eq x x.

Following the rule for zerop, we obtain the following typing rule for matches at

eq. (We make the first argument of eq explicit while describing the theory.)

s : eq s1 s2 s3 z : s1 ⇒ t :U u : tzs2

match s in eq _ _ z return t with eq_refl ⇒ u end : tzs3
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Like zerop the elim restriction does not apply to eq. This is why the typing rule

allows t :U instead of requiring t : Prop.

We can prove an elimination principle for equality with a straightforward

match.

Lemma eq_E (X : Type) (x y : X) (p : X −> Prop) :

eq x y −> p y −> p x.

Proof. exact (fun e =>

match e in eq _ z return p z −> p x with

| eq_refl => fun A : p x => A

end). Qed.

This elimination principle can also be proven with a very short proof script.

Lemma eq_E’ (X : Type) (x y : X) (p : X −> Prop) :

eq x y −> p y −> p x.

Proof. intros [] A. exact A. Qed.

Check that the proof script constructs exactly the proof term we give above for

eq_E . Also make sure that you understand why eq_E justifies the rewrite tactic.

Although we were able to prove decidability of zerop n for all n : nat, we

cannot prove decidability of eqX xy for all X : Type, x : X and y : X. However,

it is possible to prove decidability of eq nat x y for x : nat and y : nat.

Exercise 8.3.1 Use the boolean equality test eq_nat on nat to prove eq nat is

decidable.

Exercise 8.3.2 Prove each of the following lemmas not using other lemmas. Give

scripts and proof terms.

Lemma ex_eq_ref (X : Type) (x : X) : eq x x.

Lemma ex_eq_sym (X : Type) (x y : X) : eq x y −> eq y x.

Lemma ex_eq_trans (X : Type) (x y z : X) : eq x y −> eq y z −> eq x z.

Lemma ex_eq_f_equal (X Y : Type) (f : X −> Y) (x y : X) : eq x y −> eq (f x) (f y).

Lemma ex_eq_rewrite_R (X : Type) (x y : X) (p : X −> Prop) : eq x y −> p x −> p y.

Exercise 8.3.3 Consider the following inductive definition of equality where the

inductive predicate eq2 takes two proper arguments.

Inductive eq2 (X : Type) : X −> X−> Prop :=

| eq2_I : forall x : X, eq2 x x.

a) Given the typing rule for matches at eq2.

b) Prove the following elimination principle for eq2. Give a script and a proof

term.

Lemma eq2_E (X : Type) (x y : X) (p : X −> Prop) : eq2 x y −> p y −> p x.

2012-7-18 103



8 Inductive Predicates with Proper Arguments

c) Explain why the following term is ill-typed.

fun (X : Type) (x y : X) (p : X −> Type) (A:eq2 x y) =>

match A in eq2 w z return p z −> p w with eq2_I z => fun B => B end

8.4 Even Numbers

There are many possibilities for specifying the even numbers. For instance, one

may define a boolean predicate evenb : nat → bool as in Exercise 2.3.1. Another

possibility characterizes the even numbers inductively:

1. 0 is an even number.

2. If n is an even number, then S(S n) is an even number.

3. There are no other even numbers.

The inductive characterization can be expressed as an inductive definition in

Coq.

Inductive even : nat −> Prop :=

| evenO : even O

| evenS : forall n, even n −> even (S (S n)).

The first argument of evenS is implicit in Coq. When describing the theory we

will explicitly write the first argument of evenS. When considering examples, we

will omit the first argument and display things as in Coq.

Since even is recursive, there will be both a match and a fix construct.

Here is an example of a match for even.

Check

fun (p : nat −> Prop) u v n (s : even n) =>

match s in even z return p z with

| evenO => u

| evenS x y => v x y

end.

% forall p : nat -> Prop,

% p O ->

% (forall x : nat, even x -> p (S (S x))) ->

% forall n : nat, even n -> p n

As with zerop, z is a local variable connecting the proper argument of even with

the return type.

In the previous inductive predicates the match above proves an elimination

principle. Since even is recursive, we obtain a stronger elimination principle

using a combination of fix and match. In this case, it makes sense to call the

elimination principle an induction principle for even.

104 2012-7-18



8.4 Even Numbers

Lemma even_ind’ :

forall p:nat −> Prop,

p 0 −>

( forall n, even n −> p n −> p (S (S n))) −>

forall n, even n −> p n.

Proof.

exact (fun (p : nat −> Prop) u v =>

fix f n (s : even n) :=

match s in even z return p z with

| evenO => u

| evenS x y => v x y (f x y)

end).

Qed.

In fact, this induction principle is automatically proven under the name even_ind

by Coq when the inductive predicate even is defined. The induction tactic makes

use of even_ind. Note that the type of the recursive function f has type

forall n : nat, even n −> p n

and that the fix recurses on its second argument. This is the first time we use

a recursive abstraction with more than one argument that cannot be reduced

to a recursive abstraction with a single argument (since the type of the second

argument depends on the first argument). We will study inductive proofs for

even in the next section.

Here are the reduction rules for match for even.

match evenO in even z return t with evenO ⇒ u | evenS x y ⇒ v end ⊲1 u

match evenS s1 s2in even z return t with evenO ⇒ u | evenS x y ⇒ v end ⊲1 (v
x
s1)

y
s2

Here is the typing rule for matches for even.

Γ ⇒ s : even s1

Γ , z : nat ⇒ t : Prop Γ ⇒ u : tz0 Γ , x : nat, y : even x ⇒ v : tzS(Sx)

Γ ⇒ match s in even z return t with evenO ⇒ u | evenS x y ⇒ v end : tzs1

Unlike the cases of zerop and eq, the elim restriction does apply to even and so

the type t must be in Prop. We omit the reduction and typing rules for fix.

The most important constraint on the design of the typing rules for matches

is the requirement that the reduction rules for matches must be type preserving.

For the above rule the argument goes as follows.

1. Suppose s = evenO. Then s : even 0. Since we also have s : even s1, we have

0 ≈ s1. Thus tz0 ≈ t
z
s1 .

2. Suppose s = evenS w1 w2. Then s : even (S (S w1)). Since we also have

s : even s1, we have S (S w1) ≈ s1. Thus tzS (S w1)
≈ tzs1 .
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With a dependent match for even we can prove the following lemma.

Lemma even_pred n :

even n −> even (pred (pred n)).

Proof. intros [|n’ A]. exact evenO. exact A. Qed.

Print even_pred.

% fun (n : nat) (H : even n) =>

% match H in (even z) return (even (pred (pred z))) with

% | evenO => evenO

% | evenS _ A => A

% end

The member constructors of even provide for proofs of the inductive propo-

sitions obtained with even. Here is an example.

Lemma even4 :

even 4.

Proof. apply evenS. apply evenS. apply evenO. Qed.

The print command reveals the proof term we have constructed.

Print even4.

% evenS (evenS evenO)

When proving facts about inductively defined predicates it is sometimes tedious

to remember the names of all the constructors. The tactic constructor is a con-

venience that for an inductive claim tries to apply one of the associated member

constructors. We can use constructor to construct the same proof that 4 is even

without referencing the member constructor names evenO or evenS.

Lemma even4 :

even 4.

Proof. constructor. constructor. constructor. Qed.

As we have seen in the case of zerop, the inversion tactic can be used to sim-

plify proofs that would otherwise require linearization via remember or assert.

Lemma even_inversion_1 :

~ even 1.

Proof. intros A. inversion A. Qed.

Lemma even_inversion_SS n :

even (S (S n)) −> even n.

Proof. intros A. inversion A as [|n’ A’]. exact A’. Qed.

Exercise 8.4.1 Prove the following without using inversion or any lemmas. (Hint:

Use remember.)

Goal ~ even 1.

Goal forall n, even (S (S n)) −> even n.
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Exercise 8.4.2 Prove the following goals using inversion.

Goal ~ even 3.

Goal forall n, even (4+n) −> even n.

8.5 Induction on Even

As noted earlier, Coq automatically proves an induction principle

Lemma even_ind :

forall p:nat −> Prop,

p 0 −>

( forall n, even n −> p n −> p (S (S n))) −>

forall n, even n −> p n.

when even is defined. This induction principle is used when the induction tactic

is applied to an assumption of the form even s. As was the case with destruct, it

is usually a good idea to linearize the arguments of even (e.g., using remember)

before applying induction. Since the elements of inductive predicates such as

even n are proofs, we will sometimes refer to such inductions as inductions on

proof terms.

Here is a simple example of a proof using the induction principle for even by

applying even_ind.

Lemma even_notS n :

even n −> ~even (S n).

Proof. revert n. apply even_ind.

intros A. inversion A.

intros n A B C. inversion C. tauto. Qed.

Here is the same example using the induction tactic.

Lemma even_notS’ n :

even n −> ~even (S n).

Proof. intros A. induction A. intros B. inversion B.

intros B. inversion B. tauto. Qed.

Performing an induction with the tactic induction is a complex affair compris-

ing three main steps:

1. Move assumptions of the goal to the claim so that the induction principle of

the relevant type constructor becomes applicable (can be done with revert).

2. Apply the induction principle.

3. For each subgoal obtained, do introduction steps so that the claim of the

subgoal corresponds to the initial claim.
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Performing a case analysis with destruct is like performing an induction with

induction except that the destructuring principle of the type constructor is ap-

plied in place of the induction principle. The destructuring principle can be

obtained from the induction principle by omitting the inductive hypotheses, and

vice versa the induction principle can be obtained from the destructuring princi-

ple by adding the inductive hypotheses.

Decidability

We next prove even is decidable. Unlike the case of zerop, we will not prove this

by giving an equivalent boolean test. (This we leave as an exercise.) Instead we

prove the result by induction on the proper argument n in the predicate even n.

First we prove the following lemma by induction on n.

Lemma even_nSn n :

(~even n −> even (S n)) /\ (~even (S n) −> even n).

Proof. induction n.

split . intros A. contradiction (A evenO). intros. constructor.

split . intros A. apply evenS. apply IHn. exact A.

intros A. apply IHn. intros B. apply A. constructor. exact B.

Qed.

Using even_notS and even_nSn we can prove even is decidable.

Lemma even_dec n : even n \/ ~even n.

Proof. induction n. left. constructor.

destruct IHn as [A|A].

right. apply even_notS. exact A.

left . apply even_nSn. intros B. inversion B. contradiction (A H0).

Qed.

Exercise 8.5.1 Let evenb be the following boolean test.

Fixpoint evenb (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (evenb n)

end.

Prove the following equivalence.

Lemma evenib n : even n <−> evenb n.

Exercise 8.5.2 Prove the following lemmas by induction on proof terms.

Lemma even_sum m n : even m −> even n −> even (m+n).

Lemma even_sum’ m n : even (m+n) −> even m −> even n.
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Exercise 8.5.3 Here is an impredicative definition of evenness.

Definition evenp (n : nat) : Prop :=

forall p : nat −> Prop,

p 0 −> (forall n, p n −> p (S (S n))) −> p n.

Prove that the impredicative definition of evenness agrees with the inductive

definition.

Lemma evenip n : even n <−> evenp n.

8.6 Natural Order

With the command

Locate "<=".

we find out that Coq realizes the order “≤” on nat with the predicate le. With the

command

Print le.

we find out that Coq defines le as an inductive predicate as follows.

Inductive le (n:nat) : nat −> Prop :=

| le_n : n <= n

| le_S : forall m:nat, n <= m −> n <= S m.

With can depict this definition with 2 inference rules.

n ≤ n

n ≤m

n ≤ Sm

Note that le has one parameter and one proper argument. The induction princi-

ple for le (which can be proven using fix and match as usual) is as follows.

Check le_ind.

% le_ind

% : forall (n : nat) (P : nat -> Prop),

% P n ->

% (forall m : nat, n <= m -> P m -> P (S m)) ->

% forall m : nat, n <= m -> P m

We prove two properties of the predicate le using induction on le.

Lemma le_trans (x y z : nat) : le x y −> le y z −> le x z.

Proof. intros A B. induction B. exact A. constructor. assumption. Qed.

Lemma le_S (x y : nat) : le x y −> le (S x) (S y).
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Proof. intros A. induction A; constructor. assumption. Qed.

It is also sometimes useful to do induction on the variable in the proper argu-

ment position.

Lemma le_O (y : nat) : le O y.

Proof. induction y ; constructor. exact IHy. Qed.

Here is an example of a proof using inversion on le.

Lemma le_SO (x : nat) : ~ le (S x) 0.

Proof. intros A. inversion A. Qed.

One can prove le is decidable by showing it is equivalent to a boolean test. We

leave this as an exercise.

Exercise 8.6.1 Let leb be the following boolean test.

Fixpoint leb (x y: nat) : bool :=

match x, y with

| O, _ => true

| S _, O => false

| S x’, S y’ => leb x’ y’

end.

Prove the following facts in order to prove leb is equivalent to le and that le is

decidable.

Lemma leb_S (x y : nat) :

leb x y −> leb x (S y).

Lemma leb_refl ( x : nat) :

leb x x.

Lemma leb_le (x y : nat) :

le x y −> leb x y.

Lemma le_leb (x y : nat) :

leb x y −> le x y.

Lemma le_leb_e (x y : nat) :

le x y <−> leb x y.

Lemma le_dec (x y : nat) :

le x y \/ ~le x y.

Exercise 8.6.2 Prove the following claims.

Lemma le_Sleft1 (x y : nat) :

le (S x) y −> le x y.
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Lemma le_Sleft (x y : nat) :

le (S x) (S y) −> le x y.

Lemma le_antisym (x y : nat) :

le x y −> le y x −> x = y.

Goal forall x, le x 0 −> x = 0.

Goal forall x, ~ le (S x) x.

8.7 Remarks

In this chapter we have learned about inductive predicates with proper argu-

ments. Inductive predicates with proper arguments can be used to define equal-

ity, evenness and ≤. In future chapters we will make extensive use of inductive

predicates with proper arguments. The dependence on proper arguments means

that return types for matches have a new dependency given using the in keyword.

We also learned about some new Coq tactics: remember, inversion and

constructor.

• remember can be used to linearize the proper arguments of an inductive pred-

icate. Linearizing the proper arguments is often necessary before applying

destruct or induction.

• inversion is similar to destruct except that it uses injection and discriminate

in order to derive useful equations.

• constructor can be used when one of the constructors of an inductive pred-

icate can be applied to the claim of the current goal. In principle, one can

always use apply c instead of constructor where c is the name of the particu-

lar constructor which applies. An advantage of using constructor instead of

apply c is that one does not need to refer to the particular name c.

We also learned more about the induction tactic by doing induction on the proofs

of inductive predicates (induction on proof terms).
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In this chapter we consider proof systems for a small, decidable fragment of the

language of Coq. The fragment corresponds (more or less) to the propositions

that the Coq tactic tauto can prove.

We start with (propositional) formulas given by the following grammar where

x ranges over variables and s and t range over propositional formulas.

s, t ::= x | ⊥ | s → t

We can represent such formulas in Coq using an inductive type. We use natural

numbers to represent variables.

Definition var := nat.

Inductive form : Type :=

| Var : var −> form

| Imp : form −> form −> form

| Fal : form.

Just as in Coq, we consider ¬s as meaning s → ⊥. We implement this using a

Coq definition.

Definition Not (s : form) : form :=

Imp s Fal.

We will first consider a natural deduction style proof system which corre-

sponds closely to the proof system in Coq. We will then consider a Hilbert style

proof system and prove the equivalence of the two systems.

We next turn our attention to a classical propositional logic by giving a Hilbert

proof system. We will prove a result of Glivenko: a propositional formula is clas-

sically provable if and only if its double negation is intuitionistically provable.

9.1 Natural Deduction System

Deduction rules for logical operators were given in Figure 3.1. The introduction

and elimination rules for → together with the elimination rule for ⊥ essentially

give a proof system for propositional formulas. Since the introduction rule for

→ changes the assumptions, we must have some explicit notion of a collection of
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AN
Γ , s ⇒ s

WN

Γ ⇒ t

Γ , s ⇒ t
I→N

Γ , s ⇒ t

Γ ⇒ s → t
E→N

Γ ⇒ s → t Γ ⇒ s

Γ ⇒ t

E⊥N
Γ ⇒ ⊥

Γ ⇒ s

Figure 9.1: Natural Deduction Rules

assumptions and some way of checking if a formula is such an assumption. We

use lists of formulas to represent such a collection of assumptions and refer to

such a list of formulas as a context. We can check if a formula is an assumption

in the context using an assumption rule to check if the formula is first on the

list. In order to handle assumptions that are in the tail of the list, we also include

a weakening rule in which the context of the premise is the tail of the context

of the conclusion of the rule. These rules are given in Figure 9.1.

We can represent this natural deduction system in Coq as an inductive pred-

icate nd with two proper arguments. An inductive proposition nd G s corre-

sponds to the sequent Γ ⇒ s, and the inductive proposition nd G s is inhabited

if and only if the sequent Γ ⇒ s is derivable with the rules in Figure 9.1. When

Γ ⇒ s is derivable, we write ⊢N Γ ⇒ s or (for brevity) Γ ⊢N s. The reason the

formula s must be a proper argument to nd is that many of the rules change the

formula in the sequent Γ ⇒ s when passing from a premise to the conclusion.

The reason the context must be a proper argument is that the context changes

in the weakening WN and implication introduction I→N rules.

Definition context := list form.

Inductive nd : context −> form −> Prop :=

| ndA G s :

nd (s::G) s

| ndW G s t :

nd G s −> nd (t::G) s

| ndII G s t :

nd (s::G) t −> nd G (Imp s t)

| ndIE G s t :

nd G (Imp s t) −> nd G s −> nd G t

| ndE G s :

nd G Fal −> nd G s.

In order to investigate the strength of this proof system, we consider a few

special classes of formulas.
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• A K-formula is a formula of the form s → t → s.

• An S-formula is a formula of the form (s → t → u)→ (s → t)→ s → u.

• An explosion formula is a formula of the form ⊥ → s

• A double negation formula is a formula of the form ¬¬s → s.

In Coq we can define functions producing such formulas.

Definition FK (s t : form) : form :=

Imp s (Imp t s).

Definition FS (s t u : form) : form :=

(Imp (Imp s (Imp t u))

(Imp (Imp s t)

(Imp s u))).

Definition FE (s : form) : form :=

Imp Fal s.

Definition FDN (s : form) : form :=

Imp (Not (Not s)) s.

Which of these kinds of formulas can be proven in a context Γ? It is easy to

prove Γ ⊢N s whenever s is a K-formula, S-formula or explosion formula. In Coq

we can prove Γ ⊢N s → t → s as follows.

Lemma ndK G s t :

nd G (FK s t).

Proof. apply ndII, ndII, ndW, ndA. Qed.

We can also display the proof as the following derivation.

I→N

I→N

WN

AN
Γ , s ⊢N s

Γ , s, t ⊢N s

Γ , s ⊢N t → s

Γ ⊢N s → t → s

We can similarly display the proof that Γ ⊢N ⊥ → s as follows.

I→N

E⊥N

AN
Γ ,⊥ ⊢N ⊥

Γ ,⊥ ⊢N s

Γ ⊢N ⊥ → s

Here is the corresponding Coq proof.
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Lemma ndE’ G s :

nd G (FE s).

Proof. apply ndII, ndE, ndA. Qed.

Hence we know Γ ⊢N s whenever s is a K-formula or an explosion formula.

We next turn to S-formulas. Let Γ ′ be Γ , (s → t → u), s → t, s. We know

Γ ⊢N (s → t → u) → (s → t) → s → u follows from Γ
′ ⊢N u using I→N three

times. Here is a derivation of Γ ′ ⊢N t → u.

E→N

WN

WN

AN
Γ , s → t → u ⊢N s → t → u

Γ , s → t → u, s → t ⊢N s → t → u

Γ
′ ⊢N s → t → u

AN
Γ
′ ⊢N s

Γ
′ ⊢N t → u

Here is a derivation of Γ ′ ⊢N t.

E→N

WN

AN
Γ , s → t → u, s → t ⊢N s → t

Γ
′ ⊢N s → t

AN
Γ
′ ⊢N s

Γ
′ ⊢N t

Combining these two facts with E→N we have Γ ′ ⊢N u as desired. This is the first

derivation using the E→N rule. When we apply the E→N rule (using the constructor

ndIE) in Coq we must give the left hand side s of the implication s → t. We do

this using a with. Here is the proof in Coq.

Lemma ndS G s t u :

nd G (FS s t u).

Proof. apply ndII, ndII, ndII.

apply ndIE with (s:=t). apply ndIE with (s:=s).

now apply ndW, ndW, ndA. now apply ndA.

apply ndIE with (s:=s). now apply ndW, ndA. apply ndA. Qed.

On the other hand, we do not generally have Γ ⊢N ¬¬s → s. If we did have

this, the logic would be classical. We will consider a classical propositional logic

later in this chapter.

Given the management of assumptions in the natural deduction system it is

clear that we have Γ ⊢N s whenever s is in the list Γ . We write s ∈ Γ to mean s is

in the list Γ and define this in Coq as an inductive predicate mem.

Inductive mem (X : Type) (x : X) : list X −> Prop :=

| memH xs : mem x (x::xs)

| memT y xs : mem x xs −> mem x (y::xs).
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We can now prove the following result.

Lemma 9.1.1 If s ∈ Γ , then Γ ⊢N s.

Proof We argue by induction on the proof of s ∈ Γ . There are two cases. In

the first case we must prove Γ , s ⊢N s. This follows precisely from AN . In the

inductive case we have Γ ⊢N s by the inductive hypothesis and we must prove

Γ , t ⊢N s. This follows from WN . �

In Coq the result is proven as follows.

Lemma ndMem G s :

mem s G −> nd G s.

Proof. intros A ; induction A. apply ndA. apply ndW, IHA. Qed.

Exercise 9.1.2 Prove the following in Coq.

Goal forall s t, nd nil (Imp (Not s) (Imp s t)).

Exercise 9.1.3 Prove the following in Coq.

Lemma ndApply G s t :

nd (Imp s t :: G) s −> nd (Imp s t :: G) t.

Goal forall G s t,

nd (s :: G) t <−> nd G (Imp s t).

Goal forall G s t,

( forall G, nd G s −> nd G t) −> nd G (Imp s t).

9.2 Hilbert System

Our definition of nd as an inductive predicate required two proper arguments

because the context was dynamic. It is natural to ask whether there is an alter-

native deduction system for which the context does not change. Obviously we

can formulate an alternative assumption rule which allows us to derive Γ ⇒ s

whenever s is in the list Γ . This avoids the need for a weakening rule. The other

natural deduction rule changing the context is implication introduction I→N . A

system in which the context Γ does not change simply cannot have a rule like I→N .

It turns out that we can omit the implication introduction rule if we replace

it with a number of initial rules – i.e., rules with no premises. One initial rule

states that every K-formula is provable and another initial rule states that every

S-formula is provable. Doing this would yield a system in which only two rules
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AH
Γ ⇒ s

s ∈ Γ KH
Γ ⇒ s → t → s

SH
Γ ⇒ (s → t → u)→ (s → t)→ s → u

EH
Γ ⇒ ⊥ → u

MPH
Γ ⇒ s → t Γ ⇒ s

Γ ⇒ t

Figure 9.2: Hilbert Rules for Intuitionistic Propositional Logic

have premises: a rule like E→N and a rule like E⊥N . Indeed we can define a system

in which the only rule with premises is a rule known as modus ponens which

has the same form as E→N since we can replace the E⊥N rule with an initial rule

stating that every explosion formula is provable. Such systems are called Hilbert

systems. The rules in Figure 9.2 define our Hilbert system for intuitionistic

propositional logic.

We can define this in Coq as an inductive predicate hil with one parameter (the

context Γ ) and one proper argument (the formula s). An inductive proposition

hil G s corresponds to the sequent Γ ⇒ s, and the inductive proposition hil G s is

inhabited if and only if the sequent Γ ⇒ s is derivable with the rules in Figure 9.2.

When Γ ⇒ s is derivable, we write ⊢H Γ ⇒ s or (for brevity) Γ ⊢H s.

Inductive hil (G : context) : form −> Prop :=

| hilA s :

mem s G −> hil G s

| hilK s t :

hil G (FK s t)

| hilS s t u :

hil G (FS s t u)

| hilE s :

hil G (FE s)

| hilMP s t :

hil G (Imp s t) −> hil G s −> hil G t.

Using the lemmas from the previous section, we can easily prove by induction

(on proof terms) that if Γ ⊢H s, then Γ ⊢N s.

Lemma 9.2.1 If Γ ⊢H s, then Γ ⊢N s.

Proof We argue by induction on the proof of Γ ⊢H s. We must argue a case for

each rule in Figure 9.2. If s is a K-formula, an S-formula or an explosion formula,

118 2012-7-18



9.2 Hilbert System

then we have already proven Γ ⊢N s in the previous section. If s ∈ Γ , then

we know Γ ⊢N s by Lemma 9.1.1. Finally, we consider the modus ponens case.

Assume Γ ⊢H s → t and Γ ⊢H s. The inductive hypotheses yield Γ ⊢N s → t and

Γ ⊢N s. We conclude Γ ⊢N t using E→N . �

We can also prove this result in Coq.

Lemma agree_nd G s :

hil G s −> nd G s.

Proof. intros A. induction A.

(* hilA *) apply ndMem ; assumption.

(* hilK *) now apply ndK.

(* hilS *) now apply ndS.

(* hilDN *) now apply ndE’.

(* hilMP *) apply ndIE with (s:=s) ; assumption. Qed.

We should also be able to prove that if Γ ⊢N s, then Γ ⊢H s. If one tries

to argue by induction, one will get stuck at the weakening and implication in-

troduction rules. This can be remedied with two lemmas. First, we prove that

provability in the Hilbert system respects weakening the context with one new

assumption. That is, if Γ ⊢H s, then Γ , t ⊢H s.

Lemma 9.2.2 If Γ ⊢H s, then Γ , t ⊢H s.

Proof We argue by induction on the proof of Γ ⊢H s. If s is a K-formula, an

S-formula, an explosion formula or in Γ , then we know Γ , t ⊢N s. Assume Γ ⊢H

s → u and Γ ⊢H s. By the inductive hypotheses we know Γ , t ⊢H s → u and

Γ , t ⊢H s. We conclude Γ , t ⊢H u using MPH . �

Here is the easy induction proof in Coq.

Lemma hilW G s t :

hil G s −> hil (t ::G) s.

Proof. intros A ; induction A.

now apply hilA, memT, H.

now apply hilK.

now apply hilS.

now apply hilE.

exact (hilMP IHA1 IHA2). Qed.

In order to handle the implication introduction rule, we need to prove that if

Γ , s ⊢H t, then Γ ⊢H s → t. This result is known as the deduction theorem.

Theorem 9.2.3 (Deduction Theorem) If Γ , s ⊢H t, then Γ ⊢H s → t.
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Proof We prove this by induction on the proof of Γ , s ⊢H t. There are three

possible cases to consider.

• Suppose t ∈ Γ , t is a K-formula, t is an S-formula or t is an explosion formula.

In any of these cases Γ ⊢H t and Γ ⊢H t → s → t. Hence Γ ⊢H s → t.

• Suppose t is s. We need to prove Γ ⊢H s → s. This follows from the fact

that (s → (s → s) → s) → (s → s → s) → s → s is an S-formula while

s → (s → s)→ s and s → s → s are K-formulas.

• Suppose Γ , s ⊢H u → t and Γ , s ⊢H u. By the inductive hypothesis Γ ⊢H s →

u→ t and Γ ⊢H s → u. In order to see that Γ ⊢H s → t it suffices to note that

(s → u→ t)→ (s → u)→ s → t is an S-formula. �

We state the deduction theorem in Coq and leave its Coq proof as an exercise.

Lemma ded s G t :

hil (s::G) t −> hil G (Imp s t).

Now we can prove by an easy induction that if Γ ⊢N t, then Γ ⊢H t.

Lemma 9.2.4 If Γ ⊢N t, then Γ ⊢H t.

Proof We must argue a case for each rule in Figure 9.1. For the AN case we must

prove Γ , s ⊢H s. We know this by AH since s ∈ Γ , s. For the E→N case the inductive

hypotheses give Γ ⊢H s → t and Γ ⊢H s. We conclude Γ ⊢H t using MPH . For

the E⊥N case the inductive hypothesis gives Γ ⊢H ⊥. We conclude Γ ⊢H s using

the following derivation.

MPH

EH
Γ ⊢H ⊥ → s Γ ⊢H ⊥

Γ ⊢H s

For the WN case we use Lemma 9.2.2. For the I→N case we use the deduction

theorem (Theorem 9.2.3). �

We can easily replay this proof in Coq.

Lemma agree_hil G s :

nd G s −> hil G s.

Proof. intros A ; induction A.

(* ndA *) now apply hilA, memH.

(* ndW *) apply hilW ; assumption.

(* ndII *) exact (ded IHA).

(* ndIE *) exact (hilMP IHA1 IHA2).

(* ndE *) exact (hilMP (hilE G s) IHA). Qed.
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Combining Lemmas 9.2.1 and 9.2.4 we obtain the following theorem.

Theorem 9.2.5 Γ ⊢H s if and only if Γ ⊢N s.

Exercise 9.2.6 Prove the following lemmas in Coq and use them to prove the

deduction theorem in Coq.

Lemma hilAK G s t :

hil G s −> hil G (Imp t s).

Lemma hilAS G s t u :

hil G (Imp s (Imp t u)) −> hil G (Imp s t) −> hil G (Imp s u).

Lemma hilI G s :

hil G (Imp s s).

Lemma ded s G t :

hil (s::G) t −> hil G (Imp s t).

9.3 Admissible Rules

In addition to the rules defining Γ ⊢N s and Γ ⊢H s, it is often useful to have

other rules which do not change the relation. We call such rules admissible. In

general a rule of the form

Γ1 ⇒ s1 · · · Γn ⇒ sn

Γ ⇒ s

is admissible for the natural deduction system if we know Γ ⊢N s whenever we

know Γ1 ⊢N s1, . . ., and Γn ⊢N sn. Since we know Γ ⊢H s if and only if Γ ⊢N s,

we know a rule is admissible for the Hilbert system if and only if it is admissible

for the natural deduction system. For the rest of this section, we will simply say

a rule is admissible if it is admissible for either system (i.e., both systems).

As an example, note that we have already proven that if s ∈ Γ , then Γ ⊢N s.

We proved this as Lemma 9.1.1 and in Coq as the lemma named ndMem. This

fact justifies admissibility of the rule

A∈
Γ ⇒ s

s ∈ Γ

We are free to make use of this rule in order to demonstrate Γ ⊢N s.
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General Weakening

We prove admissibility of the following general weakening rule for both the

Hilbert system and the natural deduction system.

W⊆
Γ ⇒ s

Γ
′ ⇒ s

Γ ⊆ Γ ′

Admissibility of W⊆ is a consequence of the following result.

Lemma 9.3.1 Suppose Γ ⊆ Γ ′. If Γ ⊢H s, then Γ ′ ⊢H s.

Proof We prove this by an easy induction on the proof of Γ ⊢H s. If s ∈ Γ , then

s ∈ Γ ′ and we have Γ ′ ⊢H s. If s is a K-formula, an S-formula or an explosion

formula, then we have Γ ′ ⊢H s. We finally consider the modus ponens case.

Suppose Γ ⊢H s → t and Γ ⊢H s. By the inductive hypothesis we have Γ ′ ⊢H s →

t and Γ ′ ⊢H s. By modus ponens rule we conclude Γ ′ ⊢H t. �

Lemma 9.3.1 can be proven in Coq as follows and then used as an admissible

rule for the Hilbert system.

Lemma hilGW G G’ s : (forall u, mem u G −> mem u G’) −> hil G s −> hil G’ s.

Proof. intros A B. induction B.

apply hilA. now apply A.

now apply hilK.

now apply hilS.

now apply hilE.

now apply hilMP with (s := s).

Qed.

In order to obtain the corresponding admissible rule for the natural deduction

system, we prove the following lemma in Coq (relying on the result for the Hilbert

system).

Lemma ndGW G G’ s : (forall u, mem u G −> mem u G’) −> nd G s −> nd G’ s.

Proof. intros A B. apply agree_nd.

apply hilGW with (G := G). assumption.

now apply agree_hil. Qed.

Using the generalized weakening result we can easily prove the following.

Lemma ndW2 G s t u :

nd (t :: G) u −> nd (t :: s :: G) u.

Proof. apply ndGW. intros v A. inversion A. now apply memH.

now apply memT, memT. Qed.
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Application

In Coq, it is common to use the apply tactic with an assumed implication. We

can simulate this with the following admissible rule.

Ap
Γ ⇒ s

Γ ⇒ t
s → t ∈ Γ

The proof that this rule is admissible is easy: Assume s → t ∈ Γ and Γ ⊢N s.

By A∈ we know Γ ⊢N s → t. By E→N we conclude Γ ⊢N t as desired. In Coq the

lemma ndAp corresponding to the rule Ap is stated and proven as follows.

Lemma ndAp G s t : mem (Imp s t) G −> nd G s −> nd G t.

Proof. intros A B. apply ndIE with (s := s). apply ndMem; assumption. assumption. Qed.

We can apply the admissible rule Ap and use weakening to obtain a special

case N.

N
Γ ⇒ s

Γ ,¬s ⇒ ⊥

The justification of admissibility of N is expressed by the following.

Ap

WN

Γ ⊢N s

Γ ,¬s ⊢N s

Γ ,¬s ⊢N ⊥

In Coq we have the following lemma.

Lemma ndN G s :

nd G s −> nd (Not s::G) Fal.

Proof. intros A. apply ndAp with (s := s). now apply memH. now apply ndW. Qed.

Refutation Cases

As a final example of an admissible rule, we note that if we want to prove Γ ⊢N ⊥,

then it is enough to prove ⊥ in two cases: once assuming s and once assuming

¬s.

RC
Γ , s ⇒ ⊥ Γ ,¬s ⇒ ⊥

Γ ⇒ ⊥

We argue admissibility of this rule as follows. Assume Γ , s ⊢N ⊥ and Γ ,¬s ⊢N ⊥.

Using I→N with each of these assumptions we know Γ ⊢N ¬s and Γ ⊢N ¬s → ⊥.

By E→N we conclude Γ ⊢N ⊥. In Coq we state this rule is stated and proven as

follows.
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ANC
Γ , s ⇒ s

WNC

Γ ⇒ t

Γ , s ⇒ t
I→NC

Γ , s ⇒ t

Γ ⇒ s → t
E→NC

Γ ⇒ s → t Γ ⇒ s

Γ ⇒ t

CNC

Γ ,¬s ⇒ ⊥

Γ ⇒ s

Figure 9.3: Classical Natural Deduction Rules

Lemma ndRC G s :

nd (s :: G) Fal −> nd (Not s :: G) Fal −> nd G Fal.

Proof. intros A B. apply ndIE with (s := Not s); now apply ndII. Qed.

9.4 Classical Propositional Logic

We now consider classical propositional logic. We can modify both the natural

deduction system and the Hilbert system to be classical by replacing explosion

with a different rule. In the natural deduction system we replace explosion with

a rule for proof by contradiction. In the Hilbert system, we use an initial rule for

double negation.

The classical natural deduction system is defined by the rules in Figure 9.3.

We write Γ ⊢NC s if Γ ⇒ s is derivable with the rules in Figure 9.3. In Coq,

the classical natural deduction system can be defined as the following inductive

predicate ndc.

Inductive ndc : context −> form −> Prop :=

| ndcA G s :

ndc (s::G) s

| ndcW G s t :

ndc G s −> ndc (t::G) s

| ndcII G s t :

ndc (s::G) t −> ndc G (Imp s t)

| ndcIE G s t :

ndc G (Imp s t) −> ndc G s −> ndc G t

| ndcC G s :

ndc (Not s::G) Fal −> ndc G s.

An easy induction proves that if Γ ⊢N s, then Γ ⊢NC s. We leave this as an

exercise.

The classical Hilbert system is defined by the rules in Figure 9.4. We write

Γ ⊢HC s if Γ ⇒ s is derivable with the rules in Figure 9.4.
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AHC
Γ ⇒ s

s ∈ Γ KHC
Γ ⇒ s → t → s

SHC
Γ ⇒ (s → t → u)→ (s → t)→ s → u

DNHC
Γ ⇒ ¬¬s → s

MPHC

Γ ⇒ s → t Γ ⇒ s

Γ ⇒ t

Figure 9.4: Hilbert Rules for Classical Propositional Logic

In Coq, the classical Hilbert system can be defined as the following inductive

predicate hilc.

Inductive hilc (G : context) : form −> Prop :=

| hilcA s :

mem s G −> hilc G s

| hilcK s t :

hilc G (FK s t)

| hilcS s t u :

hilc G (FS s t u)

| hilcDN s :

hilc G (FDN s)

| hilcMP s t :

hilc G (Imp s t) −> hilc G s −> hilc G t.

One can prove that Γ ⊢HC s if and only if Γ ⊢ NCs using the same methods as

we used to prove Theorem 9.2.5. We leave this as an exercise.

Exercise 9.4.1 Prove that if Γ ⊢N s, then Γ ⊢NC s.

Lemma nd_ndc G s : nd G s −> ndc G s.

Exercise 9.4.2 Prove that Γ ⊢NC s if and only if Γ ,¬s ⊢NC ⊥.

Goal forall G s, ndc G s <−> ndc (Not s::G) Fal.

Exercise 9.4.3 Prove the following results and conclude Γ ⊢NC s if and only if

Γ ⊢HC s.

Lemma ndcMem G s :

mem s G −> ndc G s.
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Lemma agree_ndc G s :

hilc G s −> ndc G s.

Lemma hilcW G s t :

hilc G s −> hilc (t :: G) s.

Lemma hilcAK G s t :

hilc G s −> hilc G (Imp t s).

Lemma hilcAS G s t u :

hilc G (Imp s (Imp t u)) −> hilc G (Imp s t) −> hilc G (Imp s u).

Lemma hilcI G s :

hilc G (Imp s s).

Lemma dedc s G t :

hilc (s :: G) t −> hilc G (Imp s t).

Lemma agree_hilc G s :

ndc G s −> hilc G s.

Exercise 9.4.4 Use the previous exercises to prove the following.

Lemma hil_hilc G s : hil G s −> hilc G s.

9.5 Glivenko’s Theorem

Glivenko’s Theorem states that a propositional formula s is classically provable if

and only if its double negation is intuitionistically provable. The most interesting

half of this equivalence is that ¬¬s is intuitionistically provable if s is classically

provable. In particular, if Γ ⊢HC s, then Γ ⊢N ¬¬s. (We leave the other half as

an exercise.) There are different ways to prove the Glivenko theorem. We prove

it via the following lemma from which the Glivenko result easily follows (via I→N ).

Lemma 9.5.1 If Γ ⊢HC s, then Γ ,¬s ⊢N ⊥.

Proof We argue by induction on the proof of Γ ⊢HC s. Suppose s is a K-formula,

an S-formula or a member of Γ . In any of these cases Γ ⊢N s and so Γ ,¬s ⊢N ⊥

by the admissible rule N.

Next suppose s is of the form ¬¬t → t. The following derivation demon-
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strates that Γ ,¬(¬¬t → t) ⊢N ⊥. Let Γ ′ be Γ ,¬(¬¬t → t).

RC

Ap

I→N

A∈

Γ
′, t,¬¬t ⊢N t

Γ
′, t ⊢N ¬¬t → t

Γ
′, t ⊢N ⊥

Ap

I→N

E⊥N

N

AN
Γ
′,¬t ⊢N ¬t

Γ
′,¬t,¬¬t ⊢N ⊥

Γ
′,¬t,¬¬t ⊢N t

Γ
′,¬t ⊢N ¬¬t → t

Γ
′,¬t ⊢N ⊥

Γ
′ ⊢N ⊥

Finally suppose Γ ⊢HC t → s and Γ ⊢HC t. The inductive hypotheses imply

Γ ,¬(t → s) ⊢N ⊥ and Γ ,¬t ⊢N ⊥. Let Γ ′′ be Γ ,¬s, t → s, t. The following

derivation demonstrates Γ ′′ ⊢N ⊥.

Ap

E→N

A∈

Γ
′′ ⊢N t → s

AN
Γ
′′ ⊢N t

Γ
′′ ⊢N s

Γ
′′ ⊢N ⊥

Let Γ ′ be Γ ,¬s. Using the inductive hypotheses and Γ
′′ ⊢N ⊥, the following

derivation demonstrates Γ ′ ⊢N ⊥.

RC

RC
Γ
′, t → s, t ⊢N ⊥

W⊆
Γ ,¬t ⊢N ⊥

Γ
′, t → s,¬t ⊢N ⊥

Γ
′, t → s ⊢N ⊥

W⊆
Γ ,¬(t → s) ⊢N ⊥

Γ
′,¬(t → s) ⊢N ⊥

Γ
′ ⊢N ⊥

The Glivenko result easily follows.

Theorem 9.5.2 (Glivenko) If Γ ⊢HC s, then Γ ⊢N ¬¬s.

Proof Suppose Γ ⊢HC s. By Lemma 9.5.1 we know Γ ,¬s ⊢N ⊥. By I→N we have

Γ ⊢N ¬¬s. �

We also obtain the following corollary.

Corollary 9.5.3 If Γ ⊢HC ⊥, then Γ ⊢N ⊥.

Proof Suppose Γ ⊢HC ⊥. By Theorem 9.5.2 we know Γ ⊢N ¬¬⊥. It is easy to

prove Γ ⊢N ¬⊥ using I→N and AN . Using E→N we conclude Γ ⊢N ⊥. �

In Coq we can prove these results as follows.
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Lemma Glivenko1 G s :

hilc G s −> nd (Not s :: G) Fal.

Proof. intros A ; induction A.

now apply ndN, ndMem.

now apply ndN, ndK.

now apply ndN, ndS.

apply ndRC with (s := s); apply ndAp with (s := FDN s); try now apply memT, memH.

now apply ndII, ndW, ndA.

now apply ndII, ndE, ndN, ndA.

apply ndRC with (s := s). apply ndRC with (s := Imp s t).

apply ndAp with (s := t). now apply memT, memT, memH.

apply ndAp with (s := s). now apply memH. now apply ndW,ndA.

now apply ndW2,ndW2.

now apply ndW2. Qed.

Lemma Glivenko G s :

hilc G s −> nd G (Not (Not s)).

Proof. intros A. apply ndII. apply Glivenko1; assumption. Qed.

Lemma Glivenko_cor G :

hilc G Fal −> nd G Fal.

Proof. intros A. apply ndIE with (s := Not Fal). apply Glivenko; assumption.

now apply ndII, ndA. Qed.

Another way to prove the Glivenko theorem is to first prove the following

lemmas about natural deduction. Once one has these lemmas, a direct induction

on the proof of Γ ⊢HC s suffices.

1. Γ ⊢N ¬¬(¬¬s → s).

2. If Γ ⊢N s, then Γ ⊢N ¬¬s.

3. If Γ ⊢N ¬¬(s → t) and Γ ⊢N ¬¬s, then Γ ⊢N ¬¬t.

We leave the reader to fill in the details of this proof as an exercise.

Exercise 9.5.4 Prove the following results in Coq and use them to prove

Glivenko’s theorem.

Lemma ndDNDN G s :

nd G (Not (Not (FDN s))).

Lemma ndDN’ G s :

nd G s −> nd G (Not (Not s)).

Lemma ndDNMP G s t :

nd G (Not (Not (Imp s t))) −> nd G (Not (Not s)) −> nd G (Not (Not t)).
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Lemma Glivenko G s :

hilc G s −> nd G (Not (Not s)).

Exercise 9.5.5 Prove that if Γ ⊢N ¬¬s, then Γ ⊢HC s.

Lemma Glivenko_conv G s :

nd G (Not (Not s)) −> hilc G s.

9.6 Remarks

The first deduction systems developed by Frege in 1879 were in the Hilbert style.

(Hilbert studied and popularized such systems later.) Natural deduction systems

were created independently by Gentzen and Jaśkowski in 1934.
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We now study the two-valued interpretation of propositional formulas. We show

that satisfiable formulas are not refutable. With this result it becomes easy to

show that formulas are underivable in the classical systems.

10.1 Boolean Reflection

Coq’s library Bool defines boolean versions of the logical connectives ¬, ∧, ∨,

and →.

neg x := if x then false else true

andb x y := if x then y else false

orb x y := if x then true else y

implb x y := if x then y else true

From now on we will load the library Bool with the command

Require Import Bool.

This provides us with the infix operators && and || for andb and orb.

Recall that we use the coercion

Coercion bool2Prop (x : bool) := if x then True else False.

which embeds booleans into propositions. It turns out that on boolean argu-

ments the logical connectives behave exactly as the boolean connectives.

Lemma negb_ref (x : bool) : negb x <−> ~x.

Lemma andb_ref x y : x && y <−> x /\ y.

Lemma orb_ref x y : x || y <−> x \/ y.

Lemma implb_ref x y : implb x y <−> x −> y.

Proving these reflection lemmas is straightforward, the following script does the

job in each case:

Proof. destruct x ; simpl ; tauto. Qed.

Exercise 10.1.1 Boolean claims can be shown by contradiction. Prove the follow-

ing lemma.
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Lemma bcontra (x : bool) : ~ (negb x) −> x.

Exercise 10.1.2 Boolean implication is best understood as boolean disjunction.

Prove the following lemma.

Lemma implb_orb x y :

implb x y = negb x || y.

10.2 Rewriting with Logical Equivalences

Recall that logical equivalence (iff : Prop → Prop → Prop) is reflexive, symmetric,

and transitive.

A↔ A

A↔ B

B ↔ A

A↔ B B ↔ C

A↔ C

The following rules state that conjunction, disjunction, and implication are com-

patible with equivalence.

A↔ A′ B ↔ B′

A∧ B ↔ A′ ∧ B′

A↔ A′ B ↔ B′

A∨ B ↔ A′ ∨ B′

A↔ A′ B ↔ B′

A→ B ↔ A′ → B′

Taken together, these facts justify rewriting with equivalences below equiva-

lences, conjunctions, disjunctions, and implications. Coq can rewrite with equiv-

alences once we load the library Setoid.

Require Import Setoid.

Goal forall A B,

implb (A||B) (A&&B) <−> A \/ B −> A /\ B.

Proof. intros A B. rewrite implb_ref. rewrite orb_ref. rewrite andb_ref. reflexivity. Qed.

Step carefully through the proof and observe what happens. Say for each rewrit-

ing step which of the above rules are needed to justify it. The proof script may

be written more concisely as follows:

Proof. intros. rewrite implb_ref, orb_ref, andb_ref. reflexivity. Qed.

Exercise 10.2.1 Prove the following goal with the tactics intros, rewrite, and

reflexivity.

Goal forall A A’ B B’, (A <−> A’) −> (B <−> B’) −> (A −> B <−> A’ −> B’).
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10.3 Boolean Sums and Omega

Coq defines so-called boolean sums as follows.

Inductive sumbool (X Y : Prop) : Type :=

| left : X −> sumbool X Y

| right : Y −> sumbool X Y.

Since boolean sums play an important role in the library, Coq also defines a fancy

notation for boolean sums:

{s} + {t} := sumbool s t

A boolean sum is like a disjunction but since it is not a proposition the elim

restriction does not apply. Thus we can do unrestricted case analysis on boolean

sums. An example will follow shortly.

From now on we will require Coq’s library Omega, which provides functions,

lemmas, and the automation tactic omega for natural numbers. A useful function

Omega provides is

eq_nat_dec : forall x y : nat, {x = y} + {x <> y}

From the type alone it is clear that eq_nat_dec decides equality on nat. Given two

numbers x and y , eq_nat_dec must return either a labeled proof of the equation

x=y or a labeled proof of the disequation x≠y . Thus the type of eq_nat_dec

fully specifies the behavior of eq_nat_dec, at least if we ignore the form of the

proofs included in the results.

Since eq_nat_dec yields a boolean sum rather than a disjunction, we can freely

compute with it.

Compute match eq_nat_dec 2 3 with left _ => true | right _ => false end.

% false

Coq’s if-then-else notation applies to all types with two constructors, where we

end up in the “then” branch if the first argument is obtained with the first con-

structor and in the “else” branch otherwise.

Compute if eq_nat_dec 3 3 then true else false.

% false

We may see the values of boolean sums as informative booleans carrying proofs

with them. Using the if-then-else notation we can forget the proofs and just

exploit the boolean information.

The automation tactic omega can construct many proofs that depend on ad-

dition and the linear order on numbers. Here are a few examples.1

Goal forall x, S x <> x.

1 From now on we will use Coq’s predefined order for nat.
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Goal forall x y z, x + y + z = z + 2*x + y − x.

Goal forall x x’ y , x < x’ −> x + y < y + x’.

Each of the goals can be solved with the script

Proof. intros. omega. Qed.

10.4 List Membership

From now on we require Coq’s library List. List provides the cons notation

s :: t := cons s t

and defines list membership as follows.

Fixpoint In (X : Type) (x : X) (A : list X) : Prop :=

match A with

| nil => False

| y :: A’ => y = x \/ In x A’

end.

In addition to the cons notation we define the bracket notation.

Notation "[ a , .. , b ]" := (a :: .. (b :: nil ) ..).

We can now write [1,3] for the list 1 :: 3 :: nil.

List provides a function

in_dec: forall X : Type,

( forall x y : X, {x = y} + {x <> y}) −>

forall (x : X) (A : list X), {In x A} + {~ In x A}

that given a type X and a decider for equality on X returns a decider for mem-

bership for lists over X. We define a boolean membership test for lists over

nat.

Definition inb (x : nat) (xs : list nat) : bool :=

if in_dec eq_nat_dec x xs then true else false.

The boolean membership test reflects the propositional membership predicate.

Lemma inb_ref x A :

inb x A <−> In x A.

Often it is useful to require that every element of a list satisfies a given boolean

test. List provides a boolean realization of this idea.

Fixpoint forallb (X : Type) (f : X −> bool) (A : list X) : bool :=

match A with

| nil => true

| x :: A’ => f x && forallb f A’

end.
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We can prove the following reflection lemma.

Lemma forallb_ref X f A :

forallb f A <−> forall x : X, In x A −> f x.

Proof. induction A ; simpl. now firstorder.

rewrite andb_ref, IHA ; clear IHA. split.

intros [B C] x [D|D]. congruence. now auto.

firstorder. Qed.

The tactic firstorder is an automation tactic that knows about logical operations.

We will use firstorder only if it can solve a goal. Note that the proof rewrites with

the equivalences andb_ref and IHA.

Exercise 10.4.1 Prove the lemma inb_ref .

Exercise 10.4.2 List defines an existential version existsb of forallb. Prove the

following reflection lemma.

Lemma existsb_ref X f A :

existsb f A <−> exists x : X, In x A /\ f x.

Exercise 10.4.3 Prove the following de Morgan Lemma for forallb and existsb.

Use the lemma negb_andb from Bool.

Definition negbfun (X : Type) (f : X −> bool) (x : X) : bool := negb (f x).

Lemma negb_forallb X (f : X −> bool) A :

negb (forallb f A) = existsb (negbfun f) A.

10.5 Rewriting with List Equivalences

Let A and B be lists over some type X. We write A ⊆ B and say that A is included

in B if every element of A is an element of B. We write A ≈ B and say that A

and B are equivalent if and only if A and B have the same elements. List defines

list inclusion as follows.

Definition incl (X : Type) (A B : list X) : Prop :=

forall x, In x A −> In x B.

We add a definition of list equivalence.

Definition equi X (A B : list X) :=

incl A B /\ incl B A.
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The functions cons and app (list concatenation) are compatible with list in-

clusion.

A ⊆ A′

x :: A ⊆ x :: A′

A ⊆ A′ B ⊆ B′

A++B ⊆ A′++B′

Hence they are also compatible with list equivalence. Since list equivalence is an

equivalence relation (i.e., is reflexive, symmetric, and transitive), we would hope

that Coq can rewrite with list equivalences. It in fact can if we provide it with the

necessary proofs.

Lemma equi_refl X (A : list X) : equi A A.

Proof. firstorder. Qed.

Lemma equi_sym X (A B : list X) : equi A B −> equi B A.

Proof. firstorder. Qed.

Lemma equi_tran X (A B C : list X) : equi A B −> equi B C −> equi A C.

Proof. firstorder. Qed.

Add Parametric Relation X : (list X) (@equi X)

reflexivity proved by (@equi_refl X)

symmetry proved by (@equi_sym X)

transitivity proved by (@equi_tran X)

as equi_rel.

The command starting with Add tells the Setoid library that we want to rewrite

with list equivalences. To justify this, we provide proofs certifying that list equiv-

alence is an equivalence relation. Don’t worry about the syntactic details of the

command. Next we tell the Setoid library that cons is compatible with list equiv-

alence.

Add Parametric Morphism X : (@cons X) with

signature eq ==> (@equi X) ==> (@equi X) as equi_cons_comp.

From this information Setoid generates the goal

forall (x : X) (A A’ : list X), equi A A’ −> equi (x :: A) (x :: A’)

which we prove as follows.

Proof. firstorder. Qed.

Next we tell Setoid that list concatenation is compatible with list equivalence.

Add Parametric Morphism X : (@app X) with

signature (@equi X) ==> (@equi X) ==> (@equi X) as equi_app_comp.

Proof. intros A B [C D] E F [G H] ; split

; auto using incl_app, incl_appl, incl_appr. Qed.
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The using clause tells auto that it can use the lemmas incl_app, incl_appl, and

incl_appl from List.

We can now rewrite with list equivalences.

Goal forall (X : Type) (x : X) (A A’ B B’ : list X),

equi A A’ −> equi B B’ −> equi (A ++ x :: B) (A’ ++ x :: B’).

Proof. intros X x A A’ B B’ C D. rewrite C, D. reflexivity. Qed.

It is not difficult to prove that the predicate nd for natural deduction from

the last chapter is compatible with list inclusion (see Exercise 10.5.4).

Lemma nd_incl G G’ s :

incl G G’−> nd G s −> nd G’ s.

From this it follows that nd is compatible with list equivalence under logical

equivalence.

G ≈ G′

nd G s ↔ nd G′ s

We register this fact with Setoid so that we can rewrite the first argument of nd

with list equivalences.

Add Morphism nd with

signature (@equi form) ==> eq ==> iff as nd_mor.

Proof. firstorder using nd_incl. Qed.

We can now rewrite the first argument of nd with list equivalences.

Goal forall A G G’ s,

equi G G’ −> (nd (A ++ G) s <−> nd (A ++ G’) s).

Proof. intros A G G’ s B. rewrite B. reflexivity. Qed.

Exercise 10.5.1 Prove that cons and app are compatible with list inclusion.

Lemma cons_incl X (x : X) A B :

incl A B −> incl (x::A) (x::B).

Lemma app_incl X (A B C D : list X) :

incl A B −> incl C D −> incl (A++C) (B++D).

Exercise 10.5.2 Prove the following fact about list inclusion.

Lemma cons_incl_elim X (x : X) A B :

incl (x :: A) B <−> In x B /\ incl A B.

Exercise 10.5.3 Prove the following list equivalences. We will rewrite with all of

them in the following.
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Lemma swap_cons X (x y : X) A :

equi (x :: y :: A) (y :: x :: A).

Lemma shift_cons X (x : X) A B :

equi (x :: A ++ B) (A ++ x :: B).

Lemma rotate X (x : X) A :

equi (x :: A) (A ++ [x]).

Lemma push_member X (x : X) A :

In x A −> equi A (x :: A).

Exercise 10.5.4 Prove that the predicate nd for natural deduction from the last

chapter is compatible with list inclusion.

Lemma ndM s G :

In s G −> nd G s.

Lemma nd_incl G G’ s :

incl G G’−> nd G s −> nd G’ s.

10.6 Boolean Evaluation and Satisfiability

Given boolean values for the variables, a pure propositional formula can be eval-

uated to a boolean value. To make this idea precise, we need assignments, which

assign boolean values to variables. We represent an assignment as a list of vari-

ables, where the assignment assigns true to a variable if and only if the variable

appears in the list.

Definition var := nat.

Inductive form : Type :=

| Var : var −> form

| Imp : form −> form −> form

| Fal : form.

Definition assignment := list var.

Fixpoint eval (a : assignment) (s : form) : bool :=

match s with

| Var x => inb x a

| Imp s t => implb (eval a s) (eval a t)

| Fal => false

end.

Definition eva (a : assignment) (G : list form) : bool :=

forallb (eval a) G.
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An assignment satisfies a formula if the formula evaluates under the assignment

to true. An assignment satisfies a list of formulas if it satisfies each formula in

the list. A formula or a list of formulas is satisfiable if there is an assignment

that satisfies the formula or the list.

Definition sat (G : list form) : Prop :=

exists a, eva a G.

We call a formula valid if it is satisfied by every assignment.

Definition valid (s : form) : Prop :=

forall a, eval a s.

A formula is valid if and only if its negation is unsatisfiable.

Lemma valid_unsat s :

valid s <−> ~sat [Not s].

Proof. unfold sat, valid ; simpl ; split .

intros A [a B]. specialize (A a). now destruct (eval a s) ; auto.

intros A a. apply bcontra ; intros B.

apply A. exists a. destruct (eval a s) ; auto. Qed.

Exercise 10.6.1 Prove that the functions eva and sat are compatible with list

inclusion.

Lemma eva_incl G G’ a :

incl G G’ −> eva a G’ −> eva a G.

Lemma sat_incl G G’:

incl G G’ −> sat G’ −> sat G.

Exercise 10.6.2 Register the compatibility of eva and sat with list equivalence

with Setoid.

Exercise 10.6.3 Prove the following facts about implications.

Lemma eva_imp_pos a s t G :

eva a (Imp s t :: G) = eva a (Not s :: G) || eva a (t :: G).

Lemma eva_imp_neg a s t G :

eva a (Not (Imp s t) :: G) = eva a (s :: Not t :: G).

Lemma sat_imp_pos s t G :

sat (Imp s t :: G) <−> sat (Not s :: G) \/ sat (t :: G).

Lemma sat_imp_neg s t G :

sat (Not (Imp s t) :: G) <−> sat (s :: Not t :: G).

Exercise 10.6.4 Prove the following fact.

Goal forall G s,

( forall a, eva a G −> eval a s) <−> ~sat (Not s :: G).
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10.7 Soundness

There is a fundamental relationship between classical derivability and boolean

evaluation known as soundness.

Lemma ndc_sound G s a :

ndc G s −> eva a G −> eval a s.

Here are some consequences of soundness.

1. If a formula is derivable in a context, then every assignment satisfying the

context also satisfies the formula. This holds both for classical and intuition-

istic derivability (since intuitionistic derivability implies classical derivability).

2. If a formula is unsatisfied by some assignment, then the formula is not deriv-

able in the empty context. This holds for classical and intuitionistic derivabil-

ity.

3. If a formula is derivable in the empty context, then it is valid. This holds for

classical and intuitionistic derivability.

With (2) arguing that certain formulas are underivable becomes really easy. For

instance, each of the formulas ⊥, x, and ¬x is underivable in the empty context

since for each of the formulas there is a unsatisfying assignment. The soundness

proof is routine.

Lemma ndc_sound G s a :

ndc G s −> eva a G −> eval a s.

Proof. intros A B ; induction A ; simpl in *|−*.

(* ndcA *) now destruct (eval a s) ; simpl ; auto.

(* ndcW *) now destruct (eval a t) ; simpl in B ; auto.

(* ndcII *) now destruct (eval a s) ; simpl in *|− ; auto.

(* ndcIE *) now destruct (eval a s) ; simpl in *|− ; auto.

(* ndcC *) now destruct (eval a s) ; simpl in *|− ; auto. Qed.

Note the use of the tactics “simpl in *|−*” and “simpl in *|−”. With *|− simpl sim-

plifies all assumptions of a goal, and with *|−* simpl simplifies all assumptions

plus the claim of a goal. We now prove in Coq that ⊥ is not derivable in the

empty context.

Goal ~ndc nil Fal.

Proof. intros A. apply ndc_sound with (a:=nil) in A.

contradiction A. exact I. Qed.

The proof script applies the lemma ndc_sound with the empty assignment to the

assumption A. This is the first time that we apply a lemma to an assumption. It

is also possible to rewrite, unfold, and simplify assumptions.

From soundness it follows that ND-refutable contexts are unsatisfiable.
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Lemma nd_sat G :

nd G Fal −> ~sat G.

Proof. intros A [a B]. apply nd_ndc in A. exact (ndc_sound A B). Qed.

Exercise 10.7.1 Prove the following goals. The second goal is a bit tricky since x

is not a concrete variable.

Goal forall x, ~ndc nil (Var x).

Goal forall x, ~ndc nil (Not (Var x)).

10.8 Completeness and Decidability

We define classical semantic consequence as follows.

Definition csc (G : list form) (s : form) : Prop :=

forall a, eva a G −> eval a s.

Soundness says that classical derivability implies classical semantic conse-

quence.

Goal forall G s, ndc G s −> csc G s.

Proof. intros G s A a. exact (ndc_sound A). Qed.

We will also show that classical semantic consequence implies classical deriv-

ability. This direction is called completeness. Taken together, soundness and

completeness say that classical derivability agrees with classical semantic conse-

quence. One speaks of a semantic characterization of classical derivability.

In the next chapter we will construct a function

sat_nd : forall G, {sat G} + {nd G Fal}.

that for a context either constructs a satisfying assignment or an ND refutation.

From the existence of such a function completeness follows. Given sat_nd, one

can also construct a function that given a context and a formula decides whether

the formula is derivable from the context in the classical system. This result is

known as decidability of classical propositional logic.

We will now assume a function sat_nd and prove the above consequences.

This can be done conveniently with Coq’s section construct.

Section Main_Results.

Variable sat_nd : forall G, {sat G} + {nd G Fal}.
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As long as we are in the section, we can use the function sat_nd. Once we close

the section with the command End Main_Results, all definitions and lemmas es-

tablished in the section will appear with an extra argument asking for a function

of type ∀G. {sat G} + {nd G Fal}.

We first prove that classical natural deduction agrees with classical semantic

consequence.

Goal forall G s, ndc G s <−> csc G s.

Proof. split.

intros A a. exact (ndc_sound A).

intros A. apply ndcC, nd_ndc.

destruct (sat_nd (Not s :: G)) as [[a B]|B].

exfalso. specialize (A a). simpl in B. destruct (eval a s) ; tauto.

exact B. Qed.

Next we establish a decision procedure for classical derivability.

Definition ndc_dec G s : {ndc G s} + {~ndc G s}.

destruct (sat_nd (Not s :: G)) as [A|A].

right. intros B. destruct A as [a A]. simpl in A.

apply andb_ref in A. destruct A as [A C]. apply (ndc_sound B) in C.

destruct (eval a s) ; tauto.

left . apply ndcC, nd_ndc, A. Defined.

With sat_nd we also obtain a straightforward proof that intuitionistic refutability

agrees with classical refutability.

Goal forall G, nd G Fal <−> ndc G Fal.

Proof. split. now apply nd_ndc.

intros A ; destruct (sat_nd G) as [B|B].

destruct B as [a B]. contradiction (ndc_sound A B).

exact B. Qed.

We now close the section.

End Main_Results.

The function ndc_dec is still available but requires an additional argument that

compensates for the assumption sat_nd.

Check ndc_dec.

% (forall G : list form, sat G + nd G Fal) ->

% forall (G : list form) (s : form), ndc G s + ~ndc G s

Exercise 10.8.1 Assume a decision function sat_nd and prove the following

goals. The lemmas nd_sat, ndc_sound, and nd_ndc suffice.

Goal forall G, nd G Fal <−> ~sat G.
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Goal forall s, ndc nil s <−> valid s.

Exercise 10.8.2 Assume a decision function sat_nd and construct functions as

follows.

Definition sat_dec G : {sat G} + {~sat G}.

Definition nd_dec G : {nd G Fal} + {~nd G Fal}.
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In this chapter we study the tableau method for classical propositional logic.

With the tableau method we can construct a decision function that for a list of

formulas either yields a satisfying assignment or a refutation in the intuitionistic

ND system. For the decision function we employ a Coq library providing for

generalized recursion.

11.1 Negative Tableau System

In the context of the tableau method we call lists of formulas clauses. The

tableau method will give us a function

sat_nd : forall C, {sat C} + {nd C Fal}.

that for a list of formulas either constructs a satisfying assignment or an ND

refutation. Before we construct the function, we will consider two complemen-

tary tableau systems deriving clauses. We speak of the positive and the negative

system. The positive system derives satisfiable clauses and the negative system

derives ND-refutable clauses. Since ND-refutable clauses are unsatisfiable, no

clause is derivable in both systems. We will eventually construct a function that

for a clause yields a derivation in one of the two systems.

Figure 11.1 shows the rules of the negative tableau system. The rules derive

clauses. The letter C ranges over clauses, the letters s and t range over formulas,

and ≈ is list equivalence. The second rule is called clash rule and the last rule

is called shuffle rule. If a clause is derivable with the negative tableau rules, we

say that it is tableau-refutable.

The negative tableau rules have two key properties that are easy to verify.

1. If an assignment satisfies the conclusion of a rule, then the rule has a premise

that is satisfied by the assignment.

2. If an assignment satisfies a premise of a rule, then it satisfies the conclusion

of the rule.

From property (1) it follows that the tableau rules can only derive unsatisfiable

clauses.

The formalization of the negative tableau system in Coq is straightforward.
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C,⊥ C, s,¬s

C,¬s C, t

C, s → t

C, s,¬t

C,¬(s → t)

C

C′
C ≈ C′

Figure 11.1: Negative Tableau System

Inductive tab : list form −> Prop :=

| tabF C : tab (Fal :: C)

| tabC s C : tab (Not s :: s :: C)

| tabIP s t C : tab (Not s :: C) −> tab (t :: C) −> tab (Imp s t :: C)

| tabIN s t C : tab (s :: Not t :: C) −> tab (Not (Imp s t) :: C)

| tabS C C’ : equi C C’ −> tab C −> tab C’.

We prove that the clause [¬(¬¬x → x)] is tableau-refutable.

Goal tab [Not (FDN (Var 0))].

Proof. apply tabIN. apply tabC. Qed.

The tableau derivation can be compactly represented with a diagram.

¬(¬¬x → x) 1

¬¬x

¬x

⊗

Such diagrams depicting tableau derivations are called tableaux. Here is a more

interesting tableau deriving the clause [¬(((x → y)→ x)→ x)].

¬(((x → y)→ x)→ x) 1

(x → y)→ x 2

¬x

¬(x → y) 3 x

x ⊗

¬y

⊗

One speaks of the branches of a tableau and says that a branch is closed if it

contains ⊥ or a clash s and ¬s. Closed branches are marked with the symbol ⊗.

The numbers in the tableau indicate the applications of the implication rules.

Applications of the shuffle rule are not visible in the tableau. Here is the Coq

proof corresponding to the tableau for [¬(((x → y)→ x)→ x)].

Definition x := Var 0.

Definition y := Var 1.

Definition Peirce := Imp (Imp (Imp x y) x) x.
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11.1 Negative Tableau System

Goal tab [Not Peirce].

Proof. apply tabIN. apply tabIP.

apply tabIN.

apply tabS with (C := [Not x, x, Not y]). now firstorder.

now apply tabC.

apply tabS with (C := [Not x, x]). now firstorder.

now apply tabC. Qed.

Because of the shuffle rule tab is compatible with list equivalence. We register

this fact with Setoid.

Add Morphism tab with

signature (@equi form) −−> iff as tab_equi_comp.

Proof. firstorder using tabS. Qed.

Now rewriting with list equivalences can replace the shuffle rule.

Goal tab [Not Peirce].

Proof. apply tabIN. apply tabIP.

apply tabIN. rewrite rotate ; simpl. rewrite rotate ; simpl. now apply tabC.

rewrite swap_cons. apply tabC. Qed.

Proving that tableau refutations translate into ND refutations is routine.

Lemma tab_nd C :

tab C −> nd C Fal.

From this result it follows that tableau refutable clauses are unsatisfiable.

It is interesting to compare the negative tableau system with the ND and

Hilbert systems we have seen so far. In the ND systems we have action on both

sides of the turnstile Γ ⊢ s. In the Hilbert systems all action is on s, and in the

negative tableau system all action is on Γ . In fact, the negative tableau system

does not have a right side s. It will turn out that all of these systems can re-

fute exactly the same clauses, and that a clause is refutable if and only if it is

unsatisfiable.

Exercise 11.1.1 For each of the following formulas s give a tableau refutation of

the clause [¬s] both with a tableau and with a Coq script.

a) x → y → x

b) (x → y → z)→ (x → y)→ x → z

c) (x → ¬y → ⊥)→ ¬¬(x → y)

d) ¬¬x → ¬y → ¬(x → y)

Exercise 11.1.2 Consider formulas that feature conjunctions and disjunctions.

Extend the tableau system with rules for conjunctions and disjunctions such
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C
C solved

C

C,¬⊥

C,¬s

C, s → t

C, t

C, s → t

C, s,¬t

C,¬(s → t)

C

C′
C ≈ C′

Figure 11.2: Positive Tableau System

that the two key properties for tableau rules are satisfied and conjunctions and

disjunctions are decomposed (i.e., do not appear in the premises of the rules).

You should have rules for positive and negative conjunctions and for positive

and negative disjunctions.

Exercise 11.1.3 Prove that tableau-refutable clauses are ND-refutable.

Lemma tab_nd C : tab C −> nd C Fal.

Also prove that tableau-refutable clauses are unsatisfiable.

Exercise 11.1.4 Prove that weakening is admissible for the negative tableau sys-

tem. Rewrite with the list equivalence rotate from Exercise 10.5.3.

Lemma tabW C s :

tab C −> tab (s :: C).

11.2 Positive Tableau System

A clause is solved if it only contains variables and negated variables, and does

not contain a clash (i.e., both x and ¬x). Every solved clause is satisfiable. As

satisfying assignment we can take the list of all variables that occur positively

in the clause. For instance, the solved clause [x,¬y,¬z,x′] is satisfied by the

assignment [x,x′].

Figure 11.2 shows the positive tableau system. Note that no rule of the posi-

tive system has more that one premise. It is easy to see that the positive system

can only derive satisfiable clauses. In fact, if a rule has a premise, every assign-

ment satisfying the premise satisfies the conclusion.

A clause is failed if it either contains ⊥ or a clash (i.e., both s and ¬s). Obvi-

ously, every failed clause is unsatisfiable.

The positive and the negative tableau system are complementary. While the

positive system starts from solved clauses and derives satisfiable clauses, the
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negative system starts from failed clauses and derives unsatisfiable clauses. The

two systems have the shuffle rule and the rule for negated implications in com-

mon. As it comes to unnegated implications, the positive system has three rules

each with a single premise while the negative system has a single rule with two

premisses.

As it comes to depicting the derivations of the positive system, we can still

use the tableaux we used for the negative system. In fact, we can still develop the

tableau by applying the rules of the negative system backwards. When we apply

the rule for positive implications, we branch and follow one branch. A branch is

solved if it represents a clause that is solved up to occurrences of ¬⊥. Here is

an example.

¬(¬¬x → ¬(x → ¬y)) 1

¬¬x 2

¬¬(x → ¬y) 3

x

¬⊥

x → ¬y 4

¬⊥

¬x ¬y

⊗ solved

The left branch represents the failed clause {x,¬x,¬⊥} and the right branch rep-

resents the solved clause is {x,¬y}. We take the freedom to represent clauses

as sets, which is justified by the shuffle rule. By the key properties of the nega-

tive tableau system we know that the assignments satisfying the initial formula

¬(¬¬x → ¬(x → ¬y)) are exactly the assignments satisfying the solved clause

{x,¬y}.

We now formalize the positive tableau system in Coq. We choose the following

definition of solved clauses.

Definition nvar (x : var) : form := Not (Var x).

Definition solved (C : list form) : Prop :=

exists P : list var, exists N : list var,

C = map Var P ++ map nvar N /\ eva P (map nvar N).

Representing the rules of the positive tableau system with an inductive definition

is straightforward.

Inductive cotab : list form −> Prop :=

| cotabV C : solved C −> cotab C

| cotabIPF C : cotab C −> cotab (Not Fal :: C)

| cotabIPL C s t : cotab (Not s :: C) −> cotab (Imp s t :: C)

| cotabIPR C s t : cotab (t :: C) −> cotab (Imp s t :: C)
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| cotabIN C s t : cotab (s :: Not t :: C) −> cotab (Not (Imp s t) :: C)

| cotabS C C’ : equi C C’ −> cotab C −> cotab C’.

Because of the shuffle rule cotab is compatible with list equivalence. We register

this fact with Setoid.

Add Morphism cotab with

signature (@equi form) −−> iff as cotab_equi_comp.

Proof. firstorder using cotabS. Qed.

Proving that the positive system can only derive satisfiable clauses is routine

except for the satisfiability of solved clauses. Here we need a lemma.

Lemma eva_map_var A Q :

eva A (map Var Q) <−> incl Q A.

Lemma solved_sat C :

solved C −> sat C.

Lemma cotab_sat C :

cotab C −> sat C.

Exercise 11.2.1 Prove the lemmas eva_map_var , solved_sat, and cotab_sat.

Exercise 11.2.2 Formulate a weakening rule for the positive tableau system and

prove it correct.

11.3 Signed Tableau System and Subformula Property

We now attack the problem of writing a function

tableau : forall C, {cotab C} + {tab C}

With tableau writing the function sat_nd we are aiming at will be straightforward.

The idea for tableau is as follows: Starting from the initial clause we develop a

tableau by applying the negative tableau rules backwards. If we find a solved

branch, we have a derivation of the initial clause in the positive system cotab. If

we end up with a closed tableau (a tableau all of whose branches are closed), we

have a derivation of the initial clause in the negative system tab. We apply the

rules in any order we like and do not backtrack.

There is the issue of termination, of course. As is, backwards application of

the rules is not terminating. The shuffle rule can be used to duplicate formulas,

and the implication ¬⊥ reproduces itself. Both issues can be resolved.

We first solve the problem abstractly. We represent clauses as sets of signed

formulas. Working with sets instead of lists eliminates the need for the shuffle

rule. Signed formulas make it possible to express negation without implication.
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C,⊥ C,x,x−

C, s− C, t

C, s → t

C, s, t−

C, s → t−

Figure 11.3: Signed Tableau System

A signed formula is a formula together with one of the signs + and −. We

write s− for negatively signed formulas and just s for positively signed formulas.

Signed formulas translate to ordinary formulas by omitting the positive sign and

replacing the negative sign with negation (i.e. s−⇝ ¬s).

Figure 11.3 shows a tableau system deriving signed clauses (i.e., finite sets

of signed formulas). The notation C, sσ is to be read as C ∪ {sσ}. The signed

system is an abstract version of the negative tableau system where clauses are

represented as sets and negations are represented as negative signs. The two

key properties concerning satisfying assignments are still satisfied. In addition,

we observe that the premises of a rule of the signed system contain only subfor-

mulas of formulas appearing in the conclusion of the rule. This is the so-called

subformula property. If we take the comma in the conclusions of the impli-

cation rules as disjoint union, the premises of the rules are smaller than the

conclusions of the rules, where the size of a clauses is taken as the sum of the

sizes of the formulas in the clause. Thus backward application of the rules of the

signed tableau system will terminate once it has removed all implications. Hence

the signed tableau system specifies a procedure that given an initial clause con-

structs a tableau that either contains a solved branch or is closed.

Observe that the signed clash rule is restricted to variables. The properties of

the system are preserved if we generalize the clash rule to all formulas. We will

show that the system with the restricted clash rule can still derive all unsatisfi-

able clauses.

Exercise 11.3.1 Give complete signed tableaux for the following clauses. A

tableau is complete if every branch is either closed or solved.

a) {¬¬x → ¬y → ¬(x → y)−}

b) {¬x → ¬y → ¬(y → x)−}

Exercise 11.3.2 Give signed tableau rules for conjunction and disjunction.
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11.4 Decision Procedure

We now realize the signed tableau decision procedure in Coq. We represent a

signed clause by four lists P , N , Q, and R as follows:

1. P contains formulas carrying a positive sign.

2. N contains formulas carrying a negative sign.

3. Q contains variables carrying a positive sign.

4. R contains variables carrying a negative sign.

Inductive clause : Type :=

| CL : list form −> list form −> list var −> list var −> clause.

We define a coercion that converts clauses into lists of formulas.

Coercion clause2list (C : clause) : list form :=

match C with CL P N Q R =>

P ++ map Not N ++ map Var Q ++ map nvar R

end.

Note that the negative signs are translated into negations. A clause C is satisfi-

able if and only if the list clause2list C is satisfiable. Due to the coercion, we can

just write sat C to say that the clause C is satisfiable.

We also define a function that converts lists of formulas to clauses.

Definition cl (C : list form) := CL C nil nil nil .

The conversions cl and clause2list commute up to list equivalence.

Lemma ecl (C : list form) :

equi C (cl C).

Proof. induction C ; simpl in *|−*. reflexivity.

rewrite <−IHC. reflexivity. Qed.

We define the size of formulas and clauses as follows.1

Fixpoint size_form (s : form) : nat :=

match s with

| Var _ => 1

| Imp s t => S (size_form s + size_form t)

| Fal => 1

end.

Definition size_list := fold_right (fun s a => size_form s + a) 0.

Definition size_clause (C : clause) : nat :=

match C with CL P N _ _ => size_list P + size_list N end.

1 The function fold_right is from the library List.
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Function dec (C : clause) {measure size_clause C} : bool :=

let (P,N,Q,R) := C in

match P with

| Fal :: _ => false

| Var x :: P’ => dec (CL P’ N (x :: Q) R)

| Imp s t :: P’ => dec (CL P’ (s :: N) Q R) || dec (CL (t :: P’) N Q R)

| nil => match N with

| Fal :: N’ => dec (CL nil N’ Q R)

| Var x :: N’ => dec (CL nil N’ Q (x :: R))

| Imp s t :: N’ => dec (CL [s] (t :: N’) Q R)

| nil => eva Q (map nvar R)

end

end.

intros ; simpl ; omega. . . . intros ; simpl ; omega.

Defined.

Figure 11.4: Decision Procedure

Figure 11.4 defines the decision procedure dec : clause → bool. It takes a

clause C and returns true if and only if it can construct a signed tableau for C

that contains a solved branch. The recursion is not structural but on the size of

the clause. The library Recdef and the keyword Function provide for this form of

recursion.2 For each recursive call Coq generates a proof obligation ensuring that

the argument of the recursive call is smaller than the primary argument. For our

procedure dec these obligations are all straightforward and can be shown with

omega. Step through the proof scripts to understand.

We can compute with the decision procedure.

Compute dec (cl [FDN (Var 0)]).

% true

Compute dec (cl [Not (FDN (Var 0))]).

% false

Exercise 11.4.1 Make sure you understand every detail of the decision proce-

dure dec. You should be able to write the code of dec given your understanding

of the signed tableau rules. Don’t worry about the first line and the proof obliga-

tions.

2 The library Recdef realizes size induction with structural recursion on proof terms. The un-

derlying transformation is involved and will not be explained in this chapter.
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11.5 Correctness of The Decision Procedure

We establish the correctness of the decision procedure with two lemmas.

Lemma dec_sat C :

dec C −> sat C.

Lemma dec_tab C :

negb (dec C) −> tab C.

Both lemmas can be proved by functional induction on the definition of dec. The

proofs are shown in Figure 11.5. The most complicated case is the nonrecursive

base case (i.e., P and Q are both empty), where for dec_tab the lemma clash is

needed, which in turn requires the lemma eva_map_nvar .

It is now easy to write the functions tableau and sat_nd.

Definition IBC (x : bool) : {x} + {negb x}.

destruct x. left. exact I. right. exact I. Defined.

Definition tableau C : {cotab C} + {tab C}.

destruct (IBC (dec (cl C))) as [A|A].

left . rewrite ecl. exact (dec_cotab A).

right. rewrite ecl. exact (dec_tab A). Defined.

Definition sat_nd C : {sat C} + {nd C Fal}.

destruct (tableau C) as [A|A].

left . now apply cotab_sat, A.

right. now apply tab_nd, A. Defined.

Note that the function tableau combines the function dec and the accompanying

correctness lemmas dec_cotab and dec_tab into a single object. Once we have

the function tableau, there is no need to go back to the function dec and its

correctness lemmas.

Exercise 11.5.1 Prove the following goals. The function tableau and the lemmas

cotab_sat, tab_nd, and nd_sat suffice.

Goal forall C, cotab C <−> sat C.

Goal forall C, tab C <−> ~sat C.

Exercise 11.5.2 Define functions as follows.

Definition tab_dec C : {tab C} + {~tab C}.

Definition cotab_dec C : {cotab C} + {~cotab C}.
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Lemma dec_cotab C :

dec C −> cotab C.

Proof. functional induction (dec C) ; simpl ; intros A.

(* Fal+ *) contradiction A.

(* Var+ *) rewrite shift_cons, shift_cons. exact (IHb A).

(* Imp+ *) rewrite orb_ref in A ; destruct A as [A|A].

apply cotabIPL. rewrite shift_cons. exact (IHb A).

apply cotabIPR. exact (IHb0 A).

(* Fal− *) apply cotabIPF. exact (IHb A).

(* Var− *) rewrite shift_cons, shift_cons. exact (IHb A).

(* Imp− *) apply cotabIN. exact (IHb A).

(* Done *) apply cotabV. exists Q, R. auto. Qed.

Lemma eva_map_nvar Q R :

eva Q (map nvar R) = forallb (fun x => negb (inb x Q)) R.

Proof. induction R ; simpl. reflexivity.

rewrite IHR. destruct (inb a Q) ; reflexivity . Qed.

Lemma clash P N :

negb (eva P (map nvar N)) −> tab (map Var P ++ map nvar N).

Proof. rewrite eva_map_nvar, negb_forallb, existsb_ref. intros [x [A B]].

unfold negbfun in B. rewrite negb_involutive, inb_ref in B.

apply tabClash with (s:= Var x).

apply in_or_app ; right. exact (in_map _ _ _ A).

apply in_or_app ; left. exact (in_map _ _ _ B). Qed.

Lemma dec_tab C :

negb (dec C) −> tab C.

Proof. intros A ; functional induction (dec C) ; simpl in *|−*.

(* Fal+ *) now apply tabF.

(* Var+ *) rewrite shift_cons, shift_cons. exact (IHb A).

(* Imp+ *) rewrite negb_orb, andb_ref in A. destruct A as [A1 A2].

apply tabIP. rewrite shift_cons. exact (IHb A1). exact (IHb0 A2).

(* Fal− *) apply tabW. exact (IHb A).

(* Var− *) rewrite shift_cons, shift_cons. exact (IHb A).

(* Imp− *) apply tabIN. exact (IHb A).

(* Done *) exact (clash A). Qed.

Figure 11.5: Correctness Proofs
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12 Kripke Models and Independence

Results

In the previous chapter we gave meaning to propositional formulas by evaluating

them under a boolean assignment (assigning boolean values to variables). In this

chapter we consider a different way of giving meaning to propositional formulas.

Instead of boolean assignments, we will use Kripke models. The intuitionistic

ND system is sound for Kripke models, but the classical ND system is not. For

this reason, we can use Kripke models to prove that certain formulas are not

intuitionistically provable. In particular, we will prove 0 6⊢N ¬¬x → x.

12.1 Models for Intuitionistic Logic

In the classical case it was enough to consider assignments (sets or lists of vari-

ables). That is, when a formula is not classically provable, there is an assignment

making the formula false. Assignments do not provide enough counterexam-

ples to handle intuitionistically unprovable formulas. For example, ¬¬x → x is

intuitionistically unprovable, but is true when evaluated under an assignment.

Clearly if an assignment assigns x to true, then ¬¬x → x will be true. Likewise,

if an assignment is such that ¬x evaluates to true, then ¬¬x → x will be true.

What we need is some way to interpret formulas so that a formula may be neither

true nor false. One option is to use sets of assignments and to reconsider how

we interpret implication. As a simple example, consider the two assignments 0

and {x}. Since 0 ⊆ {x}, we consider {x} as an extension of 0. We can represent

the two assignments as the following simple tree.

0

{x}

Let us (temporarily) refer to these two assignments “possible worlds” – 0 is a

possible world in which x is not yet true and {x} is a later possible world in

which x is true. Let us write w ⊨ s to mean s is forced to be true at the possible

world w. We will also more briefly say w forces s.

We would like to define w ⊨ s so that 0 6⊨ x and 0 6⊨ ¬x. In order to accom-

plish this, we will define ⊨ so that w ⊨ y holds if y ∈ w and w ⊨ ¬y holds if
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y is not in any of the extensions of w. In this particular case, 0 6⊨ x since x 6∈ 0.

0 6⊨ ¬x since x ∈ {x} and {x} is an extension of 0.

Recall that ¬x is x → ⊥. We will define ⊨ so that w 6⊨ ⊥. We want to know

that w ⊨ ¬y holds if y is not in any extension of w. We can ensure this by

defining ⊨ such that w ⊨ s → t if every extension w′ of w is such that if w′ ⊨ s,

then w′ ⊨ t. (A more precise definition will be given in a more general setting in

the next section.)

Since one of our main goals is to prove Γ 6⊢N s for example contexts Γ and

formulas s, we will need interpretations with a possible world that forces all

the formulas in Γ , but does not force s. We now consider a few such examples

informally and construct an appropriate sets of assignments (as a set of “possible

worlds”).

Suppose we would like to force the formulas x → y and ¬x → y without

forcing y . It is easy to see that having only the possible worlds 0 and {x} is not

enough, since {x} ⊨ x but {x} 6⊨ y and hence neither world forces x → y . A

simple fix is to replace the possible world {x} with {x,y}.

0

{x,y}

Clearly 0 ⊨ x → y and 0 6⊨ y . Also, w 6⊨ ¬x at both possible worlds and so

w ⊨ ¬x → y .

We can also have more than two assignments. Consider the following example

with three assignments.

0

{y}

{x,y}

We computew ⊨ s for the three worlds and various formulas s and display them

in the following table. Make sure for each value in the table you can justify why

w ⊨ s or w 6⊨ s. In the cases in which s is of the form t → u, it suffices to look at

the row for t and the row for u.

0 {y} {x,y}

x 6⊨ 6⊨ ⊨

¬x 6⊨ 6⊨ 6⊨

¬¬x ⊨ ⊨ ⊨

y 6⊨ ⊨ ⊨

¬y 6⊨ 6⊨ 6⊨

¬¬y ⊨ ⊨ ⊨

x → y ⊨ ⊨ ⊨

y → x 6⊨ 6⊨ ⊨
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We can also choose assignments so that inclusion is not a linear ordering. Con-

sidering the following example with four assignments.

0

{y}

{x,y}

{z}

We again compute w ⊨ s for the four worlds and various formulas s and display

them as a table.
0 {y} {x,y} {z}

x 6⊨ 6⊨ ⊨ 6⊨

¬x 6⊨ 6⊨ 6⊨ ⊨

¬¬x 6⊨ ⊨ ⊨ 6⊨

y 6⊨ ⊨ ⊨ 6⊨

¬y 6⊨ 6⊨ 6⊨ ⊨

¬¬y 6⊨ ⊨ ⊨ 6⊨

z 6⊨ 6⊨ 6⊨ ⊨

¬z 6⊨ ⊨ ⊨ 6⊨

¬¬z 6⊨ 6⊨ 6⊨ ⊨

x → y ⊨ ⊨ ⊨ ⊨

y → x 6⊨ 6⊨ ⊨ ⊨

y → z 6⊨ 6⊨ 6⊨ ⊨

¬x → z ⊨ ⊨ ⊨ ⊨

In order to find enough counterexamples for intuitionistic propositional logic,

it suffices to consider a finite number of assignments which form a tree under

inclusion.

In the next section we generalize such models, define how one evaluates a for-

mula given such a model, and prove the relationship to intuitionistic provability.

12.2 Kripke Models

Recall that an assignment is used to assign boolean values to variables. We

represented an assignment by a list of variables in the previous chapter, but

the idea is that the list represents the set of variables which are assigned to true

and any variables not in the set are assigned to false. In this section we will work

at the mathematical level and simply work with sets of variables.

A Kripke model is a triple (W,≤, α) where W is a nonempty set, ≤ is a re-

flexive, transitive relation on W , and α is a function from W to sets of variables

such that for every w ≤ w′ we have α(w) ⊆ α(w′). We will call the elements of

W worlds. When w ≤ w′ we will say that w′ is later than w. We will also write

w′ ≥ w to mean the same thing as w ≤ w′.
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Let (W,≤, α) be a fixed Kripke model. For each world w ∈ W and formula

s, we define a relation w ⊨ s by recursion on s. When w ⊨ s holds, we say w

forces s. The definition is as follows.

• w ⊨ x if x ∈ α(w)

• w 6⊨ ⊥

• w ⊨ s → t if for all w′ ≥ w: w′ ⊨ s implies w′ ⊨ t.

For a context Γ we write w ⊨ Γ if w ⊨ s for every s in Γ .

Each of the examples from the previous section gives a Kripke model. Recon-

sider the following four assignments:

0

{y}

{x,y}

{z}

Let W be {0, {y}, {x,y}, {z}}. Let w ≤ w′ mean w ⊆ w′ and let α(w) = w.

Clearly (W,≤, α) is a Kripke model. It is easy to verify 0 forces x → y and

z → ¬x, but does not force the formulas y , ¬x → y , ¬(y → x) and ¬¬z.

From the previous example it is clearly possible for a world not to force a

formula even though a later world does force the formula. It is natural to ask

whether there is a similar example in which w ≤ w′, w ⊨ s and w′ 6⊨ s. In fact,

there is no such example. The definitions of Kripke models and forcing are such

that we have the following monotonicity property: If w ⊨ s and w ≤ w′, then

w′ ⊨ s.

Theorem 12.2.1 (Monotonicity) Let (W,≤, α) be a Kripke model. If w ⊨ s and

w ≤ w′, then w′ ⊨ s.

Proof We argue by cases on s. If w ⊨ x and w ≤ w′, then x ∈ α(w) ⊆ α(w′)

and sow′ ⊨ x. Sincew 6⊨ ⊥, there is nothing to show if s is ⊥. Assumew ⊨ s → t

and w ≤ w′. We must prove w′ ⊨ s → t. Let w′′ ≥ w′ such that w′′ ⊨ s be given.

By transitivity, w ≤ w′′. Since w ⊨ s → t, we know w′′ ⊨ t as desired. �

The monotonicity property will be vital for proving the intuitionistic ND system

is sound for Kripke models.

Exercise 12.2.2 Let (W,≤, α) be a Kripke model. Argue the following facts.

a) w ⊨ ¬s if and only if w′ 6⊨ s for all w′ ≥ w.

b) w 6⊨ ¬s if and only if w′ ⊨ s for some w′ ≥ w.

c) w ⊨ ¬¬s if and only if for every w′ ≥ w there is some w′′ ≥ w′ such that

w′′ ⊨ s.
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Exercise 12.2.3 Prove Kripke models are a generalization of boolean assign-

ments as follows. Suppose a is a boolean assignment. Find a Kripke model

(W,≤, α) such that for every formula s, s evaluates to true under assignment a

if and only if w ⊨ s for every w ∈ W .

12.3 Soundness

We now prove the main soundness result of this chapter.

Theorem 12.3.1 (Soundness) Let (W,≤, α) be a Kripke model. If Γ ⊢N s, then

for every world w ∈ W we have w ⊨ Γ implies w ⊨ s.

Proof The proof is by induction on Γ ⊢N s.

AN : Consider Γ , s ⊢N s. If w ⊨ Γ , s, then w ⊨ s in particular.

WN : Suppose Γ , s ⊢N t follows from Γ ⊢N t. Assume w ⊨ Γ , s. In particular,

w ⊨ Γ . By the inductive hypothesis w ⊨ t as desired.

E⊥N : Suppose Γ ⊢N s follows from Γ ⊢N ⊥. Assume w ⊨ Γ . By the inductive

hypothesis w ⊨ ⊥, a contradiction.

E→N : Suppose Γ ⊢N t follows from Γ ⊢N s → t and Γ ⊢N s. Assume w ⊨ Γ . By

the inductive hypotheses w ⊨ s → t and w ⊨ s. Since w ≤ w, we know w ⊨ t.

I→N : Suppose Γ ⊢N s → t follows from Γ , s ⊢N t. Assume w ⊨ Γ . We must prove

w ⊨ s → t. Let w′ ≥ w such that w′ ⊨ s be given. We must prove w′ ⊨ t.

By monotonicity we know w′ ⊨ Γ . Since w′ ⊨ Γ , s we conclude w′ ⊨ t by the

inductive hypothesis. �

We can use the soundness result to conclude many consequences about

Kripke models. Suppose (W,≤, α) is a Kripke model and w ∈ W . Since

0 ⊢N s → s we know w ⊨ s → s. We can also conclude w 6⊨ ¬(s → s).

We will usually use the soundness result to conclude that certain formulas

are not provable in the intuitionistic ND system.

Exercise 12.3.2 There is no such soundness result for classical provability.

Which rule of the classical ND calculus causes a problem?

Exercise 12.3.3 Let (W,≤, α) be a Kripke model. Argue the following facts.

a) w ⊨ s → ¬¬s for all w ∈ W and formulas s.

b) w ⊨ s → t → s for all w ∈ W and formulas s and t.

c) w ⊨ (s → t → u)→ (s → t)→ s → u for all w ∈ W and formulas s, t and u.
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12.4 Independence Results

A formula s is independent of the intuitionistic ND system (or simply indepen-

dent) if 0 6⊢N s and 0 6⊢N ¬s. A very simple example of an independent formula

is a variable x. We know neither x nor ¬x is provable in the classical system (via

soundness of classical ND with respect to boolean assignments). Hence neither

is provable in the intuitionistic system.

A more interesting example is ¬¬x → x. Obviously 0 6⊢N ¬(¬¬x → x) since

0 ⊢NC ¬¬x → x. We can also demonstrate 0 6⊢N ¬(¬¬x → x) by choosing any

Kripke model with a single world.

In order to prove 0 6⊢N ¬¬x → x we must construct a Kripke model with a

world w such that w 6⊨ ¬¬x → x. Let (W,≤, α) be the Kripke model in which W

is {0, {x}}, w ≤ w′ means w ⊆ w′ and α(w) = w. As a tree the Kripke model

can be presented as follows:

0

{x}

(Note that this is exactly the same as the first example we considered in this

chapter.) We will prove 0 6⊨ ¬¬x → x. Since 0 6⊨ x, it suffices to prove 0 ⊨ ¬¬x.

In order to prove this we must verify that 0 6⊨ ¬x and {x} 6⊨ ¬x. Both of these

follow from {x} ⊨ x.

Exercise 12.4.1 Which of the following formulas are independent? Justify your

answer either by giving appropriate proofs in the intuitionistic ND system or by

giving appropriate Kripke models.

a) ¬(¬¬x → x)

b) (x → y)→ (¬x → y)→ y

c) ((x → y)→ x)→ x

Exercise 12.4.2 Suppose Γ and s are such that Γ ⊢NC s. Argue that Γ 6⊢N ¬s.

Exercise 12.4.3 Is there a Kripke model with a world w such that for every two

distinct variables x and y we have w 6⊨ x → y?

12.5 Formalization in Coq

As always, we give a formal version of the results of this chapter in Coq. In-

stead of formalizing Kripke models in full generality, we will restrict ourselves

to Kripke models given by a set of assignments. All the particular Kripke models

we have considered so far were in this form. Assume the set of worlds W is

finite and each world w is a finite set of variables. Assume w ≤ w′ if and only
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if w ⊆ w′. Further assume α(w) is simply w. To specify such a Kripke model it

suffices to specify the particular finite set W of finite sets of variables. Since we

do not have finite sets in Coq, we instead use lists. As before, a list of variables

is an assignment. Hence we represent a Kripke model in Coq as simply a list of

assignments.

The forces relation can be defined in Coq as recursive functions mapping to

either Prop or bool. We consider the versions mapping to Prop first.

Definition assignment := list var.

Fixpoint forcesP (W : list assignment) (a : assignment) (s : form) : Prop :=

match s with

| Var x => In x a

| Imp s t => forall a’, In a’ W −> incl a a’ −> forcesP W a’ s −> forcesP W a’ t

| Fal => False

end.

Definition forces’P (W : list assignment) (a : assignment) (G : list form) : Prop :=

forall s, In s G −> forcesP W a s.

The monotonicity result for formulas can be formalized as follows. The proof is

by a case analysis on s and is left as an exercise.

Lemma monotone_forcesP (W : list assignment) (a a’ : assignment) (s : form) :

In a’ W −> incl a a’ −> forcesP W a s −> forcesP W a’ s.

Proof. intros A’ B C. destruct s.

simpl. apply B. exact C.

intros a’’ A’’ B’ C’. apply C; try assumption.

now apply incl_tran with (m := a’).

contradiction C.

Qed.

Here is the Coq statement of the soundness result. The proof is by induction on

the proof of nd G s and is left as an exercise.

Lemma soundnessKP (W : list assignment) G s : nd G s −>

forall a, In a W −> forces’P W a G −> forcesP W a s.

Proof. intros D. induction D; try now firstorder.

intros a A B a’ A’ B’ C.

apply IHD. assumption.

intros u [E|E].

rewrite <− E. assumption.

apply monotone_forcesP with (a := a); try assumption.

apply B. assumption.

Qed.

The forces relation can also be defined in Coq as the recursive functions forces

and forces’ mapping to bool. We make use of the boolean version implb of
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implication and a boolean version inclb of list inclusion. For readability, we use

infix notation for these boolean functions.

Definition inclb (a a’: list nat) : bool :=

forallb (fun x => inb x a’) a.

Notation "w −−> w’" := (implb w w’).

Notation "w <= w’" := (inclb w w’).

Fixpoint forces (W : list assignment) (w : assignment) (s : form) : bool :=

match s with

| Var x => inb x w

| Imp s t => forallb (fun w’ => (w <= w’) −−> (forces W w’ s) −−> (forces W w’ t)) W

| Fal => false

end.

Definition forces’ (W : list assignment) (w : assignment) (G : list form) : bool :=

forallb (forces W w) G.

It is possible to prove reflection results.

Lemma forces_ref W w s : forces W w s <−> forcesP W w s.

Lemma forces’_ref W w G : forces’ W w G <−> forces’P W w G.

The boolean versions of the monotonicity and soundness results follow.

Lemma monotone_forces (W : list assignment) (w w’ : assignment) (s : form) :

In w’ W −> w <= w’ −> forces W w s −> forces W w’ s.

Proof. rewrite inclb_ref. rewrite forces_ref. rewrite forces_ref. now apply monotone_forcesP. Qed.

Lemma soundnessK (W : list assignment) G s : nd G s −>

forall w, In w W −> forces’ W w G −> forces W w s.

Proof. intros A w. rewrite forces’_ref. rewrite forces_ref. now apply soundnessKP. Qed.

We can now prove 0 6⊢N ¬¬x → x in Coq. The Kripke model we used was the

one with worlds 0 and {x}. In Coq we use the list [nil ,[0]] .

Lemma unprovable_DN : ~nd nil (Imp (Not (Not x)) x).

Proof. intros D.

pose (W := [nil ,[0]]).

assert (Wnil:In nil W). left . reflexivity .

assert (A:forces’ W nil nil ). simpl. tauto.

exact (soundnessK D Wnil A).

Qed.

We can also prove the negation of the double negation formula is unprovable. In

this case any one world model will do.
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Lemma unprovable_nDN : ~nd nil (Not (Imp (Not (Not x)) x)).

Proof. intros D.

pose (W := [@nil nat]).

assert (Wnil:In nil W). left . reflexivity .

assert (A:forces’ W nil nil ). simpl. tauto.

exact (soundnessK D Wnil A).

Qed.

We define independence as a simple conjunction.

Definition indep s := ~nd nil s /\ ~nd nil (Not s).

Independence of the double negation principle follows.

Lemma indep_DN : indep (Imp (Not (Not x)) x).

Proof. split. apply unprovable_DN. apply unprovable_nDN. Qed.

Exercise 12.5.1 Do the proofs of monotone_forcesP and soundnessKP in Coq.

Exercise 12.5.2 Prove the following in Coq.

Lemma unprovable_Peirce : ~nd nil (Imp (Imp (Imp x y) x) x).

Lemma unprovable_nPeirce : ~nd nil (Not (Imp (Imp (Imp x y) x) x)).

Lemma indep_Peirce : indep (Imp (Imp (Imp x y) x) x).

Lemma unprovable_PM : ~nd nil (Imp (Imp x y) (Imp (Imp (Not x) y) y)).

Lemma unprovable_nPM : ~nd nil (Not (Imp (Imp x y) (Imp (Imp (Not x) y) y))).

Lemma indep_PM : indep (Imp (Imp x y) (Imp (Imp (Not x) y) y)).

Lemma unprovable_PWM : ~nd nil (Imp (Imp (Not x) y) (Imp (Imp (Not (Not x)) y) y)).

Lemma unprovable_nPWM : ~nd nil (Not (Imp (Imp (Not x) y) (Imp (Imp (Not (Not x)) y) y))).

Lemma indep_PWM : indep (Imp (Imp (Not x) y) (Imp (Imp (Not (Not x)) y) y)).

12.6 Signed Tableaux for Intuitionistic Logic

Up until now when we have desired a Kripke model to demonstrate unprovabil-

ity of a formula in a context we have simply given a small model and checked

that in some world the formulas in the context are forced but the conclusion for-

mula is not forced. We now present a more systematic method for constructing
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C,⊥ C,x,x−

C, s− C, t

C
s → t ∈ C

C+, s, t−

C
s → t− ∈ C

Figure 12.1: Signed Intuitionistic Tableau System

counterexamples. In particular, we give a signed tableau system for intuitionistic

logic.

A clause is a finite set of signed formulas. We write C+ for the clause consist-

ing only of the positive formulas in C . That is, C+ is {s|s ∈ C}. Equivalently, C+

is C \{s−|s− ∈ C}. Figure 12.1 shows a tableau system. If one can derive a signed

clause C in this system, then we say there is an intuitionistic tableau refutation

of C . We will usually use the tableau system to construct Kripke models satisfy-

ing C .

Let (W,≤, α) be a Kripke model. We say w satisfies C if w ⊨ s for every

positive s ∈ C and if w 6⊨ s for every negative s− ∈ C . Note that if w satisfies C

and s → t ∈ C , then w either satisfies C, s− or satisfies C, t. Also, if w satisfies

C and s → t− ∈ C , then there is some w′ ≥ w such that w′ satisfies C+ (by

monotonicity), w′ ⊨ s and w′ 6⊨ t. From these facts we know that if there is a

world satisfying the conclusion of a tableau rule, then one can choose a premise

which is also satisfied by a (possibly different) world.

We say C is satisfiable if there is a Kripke model with a world satisfying C .

As above, if a clause C is satisfiable and C is the conclusion of a tableau rule in

Figure 12.1, then one of the premises of the rule is satisfiable.

Also, note that if we start form a clause C and apply the tableau rules back-

wards, we will only consider clauses containing signed subformulas of the formu-

las in C . There are only finitely many such clauses and so there are only finitely

many tableaux to consider. If there is no refutation, then appropriate choices

of premises will lead to a set of clauses satisfying certain closure conditions we

now describe.

A clause C is Hintikka if the following three conditions hold:

1. ⊥ ∉ C .

2. If s ∈ C , then s− ∉ C .

3. If s → t ∈ C , then s− ∈ C or t ∈ C .

A set D of Hintikka clauses is a demo if for every s → t− ∈ C ∈ D there is some

C′ ∈ D such that s ∈ C′, t− ∈ C′ and C+ ⊆ C′+.

A demo D induces a Kripke model as follows. We take D as the set of worlds

and with each Hintikka clause C ∈ D as a world. We define C ≤ C′ to hold if
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C+ ⊆ C′+. That is, C ≤ C′ if every positive formula in C is also in C′. Equivalently,

C ≤ C′ iff C+ ⊆ C′. Finally, let α(C) be {x|x ∈ C}. Clearly we have α(C) ⊆ α(C′)

whenever C ≤ C′ in D. Hence (D,≤, α) is a Kripke model.

Theorem 12.6.1 (Demo) Let D be a demo. For every formula s and Hintikka

clause C ∈ D, we have the following:

1. If s ∈ C , then C ⊨ s.

2. If s− ∈ C , then C 6⊨ s.

Consequently, for each C ∈ D, C ⊨ D.

Proof We prove this by induction on s. Let C ∈ D be given. If x ∈ C , then

x ∈ α(C) and so C ⊨ x. If x− ∈ C , then x ∉ C since C is Hintikka and so

x ∉ α(C) and C 6⊨ x. We never have ⊥ ∈ C since C is Hintikka. We always have

C 6⊨ ⊥.

Suppose s → t ∈ C . We must check C ⊨ s → t. Let C′ ∈ D such that C ≤ C′

and C′ ⊨ s be given. Since s → t ∈ C+ ⊆ C′+ ⊆ C′, we know s → t ∈ C′. Since

C′ is Hintikka, s− ∈ C′ or t ∈ C′. Since C′ ⊨ s, we cannot have s− ∈ C′ by the

inductive hypothesis for s. Hence t ∈ C′. By the inductive hypothesis for t, we

know C′ ⊨ t as desired.

Suppose s → t− ∈ C . We must check C 6⊨ s → t. Since D is a demo, there is

some C′ ∈ D such that C+ ⊆ C′, s ∈ C′ and t− ∈ C′. Since C+ ⊆ C′ we have

C ≤ C′ and so C′ witnesses C 6⊨ s → t. �

We now consider a few examples demonstrating how we can obtain demos

using the tableau rules.

Consider the clause with two negative implications: x → y− and y → x−. We

first apply the negative implication rule to x → y− and obtain a new clause with

x and y−.

x → y−, y → x−

x,y−

We next apply the negative implication rule to y → x− and obtain a new clause

with y and x−.

x → y−, y → x−

x,y− y,x−

There are no more rules to apply and in fact we have obtained a demo. The top

clause is a world which forces neither x → y nor y → x. We know this fact by

the Demo Theorem.

Let us now reconsider the example ¬¬x → x. We begin with the clause

{¬¬x → x−}. Applying the tableau rule to ¬¬x → x− we obtain
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¬¬x → x−

¬¬x,x−

We next apply the tableau rule to ¬¬x (i.e., ¬x → ⊥). We can either add ¬x− or

⊥ to the bottom clause. However, ⊥ will cause a conflict and we would like to

construct a demo. Hence we add ¬x− to the clause.

¬¬x → x−

¬¬x,x−,¬x−

Now we have a new negative implication formula: ¬x−. We add a new clause in

which we copy the positive formulas and include x and ⊥−.

¬¬x → x−

¬¬x,x−,¬x−

¬¬x,x,⊥−

Finally we apply the implication rule to ¬¬x in the new clause and add ¬x− to

the new clause.

¬¬x → x−

¬¬x,x−,¬x−

¬¬x,x,⊥−,¬x−

We now have a demo and the top clause is a world which does not force ¬¬x →

x.

We can also obtain the following relationship between intuitionistic tableau

refutability and the intuitionistic natural deduction system.

For a signed clause C let C− be {s|s− ∈ C}.

Theorem 12.6.2 If there is an intuitionistic tableau refutation of C , then there is

an u ∈ C− ∪ {⊥} such that C+ ⊢N u.

Proof If ⊥ ∈ C , then we clearly have C+ ⊢N ⊥. If x ∈ C and x− ∈ C , then we

clearly have C+ ⊢N x.

Suppose s → t ∈ C and both C, s− and C, t have intuitionistic tableau refuta-

tions. By the inductive hypothesis for C, s− we either have C+ ⊢N u for some

u ∈ C− ∪ {s−,⊥}. If u ∈ C− ∪ {⊥}, then we are done. Otherwise, u is s and we

have C+ ⊢N s. Since s → t ∈ C+ we know C+ ⊢N s → t and so C+ ⊢N t. By the

inductive hypothesis for C, t we have C+, t ⊢N v for some v ∈ C− ∪ {⊥}. Hence

C+ ⊢N t → v and so C+ ⊢N v as desired.

Finally, suppose s → t− ∈ C and C+, s, t− has an intuitionistic tableau refuta-

tion. By the inductive hypothesis either C+, s ⊢N ⊥ or C+, s ⊢N t. In either case

C+, s ⊢N t and so C+ ⊢N s → t as desired. �
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We consider a simple example. We start with the clause with signed formulas

x, x → y , y− and z−. The only rule which applies is the implication rule for x →

y . Both premises lead to a conflict since adding x− conflicts with x and adding

y conflicts with y−. By Theorem 12.6.2 we know that either x,x → y ⊢N ⊥,

x,x → y ⊢N y or x,x → y ⊢N z. In fact we know x,x → y ⊢N y .

12.7 Remarks

Kripke, a philosopher and logician, originally used Kripke models to provide se-

mantics for various modal logics in 1959. Since intuitionistic logic can be embed-

ded into a certain modal logic, this already provides a semantics for intuitionistic

logic. In 1965 Kripke considered the intiuitionistic case in depth.

Independence results have become more prevalent in mathematics in the past

century. In 1900 Hilbert gave a list of 23 unsolved problems in Mathematics.

Some of these remain unsolved to this day. The first problem was known as

the Continuum Hypothesis. From Cantor’s theorem, we know that the set of all

sets of natural numbers is not countable. The Continuum Hypothesis asserts

that there is no collection of a size between the size of the set of all natural

numbers (countable) and the size of the set of all sets of natural numbers. The

most popular logical system of set theory is first-order Zermelo-Fraenkel. Once

one has a logical system in which one can express the Continuum Hypothesis

as a formula, then it becomes possible to prove that neither it nor its negation

is provable. In 1940 Gödel proved the negation of the Continuum Hypothesis

is not provable. In 1963 Cohen proved the Continuum Hypothesis itself is also

not provable. Cohen used a technique called forcing. It is due to the similarities

between Cohen’s forcing and Kripke semantics that the term “forcing” is often

used in the context of Kripke semantics for intuitionistic logic. Indeed in Kripke’s

1965 paper on models for intuitionistic logic, he discusses the Cohen result in

the context of a Kripke model.

The tableau system is due to Fitting 1969.
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In this chapter we study quotients. For example, we form the set of finite sets of

natural numbers as the quotient of lists of natural numbers modulo list equiva-

lence. In set-theoretic mathematics, one can always form such quotients. In type

theory, the situation is different. One can only form quotients when one can find

a computational implementation for the quotient. We will also introduce a new

aspect of Coq: modules.

13.1 Sigma Types

In mathematics it is common to separate out a subset from a given set using a

given property. Such a set is usually written {x ∈ A|Px}. Informally, this is the

set of all elements of A satisfying the property P . We can obtain similar types in

type theory using sigma types.

Sigma types are formed using the inductive type sig defined in the Coq library

as follows.

Inductive sig (A : Type) (P : A −> Prop) : Type :=

exist : forall x : A, P x −> sig P

The argument A is implicit for both sig and exist. Coq allows the mathematical

notation {x:A | P x} to be used for the sigma type sig (fun x:A => P x).

A special case of sigma types are boolean sigma types. A boolean sigma type

is of the form {x:A |p x} where p:A −> bool. One way boolean sigma types are

special is that we can prove the following lemma.

Lemma sig_bPI (X:Type) (p:X −> bool) (x y : X) (H : p x) (H’ : p y) : x = y

−> exist (fun z => p z) x H = exist (fun z => p z) y H’.

We leave the proof of this as an exercise.

Exercise 13.1.1 Recall the definition of sig (sigma types).

Inductive sig (A : Type) (P : A −> Prop) : Type :=

exist : forall x : A, P x −> sig P

Prove the following in Coq.

Lemma bPI (x:bool) : forall (H H’:x), H = H’.
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Lemma sig_bPI (X:Type) (p:X −> bool) (x y : X) (H : p x) (H’ : p y) : x = y

−> exist (fun z => p z) x H = exist (fun z => p z) y H’.

13.2 Equivalence Relations as Modules

One can specify a mathematical structure in Coq by encapsulating a signature

of names and types into a module type. A module encapsulates a signature

of names and definitions. Coq can check that a module M implements a given

module type Φ by ensuring that for every name c declared as having type A in Φ

there is a definition c of type A in M . Since propositions are types module types

can also specify properties which must be proven of any module implementing

the module type.

As a simple example, we specify equivalence relations as a module type. An

equivalence relation on a type X is a binary relation E which is reflexive, sym-

metric and transitive.

Module Type EQUIVRELN.

Parameter X:Type.

Parameter E:X −> X −> Prop.

Axiom Eref : forall x, E x x.

Axiom Esym : forall x y, E x y −> E y x.

Axiom Etra : forall x y z, E x y −> E y z −> E x z.

End EQUIVRELN.

A simple example of an equivalence relation is the full relation on a type. To be

specific, we take the type of natural numbers. Here is a module implementing

the module type EQUIVRELN using the natural numbers and the full relation.

Module NATMODALL <: EQUIVRELN.

Definition X := nat.

Definition E := fun n m:nat => True.

Lemma Eref : forall x, E x x.

Proof. firstorder. Qed.

Lemma Esym : forall x y, E x y −> E y x.

Proof. firstorder. Qed.

Lemma Etra : forall x y z, E x y −> E y z −> E x z.

Proof. firstorder. Qed.

End NATMODALL.

13.3 Quotients

We now consider the mathematical notion of a quotient and determine a cor-

responding notion in type theory. Suppose X is a set and ∼ is an equivalence
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relation on X. For each x ∈ X, let x̃ be the set {y ∈ X|x ∼ y}. By reflexivity

we know x ∈ x̃ and so x̃ is nonempty. Using symmetry and transitivity we know

x̃ = ỹ whenever x ∼ y .

We define X/∼ to be the set {x̃|x ∈ X} and call this the quotient set of

X modulo ∼. There is clearly a function A mapping X onto X/∼ defined as

A(x) := x̃. Since each member of X/∼ is nonempty for each x̃ we can choose

an element C(x̃) of x̃. Since each x̃ is a subset of X we know C is a function

from X/∼ to X. Note that x ∼ C(x̃) since C(x̃) ∈ x̃. The function A gives us an

abstract version of x in which we forget the particular representative x of the

equivalence class x̃. Conversely the function C chooses a concrete representative

of an equivalence class x̃.

We now have three objects: X/∼, A : X → X/∼ and C : X/∼→ X. Let us

explore what properties relate these objects. We have already noted that A is

surjective. We also know that A maps ∼-equivalent elements (x ∼ y) to equal

elements (A(x) = x̃ = ỹ = A(y)). We can also prove C is injective relative to the

equivalence relation ∼ on X. Suppose C(x̃) ∼ C(ỹ). In this case we have

x ∼ C(x̃) ∼ C(ỹ) ∼ y

and so x ∼ y and x̃ = ỹ . It is also easy to check that C(A(x)) ∼ x andA(C(x̃)) =

x̃ (since C(x̃) ∈ x̃). Hence A and C act as inverses relative to the equivalence

relation ∼.

In Coq we cannot copy these mathematical constructions exactly. However,

we can consider a quotient of a type X by an equivalence relation ∼ to be given

by a type Q and two functions Abs : X → Q and Con : Q → X These functions

should be inverses to one another (relative to ∼ on X), Abs should respect the

equivalence relation ∼ and be surjective and Con should be injective relative to

∼. For all these properties to hold it is enough to require the following two

properties:

• For all a,b ∈ Q if Con(a) ∼ Con(b), then a = b.

• For every x ∈ X we have Con(Abs(x)) ∼ x.

13.4 Quotients as Functors

Since quotients depend on equivalence relations, we must consider module types

and modules which depend on other modules. Module types and modules which

depend on modules are called functor types and functors, respectively. In Coq

we specify a quotient relative to a given equivalence relation as the following

functor type.

Module Type QUOT (E’:EQUIVRELN).
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Export E’.

Parameter Q:Type.

Parameter Abs:X −> Q.

Parameter Con:Q −> X.

Axiom C_inj : forall a b, E (Con a) (Con b) −> a = b.

Axiom CA_id : forall x, E (Con (Abs x)) x.

End QUOT.

In this definition E’ refers to a module of module type EQUIVRELN (i.e., an equiv-

alence relation). The Export E’ statement allows us to reference the names X,

E, Eref, Esym and Etra from the module E’. When we apply QUOT to a par-

ticular equivalence relation module we obtain a module type. For example,

QUOT NATMODALL is the module type for the quotient of nat by the full rela-

tion. An implementation of the module QUOT NATMODALL is a quotient of nat

by the full relation. We can easily implement such a quotient using the unit type.

Module NATMODALLQUOT : QUOT NATMODALL.

Export NATMODALL.

Definition Q := unit.

Definition Abs := fun n:nat => tt.

Definition Con := fun _:unit => 0.

Lemma C_inj : forall a b, E (Con a) (Con b) −> a = b.

Proof. intros [] [] H. reflexivity . Qed.

Lemma CA_id : forall x, E (Con (Abs x)) x.

Proof. intros x. unfold E. tauto. Qed.

End NATMODALLQUOT.

In the previous section we informally argued that requiring the properties

C_inj and CA_id is sufficient to obtain all the properties we expect of a quotient.

We can verify this in Coq by proving appropriate theorems. One way to make

such results reusable in the future is to define a functor which assumes a quo-

tient module and extends the module with a number of theorems. We call this

functor QUOT2.

Module QUOT2 (E’:EQUIVRELN) (Q’:QUOT E’).

Export E’.

Export Q’.

Add Parametric Relation : X E

reflexivity proved by Eref

symmetry proved by Esym

transitivity proved by Etra

as Erel.

Add Parametric Morphism : Abs with

signature E ==> (@eq Q) as A_eq.
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Proof. intros x y H. apply C_inj. rewrite CA_id. rewrite CA_id. assumption. Qed.

Lemma AC_id : forall a, Abs (Con a) = a.

Proof. intros a. apply C_inj. rewrite CA_id. reflexivity. Qed.

Lemma A_inj : forall x y, Abs x = Abs y −> E x y.

Proof. intros x y H. rewrite <− CA_id. rewrite H. rewrite CA_id. reflexivity. Qed.

Lemma A_fun (Z:Type) (f:X −> Z) : (forall x y, E x y −> f x = f y) −>

forall x, (fun a => f (Con a)) (Abs x) = f x.

Proof. intros H x. simpl. apply H. now apply CA_id. Qed.

End QUOT2.

Exercise 13.4.1 For each of the following equivalence relations, implement a

quotient.

a) nat modulo ≈ where n ≈ m if n and m are the same modulo 2. (That is,

n ≈m if either both are even or both are odd.)

b) list nat modulo ≈ where l ≈ l′ if l and l′ have the same length.

c) bool −> bool modulo functional equivalence.

13.5 Finite Sets of Naturals

We can obtain a type of finite sets of natural numbers by constructing a quo-

tient of finite lists of natural numbers over the list equivalence ≈ considered in

Section 10.5. Recall A ≈ B if and only if A and B have the same elements. The

equivalence relation can be implemented as follows.

Module NATSETEQUIV <: EQUIVRELN.

Definition X := list nat.

Definition E := fun A B:list nat => equi A B.

Lemma Eref : forall x, E x x.

Proof. exact (@equi_refl nat). Qed.

Lemma Esym : forall x y, E x y −> E y x.

Proof. exact (@equi_sym nat). Qed.

Lemma Etra : forall x y z, E x y −> E y z −> E x z.

Proof. exact (@equi_tran nat). Qed.

End NATSETEQUIV.

The facts equi_refl, equi_sym and equi_tran were proven in Section 10.5 using

the firstorder tactic.

It will take some time to implement finite sets as a quotient (i.e., as a mod-

ule of module type QUOT NATSETEQUIV). We can develop the basic theory in
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the abstract by assuming we have an implementation. We assume we have an

implementation by defining a functor SET.

Module SET (M:QUOT NATSETEQUIV).

Export M.

The type Q is the assumed type of finite sets. For readability, let us define an

abbreviation set for Q.

Definition set := Q.

Recall that we have a general membership predicate In on lists. On lists of

natural numbers we have the boolean predicate inb and the corresponding re-

flection lemma.

Definition inb (x : nat) (xs : list nat) : bool :=

if in_dec eq_nat_dec x xs then true else false.

Lemma inb_ref x A : inb x A <−> In x A.

We can use Con to lift inb to membership on sets.

Definition insb n X : bool := inb n (Con X).

We can now verify one of the main properties we wanted: two sets are the

same if they have the same members. This property is known as set extension-

ality.

Lemma setext X Y : (forall n, insb n X <−> insb n Y) −> X = Y.

Proof. intros H. apply C_inj. split.

intros n. specialize (H n). unfold insb in H. rewrite inb_ref in H. rewrite inb_ref in H.

now firstorder.

intros n. specialize (H n). unfold insb in H. rewrite inb_ref in H. rewrite inb_ref in H.

now firstorder. Qed.

We next consider how we can construct sets. The empty set 0 is the abstract

version of the empty list. We can prove the empty set has no elements.

Definition empty : set := Abs (@nil nat).

Lemma emptyE n : ~insb n empty.

Given any natural number n, we can define the singleton {n} using the sin-

gleton list. We can prove n ∈ {n} and that m = n for any m ∈ {n}.

Definition sing n : set := Abs [n].

Lemma singI n : insb n (sing n).

Lemma singE m n : insb m (sing n) −> m = n.
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Finally we define binary union X ∪ Y via concatenation of lists.

Definition union X Y : set := Abs (Con X ++ Con Y).

For every sets X and Y and natural numbers n we can prove the following facts:

• n ∈ X → n ∈ X ∪ Y

• n ∈ Y → n ∈ X ∪ Y

• n ∈ X ∪ Y → n ∈ X ∨n ∈ Y

In Coq these lemmas are given as follows.

Lemma unionI1 X Y n : insb n X −> insb n (union X Y).

Lemma unionI2 X Y n : insb n Y −> insb n (union X Y).

Lemma unionE X Y n : insb n (union X Y) −> insb n X \/ insb n Y.

We finally end the definition of the functor.

End SET.

13.6 Quotients via Normalization

We can use boolean sigma types to construct many quotients. Suppose we have

an equivalence relation with type X : T and relation E : X → X → Prop. Suppose

we further have a boolean predicate p : X → bool and a normalization function

n : X → X satisfying three properties:

• nu : ∀xy : X,px → py → Exy → x = y

• np : ∀x : X,p(nx)

• nE : ∀x : X,E(nx)x

We can construct a quotient as follows:

Definition Q : Type := {x:X |p x}.

Definition Abs : X −> Q := fun x => exist p (n x) (np x).

Definition Con : Q −> X := fun X => let (x,_) := X in x.

Lemma C_inj : forall a b:Q, E (Con a) (Con b) −> a = b.

Proof. intros [x Hx] [y Hy]. unfold Con. intros H1. apply sig_bPI. now apply nu. Qed.

Lemma CA_id : forall x:X, E (Con (Abs x)) x.

Proof. intros x. unfold Con,Abs. apply nE. Qed.

This is the process we will use to construct a quotient for lists of natu-

ral numbers modulo list equivalence ≈. We will construct a boolean predicate
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sortedb : list nat → bool recognizing strictly sorted lists of natural numbers (or-

dered by <) and a normalization function sort : list nat → list nat which sorts a

list of natural numbers. In order to construct the quotient as a boolean sigma

type we will prove three facts from above.

• ∀AB : list nat, sortedbA → sortedb B → A ≈ B → A = B

• ∀A : list nat, sortedb (sort A)

• ∀A : list nat, sort A ≈ A

13.7 Sorted Lists

Even though we only need sortedb as a boolean predicate, it will be easier to

reason about an equivalent inductive predicate sorted.

Inductive sorted : list nat −> Prop :=

| sorted_nil : sorted nil

| sorted_sing x : sorted [x]

| sorted_rec x y A : x<y −> sorted (y::A) −> sorted (x::y::A).

Mathematically we can define sorted with the rules

sorted nil sorted [x]

sorted(x :: A)

sorted (x :: y :: A)
x < y

By inversion we have the following:

Lemma sorted_cons x A :

sorted (x::A) −> sorted A.

We also know that if (x :: A) is sorted then x must be less than every element in

A. We make an auxiliary relation ltL expressing this and prove the fact.

Definition ltL (x : nat) (A : list nat) : Prop :=

forall y, In y A −> x < y.

Lemma sorted_cons_lt x A :

sorted (x::A) −> ltL x A.

Also, if x is less than every element of a sorted list A, then (x :: A) is sorted.

Lemma sorted_lt x A :

sorted A −> ltL x A −> sorted (x::A).

We now can prove that if (x :: A) ⊆ (y :: B) where (x :: A) and (y :: B) are

both sorted, then y ≤ x and A ⊆ B.

Lemma sorted_incl_lt x y A B :

sorted (x::A) −> sorted (y::B) −> incl (x::A) (y::B) −> y <= x.
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Lemma sorted_incl x y A B :

sorted (x::A) −> sorted (y::B) −> incl (x::A) (y::B) −> incl A B.

Using these lemmas we can prove one of the main properties we will need: If A

and B are sorted and A ≈ B, then A = B.

Lemma sorted_equi A B :

sorted A −> sorted B −> equi A B −> A=B.

We now define a function sort which sorts lists. We use the insertion sort

algorithm. We first need a function insert to insert x into a list A such that

insert xA ≈ (x :: A) and insert xA is sorted if A is sorted. We make use of the

function

lt_eq_lt_dec : forall n m : nat, {n < m} + {n = m} + {m < n}

from the Coq library.

Fixpoint insert (x : nat) (A : list nat) : list nat :=

match A with

| nil => [x]

| y::A’ => match lt_eq_lt_dec x y with

| inleft ( left _) => x::A

| inleft (right _) => A

| inright _ => y :: insert x A’

end

end.

The relevant lemmas about insert can be proven by induction on lists.

Lemma insert_equi x A :

equi (insert x A) (x :: A).

Lemma insert_sorted x A :

sorted A −> sorted (insert x A).

We can now define the sorting algorithm.

Fixpoint sort (A : list nat) : list nat :=

match A with

| nil => A

| x::A => insert x (sort A)

end.

By induction on lists we can prove the following vital properties.

Lemma sort_equi A :

equi (sort A) A.

Lemma sort_sorted A :

sorted (sort A).
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Note that sort_equi is exactly one of the three properties we need.

In order to complete the realization of the quotient we define a boolean pred-

icate sortedb and prove the corresponding reflection lemma.

Fixpoint sortedb (A : list nat) : bool :=

match A with

| nil => true

| x::A’ => match A’ with

| nil => true

| y::_ => if lt_dec x y then sortedb A’ else false

end

end.

Lemma sortedb_ref A :

sortedb A <−> sorted A.

We can use this reflection lemma to obtain the other two of the three properties

we need.

Lemma sortedb_equi A B :

sortedb A −> sortedb B −> equi A B −> A=B.

Proof. rewrite sortedb_ref. rewrite sortedb_ref. now apply sorted_equi. Qed.

Lemma sortedb_sort A :

sortedb (sort A).

Proof. apply sortedb_ref, sort_sorted. Qed.

We can now implement the quotient using the boolean sigma type

{x: list nat|sortedb x} and hence obtain an implemention of finite sets of natural

numbers.

Module NATSET <: QUOT NATSETEQUIV.

Definition Q := {l | sortedb l}.

Definition Abs := fun A:list nat => exist sortedb (sort A) (sortedb_sort A).

Definition Con := fun X:Q => let (A,_) := X in A.

Lemma C_inj : forall X Y:Q, equi (Con X) (Con Y) −> X = Y.

Proof. destruct X as [A HA], Y as [B HB] ; simpl ; intros C.

now apply sig_bPI, sortedb_equi. Qed.

Lemma CA_id : forall A:list nat, equi (Con (Abs A)) A.

Proof. simpl. apply sort_equi. Qed.

End NATSET.
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In this chapter we will define a function first taking a boolean predicate p : nat →

bool and a proof of ∃x : nat, px and return the least natural number n such that

pn. Writing such a function requires a couple of new ideas. In a programming

language, we would ignore the proofs and write a recursive function that starting

from 0 searches for the first number satisfying p. In Coq, we face the problem

that increasing a number is not structurally recursive. For that reason we will

write a recursive function taking as arguments a counter and a permission. The

counter is incremented by 1 by each recursion step. The permission is decreased

by each recursion step. So the recursion is on the permission. We represent

permissions as proof terms for an inductive predicate safe.

Inductive safe (p : nat −> bool) (n : nat) : Prop :=

| safeI : p n −> safe p n

| safeS : safe p (S n) −> safe p n.

If we have a permission A : safe p n, we know that there is a k ≥ n satisfying p

and that the size of the permission is an upper bound on the number of steps it

takes an upward search starting at n to find a number satisfying p.

We define propositions low pn stating that nothing smaller than n satisfies

p and minpn stating that n is the least natural number satisfying p.

Definition low (p : nat −> bool) (n : nat) : Prop :=

forall k, k<=n −> p k −> k = n.

Definition min (p : nat −> bool) (n : nat) : Prop :=

p n /\ low p n.

When p : nat → bool Coq allows us to write ex p for ex (fun x:nat => p x) (i.e.,

∃x.px). We will write a function firstc′ that given a number n, a permission of

type safe p n, and a proof of low pn returns the least k ≥ n satisfying p together

with a proof of minpk. We can define this by recursion on the permission A. The

type of firstc′ will be

forall (p : nat −> bool) (n : nat) (A : safe p n), low p n −> {k:nat|min p k}.

The first thing the function will do is make a case distinction on whether p n

is true or false. Since we will also need a proof of p n or ¬p n in each case, we

first obtain the following function.

181



14 Least Number Search

Definition IBC’ (x : bool) : {x} + {~ x}.

destruct x. left. exact I. right. tauto. Defined.

If p n, then firstc′ will return n (with a proof of min p n). If ¬p n, then we will

make a recursive call with Sn and a structurally smaller permission. We will also

need a proof of low p (Sn) to make the recursive call. For this reason we need

the following lemma.

Lemma lowS p n : low p n −> ~ p n −> low p (S n).

Proof. intros A B k C D. destruct (le_lt_eq_dec k (S n) C) as [E|E].

assert (F:k = n). apply A. omega. assumption.

exfalso. apply B. rewrite <− F. assumption.

exact E. Qed.

Note that we have used the function

le_lt_eq_dec : forall n m : nat, n <= m −> {n < m} + {n = m}

from the Coq library.

We define firstc′ by recursion.

Fixpoint firstc’ (p : nat −> bool) n (A:safe p n) : low p n −> {k:nat|min p k} :=

fun B =>

match (IBC’ (p n)) with

| left C => exist (fun k => min p k) n (conj C B)

| right C =>

firstc ’ (match A with

| safeI D => match (C D) with end

| safeS D => D

end)

(lowS B C)

end.

We can alternatively define firstc′ with a script as follows.

Fixpoint firstc’ (p : nat −> bool) n (A:safe p n) : low p n −> {k:nat|min p k}.

intros B. destruct (IBC’ (p n)) as [C|C].

exists n. split . exact C. exact B.

apply firstc’ with (n := S n).

destruct A as [D|D].

contradiction (C D).

exact D.

now apply lowS. Defined.

Both of these presentations of the definition requires some explanation.

The function firstc′ is given a counter n, a permission A and a proof B of

low pn. It first tests whether the counter satisfies p. If this is the case, it returns

the counter n paired with the proof of pn ∧ low p n (i.e., min p n). Otherwise,

the function recurses with the incremented counter and a permission that is
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obtained with a match on the given permission A. For the recursion to be struc-

tural, the permission obtained with the match must be structurally smaller than

the permission A. This is the case if each rule of the match yields a permission

that is smaller than A. In case A was formed with safeI we must have a proof of

¬(pc), a contradiction. For this reason, the body of the first rule is a match (on a

proof of False) with no rules and hence yields a permission smaller than A (since

each of its rules does). The body of the second rule returns a permission that is

obtained from A by stripping off the constructor safeS.

An ordinary recursive function first does a match on the argument it recurses

on and then recurses in the bodies of some of the rules. The function first′

modifies this pattern in that it delegates the match to an argument term of the

recursive application. We speak of an eager proof recursion. With eager proof

recursion it is possible to recurse and match on proofs but nevertheless return

values that are not proofs. This is impossible with the ordinary recursion pattern

since it would violate the elim restriction.

We can now define a function firstc of type

forall p:nat −> bool, ex p −> {n:nat|min p n}

by calling firstc′ with initial counter value 0. With the following lemmas we know

0 is safe and low.

Lemma safe_O p : forall n, safe p n −> safe p O.

Proof. induction n. tauto. intros A. apply IHn, safeS, A. Defined.

Lemma ex_safe (p : nat −> bool) : ex p −> safe p O.

Proof. intros [n A]. exact (safe_O (safeI A)). Defined.

Lemma lowO p : low p O.

Proof. intros k. omega. Qed.

We can now easily define firstc.

Definition firstc (p : nat −> bool) : ex p −> {n:nat|min p n} :=

fun E => firstc’ (ex_safe E) (@lowO p).

We can also define the function first mapping to nat by forgetting the proof of

min p n.

Definition first (p : nat −> bool) (A : ex p) : nat :=

let (n,_) := firstc A in n.

Finally we can define a function of type

forall (p:nat −> bool), (exists x:nat, p x) −> {x:nat|p x}.

by simply calling firstc and forgetting that the return value n satisfies low p n. In

general we say a choice operator for boolean predicates on type X is an element

of type
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forall (p:X −> bool), (exists x:X, p x) −> {x:X|p x}.

We record this in the following definition

Definition Choice_b (X:Type) : Type :=

forall (p:X −> bool), (exists x:X, p x) −> {x:X|p x}.

As promised, we can use firstc to obtain a choice operator for boolean predicates

on nat.

Definition choose_b_nat : Choice_b nat.

intros p A. destruct (firstc A) as [n [B _ ]]. exists n. exact B. Defined.

Exercise 14.0.1 Is there a choice operator for boolean predicates on bool?
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In Chapter 3 we briefly discussed excluded middle and the double negation law

as propositions that are not provable in Coq. Nevertheless, these are natural

assumptions one makes when working in a mathematical context. In this chapter

we consider different propositions which are not provable in Coq but are natural

mathematical assumptions.

15.1 Classical Assumptions

Recall the propositions XM (excluded middle) and DN (the double negation law).

Definition XM : Prop := forall X : Prop, X \/ ~X.

Definition DN : Prop := forall X : Prop, ~~X −> X.

Neither of these are provable in Coq, but both are natural mathematical assump-

tions. In fact, they are provably equivalent in Coq (see Exercise 3.15.2), so that

by assuming either one, we obtain a proof of the other.

Another equivalent proposition is Peirce’s law.

Definition PEIRCE : Prop := forall X Y : Prop, ((X −> Y) −> X) −> X.

After considering XM , DN and PEIRCE , one may get the impression that all

classical assumptions are equivalent. This is not the case. An example is the

Gödel-Dummett (GD) proposition:

Definition GD :=

forall X Y:Prop, (X −> Y) \/ (Y −> X).

We can prove GD from XM , but XM is not provable from GD in Coq.

Exercise 15.1.1 Prove GD follows from XM .

Goal XM −> GD.

15.2 Extensional Assumptions

Extensional assumptions allow us to prove certain objects are equal by proving

they have a common property. None of these propositions are provable in Coq.
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• Functional Extensionality (FuncE): Two functions are equal if they have the

same value on all arguments.

Definition FuncE : Prop :=

forall X Y : Type, forall f g:X −> Y, (forall x:X, f x = g x) −> f = g.

• Propositional Extensionality (PropE): Two propositions are equal if they are

equivalent.

Definition PropE : Prop :=

forall X Y : Prop, (X <−> Y) −> X = Y.

• Predicate Extensionality (PredE): Two predicates are equal if the same ele-

ments satisfy the predicates.

Definition PredE : Prop :=

forall X:Type, forall p q:X −> Prop, (forall x:X, p x <−> q x) −> p = q.

We prove PredE follows from FuncE and PropE .

Lemma FuncE_PropE_PredE : FuncE −> PropE −> PredE.

Proof. intros fe pe X p q A. apply fe. intros x. apply pe. firstorder. Qed.

Also, predicate extensionality implies propositional extensionality.

Lemma PredE_PropE : PredE −> PropE.

Proof. intros pe X Y A.

assert (B:(fun _:unit => X) = (fun _ => Y)).

apply (pe unit (fun _ => X) (fun _ => Y)). intros _. assumption.

change ((fun _ => X) tt = (fun _ => Y) tt). rewrite B. reflexivity . Qed.

15.3 Proof Irrelevance

Another proposition which is not provable in Coq is proof irrelevance (PI ). Proof

irrelevance says that there is at most one proof of any proposition.

Definition PI : Prop := forall X:Prop, forall A B:X, A = B.

In Coq, one can prove PropE implies PI . We will prove this result in the rest

of this section. One can also prove XM implies PI . Note that without the elim

restriction, we could distinguish proofs. This would allow us to prove the nega-

tion of PI and hence the negation of both XM and PropE . One reason the elim

restriction is so restrictive is so that Coq remains consistent with XM and PropE .

In the rest of this section we prove PI form PropE . We start by defining an

inductive proposition P2 with two proof constructors p0 and p1.

Inductive P2 : Prop := p0 : P2 | p1 : P2.

186 2012-7-18



15.3 Proof Irrelevance

Propositional extensionality can be used to prove p0 = p1 as follows. Assume

propositional extensionality. Using the identity function from (λx : P2.x) as

witnesses for f and g we can easily prove

∃f : P2 → P2.∃g : P2 → P2.∀v : P2, g(fv) = v.

Since P2 is provable, propositional extensionality implies (P2 → P2) = P2. By

rewriting with this equality we know

∃f : (P2 → P2)→ P2.∃g : P2 → P2 → P2.∀v : P2 → P2.g(fv) = v.

Let f and g be such that ∀v : P2 → P2.g(fv) = v . Now let n : P2 → P2 be the

function such that np0 = p1 and np1 = p0. Let v : P2 → P2 be λx.n(gxx) and

y : P2 be g(fv)(fv). Note that since g(fv) = v we have

y = g(fv)(fv) = v(fv) = n(g(fv)(fv)) = ny.

That is, y = ny . By a final case analysis we know either y = p0 and so p0 =

np0 = p1 or y = p1 and so p1 = np1 = p0.

Here is the proof as a Coq script.

Lemma PropE_P2PI : PropE −> p0 = p1.

Proof. intros pe.

assert (A:exists f:(P2 −> P2) −> P2, exists g:P2 −> P2 −> P2, forall v:P2 −> P2, g (f v) = v).

assert (B:(P2 −> P2) = P2). apply pe. split. intros _. exact p0. tauto.

rewrite B. exists (fun x => x). exists (fun x => x). intros x. reflexivity .

destruct A as [f [g B]].

pose (n x := match x with p0 => p1 | p1 => p0 end).

pose (v := (fun x => n (g x x))).

pose (y := g (f v) (f v )).

assert (n y = y). unfold y at 2. rewrite B. reflexivity .

case_eq y; intros C.

rewrite <− C. rewrite <− H. rewrite C. simpl. reflexivity.

rewrite <− C. rewrite <− H. rewrite C. simpl. reflexivity. Qed.

We can now prove that propositional extensionality implies proof irrelevance.

Assume propositional extensionality and that A and B are both proofs of a

proposition X. Let h : P2 → X be defined such that hp0 = A and hp1 = B.

By the previous result p0 = p1 and hence A = B.

Here is the proof as a Coq proof script.

Lemma PropE_PI : PropE −> PI.

Proof. intros pe X A B.

pose (h x := match x with p0 => A | p1 => B end).

assert (C:A = h p0). reflexivity.

rewrite C. rewrite (PropE_P2PI pe). reflexivity. Qed.
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15 Mathematical Assumptions

15.4 Choice

In Chapter 14 we constructed a choice operator for boolean predicates on nat. A

choice operator on type X is an element of type

forall p:X −> Prop, ex p −> {x:X|p x}

We can record this in the following definition.

Definition Choice (X:Type) : Type := forall (p:X −> Prop), (exists x:X, p x) −> {x:X|p x}.

In mathematics it is sometimes useful to assume there is a choice operator at

every type. This is one form of the axiom of choice.

If we assume nat has a choice operator and we assume predicate extension-

ality, then we can prove excluded middle. This result is called Diaconescu’s

Theorem and was first proven in the 1970s. We give the informal argument and

then give the corresponding Coq proof script.

Assume predicate extensionality and let c be a choice operator on type nat.

Let X be a proposition. For x : nat let p x be the proposition x = 0 ∨ X and

let q x be the proposition x = 1 ∨ X. Clearly we have proofs A : ∃x,px and

B : ∃x,qx. We know c p A yields a natural number n with a proof of pn. Either

n is 0 or X holds. If X holds, we are done. Assume n = 0. Likewise c q B yields

a natural number m with a proof of qm. Either m is 1 or X holds. If X holds, we

are done. Assume m = 1. In this final case we will prove ¬X. Assume X. Under

this assumption it is easy to prove ∀x.px ↔ qx and so p = q by predicate

extensionality. Hence the propositions ∃x.px and ∃x.qx are the same and so

A and B are proofs of the same proposition. Predicate extensionality implies

propositional extensionality which implies proof irrelevance. Hence A and B are

equal. Thus n =m and so 0 = 1, a contradiction.

Here is the corresponding Coq proof script.

Lemma Choice_nat_PredE_XM : Choice nat −> PredE −> XM.

Proof. intros c pe X.

pose (c’ := fun p A => let (n,_) := c p A in n).

pose (p x := x = O \/ X).

assert (A:exists x, p x). exists O. left . reflexivity .

case_eq (c p A). intros n [C|C] D.

assert (D’:c’ p A = n). unfold c’. rewrite D. reflexivity.

pose (q x := x = S O \/ X).

assert (B:exists x, q x). exists (S O). left . reflexivity .

case_eq (c q B). intros m [E|E] F.

assert (F’:c’ q B = m). unfold c’. rewrite F. reflexivity .

right. intros G.

assert (H:p = q). apply pe. intros x. split; intros _; right; assumption.

cut (n = m). rewrite C. rewrite E. discriminate.

rewrite <− D’. rewrite <− F’. clear D D’. revert A. rewrite H.
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15.4 Choice

intros A.

assert (AB:A = B). now apply PropE_PI, PredE_PropE.

rewrite AB. reflexivity.

tauto. tauto. Qed.

Exercise 15.4.1 Modify the proof above to prove that excluded middle follows

from predicate extensionality and a choice operator on bool. (Hint: Exactly two

changes are required.)

Exercise 15.4.2 Does unit have a choice operator?
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