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Introduction

This course is an introduction to basic logic principles, constructive type theory,

and interactive theorem proving with the proof assistant Coq. At Saarland Uni-

versity the course is taught in this format since 2010. Students are expected to

be familiar with basic functional programming and the structure of mathemati-

cal definitions and proofs. Talented students at Saarland University often take

the course in the second semester of their Bachelor’s studies.

Constructive type theory provides a programming language for developing

mathematical and computational theories. Theories consist of definitions and

theorems, where theorems state logical consequences of definitions. Every the-

orem comes with a proof justifying it. If the proof of a theorem is correct, the

theorem is correct. Constructive type theory is designed such that the correct-

ness of definitions and proofs can be checked automatically.

Coq is an implementation of a constructive type theory known as the calculus

of inductive definitions. Coq is designed as an interactive system that assists the

user in developing theories. The most interesting part of the interaction is the

construction of proofs. The idea is that the user points the direction while Coq

takes care of the details of the proof. In the course we use Coq from day one.

Coq is a mature system whose development started in the 1980’s. In recent

years Coq has become a popular tool for research and education in formal the-

ory development and program verification. Landmarks are a proof of the four

color theorem, a proof of the Feit-Thompson theorem, and the verification of a

compiler for the programming language C (COMPCERT).

Coq is the applied side of this course. On the theoretical side we explore the

basic principles of constructive type theory, which are essential for programming

languages, logical languages, proof systems, and the foundation of mathematics.

An important part of the course is the theory of classical and intuitionistic

propositional logic. We study various proof systems (Hilbert, ND, tableaux), de-

cidability of proof systems, and the semantic analysis of proof systems based on

models. The study of propositional logic is carried out in Coq and serves as a

case study of a substantial formal theory development.

Dedication

This text is dedicated to the many people who have designed and implemented

Coq since 1985.

1
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1 Types and Functions

In this chapter, we take a first look at Coq and its mathematical programming

language. We define basic data types such as booleans, natural numbers, and

lists and functions operating on them. For the defined functions we prove equa-

tional theorems, constructing the proofs in interaction with the Coq interpreter.

The definitions we study are often recursive and the proofs we construct are

often inductive.

In the following it is absolutely essential that you have a Coq interpreter run-

ning and that you experiment with the definitions and proofs we discuss. In Coq,

proofs are constructed with scripts and the resulting proof process can only be

understood in interaction with a Coq interpreter.

1.1 Booleans

We start with the definition of a type bool with two elements true and false.

Inductive bool : Type :=

| true : bool

| false : bool.

The words Inductive and Type are keywords of Coq and the identifiers bool, true,

and false are the names we have chosen for the type and its elements. The identi-

fiers bool, true, and false serve as constructors, where bool is a type constructor

and true and false are the value constructors of bool. The above definition over-

writes the definition of bool in Coq’s standard library, but this does not matter

for our first encounter with Coq.

We define a negation function negb.

Definition negb (x : bool) : bool :=

match x with

| true⇒ false

| false⇒ true

end.

The match term represents a case analysis for the boolean argument x. There is

a rule for each value constructor of bool. We can check the type of terms with

the command Check:

3



1 Types and Functions

Check negb.

% negb : bool → bool

Check negb (negb true).

% negb (negb true) : bool

We can evaluate terms with the command Compute.

Compute negb (negb true).

% true : bool

We are now ready for our first proof with Coq.

Lemma L1 :

negb true = false.

Proof. simpl. reflexivity. Qed.

The command starting with the keyword Lemma states the equation we want to

prove and gives the lemma the name L1. The sequence of commands starting

with Proof and ending with Qed constructs the proof of Lemma L1. It is now

essential that you step through the commands with the Coq interpreter one by

one. Once the lemma command is accepted, Coq switches from top level mode

to proof editing mode. The commands between Proof and Qed are called tactics.

The tactic simpl simplifies both sides of the equation to be shown by applying

the definition of negb. This leaves us with the trivial equation false = false, which

we prove with the tactic reflexivity. The command Qed finishes the proof.

Our second proof shows that double negation is identity.

Lemma negb_negb (x : bool) :

negb (negb x) = x.

Proof.

destruct x.

− reflexivity.

− reflexivity.

Qed.

This time the claim involves a boolean variable x and the proof proceeds by case

analysis on x. Since reflexivity performs simplification automatically, we have

omitted the tactic simpl.

It is important that with Coq you step back and forth in the proof script and

observe what happens. This way you can see how the proof advances. At each

point in the proof process you are confronted with a proof goal comprised of a

list of assumptions (possibly empty) and a claim. Here are the proof goals you

will see when you step through the above proof script.

x : bool

negb (negb x) = x negb (negb true) = true

negb (negb false) = false

4 2013-7-26



1.1 Booleans

In each goal, the assumptions appear above and the claim appears below the

rule. The tactic destruct x does the case analysis and replaces the initial goal

with two subgoals, one for x = true and one for x = false. The proof is finished if

both subgoals are solved (i.e., proved).

Since the proof finishes with reflexivity in both cases, we can shorten the

proof script by combining the tactics destruct x and reflexivity with the semi-

colon operator.

Proof. destruct x ; reflexivity. Qed.

We define a boolean conjunction function andb.

Definition andb (x y : bool) : bool :=

match x with

| true⇒ y

| false⇒ false

end.

We prove that boolean conjunction is commutative.

Lemma andb_com x y :

andb x y = andb y x.

Proof.

destruct x.

− destruct y ; reflexivity.

− destruct y ; reflexivity.

Qed.

The proof can be written more succinctly as

Proof. destruct x, y ; reflexivity . Qed.

The short proof script has the drawback that you don’t see much when you step

through it. For that reason we will often give proof scripts that are longer than

necessary.

Note that we have stated the lemma andb_com without giving types for the

variables x and y . This leaves it to Coq to infer the missing types. When you

look at the initial goal of the proof, you will see that x and y have both received

the type bool. Automatic type inference is an important feature of Coq.

A word on terminology. In mathematics, theorems are usually classified into

propositions, lemmas, theorems, and corollaries. This distinction is a matter of

style and does not matter logically. When we state a theorem in Coq, we will

mostly use the keyword Lemma. Coq also accepts the keywords Proposition,

Theorem, and Corollary, which are treated as synonyms.

Exercise 1.1.1 A boolean disjunction x ∨ y yields false if and only if both x

and y are false.

2013-7-26 5



1 Types and Functions

a) Define disjunction as a function orb : bool → bool → bool in Coq.

b) Prove that disjunction is commutative.

c) Formulate and prove the De Morgan law ¬(x ∨y) = ¬x ∧¬y in Coq.

1.2 Cascaded Functions

When we look at the type of andb

Check andb.

% andb : bool → bool → bool

we note that Coq realizes andb as a cascaded function taking a boolean ar-

gument and returning a function bool → bool. This means that an application

andb x y first applies andb to just x. The resulting function is then applied to y .

Cascaded functions are standard in functional programming languages where

they are called curried functions.

To say more about cascaded functions, we consider lambda abstractions. A

lambda abstraction is a term λx : s.t describing a function taking an argument x

of type s and yielding the value described by the term t. For instance, the term

λx : bool.x describes an identity function on bool. In Coq, lambda abstractions

are written with the keyword fun :

Check fun x : bool⇒ x.

% fun x : bool ⇒ x : bool → bool

Given an application of a lambda abstraction to a term, we can perform an eval-

uation step known as beta reduction:

(λx : s.t)u ⇝ txu

The notation txu represents the term obtained from t by replacing the variable x

with the term u. Beta reduction captures the intuitive notion of function appli-

cation. Beta reduction is a basic computation rule in Coq.

Compute (fun x : bool⇒ x) true.

% true : bool

Given the above explanations, the term

Check andb true.

% andb true : bool → bool

should describe an identity function bool → bool. We confirm this hypothesis by

evaluating the term with Coq.

Compute andb true.

% fun y : bool ⇒ y : bool → bool

6 2013-7-26



1.2 Cascaded Functions

To evaluate a term, Coq rewrites the term with symbolic reduction rules. The

evaluation of andb true involves three reduction steps.

andb true

unfolding of the definition of andb

= (fun x : bool⇒ fun y : bool⇒match x with true⇒ y | false⇒ false end) true

beta reduction

= fun y : bool⇒match true with true⇒ y | false⇒ false end

match reduction

= fun y : bool⇒ y

The unfolding step done first suggests that we wrote the definition of andb using

notational sugar. Using plain notation, we can define andb as follows.

Definition andb : bool→ bool→ bool :=

fun x : bool⇒

fun y : bool⇒

match x with

| true⇒ y

| false⇒ false

end.

Internally, Coq represents definitions and terms always in plain syntax. You can

check this with the command Print.

Print negb.

negb = fun x : bool⇒match x with

| true⇒ false

| false⇒ true

end

: bool→ bool

Coq prints the definition of andb with a notational convenience to ease reading.

Print andb.

andb = fun x y : bool⇒match x with

| true⇒ y

| false⇒ false

end

: bool→ bool→ bool

The additional argument variable y in the lambda abstraction for x represents a

nested lambda abstraction for y (see the definition of andb above).

There are two basic notational rules for function types and function applica-

tions making many parentheses superfluous:

s → t → u ⇝ s → (t → u) function arrow groups to the right

s t u ⇝ (s t) u function application groups to the left

2013-7-26 7



1 Types and Functions

We have made use of these rules already. Without the rules, the application

andb x y would have to be written as (andb x)y, and the type of andb would

have to be written as bool → (bool → bool).

When using the commands Print and Check, you may see the keyword Set in

places where you would expect the keyword Type. Types of sort Set are types at

the lowest level of a type hierarchy. For now this hierarchy does not matter.

1.3 Natural Numbers

The natural numbers can be obtained with two constructors O and S:

Inductive nat : Type :=

| O : nat

| S : nat→ nat.

Expressed with O and S, the natural numbers 0, 1, 2, 3, . . . look as follows:

O, S O, S(S O), S(S(S O)), . . .

We say that the natural numbers are obtained by iterating the successor func-

tion S on the initial number O. This is a form of recursion. The recursion makes

it possible to obtain infinitely many values with finitely many constructors. The

constructor representation of the natural numbers goes back to Dedekind and

Peano.

Here is a function that yields the predecessor of a number.

Definition pred (x : nat) : nat :=

match x with

| O⇒ O

| S x’⇒ x’

end.

Compute pred (S(S O)).

% S O : nat

We now define an addition function for the natural numbers. We base the

definition on two equations:

O +y = y

Sx +y = S(x +y)

The equations are valid for all numbers x and y if we read Sx as x + 1. Read

from left to right, they constitute a recursive algorithm for computing the sum of

two numbers. The left-hand sides of the two equations amount to an exhaustive

case analysis. The second equation is recursive in that it reduces an addition

8 2013-7-26



1.3 Natural Numbers

Sx + y to an addition x + y with a smaller argument. Here is a computation

applying the equations for +:

S(S(S O))+y = S(S(S O)+y) = S(S(S O +y)) = S(S(S y))

In Coq, we express the recursive algorithm described by the equations with a

recursive function plus.

Fixpoint plus (x y : nat) : nat :=

match x with

| O⇒ y

| S x’⇒ S (plus x’ y)

end.

Compute plus (S O) ( S O).

% S(S O)) : nat

The keyword Fixpoint indicates that a recursive function is being defined. In Coq,

functional recursion is always structural recursion. Structural recursion means

that the recursion acts on the values of an inductive type and that each recursion

step takes off at least one constructor. Structural recursion always terminates.

Here is the definition of a comparison function leb : nat → nat → bool that

tests whether its first argument is less or equal than its second argument.

Fixpoint leb (x y: nat) : bool :=

match x with

| O⇒ true

| S x’⇒match y with

| O⇒ false

| S y’ ⇒ leb x’ y’

end

end.

A shorter, more readable definition of leb looks as follows:

Fixpoint leb’ (x y: nat) : bool :=

match x, y with

| O, _⇒ true

| _, O⇒ false

| S x’, S y’ ⇒ leb’ x’ y’

end.

Coq translates the short form automatically into the long form (you can check

this with the command Print leb′). The underline character used in the short

form serves as wildcard pattern that matches everything. The order of the rules

in sugared matches is significant. The second rule in the sugared match is only

correct if the order of the rules is taken into account.
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Exercise 1.3.1 Define a multiplication function mult : nat → nat → nat. Base

your definition on the equations

O ·y = O

Sx ·y = y + x ·y

and use the addition function plus.

Exercise 1.3.2 Define functions as follows. In each case, first write down the

equations your function is based on.

a) A function power : nat → nat → nat that yields xn for x and n.

b) A function fac : nat → nat that yields n! for n.

c) A function evenb : nat → bool that tests whether its argument is even.

d) A function mod2 : nat → nat that yields the remainder of x on division by 2.

e) A function minus : nat → nat → nat that yields x −y for x ≥ y .

f) A function gtb : nat → nat → bool that tests x > y .

g) A function eqb : nat → nat → bool that tests x = y . Do not use leb or gtb.

1.4 Structural Induction and Rewriting

The inductive type nat comes with two basic principles: structural recursion for

defining functions and structural induction for proving lemmas. Suppose we

have a proof goal

x : nat

px

where px is a claim that depends on a variable x of type nat. Then structural

induction on x will reduce the goal to two subgoals:

pO

x : nat
IHx : px

p(S x)

This reduction is a case analysis on the structure of x, but has the additional

feature that the second subgoal comes with an extra assumption IHx known as

inductive hypothesis. We think of IHx as a proof of px. If we can prove both

subgoals, we have established the initial claim px for all x : nat. The correctness

of the proof rule for structural induction can be argued as follows.

1. The first subgoal gives us a proof of pO.

2. The second subgoal gives us a proof of p(S O) from the proof of pO.
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3. The second subgoal gives us a proof of p(S(S O)) from the proof of p(S O).

4. After finitely many steps we arrive at a proof of px.

It makes sense to see the proof of the second subgoal as a function that for

a proof of px yields a proof of p(S x). We can now obtain a proof of px by

structural recursion: If x = O, we take the proof provided by the first subgoal. If

x = S x′, we first obtain a proof of px′ by recursion and then obtain a proof of

px = p(S x′) by applying the function provided by the second subgoal.

We will explore the logical correctness of structural recursion in more detail

once we have laid out more foundations. For now we are interested in apply-

ing the rule when we construct proofs with Coq, and this will turn out to be

straightforward.

Our first case study of structural induction will be a proof that addition is

commutative, that is, plus x y = plus y x. Formally, this fact is not completely

obvious, since the definition of plus is by recursion on the first argument and

thus asymmetric. We will first show that the symmetric variants

x +O = x

x + Sy = S(x +y)

of the equations underlying the definition of plus hold. Here is our first inductive

proof in Coq.

Lemma plus_O x :

plus x O = x.

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. reflexivity.

Qed.

If you step through the proof script with Coq, you will see the following proof

goals.

x : nat

plus x O = x O = O

x : nat
IHx : plus x O = x

S(plus x O) = Sx

x : nat
IHx : plus x O = x

Sx = Sx

induction x ; simpl reflexivity rewrite IHx reflexivity

Of particular interest is the application of the inductive hypothesis with the tactic

rewrite IHx. The tactic rewrites a subterm of the claim with the equation IHx.

Doing inductive proofs with Coq is fun since Coq takes care of the bureau-

cratic aspects of the proof process. Here is our next example.
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Lemma plus_S x y :

plus x (S y) = S (plus x y).

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. reflexivity.

Qed.

Note that the proof scripts for the lemmas plus_S and plus_O are identical. When

you run the script for each of the two lemmas, you see that they generate differ-

ent proofs. Using the lemmas, we can prove that addition is commutative.

Lemma plus_com x y :

plus x y = plus y x.

Proof.

induction x ; simpl.

− rewrite plus_O. reflexivity.

− rewrite plus_S. rewrite IHx. reflexivity.

Qed.

Note that the lemmas are applied with the rewrite tactic.

Next we prove that addition is associative.

Lemma plus_asso x y z :

plus (plus x y) z = plus x (plus y z).

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. reflexivity.

Qed.

Exercise 1.4.1 Prove the commutativity of plus by induction on y .

1.5 More on Rewriting

When we rewrite with an equational lemma like plus_com, it may happen that

the lemma applies to several subterms of the claim. In such a situation it may

be necessary to tell Coq which subterm it should rewrite. To do such controlled

rewriting, we have to load the module Omega of the standard library and use the

tactic setoid_rewrite. Here is an example deserving careful exploration with Coq.

Require Import Omega.

Lemma plus_AC x y z :

plus y (plus x z) = plus (plus z y) x.
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Proof.

setoid_rewrite plus_com at 3.

setoid_rewrite plus_com at 1.

apply plus_asso.

Qed.

Note the use of the tactic apply to finish the proof by application of the lemma

plus_asso. Here is a more involved example.

Lemma plus_AC’ x y z :

plus (plus (mult x y) (mult x z)) (plus y z) = plus (plus (mult x y) y) (plus (mult x z) z).

Proof.

rewrite plus_asso. rewrite plus_asso. f_equal.

setoid_rewrite plus_com at 1. rewrite plus_asso. f_equal.

apply plus_com.

Qed.

Run the proof script to understand the effect of the tactic f _equal.

Both rewrite tactics can apply equations from right to left. This is requested

by writing an arrow “<-” before the name of the equation. Here is an example

(one can use the keyword Example as a synonym for Lemma).

Example Ex1 x y z :

S (plus x (plus y z)) = S (plus (plus x y) z).

Proof. rewrite ← plus_asso. reflexivity. Qed.

Exercise 1.5.1 Prove the following lemma without using the tactic reflexivity for

the inductive step (i.e., the second subgoal of the induction). Use the tactics

f _equal and apply to substitute for reflexivity.

Lemma mult_S’ x y :

mult x (S y) = plus (mult x y) x.

Exercise 1.5.2 Prove the following lemmas.

Lemma mult_O (x : nat) :

mult x O = O.

Lemma mult_S (x y : nat) :

mult x (S y) = plus (mult x y) x.

Lemma mult_com (x y : nat) :

mult x y =mult y x.

Lemma mult_dist (x y z: nat) :

mult (plus x y) z = plus (mult x z) (mult y z).

Lemma mult_asso (x y z: nat) :

mult (mult x y) z =mult x (mult y z).
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1.6 Recursive Abstractions

The plain notation for recursive functions uses recursive abstractions written

with the keyword fix.

Print plus.

plus = fix f (x y : nat) {struct x} : nat :=

match x with

| O⇒ y

| S x’⇒ S (f x’ y)

end

: nat→ nat→ nat

The variable f appearing after the keyword fix is local to the abstraction and rep-

resents the recursive function described. As with argument variables, the local

name of a recursive function does not matter. You may use g or plus in place

of f , for instance. The annotation {struct x} says that the structural recursion

is on x. If you write a recursive abstraction by hand you may omit the anno-

tation and Coq will infer it automatically. In fully plain notation the recursive

abstraction for plus takes only one argument:

fix f (x : nat) : nat→ nat :=

fun y : nat⇒match x with

| O⇒ y

| S x’⇒ S (f x’ y)

end.

The reduction rule for recursive abstractions only applies if the argument of

the recursive abstraction exhibits at least one constructor. When a recursive ab-

straction is reduced, the local name of the recursive function is replaced with the

recursive abstraction. Experiment with Coq to get a feel for this. The following

interactions will get you started.

Compute plus O.

% fun y : nat ⇒ y

Compute plus (S (S O)).

% fun y : nat ⇒ S(Sy)

Compute fun x⇒ plus (S x).

fun x : nat⇒

fun y : nat⇒

S ( (fix f (x : nat) : nat→ nat :=

fun y : nat⇒match x with

| O⇒ y

| S x’⇒ S (f x’ y)

end) x y )
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At first, the many notational variants Coq supports for a term can be confus-

ing. Even in printing-all mode identical terms may be displayed with different

names for the local variables. You can find out more by stating equational lem-

mas and using the tactics compute and reflexivity. Here are examples.

Goal plus O = fun x⇒ x.

Proof. compute. reflexivity. Qed.

Goal (fun x⇒ plus (S x)) = fun x y⇒ S (plus x y).

Proof. compute. reflexivity. Qed.

The command Goal states a lemma without giving it a name. The tactic compute

computes the normal form of the claim. We have inserted the compute tactic so

that we can see the normal forms of the terms being equated. The normal form

of a term s is the term obtained by fully evaluating s. Every term has exactly

one normal form. The reflexivity tactic proves every equation where both sides

evaluate to the same normal form.

1.7 Defined Notations

Coq comes with commands for defining notations. For instance, we can define

infix notations for plus and mult.

Notation "x + y" := (plus x y) (at level 50, left associativity).

Notation "x * y" := (mult x y) (at level 40, left associativity).

We can now write the distributivity law for multiplication and addition in familiar

form:

Lemma mult_dist’ x y z :

x * (y + z) = x*y + x*z.

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. rewrite plus_asso. rewrite plus_asso. f_equal.

setoid_rewrite ← plus_asso at 2.

setoid_rewrite plus_com at 4.

symmetry. apply plus_asso.

Qed.

Note the use of the tactic symmetry to turn around the equation to be shown.

You can tell Coq to not use defined notations when it prints terms.1

Set Printing All.

1 When working with CoqIde, use the view menu to switch printing-all mode on and off (display

all basic low-level contents).
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Check O + O * S O.

% plus O (mult O (S O)) : nat

Unset Printing All.

It is very important to distinguish between notation and abstract syntax when

working with Coq. Notations are used when reading input from and writing

output to the user. Internally, all notational sugar is removed and terms are

represented in abstract syntax. The abstract syntax is basically what you see in

printing-all mode. All logical reasoning is defined on the abstract syntax. As it

comes to semantic issues, it is irrelevant in which notation a syntactic object is

described. So if for some term written with notational sugar it is not clear to you

how it translates to abstract syntax, switching to printing-all mode is always a

good idea.

Exercise 1.7.1 Prove the lemmas from Exercise 1.5.2 once more using infix no-

tations for plus and mult. Note that the proof scripts remain unchanged.

Exercise 1.7.2 Prove associativity of multiplication using the distributivity

lemma mult_dist′ from this section. This proof requires more applications of

the commutativity law for multiplication than a proof using the lemma mult_dist

from Exercise 1.5.2.

Exercise 1.7.3 Prove (x + x)+ x = x + (x + x) by induction on x using Lemma

plus_S. Note that the direct proof of this instance of the associativity law is more

complicated than the proof of the general associativity law. In fact, it seems

impossible to prove (x + x)+ x = x + (x + x) without using a lemma.

1.8 Standard Library

Coq comes with an extensive standard library providing definitions, notations,

lemmas, and tactics. When it starts, the Coq interpreter loads part of the stan-

dard library. You can load additional modules using the command Require. (We

have already used Require to load the module Omega so that we can use the

smart rewriting tactic setoid_rewrite.)

The definitions the Coq interpreter starts with include the types bool and

nat. So there is no need to define these types when we want to use them. The

standard library equips nat with many notations familiar from Mathematics. For

instance, we may write 2 + 3 ∗ 2 for plus (S(S O)) (mult (S(S(S O))) (S(S O))).

The following interaction illustrates the predefined notational sugar.

Set Printing All.
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Check 2+3*2.

% plus (S(S O)) (mult (S(S(S O))) (S(S O))) : nat

Unset Printing All.

The above interaction took place in a context where the library definitions of

nat, plus, and mult were not overwritten. If you execute the above commands

in a context where you have defined your own versions of nat, plus, and times,

you will see that the notations 2, 3, +, and ∗ still refer to the predefined objects

from the library. If you want to know more about predefined identifiers, you may

use the commands Check and Print or consult the Coq library pages in the Web

(at coq.inria.fr). If you want to know more about a notation, you may use the

command Locate.

Locate ‘‘*’’.

When you run the above command, you will see that “*” is used with more than

one definition (so-called overloading).

For boolean matches, Coq’s library provides the if-then-else notation. For

instance:

Set Printing All.

Check if false then 0 else 1.

% match false return nat with true⇒ O | false⇒ S O end

Unset Printing All.

Note that the match is shown with a return type annotation. The return type

annotation is part of the abstract syntax of a match. The annotation is usually

added by Coq but can also be stated explicitly.

The standard module Omega comes with an automation tactic omega that

knows about the arithmetic primitives of the library. For instance, omega can

prove that addition is associative:

Goal ∀ x y z, (x + y) + z = x + (y + z).

Proof. intros x y z. omega. Qed.

Note the explicit quantification of the variables x, y , and z with the universal

quantifier ∀. The symbol ∀ can written as the string forall in Coq. Also note the

use of the tactic intros to introduce the quantified variables as assumptions.

The tactic omega works well for goals that involve addition and subtraction.

It knows little about multiplication but can deal well with products where one

side is a constant.

Goal ∀ x y, 2 * (x + y) = (y + x) * 2.

Proof. intros x y. omega. Qed.
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1.9 Pairs and Implicit Arguments

Given two values x and y , we can form the ordered pair (x,y). Given two

types X and Y , we can form the product type X × Y containing all pairs whose

first component is an element of X and whose second component is an element

of Y . This leads to the Coq definition

Inductive prod (X Y : Type) : Type :=

| pair : X→ Y→ prod X Y.

which fixes two constructors

prod : Type→ Type→ Type

pair : ∀X Y : Type. X → Y → prod X Y

for obtaining products and pairs. The pairing constructor takes four arguments,

where the first two arguments are the types of the components of the pair to be

constructed. Here are typings explaining the type of the pairing constructor.

pair nat : ∀Y : Type. nat → Y → prod nat Y

pair nat bool : nat → bool → prod nat bool

pair nat bool O : bool → prod nat bool

pair nat bool O true : prod nat bool

One says that pair is a polymorphic constructor. This addresses the fact

that the types of the third and fourth argument are given as first and second

argument. While the logical analysis is conclusive, the resulting notation for

pairs is tedious. As is, we have to write pair nat bool 0 true for the pair (0, true).

Fortunately, Coq comes with a type inference feature making it possible to just

write pair 0 true and leave it to the interpreter to insert the missing arguments.

One speaks of implicit arguments. With the command

Arguments pair {X} {Y} _ _.

we tell Coq to treat the arguments X and Y of pair as implicit arguments. Now

we can obtain pairs without specifying the types of the components.

Check pair 0 true.

% pair 0 true : prod nat bool

The implicit arguments of a function can still be given explicitly if we prefix the

name of the function with the character @:

Check @pair nat.

% @pair nat : ∀ Y : Type, nat → Y → prod nat Y

Check @pair nat bool 0.

% @pair nat bool 0 : bool → prod nat bool
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We can see which terms Coq inserts for the implicit arguments by switching to

printing-all mode.

Set Printing All.

Check pair 0 true.

% @pair nat bool 0 true : prod nat bool

Unset Printing All.

You can use the command About to find out which arguments of a function name

are implicit.

About pair.

pair : ∀ X Y : Type, X→ Y→ prod X Y

Arguments X, Y are implicit

Coq actually prints more information about the arguments, but the extra infor-

mation is not relevant for now.

We can switch Coq into implicit arguments mode, which has the effect that

some arguments are automatically declared implicit when a function name is de-

fined. With implicit arguments mode on, the inductive definition of pairs would

automatically equip the constructor pair with the two implicit arguments de-

clared above. We now switch to implicit arguments mode

Set Implicit Arguments.

Unset Strict Implicit.

and define functions yielding the first and the second component of a pair (so-

called projections).

Definition fst (X Y : Type) (p : prod X Y) : X :=

match p with pair x _⇒ x end.

Definition snd (X Y : Type) (p : prod X Y) : Y :=

match p with pair _ y⇒ y end.

Compute fst (pair O true).

% O : nat

Compute snd (pair O true).

% true : bool

Note that the first two arguments of fst and snd are implicit. We prove the so-

called eta law for pairs.

Lemma pair_eta (X Y : Type) (p : prod X Y) :

pair ( fst p) (snd p) = p.

Proof. destruct p as [x y]. simpl. reflexivity. Qed.
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Note the use of the tactic destruct. It replaces the variable p with the pair pair x y

where x and y are fresh variables. This is justified since pair is the only con-

structor with which a value of type prod X Y can be obtained. Destructuring of

a variable of a single constructor type is similar to matching on a variable of a

single constructor type (see the definitions of fst and snd).

The standard library defines products and pairs as shown above and equips

them with familiar notations. Using the definitions and notations of the standard

library, we can state and prove the eta law as follows.

Lemma pair_eta (X Y : Type) (p : X * Y) :

( fst p, snd p) = p.

Proof. destruct p as [x y]. simpl. reflexivity. Qed.

Here is a function swapping the components of a pair:

Definition swap (X Y : Type) (p : X * Y) : Y * X :=

(snd p, fst p).

Compute swap (0, true).

% (true,0) : prod bool nat

Lemma swap_swap (X Y : Type) (p : X * Y) :

swap (swap p) = p.

Proof. destruct p as [x y]. unfold swap. simpl. reflexivity. Qed.

Note the use of the tactic unfold. We use it since simpl does not simplify appli-

cations of functions not involving a match. Since reflexivity does all the required

unfolding and simplification automatically, we may omit the unfold and simpli-

fication tactics in the above script.

The notations for pairs and products are defined such that nesting to the

left may be written without parentheses. For instance, we may write (1,2,3) for

((1,2),3) and nat ∗ nat ∗ nat for (nat ∗ nat)∗ nat. So the command

Check (fun x : nat * nat * nat⇒ fst x) (1,2,3)

will succeed with the type nat ∗ nat.

Exercise 1.9.1 An operation taking two arguments can be represented either as

a function taking its arguments one by one (cascaded representation) or as a

function taking both arguments bundled in one pair (cartesian representation).

While the cascaded representation is natural in Coq, the cartesian representation

is common in mathematics. Define polymorphic functions

car : ∀X Y Z : Type, (X → Y → Z)→ (X ∗ Y → Z)

cas : ∀X Y Z : Type, (X ∗ Y → Z)→ (X → Y → Z)

that translate between the cascaded and cartesian representation and prove the

correctness of your functions with the following lemmas.
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Lemma car_spec X Y Z (f : X→ Y→ Z) x y :

car f (x,y) = f x y.

Lemma cas_spec X Y Z (f : X * Y→ Z) x y :

cas f x y = f (x,y).

Note that the arguments X, Y , and Z of car and cas are implicit.

1.10 Lists

Lists represent finite sequences [x1 ; . . . ; xn] with two constructors nil and cons.

[] ֏ nil

[x] ֏ cons x nil

[x ;y] ֏ cons x (cons y nil)

[x ;y ;z] ֏ cons x (cons y (cons z nil))

The constructor nil represents the empty sequence. Nonempty sequences are

obtained with the constructor cons. All elements of a list must be taken from the

same type. This design is realized by the following inductive definition.

Inductive list (X : Type) : Type :=

| nil : list X

| cons : X→ list X→ list X.

The definition provides three constructors:

list : Type→ Type

nil : ∀X : Type. list X

cons : ∀X : Type. X → list X → list X

With implicit arguments mode switched on, the type argument of cons is declared

implicit. This is not the case for the type argument of nil since there is no other

argument where the argument can be obtained from. So we use the arguments

command to declare the argument of nil as implicit.

Arguments nil {X}.

Now Coq will try to derive the argument of nil from the context surrounding an

occurrence of nil. For instance:

Set Printing All.

Check cons 1 nil.

% @cons nat (S O) (@nil nat) : list nat

Unset Printing All.

We define an infix notation for cons.
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Notation "x :: y" := (cons x y) (at level 60, right associativity).

Set Printing All.

Check 1::2::nil.

% @cons nat (S O) (@cons nat (S (S O)) (@nil nat)) : list nat

Unset Printing All.

We also define the bracket notation for lists.

Notation "[]" := nil.

Notation "[ x ]" := (cons x nil).

Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).

Set Printing All.

Check [1;2].

% @cons nat (S O) (@cons nat (S (S O)) (@nil nat)) : list nat

Unset Printing All.

Using informal notation, we define functions yielding the length, the concate-

nation, and the reversal of lists.

|[x1 ; . . . ;xn]| := n

[x1 ; . . . ;xm]++ [y1 ; . . . ;yn] := [x1 ; . . . ;xm ;y1 ; . . . ;yn]

rev [x1 ; . . . ;xn] := [xn ; . . . ;x1]

The formal definitions of these functions replace the dot-dot-dot notation with

structural recursion on the constructor representation of lists. The idea is ex-

pressed with the following equations.

|nil| = 0

|x :: A| = 1+ |A|

nil++B = B

x :: A++B = x :: (A++B)

rev nil = nil

rev (x :: A) = rev A++[x]

The Coq definitions are now straightforward.

Fixpoint length (X : Type) (A : list X) : nat :=

match A with

| nil ⇒ O

| _ :: A’⇒ S (length A’)

end.

Notation "| A |" := (length A) (at level 70).
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Fixpoint app (X : Type) (A B : list X) : list X :=

match A with

| nil ⇒ B

| x :: A’⇒ x :: app A’ B

end.

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint rev (X : Type) (A : list X) : list X :=

match A with

| nil ⇒ nil

| x :: A’⇒ rev A’ ++ [x]

end.

Compute rev [1;2;3].

% [3 ; 2 ; 1] : list nat

Properties of the list operations can be shown by structural induction on lists,

which has much in common with structural induction on numbers.

Lemma app_nil (X : Type) (A : list X) :

A ++ nil = A.

Proof.

induction A as [|x A] ; simpl.

− reflexivity.

− rewrite IHA. reflexivity.

Qed.

Note that the script applies the induction tactic with an annotation specifying

the variable names to be used in the inductive step. Try out what happens if you

replace x with b and A with B. The vertical bar in the annotation separates the

base case of the induction from the inductive step.

Lists are provided through the standard module List. The following com-

mands load the module and the notations coming with it.

Require Import List.

Import ListNotations.

Notation "| A |" := (length A) (at level 70).

This gives you everything we have defined so far. The notation command defines

the notation for length, which is not defined in the standard library.

Exercise 1.10.1 Prove the following lemmas.

Lemma app_assoc (X : Type) (A B C : list X) :

(A ++ B) ++ C = A ++ (B ++ C).

Lemma length_app (X : Type) (A B : list X) :

|A ++ B| = |A| + |B|.
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Lemma rev_app (X : Type) (A B : list X) :

rev (A ++ B) = rev B ++ rev A.

Lemma rev_rev (X : Type) (A : list X) :

rev (rev A) = A.

1.11 Quantified Inductive Hypotheses

So far the inductive hypotheses of our inductive proofs were plain equations.

We will now see inductive proofs where the inductive hypothesis is a universally

quantified equation, and where the quantification is needed for the proof to go

through. As examples we consider correctness proofs for tail-recursive variants

of recursive functions.

If you are familiar with functional programming, you will know that the func-

tion rev defined in the previous section takes quadratic time to reverse a list.

This is due to the fact that each recursion step involves an application of the

function app. One can write a tail-recursive function that reverses lists in linear

time. The trick is to move the elements of the main list to a second list passed

as an additional argument.

Fixpoint revi (X : Type) (A B : list X) : list X :=

match A with

| nil ⇒ B

| x :: A’⇒ revi A’ (x :: B)

end.

The following lemma gives us a non-recursive characterization of revi.

Lemma revi_rev (X : Type) (A B : list X) :

revi A B = rev A ++ B.

We prove this lemma by induction on A. For the induction to go through, the

inductive hypothesis must hold for all lists B. To get this property, we move the

universal quantification for B from the assumptions to the claim before we start

the induction. We use the tactic revert to move the quantification.

Proof.

revert B. induction A as [|x A] ; simpl.

− reflexivity.

− intros B. rewrite IHA. rewrite app_assoc. simpl. reflexivity.

Qed.

Step through the script to see how the proof works. The tactic intros B moves

the universal quantification of B from the claim back to the assumptions.

Exercise 1.11.1 Prove the following lemma.
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Lemma rev_revi (X : Type) (A : list X) :

rev A = revi A nil.

Note that the lemma tells us how we can reverse lists with revi.

Exercise 1.11.2 Here is a tail-recursive function obtaining the length of a list

with an additional argument.

Fixpoint lengthi (X : Type) (A : list X) (n : nat) :=

match A with

| nil ⇒ n

| _ :: A’⇒ lengthi A’ (S n)

end.

Proof the following lemmas. The tactic omega will be helpful.

Lemma lengthi_length X (A : list X) n :

lengthi A n = |A| + n.

Lemma length_lengthi X (A : list X) :

|A| = lengthi A 0.

Exercise 1.11.3 Define a factorial function fact and a tail-recursive function facti

that computes factorials using an additional argument. Prove fact n = facti n 1

for all n. Use the tactic omega and the lemmas mult_plus_distr_l,

mult_plus_distr_r , mult_assoc, and mult_comm from the standard library.

1.12 Iteration as Polymorphic Higher-Order Function

We now define a function iter that yields fnx given n, f , and x. Speaking pro-

cedurally, fnx is obtained from x by applying n-times the function f . We base

the definition of iter on two equations:

iter 0 f x = x

iter (S n) f x = f (iter n f x)

For the definition of iter we need the type of x. Since this can be any type, we

take the type of x as argument.

Fixpoint iter (n : nat) (X : Type) (f : X→ X) (x : X) : X :=

match n with

| 0⇒ x

| S n’⇒ f (iter n’ f x)

end.
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Since we are working in implicit arguments mode, the type argument X of iter is

implicit.

The function iter formulates a recursion principle known as iteration or prim-

itive recursion. It also serves us as an example of a polymorphic higher-order

function. A function is polymorphic if it takes a type as argument, and higher-

order if it takes a function as argument.

Many operations can be expressed with iter . We consider addition.

Lemma iter_plus x y :

x + y = iter x S y.

Proof. induction x ; simpl ; congruence. Qed.

Note the use of the automation tactic congruence. This tactic can finish off proofs

if rewriting with unquantified equations and reflexivity suffice.

Subtraction is another operation that can be expressed with iter .

Lemma iter_minus x y :

x−y = iter y pred x.

Proof. induction y ; simpl ; omega. Qed.

The minus notation and the predecessor function pred are from the standard

library. Use the commands locate and Print to find out more.

The standard library provides iter under the name nat_iter .

Exercise 1.12.1 Prove the following lemma:

Lemma iter_mult x y :

x * y = iter x (plus y) 0.

Exercise 1.12.2 Prove the following lemma:

Lemma iter_shift X (f : X→ X) x n :

iter (S n) f x = iter n f (f x)

Exercise 1.12.3 Define a function power computing powers xn and prove the

following lemma.

Lemma iter_power x n :

power x n = iter n (mult x) 1.

Exercise 1.12.4 iter can compute factorials by iterating on pairs.

(0,0!)→ (1,1!)→ (2,2!)→ ·· · → (n,n!)

Write a factorial function fact and a step function step such that you can prove

the following lemmas.
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Lemma iter_fact_step n :

step (n, fact n) = (S n, fact (S n)).

Lemma iter_fact’ n :

iter n step (O,1) = (n, fact n).

Lemma iter_fact n :

fact n = snd (iter n step (O,1)).

Exercise 1.12.5 We can see iter n as a functional representation of the num-

ber n carrying with it the structural recursion coming with n. The type of the

functional representations is as follows.

Definition Nat := ∀ X : Type, (X→ X)→ X→ X.

Write conversion functions encode : nat → Nat and decode : Nat → nat and prove

decode (encode n) = n for every number n.

1.13 Options and Finite Types

We will define a function that for a number n yields a type with n elements. The

function will start from an empty type and n-times apply a function that for a

given type yields a type with one additional element.

Coq’s standard library defines an empty type Empty_set as an inductive type

without constructors:

Inductive Empty_set : Type := .

Since Empty_set is empty, it is inconsistent to assume that it has an element. In

fact, if we assume that Empty_set has an element, we can prove everything. For

instance:

Lemma vacuous_truth (x : Empty_set) :

1 = 2.

Proof. destruct x. Qed.

The proof is by case analysis over the assumed element x of Empty_set. Since

Empty_set has no constructor, we can prove the claim 1 = 2 for every construc-

tors of Empty_set. One says that the claim follows vacuously. Vacuous reasoning

is a basic logical principle.2

The type constructor option from the standard library can be applied to any

type and yields a type with one additional element.

2 From Wikipedia: A vacuous truth is a truth that is devoid of content because it asserts some-

thing about all members of a class that is empty or because it says “If A then B” when in fact A

is inherently false. For example, the statement “all cell phones in the room are turned off” may

be true simply because there are no cell phones in the room. In this case, the statement “all

cell phones in the room are turned on” would also be considered true, and vacuously so.
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Inductive option (X : Type) : Type :=

| Some : X→ option X

| None : option X.

The constructor Some yields the elements of X and the constructor None yields

the new element (none of the old elements). The elements of an option type are

called options. The standard library declares the type argument X of both Some

and None as implicit argument (check with Print).

We can now define a function fin : nat → Type such that fin n is a type with n

elements.

Definition fin (n : nat) : Type :=

nat_iter n option Empty_set.

Here are definitions naming the elements of the types fin 1, fin 2, and fin 3.

Definition a11 : fin 1 := @None Empty_set.

Definition a21: fin 2 := Some a11.

Definition a22 : fin 2 := @None (fin 1).

Definition a31: fin 3 := Some a21.

Definition a32 : fin 3 := Some a22.

Definition a33 : fin 3 := @None (fin 2).

For clarity we have specified the implicit argument of None. You may omit the

implicit arguments and leave it to Coq to insert them. Next we establish three

simple facts about finite types.

Goal ∀ n, fin (2+n) = option (fin (S n)).

Proof. intros n. reflexivity. Qed.

Goal ∀m n, fin (m+n) = fin (n+m).

Proof.

intros m n. f_equal. omega.

Qed.

Lemma fin1 (x : fin 1) :

x = None.

Proof.

destruct x as [x|].

− simpl in x. destruct x.

− reflexivity.

Qed.

Exercise 1.13.1 One can define a bijection between bool and fin 2. Show this fact

by completing the definitions and proving the lemmas shown below.

Definition fromBool (b : bool) : fin 2 :=

Definition toBool (x : fin 2) : bool :=

Lemma bool_fin b : toBool (fromBool b) = b.

Lemma fin_bool x : fromBool (toBool x) = x.

28 2013-7-26



1.14 More about Functions

Exercise 1.13.2 One can define a bijection between nat and option nat. Show

this fact by defining functions fromNat and toNat and by proving that they com-

mute.

Exercise 1.13.3 In Coq every function is total. Option types can be used to ex-

press partial functions as total functions.

a) Define a function find : ∀X : Type, (X → bool)→ list X → option X that given

a test p and a list A yields an element of A satisfying p if there is one.

b) Define a function minus_opt : nat → nat → option nat that yields x − y if

x ≥ y and None otherwise.

1.14 More about Functions

Functions are objects of our imagination. A function relates arguments with

results, where an argument is related with at most one result. One says that

functions map arguments to results.

Functions in Coq are very general in that they can take functions and types as

arguments and yield functions and types as results. For instance:

• The type constructor list is a function that maps types to types.

• The value constructor nil is a function that maps types to lists.

• The function plus maps numbers to functions that map numbers to numbers.

• The function fin maps numbers to types.

Coq describes functions, arguments, and results with syntactic objects called

terms. There are four canonical forms for terms describing functions:

1. A lambda abstraction λx : s.t.

2. A recursive abstraction fix f (x : s) : t := u.

3. A constructor c.

4. An application c t1 · · · tn of a constructor c to n ≥ 1 terms t1, . . . , tn.

The general form of a function type is ∀x : s.t. A function of type ∀x : s.t

relates every element x of type s with exactly one element of type t. One speaks

of a dependent function type if the argument variable x appears in t. If x does

not appear in t, there is no dependency and ∀x : s.t is written as s → t.

Check ∀ x : nat, nat.

% nat → nat : Type

In Coq, every function has a unique type. Here are examples of functions and
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their types:

andb : bool → bool → bool

cons : ∀X : Type, X → list X → list X

iter : nat → ∀X : Type, (X → X)→ X → X

fin : nat → Type

The functions andb, cons, and iter are cascaded, which means that they yield a

function when applied to an argument. One says that a cascaded function takes

more than one argument. The function andb takes 2 arguments, and cons takes 3

arguments. The function iter is more interesting. It takes at least 4 arguments,

but it may take additional arguments if the second argument is a function type:

iter 2 nat : (nat → nat)→ nat → nat

iter 2 (nat → nat) : ((nat → nat)→ nat → nat)→ (nat → nat)→ nat → nat

One says that a function of type ∀x : s.t is polymorphic if x ranges over types.

The constructors nil and cons are typical examples of polymorphic functions.

The function iter yields a polymorphic function for every argument.

Coq comes with reduction rules for terms. A reduction rule describes a com-

putation step. Coq is designed such that the application of reduction rules to

terms always terminates with a unique normal form. We say that a term evalu-

ates to its normal form. We have seen four reduction rules so far:

• The application of a lambda abstraction to a term can always be reduced (beta

reduction).

• A match on a constructor or the application of a constructor can always be

reduced.

• A defined name can always be reduced to the term the name is bound to

(unfolding).

• The application of a recursive abstraction to a constructor or the application

of a constructor can always be reduced.

Coq differs from functional programming languages in that its type discipline

is more general and in that it restricts recursion to structural recursion. In Coq,

types are first-class values and polymorphic types are first-class types, which is

not the case in functional programming languages. On the other hand, recursion

in Coq is always tied to an inductive type and every recursion step must take off

at least one constructor.

30 2013-7-26



1.15 Discussion and Remarks

1.15 Discussion and Remarks

A basic feature of Coq’s language are inductive types. We have introduced induc-

tive types for booleans, natural numbers, pairs, and lists. The elements of induc-

tive types are obtained with so-called constructors. Inductive types generalize

the structure underlying the Peano axioms for the natural numbers. Inductive

types are a basic feature of modern functional programming languages (e.g., ML

and Haskell). The first functional programming language with inductive types

was Hope, developed in the 1970’s in Edinburgh by Rod Burstall and others.

Inductive types are accompanied by structural case analysis, structural re-

cursion, and structural induction. Typical examples of recursive functions are

addition and multiplication of numbers and concatenation and reversal of lists.

We have also seen a polymorphic higher-order function iter formulating a recur-

sion scheme known as iteration.

Coq is designed such that evaluation always terminates. For this reason Coq

restricts recursion to structural recursion on inductive types. Every recursion

step must take off at least one constructor of a given argument.

The idea of cascaded functions appeared 1924 in a paper by Moses Schön-

finkel and was fully developed in the 1930’s by Alonzo Church and Haskell

Curry. Lambda abstractions and beta reduction were first studied in the 1930’s

by Alonzo Church and his students in an untyped syntactic system called lambda

calculus. The idea of dependent function types evolved in the 1970’s in the works

of Nicolaas de Bruijn, Jean-Yves Girard, and Per Martin-Löf.

Coq comes with many notational devices including user-defined infix nota-

tions and implicit arguments. It is very important to distinguish between no-

tational conveniences and abstract syntax. Notational conveniences are familiar

from mathematics and make it possible for humans to work with complex terms.

However, all semantic issues and all logical reasoning are defined on the abstract

syntax where all conveniences are removed and all details are filled in.

Coq supports the formulation and the proof of theorems. So far we have

just seen the tip of the iceberg. We have formulated equational theorems and

used case analysis, induction, and rewriting to prove them. In Coq, Proofs are

constructed by scripts, which are obtained with commands called tactics. A tactic

either resolves a proof goal or reduces a proof goal to one or several subgoals.

Proof scripts are constructed in interaction with Coq, where Coq applies the

proof rules and maintains and displays the open subgoals.

Proof scripts are programs that construct proofs. To understand a proof,

one steps with the Coq interpreter through the script constructing the proof and

looks at the proof goals obtained with the tactics. Eventually, we will learn that

Coq represents proofs as terms. If you are curious, you may use the command
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Print L to see the term serving as the proof of a lemma L.

Coq Summary

Type and Value Constructors from the Standard Library

bool, true, false, nat, O, S, prod, pair , list, nil, cons, Empty_set, option, Some,

None.

Defined Functions from the Standard Library

negb, andb, pred, plus, mult, minus, nat_iter , length, app, rev.

Term Variants

Names, applications, matches (match), lambda abstractions (fun), recursive ab-

stractions (fix).

Definitional Commands

Inductive, Definition, Fixpoint, Lemma, Example, Goal, Proof , Qed.

Tactics

destruct, induction, simpl, unfold, reflexivity, symmetry, f _equal, rewrite,

setoid_rewrite, apply, intros, revert, congruence, omega.

Notational Commands

Notation, Arguments, Set Implicit Arguments, Unset Strict Implicit.

Module Commands

Require Import, Import.

Query Commands

Check, Compute, Print, About, Locate, Set/Unset Printing All.

Make sure that for each of the above constructs you can point to examples in

the text of this chapter. To know more, consult the Coq online documentation at

coq.inria.fr.
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Logical statements are called propositions in Coq. So far we have only seen

equational propositions. We now extend our repertoire to propositions involving

connectives and quantifiers.

2.1 Logical Connectives and Quantifiers

When we argue logically, we often combine primitive propositions into com-

pound propositions using logical operations. The logical operations include con-

nectives like implication and quantifiers like “for all”. Here is an overview of the

logical operations we will consider.

Operation Notation Reading

conjunction A∧ B A and B

disjunction A∨ B A or B

implication A→ B if A, then B

equivalence A↔ B A if and only if B

negation ¬A not A

universal quantification ∀x :T .A for all x in T , A

existential quantification ∃x :T .A for some x in T , A

There are two different ways of assigning meaning to logical operations and

propositions. The classical approach commonly used in mathematics postulates

that every proposition has a truth value that is either true or false. The more

recent constructive approach defines the meaning of propositions in terms of

their proofs and does not rely on truth values. Coq and our presentation of

logic follow the constructive approach. The cornerstone of the constructive ap-

proach is the BHK interpretation,1 which relates proofs and logical operations

as follows.

• A proof of A∧ B consists of a proof of A and a proof of B.

• A proof of A∨ B is either a proof of A or a proof of B.

• A proof of A→ B is a function that for every proof of A yields a proof of B.

1 The name BHK interpretation reflects the origin of the scheme in the work of the mathemati-

cians Luitzen Brouwer, Arend Heyting, and Andrey Kolmogorov in the 1930’s.
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• A proof of ∀x :T .A is a function that for every x :T yields a proof of A.

• A proof of ∃x :T .A consists of a term s : T and a proof of Axs .

The notation Axs stands for the proposition obtained from the proposition A by

replacing the variable x with the term s. One speaks of a substitution and says

that s is substituted for x. Equivalence and negation are missing in the above

list since they are definable with other connectives:

A↔ B := (A→ B)∧ (B → A)

¬A := A→ ⊥.

The symbol ⊥ represents the primitive proposition false that has no proof. To

give a proof of ¬A we thus have to give a function that yields for every proof

of A a proof of ⊥. If such a function exists, no proof of A can exist since no

proof of false exists.

In this chapter we will learn how Coq accommodates the logical operations

and the concomitant proof rules. We start with implication and universal quan-

tification.

2.2 Implication and Universal Quantification

Example: Symmetry of Equality

We begin with the proof of a proposition saying that equality is symmetric.

Goal ∀ (X : Type) (x y : X), x=y→ y=x.

Proof. intros X x y A. rewrite A. reflexivity. Qed.

The command Goal is like the command Lemma but leaves it to Coq to choose

a name for the lemma. The tactic intros takes away the universal quantifications

and the implication of the claim by representing the respective assumptions as

explicit assumptions of the proof goal.

X : Type

x : X

y : X

A : x = y

y = x

The rest of the proof is straightforward since we have the assumption A : x = y

saying that A is a proof of the equation x = y . The proof A can be used to

rewrite the claim y = x into the trivial equation y = y .

Recall the revert tactic and note that revert can undo the effect of intros.
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Exercise 2.2.1 Prove the following goal.

Goal ∀ x y, andb x y = true→ x = true.

Example: Modus Ponens

Our second example is a proposition stating a basic law for implication known

as modus ponens.

Goal ∀ X Y : Prop, X→ (X→ Y)→ Y.

Proof. intros X Y x A. exact (A x). Qed.

The proposition quantifies over all propositions X and Y since Prop is the type

of all propositions. The proof first takes away the universal quantifications and

the outer implications2 leaving us with the goal

X : Prop

Y : Prop

x : X

A : X → Y

Y

Given that we have a proof A of X → Y and a proof x of X, we obtain a proof of

the claim Y by applying the function A to the proof x.3 Coq accommodates this

reasoning with the tactic exact.

Example: Transitivity of Implication

Goal ∀ X Y Z : Prop, (X→ Y)→ (Y→ Z)→ X→ Z.

Proof. intros X Y Z A B x. exact (B (A x)). Qed.

Exercise 2.2.2 Prove that equality is transitive.

2.3 Predicates

Functions that eventually yield a proposition are called predicates. With predi-

cates we can express properties and relations. Here is a theorem involving two

predicates p and q and a nested universal quantification.

Goal ∀ p q : nat→ Prop, p 7→ (∀ x, p x→ q x)→ q 7.

2 Like the arrow for function types the arrow for implication adds missing parentheses to the

right, that is, X → (X → Y)→ Y elaborates to X → ((X → Y)→ Y).
3 Recall from Section 2.1 that proofs of implications are functions.
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Proof. intros p q A B. exact (B 7 A). Qed.

Think of p and q as properties of numbers. After the intros we have the goal

p : nat → Prop

q : nat → Prop

A : p 7

B : ∀x, p x → qx

q 7

The proof now exploits the fact that B is a function that yields a proof of q 7

when applied to 7 and a proof of p 7.

2.4 The Apply Tactic

The tactic apply applies proofs of implications in a backward manner.

Goal ∀ X Y Z : Prop, (X→ Y)→ (Y→ Z)→ X→ Z.

Proof. intros X Y Z A B x. apply B. apply A. exact x. Qed.

The tactic apply also works for universally quantified implications.

Goal ∀ p q : nat→ Prop, p 7→ (∀ x, p x→ q x)→ q 7.

Proof. intros p q A B. apply B. exact A. Qed.

Step through the proofs with Coq to understand.

Exercise 2.4.1 Prove the following goals.

Goal ∀ X Y, (∀ Z, (X→ Y→ Z)→ Z)→ X.

Goal ∀ X Y, (∀ Z, (X→ Y→ Z)→ Z)→ Y.

Exercise 2.4.2 Prove the following goals, which express essential properties of

booleans, numbers, and lists.

Goal ∀ (p : bool→ Prop) (x : bool),

p true→ p false→ p x.

Goal ∀ (p : nat→ Prop) (x : nat),

p O→ (∀ n, p n→ p (S n))→ p x.

Goal ∀ (X : Type) (p : list X→ Prop) (xs : list X),

p nil → (∀ x xs, p xs→ p (cons x xs))→ p xs.

Hint: Use case analysis and induction.
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2.5 Leibniz Characterization of Equality

What does it mean that two objects are equal? The mathematician and philoso-

pher Leibniz answered this question in an interesting way: Two objects are equal

if they have the same properties. We know enough to prove in Coq that Leibniz

was right.

Goal ∀ (X : Type) (x y : X),

(∀ p : X→ Prop, p x→ p y)→ x=y.

Proof. intros X x y A. apply (A (fun z⇒ x=z)). reflexivity. Qed.

Run the proof with Coq to understand. After the intros we have the goal

X : Type

x : X

y : X

A : ∀p : X → Prop. px → py

x = y

Applying the proof A to the predicate λz.x=z gives us a proof of the implication

x=x → x=y .4 Backward application of this proof reduces the claim to the trivial

claim x=x, which can be established with reflexivity.

Exercise 2.5.1 Prove the following goals.

Goal ∀ (X : Type) (x y : X),

x=y→ ∀ p : X→ Prop, p x→ p y.

Goal ∀ (X : Type) (x y : X),

(∀ p : X→ Prop, p x→ p y)→

forall p : X→ Prop, p y→ p x.

2.6 Propositions are Types

You may have noticed that Coq’s notations for implications and universal quan-

tifications are the same as the notations for function types. This goes well with

our assumption that the proofs of implications and universal quantifications are

functions (see Section 2.1). The notational coincidence is profound and reflects

the propositions as types principle, which accommodates propositions as types

taking the proofs of the propositions as members. The propositions as types

principle is also known as Curry-Howard correspondence after two of its inven-

tors.

4 λz. x=z is the mathematical notation for the function fun z => x=z, which for z yields the

equation x=z.
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There is a special universe Prop that takes exactly the propositions as mem-

bers. Universes are types that take types as members. Prop is a subuniverse of

the universe Type. Consequently, every member of Prop is a member of Type.

A function type s → t is actually a function type ∀x : s. t where the variable x

does not occur in t. Thus an implication s → t is actually a quantification∀x : s. t

saying that for every proof of s there is a proof of t. Note that the reduction

of implications to quantifications rests on the ability to quantify over proofs.

Constructive type theory has this ability since proofs are first-class citizens that

appear as members of types in the universe Prop.

The fact that implications are universal quantifications explains why the tac-

tics intros and apply are used for both implications and universal quantifications.

Given a function type∀x : s. t, we call x a bound variable. What concrete name

is chosen for a bound variable does not matter. Thus the notations ∀X : Type.X

and ∀Y : Type.Y denote the same type. Moreover, if we have a type ∀x : s. t

where x does not occur in t, we can omit x and just write s → t without losing

information. That the concrete names of bound variables do not matter is a basic

logic principle.

Exercise 2.6.1 Prove the following goals in Coq. Explain what you see.

Goal ∀ X : Type,

(fun x : X⇒ x) = (fun y : X⇒ y)

Goal ∀ X Y : Prop,

(X→ Y)→ ∀ x : X, Y.

Goal ∀ X Y : Prop,

(∀ x : X, Y)→ X→ Y.

Goal ∀ X Y : Prop,

(X→ Y) = (∀ x : X, Y).

2.7 Falsity and Negation

Coq comes with a proposition False that by itself has no proof. Given certain

assumptions, a proof of False may however become possible. We speak of in-

consistent assumptions if they make a proof of False possible. There is a basic

logic principle called explosion saying that from a proof of False one can obtain

a proof of every proposition. Coq provides the explosion principle through the

tactic contradiction.

Goal False→ 2=3.

Proof. intros A. contradiction A. Qed.
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We also refer to the proposition False as falsity. The logical notation for False

is ⊥. With falsity Coq defines negation as ¬s := s → ⊥. So we can prove ¬s by

assuming a proof of s and constructing a proof of ⊥.

Goal ∀ X : Prop, X→ ¬¬ X.

Proof. intros X x A. exact (A x). Qed.

The proof script works since Coq automatically unfolds the definition of nega-

tion. The double negation ¬¬X unfolds into (X → ⊥) → ⊥. Here is another

example.

Goal ∀ X : Prop,

(X→ ¬ X)→ (¬ X→ X)→ False.

Proof.

intros X A B. apply A.

− apply B. intros x. exact (A x x).

− apply B. intros x. exact (A x x).

Qed.

Sometimes the tactic exfalso is helpful. It replaces the claim with ⊥, which is

justified by the explosion principle.

Goal ∀ X : Prop,

¬¬ X→ (X→ ¬ X)→ X.

Proof. intros X A B. exfalso. apply A. intros x. exact (B x x). Qed.

Exercise 2.7.1 Prove the following goals.

Goal ∀ X : Prop, ¬¬¬ X→ ¬ X.

Goal ∀ X Y : Prop, (X→ Y)→ ¬ Y→ ¬ X.

Exercise 2.7.2 Prove the following goals.

Goal ∀ X : Prop, ¬¬ (¬¬ X→ X).

Goal ∀ X Y : Prop, ¬¬ (((X→ Y)→ X)→ X).

Exercise 2.7.3 Prove the following proposition in Coq without using only the

tactic exact.

Goal ∀ X:Prop,

(X→ False)→ (¬ X→ False)→ False.
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2.8 Conjunction and Disjunction

The tactics for conjunctions are destruct and split.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.

Proof.

intros X Y A. destruct A as [x y]. split .

− exact y.

− exact x.

Qed.

The tactics for disjunctions are destruct, left, and right.

Goal ∀ X Y : Prop, X ∨ Y→ Y ∨ X.

Proof.

intros X Y A. destruct A as [x|y].

− right. exact x.

− left. exact y.

Qed.

Run the proof scripts with Coq to understand. Note that we can prove a con-

junction s ∧ t if and only if we can prove both s and t, and that we can prove a

disjunction s ∨ t if and only if we can prove either s or t.

The intros tactic destructures proofs when given a destructuring pattern. This

leads to shorter proof scripts.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.

Proof.

intros X Y [x y]. split .

− exact y.

− exact x.

Qed.

Goal ∀ X Y : Prop, X ∨ Y→ Y ∨ X.

Proof.

intros X Y [x|y].

− right. exact x.

− left. exact y.

Qed.

Nesting of destructuring patterns is possible:

Goal ∀ X Y Z : Prop,

X ∨ (Y ∧ Z)→ (X ∨ Y) ∧ (X ∨ Z).

Proof.

intros X Y Z [x|[y z ]].

− split; left ; exact x.
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− split; right.

+ exact y.

+ exact z.

Qed.

Note that the bullet + is used to indicate proofs of subgoals of the last main

subgoal. One can use three levels of bullets, − for top level subgoals, + for

second level subgoals, and ∗ for third level subgoals. One can also separate part

of a proof using curly braces {· · · } inside which one can restart using the bullets

−, +, and ∗. In this way Coq supports an arbitrary number of subgoal levels.

Exercise 2.8.1 Prove the following goals.

Goal ∀ X : Prop,

¬ (X ∨ ¬ X)→ X ∨ ¬ X.

Goal ∀ X : Prop,

(X ∨ ¬ X→ ¬ (X ∨ ¬ X))→ X ∨ ¬ X.

Goal ∀ X Y Z W : Prop,

(X→ Y) ∨ (X→ Z)→ (Y→ W) ∧ (Z→ W)→ X→ W.

Exercise 2.8.2 Prove the following goals.

Goal ∀ X : Prop, ¬¬ (X ∨ ¬ X).

Goal ∀ X Y : Prop, ¬¬ ((X→ Y)→ ¬ X ∨ Y).

2.9 Equivalence and Rewriting

Coq defines equivalence as s ↔ t := (s → t)∧ (t → s). Thus an equivalence s ↔ t

is provable if and only if the implications s → t and t → s are both provable. Coq

automatically unfolds equivalences.

Lemma and_com : ∀ X Y : Prop, X ∧ Y ↔ Y ∧ X.

Proof.

intros X Y. split .

− intros [x y]. split .

+ exact y.

+ exact x.

− intros [y x]. split .

+ exact x.

+ exact y.

Qed.

Lemma deMorgan : ∀ X Y : Prop, ¬ (X ∨ Y) ↔ ¬ X ∧ ¬ Y.
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Proof.

intros X Y. split .

− intros A. split.

+ intros x. apply A. left. exact x.

+ intros y. apply A. right. exact y.

− intros [A B] [x|y].

+ exact (A x).

+ exact (B y).

Qed.

One can use the tactic apply with equivalences. Since an equivalence is a con-

junction of implications, the apply tactic will choose one of the two implications

to use. The user can choose which of the two implications to use by using the

tactic apply with one of the arrows → and ← (similar to the tactic rewrite).

One can often reason with equivalences in the same ways as with equations.

Part of the justification for this is the fact that logical equivalence is an equiva-

lence relation (i.e., it is reflexive, symmetric and transitive). A number of lemmas

can justify rewriting with equivalences in many (but not all) contexts. For exam-

ple, the following result allows us rewrite with equivalences below conjunctions.

Goal ∀ X Y Z W : Prop, (X ↔ Y)→ (Z ↔ W)→ (X ∧ Z ↔ Y ∧ W).

We leave the proof of this goal as an exercise.

In contexts where rewriting with equivalences is allowed, we may use the

tactic setoid_rewrite.5

Goal ∀ X Y Z : Prop, ¬ (X ∨ Y) ∧ Z ↔ Z ∧ ¬ X ∧ ¬ Y.

Proof.

intros X Y Z.

setoid_rewrite deMorgan.

apply and_com.

Qed.

Goal ∀ X : Type, ∀ p q : X→ Prop, (∀ x, ¬ (p x ∨ q x))→ ∀ x, ¬ p x ∧ ¬ q x.

Proof.

intros X p q A.

setoid_rewrite ← deMorgan.

exact A.

Qed.

One can also use the tactics reflexivity, symmetry and transitivity to reason

about equivalences.

Goal ∀ X : Prop, X ↔ X.

Proof. reflexivity. Qed.

5 Recall that the tactic setoid_rewrite is provided by the standard library module Omega.
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Goal ∀ X Y : Prop, (X ↔ Y)→ (Y ↔ X).

Proof. intros X Y A. symmetry. exact A. Qed.

Goal ∀ X Y Z : Prop, (X ↔ Y)→ (Y ↔ Z)→ (X ↔ Z).

Proof.

intros X Y Z A B. transitivity Y.

− exact A.

− exact B.

Qed.

Proof scripts done using the tactics setoid_rewrite, reflexivity, symmetry, and

transitivity to reason with equivalences can always be replaced by proof scripts

that do not use these tactics. Some of the exercises below should give the reader

an idea how such a replacement could be accomplished.

Exercise 2.9.1 Prove equivalence is an equivalence relation without using the

tactics setoid_rewrite, reflexivity, symmetry and transitivity.

Goal ∀ X : Prop, X ↔ X.

Goal ∀ X Y : Prop, (X ↔ Y)→ (Y ↔ X).

Goal ∀ X Y Z : Prop, (X ↔ Y)→ (Y ↔ Z)→ (X ↔ Z).

Exercise 2.9.2 Prove the following facts which justify rewriting with equiva-

lences in certain contexts. Do not use the tactics setoid_rewrite, reflexivity,

symmetry and transitivity.

Goal ∀ (X Y Z W : Prop), (X ↔ Y)→ (Z ↔ W)→ (X ∧ Z ↔ Y ∧ W).

Goal ∀ (X:Type) (p q:X→ Prop), (∀ x:X, p x ↔ q x)→ ((∀ x:X, p x) ↔ ∀ x:X, q x).

Exercise 2.9.3 Prove the following facts using setoid_rewrite, reflexivity,

symmetry and transitivity. You may use the lemmas deMorgan and and_com.

Goal ∀ X Y Z : Prop, X ∧ ¬ (Y ∨ Z) ↔ (¬ Y ∧ ¬ Z) ∧ X.

Goal ∀ X : Type, ∀ p q : X→ Prop, (∀ x, ¬ (p x ∨ q x)) ↔ ∀ x, ¬ p x ∧ ¬ q x.

Exercise 2.9.4 Prove the following goals.

Goal ∀ X Y : Prop, X ∧ (X ∨ Y) ↔ X.

Goal ∀ X Y : Prop, X ∨ (X ∧ Y) ↔ X.

Goal ∀ X:Prop, (X→ ¬ X)→ X ↔ ¬¬ X.

Exercise 2.9.5 (Impredicative Characterizations) It turns out that falsity, nega-

tions, conjunctions, disjunctions, and even equations are all equivalent to propo-

sitions obtained with just implication and universal quantification. Prove the fol-

lowing goals to get familiar with this so-called impredicative characterizations.

2013-7-26 43



2 Propositions and Proofs

Goal False ↔ ∀ Z : Prop, Z.

Goal ∀ X : Prop,

¬ X ↔ ∀ Z : Prop, X→ Z.

Goal ∀ X Y : Prop, X ∧ Y ↔ ∀ Z : Prop, (X→ Y→ Z)→ Z.

Goal ∀ X Y : Prop, X ∨ Y ↔ ∀ Z : Prop, (X→ Z)→ (Y→ Z)→ Z.

Goal ∀ (X : Type) (x y : X), x=y ↔ ∀ p : X→ Prop, p x→ p y.

2.10 Automation Tactics

Coq provides various automation tactics that help in the construction of proofs.

In a proof script, an automation tactic can always be replaced by a sequence of

basic tactics.

A simple automation tactic is assumption. This tactic solves goals whose claim

appears as an assumption.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.

Proof. intros X Y [x y]. split ; assumption. Qed.

The automation tactic auto is more powerful. It uses the tactics intros, apply,

assumption, reflexivity and a few others to construct a proof. We may use auto

to finish up proofs once the goal has become obvious.

Goal ∀ (X : Type) (p : list X→ Prop) (xs : list X),

p nil → (∀ x xs, p xs→ p (cons x xs))→ p xs.

Proof. induction xs ; auto. Qed.

The automation tactic tauto solves every goal that can be solved with the

tactics intros and reflexivity, the basic tactics for falsity, implication, conjunction,

and disjunction, and the definitions of negation and equivalence.

Goal ∀ X : Prop, ¬ (X ↔ ¬ X).

Proof. tauto. Qed.

2.11 Existential Quantification

The tactics for existential quantifications are destruct and exists.6

Goal ∀ (X : Type) (p q : X→ Prop),

(∃ x, p x ∧ q x)→ ∃ x, p x.

6 The existential quantifier ∃ can be written as the keyword exists in Coq code. When we display

Coq code, we always replace the string exists with the symbol ∃. For this reason the tactic exists

appears as the symbol ∃ in Coq code.
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Proof.

intros X p q A. destruct A as [x B]. destruct B as [C _].

∃ x. exact C.

Qed.

Run the proof scripts with Coq to understand.

The diagonal law is a simple fact about nonexistence that has amazing con-

sequences. One such consequence is the undecidability of the halting problem.

We state the diagonal law as follows:

Definition diagonal : Prop := ∀ (X : Type) (p : X→ X→ Prop),

¬ ∃ x, ∀ y, p x y ↔ ¬ p y y.

If X is the type of all Turing machines and pxy says that x halts on the string

representation of y , the diagonal law says that there is no Turing machine x

such that x halts on a Turing machine y if and only if y does not halt on its

string representation.

The proof of the diagonal law is not difficult.

Lemma circuit (X : Prop) : ¬ (X ↔ ¬ X).

Proof. tauto. Qed.

Goal diagonal.

Proof. intros X p [x A]. apply (@circuit (p x x)). exact (A x). Qed.

We can prove the diagonal law without a lemma if we use the tactic specialize.

Goal diagonal.

Proof. intros X p [x A]. specialize (A x). tauto. Qed.

A disequation s≠t is a negated equation ¬(s=t). We prove the correctness of

a characterization of disequality that employs existential quantification.

Goal ∀ (X : Type) (x y : X),

x ≠ y ↔ ∃ p : X→ Prop, p x ∧ ¬ p y.

Proof.

split .

− intros A. ∃ (fun z⇒ x = z). auto.

− intros [p [A B]] C. apply B. rewrite ← C. apply A.

Qed.

Note that split tacitly introduces X, x, and y .

Exercise 2.11.1 Prove the De Morgan law for existential quantification.

Goal ∀ (X : Type) (p : X→ Prop),

¬ (∃ x, p x) ↔ ∀ x, ¬ p x.

Exercise 2.11.2 Prove the exchange rule for existential quantifications.
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Goal ∀ (X Y : Type) (p : X→ Y→ Prop),

(∃ x, ∃ y, p x y) ↔ ∃ y, ∃ x, p x y.

Exercise 2.11.3 (Impredicative Characterization) Prove the following goal. It

shows that existential quantification can be expressed with implication and uni-

versal quantification.

Goal ∀ (X : Type) (p : X→ Prop),

(∃ x, p x) ↔ ∀ Z : Prop, (∀ x, p x→ Z)→ Z.

Exercise 2.11.4 Below are characterizations of equality and disequality based on

reflexive relations. Prove the correctness of the characterizations.

Goal ∀ (X : Type) (x y : X),

x = y ↔ ∀ r : X→ X→ Prop, (∀ z : X, r z z)→ r x y.

Goal ∀ (X : Type) (x y : X),

x ≠ y ↔ ∃ r : X→ X→ Prop, (∀ z : X, r z z) ∧ ¬ r x y.

Hint for first goal: Use the tactic specialize and simplify the resulting assumption

with simpl in A where A is the name of the assumption.

Exercise 2.11.5 Prove the following goal.

Goal ∀ (X: Type) (x : X) (p : X→ Prop), ∃ q : X→ Prop,

q x ∧ (∀ y, p y→ q y) ∧ ∀ y, q y→ p y ∨ x = y.

Exercise 2.11.6

a) Prove the following goal.

Goal ∀ (X : Type) (Y : Prop) ,

X→ Y ↔ (∃ x : X, True)→ Y.

b) Explain why s → t is a proposition if s is a type and t is a proposition.

2.12 Basic Proof Rules

By now we have conducted many proofs in Coq. In this chapter we mostly proved

general properties of the logical connectives and quantifiers. The proofs were

constructed with a small set of tactics, where every tactic performs a basic proof

step. The proof steps performed by the tactics can be described by the proof

rules appearing in Figure 2.1. We may say that the rules describe basic logic

principles and that the tactics implement these principles.

Each proof rule says that a proof of the conclusion (the proposition appearing

below the line) can be obtained from proofs of the premises (the items appearing
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s ⇒ t

s → t

s → t s

t

x : s ⇒ t

∀x : s. t

∀x : s. t u : s

txu

⊥

u

s t

s ∧ t

s ∧ t s, t ⇒ u

u

s

s ∨ t

t

s ∨ t

s ∨ t s ⇒ u t ⇒ u

u

u : s txu

∃x : s. t

∃x : s. t x : s , t ⇒ u

u

Figure 2.1: Basic proof rules

above the line). The notation s ⇒ t used in some premises says that there is a

proof of t under the assumption that there is a proof of s. The notation u : s

says that the term u has type s, and the notation sxt stands for the proposition

obtained from s by replacing x with t.

We explain one of the proof rules for disjunctions in detail.

s ∨ t s ⇒ u t ⇒ u

u

The rule says that we can obtain a proof of a proposition u if we are given a

proof of a disjunction s ∨ t, a proof of u assuming a proof of s, and a proof of u

assuming a proof of t. The rule is justified since a proof of the disjunction s ∨ t

gives us a proof of either s or t. Speaking more generally, the rule tells us that

we can do a case analysis if we have a proof of a disjunction. Coq implements

the rule in a backward fashion with the tactic destruct.

A : s ∨ t

u destruct A as [B|C]

B : s

u

C : t

u

Each row in Figure 2.1 describes the rules for one particular family of propo-

sitions. The rules on the left are called introduction rules, and the rules on the
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right are called elimination rules. The introduction rule for a logical operation O

tells us how we can directly prove propositions obtained with O, and the elim-

ination rule tells us how we can make use of a proof of a proposition obtained

with O. For most families of propositions there is exactly one introduction and

exactly one elimination rule. The exceptions are falsity (no introduction rule) and

disjunctions (two introduction rules). Coq realizes the rules in Figure 2.1 with

the following tactics.

introduction elimination

→ intros apply, exact

∀ intros apply, exact

⊥ contradiction, exfalso

∧ split destruct

∨ left, right destruct

∃ exists destruct

There are no proof rules for negation and equivalence since these logical con-

nectives are defined on top of the basic logical connectives.

¬s := s → ⊥

s ↔ t := (s → t)∧ (t → s)

The proof rules in Figure 2.1 were first formulated and studied by Gerhard

Gentzen in 1935. They are known as intuitionistic natural deduction rules.

Exercise 2.12.1 Above we describe the elimination rule for disjunction in detail

and relate it to a Coq tactic. Make sure that you can discuss each rule in Figure 2.1

in this fashion.

2.13 Proof Rules as Lemmas

Coq can express proof rules as lemmas. Here are the lemmas for the introduction

and the elimination rule for conjunctions.

Lemma AndI (X Y : Prop) :

X→ Y→ X ∧ Y.

Proof. tauto. Qed.

Lemma AndE (X Y U : Prop) :

X ∧ Y→ (X→ Y→ U)→ U.

Proof. tauto. Qed.

To apply the proof rules, we can now apply the lemmas.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.
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Proof.

intros X Y A. apply (AndE A).

intros x y. apply AndI.

− exact y.

− exact x.

Qed.

If you look at the applications of the lemmas in the proof above, it becomes

clear that in Coq the name of a lemma is actually the name of the proof of the

lemma. Since the statement of a lemma is typically universally quantified, the

proof of a lemma is typically a proof generating function. Thus lemmas can be

applied as you see it in the above proof scripts. When we represent a proof rule

as a lemma, the proposition of the lemma formulates the rule as we see it, and

the proof of the lemma is a function constructing a proof of the conclusion of

the rule from the proofs required by the premises of the rule.

Next we represent the proof rules for existential quantifications as lemmas.

Given a proposition ∃x : s.t, we face a bound variable x that may occur in the

term t. To preserve the binding, we represent the proposition t as the predicate

λx : s.t.

Lemma ExI (X : Type) (p : X→ Prop) :

forall x : X, p x→ ∃ x, p x.

Proof. intros x A. ∃ x. exact A. Qed.

Lemma ExE (X : Type) (p : X→ Prop) (U : Prop) :

(∃ x, p x)→ (∀ x, p x→ U)→ U.

Proof. intros [x A] B. exact (B x A). Qed.

We can now prove propositions involving existential quantifications without us-

ing the tactics exists and destruct.

Goal ∀ (X : Type) (p q : X→ Prop),

(∃ x, p x ∧ q x)→ ∃ x, p x.

Proof.

intros X p q A. apply (ExE A).

intros x B. apply (AndE B). intros C _.

exact (ExI C).

Qed.

Exercise 2.13.1 Formulate the introduction and elimination rules for disjunc-

tions as lemmas and use the lemmas to prove the commutativity of disjunction.

2.14 Inductive Propositions

Recall that Coq provides for the definition of inductive types. So far we have used

this facility to populate the universe Type with types providing booleans, natural
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numbers, lists, and a few other families of values. It is also possible to populate

the universe Prop with inductive types. We will speak of inductive propositions

following the convention that types in Prop are called propositions. Here are the

definitions of two inductive propositions from Coq’s standard library.7

Inductive True : Prop :=

| I : True.

Inductive False : Prop := .

Recall that the proofs of a proposition A are the members of the type A. Thus

the proposition True has exactly one proof (i.e., the proof constructor I ), and the

proposition False has no proof (since we defined False with no proof constructor).

By case analysis over the constructors of True we can prove that True has

exactly one proof.

Goal ∀ x y : True, x=y.

Proof. intros x y. destruct x. destruct y. reflexivity. Qed.

By case analysis over the constructors of False we can prove that from a proof of

False we can obtain a proof of every proposition.

Goal ∀ X : Prop, False→ X.

Proof. intros X A. destruct A. Qed.

The case analysis over the proofs of False immediately succeeds since False has

no constructor. We have discussed this form of reasoning in Section 1.13 where

we considered the type void.

Coq defines conjunction and disjunction as inductive predicates (i.e., induc-

tive type constructors into Prop).8

Inductive and (X Y : Prop) : Prop :=

| conj : X→ Y→ and X Y.

Inductive or (X Y : Prop) : Prop :=

| or_introl : X→ or X Y

| or_intror : Y→ or X Y.

Note that the inductive definitions of conjunction and disjunction follow exactly

the BHK interpretation: A proof of X ∧ Y consists of a proof of X and a proof of

Y , and a proof of X ∨Y consists of either a proof of X or a proof of Y . Also note

that the definition of conjunction mirrors the definition of the product operator

prod in Section 1.9.

Coq defines existential quantification as an inductive predicate that takes a

type and a predicate as arguments:

7 Use the command Print to look up the definitions
8 Use the commands Set Printing All and Print to find out the definitions of the infix notations

“∧” and “∨”.
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Inductive ex (X : Type) (p : X→ Prop) : Prop :=

| ex_intro : ∀ x : X, p x→ ex p.

With this definition an existential quantification ∃x : s.t is represented as the

application ex (λx : s.t). This way the binding of the local variable x is delegated

to the predicate λx : s.t. We have used this technique before to formulate the

introduction and elimination rules for existential quantifications as lemmas (see

Section 2.13).

Negation and equivalence are defined with plain definitions in Coq’s standard

library:

Definition not (X : Prop) : Prop := X→ False.

Definition iff (X Y : Prop) : Prop := (X→ Y) ∧ (Y→ X).

Exercise 2.14.1 Prove the commutativity of disjunction without using the tactics

left and right.

Exercise 2.14.2 Define your own versions of the logical operations and prove

that they agree with Coq’s predefined operations. Choose names different from

Coq’s predefined names to avoid conflicts.

Exercise 2.14.3 One can characterize negation with the following introduction

and elimination rules not using falsity.

x : Prop, s ⇒ x

¬s

¬s s

u

The introduction rule requires a proof of an arbitrary proposition x under the

assumption that a proof of s is given.

a) Formulate the rules as lemmas and prove the lemmas.

b) Give an inductive definition of negation based on the introduction rule.

c) Prove the elimination lemma for your inductive definition of negation.

2.15 An Observation

Look at the introduction rules for conjunction, disjunction, and existential quan-

tification. If we formulate these rules as lemmas, we get exactly the types of the

proof constructors of the inductive definitions of the respective logical opera-

tions.

Given the inductive definition of a logical operation, we can prove the elim-

ination lemma for the operation. Since the inductive definition is only based
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on the introduction rule of the operation, we can see the elimination rule as a

consequence of the introduction rule.

We can also go from the elimination rules to the introduction rules. Look at

the impredicative characterization of the logical operations in terms of implica-

tion and universal quantification appearing in Exercises 2.9.5 and 2.11.3. These

characterizations reformulate the elimination rules of the logical operations. If

we define a logical operation based on its impredicative characterization, we can

prove the corresponding introduction and elimination lemmas. For conjunction

we get the following development.

Definition AND (X Y : Prop) : Prop :=

forall Z : Prop, (X→ Y→ Z)→ Z.

Lemma ANDI (X Y : Prop) :

X→ Y→ AND X Y.

Proof. intros x y Z. auto. Qed.

Lemma ANDE (X Y Z: Prop) :

AND X Y→ (X→ Y→ Z)→ Z.

Proof. intros A. exact (A Z). Qed.

Lemma AND_agree (X Y : Prop) :

AND X Y ↔ X ∧ Y.

Proof.

split .

− intros A. apply A. auto.

− intros [x y] Z A. apply A ; assumption.

Qed.

Exercise 2.15.1 Define disjunction with a plain definition based on the impred-

icative characterization in Exercise 2.9.5. Prove an introduction, an elimination,

and an agreement lemma for your disjunction. Carry out the same program for

the existential quantifier.

2.16 Excluded Middle

In Mathematics, one assumes that every proposition is either false or true. Con-

sequently, if X is a proposition, the proposition X ∨ ¬X must be true. The

assumption that X ∨¬X is true for every proposition X is known as principle of

excluded middle, XM for short. Here is a definition of XM in Coq.

Definition XM : Prop := ∀ X : Prop, X ∨ ¬ X.
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Coq can neither prove XM nor ¬XM . This means that we can consistently

assume XM in Coq. The philosophy here is that XM is a basic mathematical as-

sumption but not a basic proof rule. By not building in XM , we can make explicit

which proofs rely on XM . Logical systems that build in XM are called classical,

and systems not building in XM are called constructive or intuitionistic.

Exercise 2.16.1 Prove the following goals. They state consequences of the De

Morgan laws for conjunction and universal quantification whose proofs require

the use of excluded middle.

Goal ∀ X Y : Prop,

XM→ ¬ (X ∧ Y)→ ¬ X ∨ ¬ Y.

Goal ∀ (X : Type) (p : X→ Prop),

XM→ ¬ (∀ x, p x)→ ∃ x, ¬ p x.

Exercise 2.16.2 Prove that the following propositions are equivalent. There are

short proofs if you use tauto.

Definition XM : Prop := ∀ X : Prop, X ∨ ¬ X. (* excluded middle *)

Definition DN : Prop := ∀ X : Prop, ¬¬ X→ X. (* double negation *)

Definition CP : Prop := ∀ X Y : Prop, (¬ Y→ ¬ X)→ X→ Y. (* contraposition *)

Definition Peirce : Prop := ∀ X Y : Prop, ((X→ Y)→ X)→ X. (* Peirce’s Law *)

Exercise 2.16.3 (Drinker’s Paradox) Consider a bar populated by at least one

person. Using excluded middle, one can prove that one can pick some person

in the bar such that everyone in the bar drinks Whiskey if this person drinks

Whiskey. Do the proof in Coq.

Lemma drinker (X : Type) (d : X→ Prop) :

XM→ (∃ x : X, True)→ ∃ x, d x→ ∀ x, d x.

Exercise 2.16.4 (Glivenko’s Theorem) A proposition is pure if it is either a vari-

able, falsity, or an implication, negation, conjunction, or disjunction of pure

propositions. Valery Glivenko showed in 1929 that a pure proposition is prov-

able classically if and only if its double negation is provable intuitionistically.

That is, if s is a pure proposition, then XM → s is provable in Coq if and only if

¬¬s is provable in Coq. This tells us that tauto can prove the following goals.

Goal ∀ X : Prop,

¬¬ (X ∨ ¬ X).

Goal ∀ X Y : Prop,

¬¬ (((X→ Y)→ X)→ X).

Goal ∀ X Y : Prop,

¬¬ (¬ (X ∧ Y) ↔ ¬ X ∨ ¬ Y).
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Goal ∀ X Y : Prop,

¬¬ ((X→ Y) ↔ (¬ Y→ ¬ X)).

Do the proofs without using tauto and try to find out why the outer double

negation can replace excluded middle.

Exercise 2.16.5 A proposition s is propositionally decidable if the proposition

s ∨¬s is provable. Prove that the following propositions are propositionally de-

cidable.

a) ∀ X : Prop, ¬ (X ∨ ¬ X)

b) ∃ X : Prop, ¬ (X ∨ ¬ X)

c) ∀ P : Prop, ∃ f : Prop→ Prop, ∀ X Y : Prop,

(X ∧ P→ Y) ↔ (X→ f Y)

d) ∀ P : Prop, ∃ f : Prop→ Prop, ∀ X Y : Prop,

(X→ Y ∧ P) ↔ (f X→ Y)

2.17 Discussion and Remarks

Our treatment of propositions and proofs is based on the constructive approach,

which sees proofs as first-class objects and defines the meaning of propositions

by relating them to their proofs. In contrast to the classical approach, no notion

of truth value is needed. Our starting point is the BHK interpretation, which

identifies the proofs of implications and quantifications as functions. The BHK

interpretation is refined by the propositions as types principle, which models

implications and universal quantification as function types such that the proofs

of a proposition appear as the members of the type representing the proposi-

tion. As it turns out, universal quantification alone suffices to express all logical

operations (impredicative characterizations).

The ideas of the constructive approach developed around 1930 and led to the

BHK interpretation (Brouwer, Heyting, Kolmogorov). A complementary achieve-

ment is the system of natural deduction (i.e., basic proof rules) formulated in

1935 by Gerhard Gentzen. While the BHK interpretation starts with proofs as

first-class objects, Gentzen’s approach takes the proof rules as starting point

and sees proofs as derivations obtained with the rules. Given the BHK interpre-

tation, the correctness of the proof rules can be argued. Given the proof rules,

the correctness of the BHK interpretation can be argued.

A formal model providing functions as assumed by the BHK interpretation

was developed in the 1930’s by Alonzo Church under the name lambda calculus.

The notion of types was first formulated by Bertrand Russell around 1900. A

typed lambda calculus was published by Alonzo Church in 1940. Typed lambda
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calculus later developed into constructive type theory, which became the foun-

dation for Coq.

The correspondence between propositions and types was recognized by Curry

and Howard for pure propositional logic and first reported about in a paper from

1969. The challenge then was to formulate a type theory strong enough to model

quantifications as propositions. For such a type theory dependent function types

are needed. Dependently typed type theories were developed by Nicolaas de

Bruijn, Per Martin-Löf, and Jean-Yves Girard around 1970. Coq’s type theory

originated in 1985 (Coquand and Huet) and has been refined repeatedly.

2.18 Tactics Summary

intros x1 . . . xn introduces implications and universal quantifications

apply t reduces claim by backward application of proof function t

exact t Solves goal with proof t

contradiction t Soves goal by explosion if t is proof of False

exfalso Changes claim to False (explosion)

split splits conjunctive claim

left reduces disjunctive claim to left constituent

right reduces disjunctive claim to right constituent

exists t instantiates existential claim with witness t

specialize (x t) instantiates assumption x with t

assumption solves goals whose claim appears as assumption

auto tries to solve goal with intros, apply, assumption, reflexivity, . . .

tauto solves goals solvable by pure propositional reasoning
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In this chapter we study equality in Coq. Equality in Coq rests on conversion,

an equivalence relation on terms coming with the type theory underlying Coq.

There is the basic assumption that convertible terms represent the same object.

Moreover, evaluation steps respects conversion in that they rewrite terms to con-

vertible terms.

We will see many basic proofs involving equality. For instance, we will prove

that the number 1 is different from 2, and that constructors like S or cons are

injective. We will also prove that the type nat is different from the type bool. We

will study these proofs at the level of the underlying type theory.

A second topic of this chapter are inductive proofs. Here we learn that induc-

tive proofs are obtained as recursive functions in the underlying type theory.

3.1 Conversion Principle

The type theory underlying Coq comes with an equivalence relation on terms

called convertibility. The type theory assumes that convertible terms have the

same meaning. This assumption is expressed in the conversion principle, which

says that convertible types have the same elements. Applied to propositions,

the conversion principle says that a proof s of a proposition t is also a proof of

every proposition t′ that is convertible with t. Thus if we search for a proof of

a proposition t, we can switch to a convertible proposition t′ and search for a

proof of t′.

The convertibility relation is defined as the least equivalence relation on terms

that is compatible with the term structure and certain conversion rules. Conver-

sion rules can be applied in both directions (i.e., from left to right and from right

to left). For the terms introduced so far we have the following conversion rules.

• Alpha conversion. Consistent renaming of local variables. For instance,

λx : s.x and λy : s.y are alpha convertible.

• Beta conversion. The terms (λx : s.t)u and txu are beta convertible. Beta

conversion is the undirected version of beta reduction. The direction from txu
to (λx : s.t)u is called beta expansion. Terms of the form (λx : s.t)u are

called beta redexes.
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• Eta conversion. The terms λx : s.tx and t are eta convertible if x does not

occur in t and both terms have the same type. The direction from λx : s.tx

to t is called eta reduction, and the reverse direction is called eta expansion.

Eta reduction eliminates unnecessary lambda abstractions.

• Delta conversion. A defined name x and the term t it is bound to are convert-

ible. The direction from the name to the term is called unfolding, the other

direction is called folding.1

• Match conversion. The undirected version of match reduction.

• Fix conversion. The undirected version of fix reduction.

Since the computation rules are directed versions of the conversion rules for

lambda abstractions (beta), matches, fixes, and defined names (delta), every eval-

uation step is a conversion step. Thus a term is always convertible to its normal

form.

Coq comes with various conversion tactics making it possible to convert the

claim and the assumptions of proof goals. Such conversions are logically jus-

tified by the conversion principle. We will see the conversion tactics change,

pattern, hnf , cbv, simpl, unfold, and fold. The following examples do not prove

interesting lemmas but illustrate the conversion rules and the conversion tactics.

Goal ¬¬True.

Proof. ¬¬True

change (¬True→ False). ¬True→ False

change (¬(True→ False)). ¬(True→ False)

change (¬¬True). ¬¬True

hnf. ¬True→ False

change (¬¬True). ¬¬True

cbv. (True→ False)→ False

change (¬¬True). ¬¬True

simpl. ¬¬True

pattern True. (λp : Prop.¬¬p)True

pattern not at 2. (λf : Prop→Prop.(λp : Prop.¬f p)True)not

hnf. ¬True→ False

exact (fun f⇒ f I).

Show Proof.

Qed.

The tactic change t changes the current claim to t provided the current claim

and t are convertible. The tactic change gives us a means to check with Coq

whether two terms are convertible. The tactic hnf (head normal form) applies

computation rules to the top of a term until the top of the term cannot be re-

duced further. The tactic cbv (call by value) fully evaluates a term (similar to the

1 The names of lemmas established with Qed cannot be unfolded.
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command Compute). The tactic pattern t abstracts out a subterm t of a claim by

converting the claim to a beta redex (λx : s.u)t that reduces to the claim by a

beta reduction step. Note that pattern performs a beta expansion. The second

use of pattern in the above script abstracts out only the second occurrence of

the subterm not.

Note that all terms shown at the right of the above proof are convertible

propositions. By the conversion principle we know that all of these propositions

have the same proofs.

The above script also contains an occurrence of the tactic simpl so that we

can compare it with the tactics hnf and cbv. Note that the occurrence of simpl

has no effect in the above script. In fact, simpl will change a term only if the

conversion involves a match reduction. If you study the examples in Chapter 1,

you will learn that simpl applies computation rules but also performs folding

steps for recursive definitions (backward application of definition unfolding).

Note the command Show Proof at the end of the script. It shows the proof

term the script will have constructed at this point. The conversion tactics do

not show in the proof term, except for the fact that the missing types in the

description of the proof term appearing as argument of exact will be derived

based on the goal visible at this point.

All conversion tactics can be applied to assumptions. For instance, the com-

mand “simpl in A” will simplify the assumption A.

For the following conversion examples we define an inductive predicate demo.

Inductive demo (X : Type) (x : X) : Prop :=

| demoI : demo x.

First we demo delta conversion with the tactics unfold and fold.

Goal demo plus.

Proof. demo plus

unfold plus. demo (fix plus (x y : nat) : nat :=match x with · · · end)

unfold plus. demo (fix plus (x y : nat) : nat :=match x with · · · end)

fold plus. demo plus

apply demoI.

Qed.

Note that the second occurrence of the unfold tactic has no effect since the claim

does not contain a defined name plus.

Next we demo alpha conversion.

Goal demo (fun x : nat⇒ x).

Proof.

change (demo (fun y : nat⇒ y)).

change (demo (fun myname : nat⇒myname)).
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apply demoI.

Qed.

For the remaining demos we use Coq’s section facility to conveniently declare

variables.2

Section Demo.

Variable n : nat.

Here is a conversion demo involving match and fix conversions.

Goal demo (5+n+n).

Proof. demo (5 + n+ n)

change (demo (2+3+n+n)). demo (2 + 3+ n+ n)

simpl. demo (S (S (S (S (S (n+ n))))))

change (demo (10+n−5+n)). demo (10 + n− 5 + n)

pattern n at 1. (λx : nat. demo (10 + x − 5 + n))n

hnf. demo (10 + n− 5 + n)

simpl. demo (S (S (S (S (S (n+ n))))))

apply demoI.

Qed.

Finally, we demonstrate eta conversion.

Variable X : Type.

Variable f : X→ X→ X.

Goal demo f.

Proof. demo f

change (demo (fun x⇒ f x)). demo (λx : X . f x)

cbv. demo (λx : X . f x)

change (demo (fun x y⇒ f x y)). demo (λx : X . λy : X . f x y)

cbv. demo (λx : X . λy : X . f x y)

apply demoI.

Qed.

End Demo.

You may wonder why Coq does not employ eta reduction as computation rule.

The reason is that naive eta reduction is not always type preserving. For instance,

the term

λx : Prop. (λy : Type. y)x

has type Prop → Type. The application of the inner lambda abstraction to x type

checks since every proposition is a type. A naive eta reduction would yield the

term λy : Type. y , which has type Type→ Type. This violates type preservation

since the types Prop → Type and Type→ Type are incomparable in Coq.

2 This is the first time we use Coq’s section facility.
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Exercise 3.1.1 The tactic reflexivity can prove an equation s = t if and only if

the terms s and t are convertible. Argue for each of the following goals whether

or not it can be shown by reflexivity and check your answer with Coq.

(a) Goal plus 1 = S.

(b) Goal (fun y⇒ 3+y) = plus (4−1).

(c) Goal S = fun x⇒ x + 1.

(d) Goal S = fun x⇒ 1 + x.

(e) Goal S = fun x⇒ 2+x+1−2.

(f) Goal plus 3 = fun x⇒ 5+x−2.

(g) Goal mult 2 = fun x⇒ x + (x + 0).

(h) Goal S = fun x⇒ S (pred (S x)).

(i) Goal minus = fun x y⇒ x−y.

3.2 Disjointness and Injectivity of Constructors

Different constructors of an inductive type always yield different values. We start

by proving that the constructors true and false of bool are different.

Goal false ≠ true.

Proof.

intros A.

change (if false then True else False).

rewrite A.

exact I.

Qed.

The proof follows a simple path. We first introduce the equation false = true.

Then we convert the resulting claim into a conditional with the condition false.

Using the assumed equation false = true, we rewrite the condition of the con-

ditional to true. By conversion we obtain the claim True and finish the proof.

What makes the proof go through is the conversion rule for matches and the

conversion principle.

The idea of the proof of false ≠ true carries over to nat. We prove that the

constructors O and S yield different values.

Lemma disjoint_O_S n :

0 ≠ S n.

Proof.

intros A.

change (match 0 with 0⇒ False | _⇒ True end).

rewrite A.

exact I.

Qed.
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With a similar idea we can prove that the constructor S is injective.

Lemma injective_S x y :

S x = S y→ x = y.

Proof.

intros A.

change (pred (S x) = pred (S y)).

rewrite A.

reflexivity .

Qed.

Coq’s tactics discriminate, injection, and congruence can do this sort of proofs

automatically (that is, construct suitable proof terms).

Goal ∀ x, S x ≠ 0.

Proof. intros x A. discriminate A. Qed.

Goal ∀ x y, S x = S y→ x = y.

Proof. intros x y A. injection A. auto. Qed.

The tactic congruence can prove both of the above goals in one go.

Exercise 3.2.1 Give three proofs for each of the following goals: with

congruence, with discriminate, and with change.

(a) Goal ∀ (X : Type) (x : X),

Some x ≠ None.

(b) Goal ∀ (X : Type) (x : X) (A : list X),

x::A ≠ nil.

Exercise 3.2.2 Give three proofs for each of the following goals: with

congruence, with injection, and with change.

(a) Goal ∀ (X Y: Type) (x x’ : X) (y y’ : Y),

(x,y) = (x’,y’)→ x=x’ ∧ y = y’.

(b) Goal ∀ (X : Type) (x x’ : X) (A A’ : list X),

x::A = x’::A’→ x=x’ ∧ A = A’.

Exercise 3.2.3 Prove the following goals.

(a) Goal ∀ x, negb x ≠ x.

(b) Goal ∀ x, S x ≠ x.

(c) Goal ∀ x y z, x + y = x + z→ y = z.

(d) Goal ∀ x y : nat, x = y ∨ x ≠ y.

Hint: Recall that you can simplify an assumption A with the command simpl in A.
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Exercise 3.2.4 Prove the following goal.

Goal ∃ (X : Type) (f : list X→ X), ∀ A B, f A = f B→ A = B.

Before you prove the goal, you may define an inductive type.

Exercise 3.2.5 Prove False ≠ True.

Exercise 3.2.6 A term λx : s. tx can only be eta reduced if x does not occur in t.

If this restriction was removed, we could obtain a proof of False. Show this by

proving the following goal.

Goal ∃ (f : nat→ nat→ nat) x,

(fun x⇒ f x x) ≠ f x.

3.3 Leibniz Equality

There is a straightforward characterization of equality that can be expressed in

every logical system that can quantify over predicates. The characterization is

due to the philosopher and mathematician Gottfried Wilhelm Leibniz and says

that two objects x and y are equal if they have the same properties. Formally,

Leibniz’ characterization can be expressed with the equivalence

x = y ↔ ∀p :X → Prop. px ↔ py

We can use the equivalence to define equality. If equality is obtained in some

other way, we still expect it to satisfy the equivalence. This means that equality

is determined up to logical equivalence in any logical system that can quantify

over predicates. The Leibniz characterization of equality suffices to justify the

tactics reflexivity and rewrite.

1. Assume that s and t are convertible terms such that the equation s = t is well

typed. We prove the proposition s = t. First we observe that the propositions

s = t and s = s are convertible since s and t are convertible (recall that

propositions are terms). Thus we know by the conversion principle that s = t

is provable if s = s is provable. By the Leibniz characterization of equality we

know that s = s is provable if∀p :X → Prop. ps ↔ ps is provable, which is the

case. So we have a proof of s = t and a justification of the tactic reflexivity.

2. Assume we have a proof of an equation s = t and two propositions us and ut.

Then we know by the Leibniz characterization of s = t that us is provable if

and only if ut is provable. So if we have a claim or an assumption us, we can

rewrite it to ut. This justifies the rewriting tactic for the case where s and t

appear as the right constituent of a top level application. Since we have beta
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conversion, the restriction to top level applications is not significant. Given

a term v containing a subterm s, beta expansion will give us a term u such

that the terms v and us are convertible. Taken together, we have arrived at a

justification of the tactic rewrite.

We now define an equality predicate we call Leibniz equality.

Definition leibniz_eq (X : Type) (x y : X) : Prop :=

∀ p : X→ Prop, p x→ p y.

The definition deviates from Leibniz’ characterization in that it uses an implica-

tion rather than an equivalence. As it turns out, the asymmetric version we use

is logically equivalent to the symmetric version with the equivalence. We have

chosen the asymmetric version since it is simpler than the symmetric version.

We can read the asymmetric version as follows: A proof of x = y is a function

that for every predicate p maps a proof of px to a proof of py .

We define a convenient notation for Leibniz equality and prove that it is re-

flexive and symmetric.

Notation "x == y" := (leibniz_eq x y) (at level 70, no associativity).

Lemma leibniz_refl X (x : X) :

x == x.

Proof. hnf. auto. Qed.

Lemma leibniz_sym X (x y : X) :

x == y→ y == x.

Proof.

unfold leibniz_eq. intros A p.

apply (A (fun z⇒ p z→ p x)).

auto.

Qed.

Next we show that Leibniz equality agrees with Coq’s predefined equality.

Lemma leibniz_agrees X (x y : X) :

x == y ↔ x = y.

Proof.

split ; intros A.

− apply (A (fun z⇒ x=z)). reflexivity.

− rewrite A. apply leibniz_refl.

Qed.

Since we can turn Leibniz equations into Coq equations, we can rewrite with

Leibniz equations. However, we can also rewrite without going through Coq’s

predefined equality. All we need is the following lemma.

Lemma leibniz_rewrite X (x y : X) (p : X→ Prop) :

x == y→ p y→ p x.
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Proof. intros A. apply (leibniz_sym A). Qed.

We now prove that addition is associative with respect to Leibniz equality without

using anything connected with Coq’s predefined equality.

Lemma leibniz_plus_assoc x y z :

(x + y) + z == x + (y + z).

Proof.

induction x ; simpl.

− apply leibniz_refl.

− pattern (x+y+z). apply (leibniz_rewrite IHx). apply leibniz_refl.

Qed.

The proof deserves careful study. One interesting point is the use of pattern to

abstract out the term we want to rewrite. With pattern we can convert a term s

containing a subterm u to a beta redex (λx.t)u such that λx.t is the predicate p

we need to rewrite with a Leibniz equation u==v . So beta conversion makes it

possible to reduce general rewriting to top level rewriting pu⇝ pv . A proof of

the proposition ∀p.pv → pu is a function that makes it possible to rewrite a

claim with the equation u = v .

Coq’s library defines equality as an inductive predicate. This is in harmony

with the definitions of the logical connectives and of existential quantification.

We will discuss Coq’s inductive definition of equality in a later chapter on induc-

tive predicates.

Exercise 3.3.1 Prove that addition is commutative for Leibniz equality without

using Coq’s predefined equality. You will need two lemmas.

Exercise 3.3.2 Prove the following rewrite lemmas for Leibniz equality without

using other lemmas.

(a) Lemma leibniz_rewrite_lr X (x y : X) (p : X→ Prop) :

x == y→ p y→ p x.

(b) Lemma leibniz_rewrite_rl X (x y : X) (p : X→ Prop) :

x == y→ p x→ p y.

Exercise 3.3.3 Suppose we want to rewrite a subterm u in a proposition t us-

ing the lemma leibniz_rewrite. Then we need a predicate λx.s such that t and

(λx.s)u are convertible and s is obtained from t by replacing the occurrence of u

we want to rewrite with the variable x. Let t be the proposition x +y + x = y .

a) Give a predicate for rewriting the first occurrence of x in t.

b) Give a predicate for rewriting the second occurrence of y in t.

c) Give a predicate for rewriting all occurrences of y in t.

d) Give a predicate for rewriting the term x +y in t.

e) Explain why the term y + x cannot be rewritten in t.
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3.4 By Name Specification of Implicit Arguments

We take the opportunity to discuss an engineering detail of Coq’s term language.

In implicit arguments mode, Coq derives for some constants (i.e., defined names)

an expanded type providing for additional implicit arguments. The real type and

the expanded type are always convertible, so the difference does not matter for

type checking. We can use the command About to find out whether Coq has

determined an expanded type for a constant. For instance, this is the case for

the constant leibniz_sym defined in the previous section.

About leibniz_sym.

leibniz_sym : ∀ (X : Type) (x y : X), x == y→ y == x

Expanded type for implicit arguments

leibniz_sym : ∀ (X : Type) (x y : X), x == y→ ∀ p : X→ Prop, p y→ p x

Arguments X, x, y, p are implicit

If you print the lemma leibniz_rewrite from the previous section, you will see the

following proof term:

fun (X : Type) (x y : X) (p : X→ Prop) (A : x == y) =>

leibniz_sym (x:=x) (y:=y) A (p:=p)

Note that the implicit arguments x, y , and p of leibniz_sym are explicitly speci-

fied by name. By-name specification of implicit and explicit arguments can also

be used when you give terms to Coq. Step through the following script to under-

stand the many notational possibilities Coq has in offer.

Goal ∀ X (x y : X) (p : X→ Prop),

x == y→ p y→ p x.

Proof.

intros X x y p A.

Check leibniz_sym A.

Check leibniz_sym A (p:=p).

Check @leibniz_sym X x y A p.

Check @leibniz_sym _ _ _ A p.

exact (leibniz_sym A (p:=p)).

Show Proof.

Qed.

3.5 Local Definitions

Coq’s term language has a construct for local definitions taking the form

let x : t := s in u
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where x is the local name, t is the type declared for x, s is value of x, and u is

the term in which the local definition is visible. Coq will check that the term s has

the declared type t. In case the declared type is omitted, Coq will try to infer it.

Local definitions come with a reduction rule called zeta reduction that replaces

the defined name with its value:

let x : t := s in u ⇝ uxs

Here are examples.

Compute let x := 2 in x + x.

% 4 : nat

Compute let x := 2 in let x := x + x in x.

% 4 : nat

Compute let f := plus 3 in f 7.

% 10 : nat

The undirected version of zeta reduction serves as a conversion rule (zeta con-

version). Note that zeta reduction looks very much like beta reduction. There is

however an important difference between a local definition let x : t := s in u and

the corresponding beta redex (λx : t. u) s : The continuation u of a local definition

is type checked with delta conversion enabled between the local name x and the

defining term s. Thus the local definition

Check let X := nat in (fun x : X⇒ x) 2.

will type check while the corresponding beta redex will not.

Check (fun X⇒ (fun x : X⇒ x) 2) nat.

% Error : The term 2 is expected to have type X .

Besides for local definitions, Coq uses the let notation also as a syntactic

convenience for one-constructor matches. For instance:

let (x,y) := (2,7) in x + y ⇝ match (2,7) with pair x y⇒ x + y end

3.6 Proof of nat ≠ bool

We will now prove that the types bool and nat are different. The proof will

employ a predicate p on types that holds for bool but does not hold for nat.

For p we choose the property that a type has at most two elements. The proof

script uses two important tactics we have not seen before.

Goal bool ≠ nat.
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Proof.

pose (p X := ∀ x y z : X, x=y ∨ x=z ∨ y=z).

assert (H: ¬p nat).

{ intros B. specialize (B 0 1 2). destruct B as [B|[B|B]] ; discriminate B. }

intros A. apply H. rewrite ← A.

intros [|] [|] [|] ; auto.

Qed.

The tactic pose defines the discriminating predicate p.3 The tactic assert states

the intermediate claim ¬p nat. For the proof of the intermediate claim Coq in-

troduces a subgoal. The script proving the subgoal is enclosed in curly braces.

The tactic specialize is used to instantiate the universally quantified assumption

p nat with the numbers 0, 1, and 2. With case analysis and discriminate we show

that the instantiated assumption is contradictory. After the intermediate claim

is established, we can use it as an additional assumption H. We now introduce

the assumption A : bool = nat and apply the intermediate claim H. The claim is

now p nat. We rewrite with the assumption A and obtain the claim p bool. This

claim follows by case analysis over the universally quantified boolean variables.

As always, step carefully through the proof script to understand.

Exercise 3.6.1 Prove the following goals.

(a) Goal bool ≠ option bool.

(b) Goal option bool ≠ prod bool bool.

(c) Goal bool ≠ False.

Exercise 3.6.2 Step through the proof of bool ≠ nat and insert the command

Show Proof immediately after the assert. You will see that the local definition

of p is realized with a let and that the assumptionH is realized with a beta redex.

let p := fun X : Type⇒ forall x y z : X, x = y ∨ x = z ∨ y = z in

(fun H : ¬ p nat⇒ ?2) ?1

The two existential variables ?2 and ?1 represent the claims of the two subgoals

that have to be solved at this point (1 represents the claim of the subgoal for the

assert and ?2 represents the claim of the remaining subgoal).

3.7 Cantor’s Theorem

Cantor’s theorem says that there is no surjective function from a set to its power

set. This means that the power set of a set X is strictly larger than X. For his

proof Cantor used a technique commonly called diagonalisation. It turns out

3 The tactic pose constructs a proof term with a let expression accommodating the local defini-

tion.
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that Cantor’s proof carries over to type theory. Here we can show that there is

no surjective function from a Type X to the type X → Prop. Speaking informally,

this means that there are strictly more predicates on X than there are elements

of X.

Definition surjective (X Y : Type) (f : X→ Y) : Prop := ∀ y, ∃ x, f x = y.

Lemma Cantor X :

¬ ∃ f : X→ X→ Prop, surjective f.

Proof.

intros [f A].

pose (g x := ¬ f x x).

specialize (A g).

destruct A as [x A].

assert (H: ¬ (g x ↔ ¬ g x)) by tauto.

apply H. unfold g at 1. rewrite A. tauto.

Qed.

The proof assumes a type X and a surjective function f from X to X → Prop

and constructs a proof of False. We first define a spoiler function gx := ¬fxx in

X → Prop. Since f is surjective, there is an x such that fx = g. Thus gx =

¬fxx = ¬gx, which is contradictory.

Exercise 3.7.1 Prove the following goals.

(a) Goal ¬ ∃ f : nat→ nat→ nat, surjective f.

(b) Goal ¬ ∃ f : bool→ bool→ bool, surjective f.

Exercise 3.7.2 Prove the following generalization of Cantor’s Theorem.

Lemma Cantor_generalized X Y :

(∃ N : Y→ Y, ∀ y, N y ≠ y)→

¬ ∃ f : X→ X→ Y, surjective f.

Exercise 3.7.3 Prove the following variant of Cantor’s Theorem.

Lemma Cantor_neq X Y (f : X→ X→ Y) (N : Y→ Y) :

(∀ y, N y ≠ y)→ ∃ h, ∀ x, f x ≠ h.

Exercise 3.7.4 Prove the following goals. They establish sufficient conditions for

the surjectivity and injectivity of functions based on inverse functions.

Definition injective (X Y : Type) (f : X→ Y) : Prop := ∀ x x’ : X, f x = f x’→ x = x’.

Goal ∀ X Y : Type, ∀ f : X→ Y, (∃ g : Y→ X, ∀ y, f (g y) = y)→ surjective f.

Goal ∀ X Y : Type, ∀ f : X→ Y, (∃ g : Y→ X, ∀ x, g (f x) = x)→ injective f.
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Exercise 3.7.5 One can also show that no type X admits an injective function f

from X → Prop to X. Given X and f , the proof defines a predicate p : X → Prop

such that both ¬p(f p) and p(f p) are provable. Given the definition of p, the

proof is routine. Complete the following proof script.

Goal ∀ X, ¬ ∃ f : (X→ Prop)→ X, injective f.

Proof.

intros X [f A].

pose (p x := ∃ h, f h = x ∧ ¬ h x).

· · ·

Qed.

3.8 Kaminski’s Equation

Kaminski’s equation4 takes the form f(f(f x)) = f x and holds for every func-

tion f : bool → bool and every boolean x. The proof proceeds by repeated boolean

case analysis: First on x and then on f true and f false. For the proof to work,

the boolean case analysis on f true must provide the equations f true = true and

f true = false coming with the case analysis. The equations are also needed for

the case analysis on f false. We use the annotation eqn to tell the tactic destruct

that we need the equations.

Goal ∀ (f : bool→ bool) (x : bool), f (f (f x)) = f x.

Proof. intros f x. destruct x, (f true) eqn:A, (f false) eqn:B ; congruence. Qed.

To understand, replace the semicolon before congruence with a period and solve

the 8 subgoals by hand.

For boolean case analyses, the annotated use of destruct can be simulated

with the following lemma.

Lemma destruct_eqn_bool (p : bool→ Prop) (x : bool) :

(x = true→ p true)→ (x = false→ p false)→ p x.

Proof. destruct x ; auto. Qed.

To apply the lemma, we use the tactic pattern to identify the predicate p.

Goal ∀ (f : bool→ bool) (x : bool), f (f (f x)) = f x.

Proof.

destruct x ;

pattern (f true) ; apply destruct_eqn_bool ;

pattern (f false) ; apply destruct_eqn_bool ;

congruence.

Qed.

4 The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote

his Bachelor’s thesis on classical higher-order logic.
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Replace the semicolons with periods and solve the subgoals by hand to under-

stand.

Exercise 3.8.1 Prove the following variant of Kaminski’s equation.

Goal ∀ (f g : bool→ bool) (x : bool), f (f (f (g x))) = f (g (g (g x))).

3.9 Boolean Equality Tests

It is not difficult to write a boolean equality test for nat.

Fixpoint nat_eqb (x y : nat) : bool :=

match x, y with

| O, O⇒ true

| S x’, S y’ ⇒ nat_eqb x’ y’

| _, _⇒ false

end.

We prove that the boolean equality test agrees with Coq’s equality.

Lemma nat_eqb_agrees x y :

nat_eqb x y = true ↔ x = y.

Proof.

revert y.

induction x ; intros [|y] ; split ; simpl ; intros A ; try congruence.

− f_equal. apply IHx, A.

− apply IHx. congruence.

Qed.

Note that the proof uses the tactical try. Try is needed since congruence can

only solve 6 of the 8 subgoals produced by the induction on x, the case analysis

on y , and the split of the equivalence. A command try t behaves like the tactic

t if t succeeds but leaves the goal unchanged if t fails. Also note the command

apply IHx, A. It first applies the inductive hypothesis from left to right and then

applies the assumption A. So we learn that apply can apply equivalences in either

direction and that succeeding applications can be condensed in one apply with

commas. Without these conveniences, we may write apply IHx, A as

destruct (IHx y) as [C _]. apply C. apply A.

Exercise 3.9.1 Write a boolean equality test for bool and prove that it agrees

with Coq’s equality.

Exercise 3.9.2 Write a boolean equality test for lists and prove that it agrees with

Coq’s equality. The equality test for lists should take a boolean equality test for

the element type of the lists as arguments. Prove the correctness of your equality

test with the following lemma.
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Lemma list_eqb_agrees X (X_eqb : X→ X→ bool) (A B : list X) :

(∀ x y, X_eqb x y = true ↔ x = y)→

(list_eqb X_eqb A B = true ↔ A = B).

Coq Summary

Conversion Tactics

change, pattern, hnf , cbv, simpl, unfold, fold.

Constructor Tactics

discriminate, injection, congruence.

Other Tactics

pose, assert.

Tacticals

try

New Features of the Tactics apply and destruct

• apply can apply equivalences in either direction. See Section 3.9, proof of

nat_eqb_agrees.

• A sequence of applies can be written as a single apply using commas. For

instance, we may write “apply A, B, C.” for “apply A. apply B. apply C.”. See

Section 3.9, proof of nat_eqb_agrees.

• destruct can be used with an eqn-annotation to provide the equations gov-

erning the case analysis as assumptions. The eqn-annotation goes after the

as-annotation.

New Features of the Term Language

• Implicit arguments can be specified by name rather than by position. See

Section 3.4, application of leibniz_sym.

• Local definitions with the let notation. See Section 3.5.

• Let notation for one-constructor matches. See Section 3.5.

Sections

See Section 3.1.
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So far we have done all inductive proofs with the tactic induction. We will con-

tinue to do so, but it is time to explain how inductive proofs are obtained in

Coq’s type theory. Recall that tactics are not part of Coq’s type theory, that

propositions are represented as types, and that proofs are represented as terms

describing elements of propositions. So there must be some way to represent

inductive proofs as terms of the type theory. Since inductive proofs in Coq are

always based on inductive types (e.g., nat or list X ), the fact that Coq obtains

structural induction as structural recursion should not come as a surprise.

4.1 Induction Lemmas

When we define an inductive type, Coq automatically establishes an induction

lemma for this type. For nat the induction lemma has the following type.1

Check nat_ind.

nat_ind : ∀p : nat → Prop, p 0 → (∀n : nat, p n→ p (Sn)) → ∀n : nat, p n

The type tells us that nat_ind is a function that takes a predicate p and yields

a proof of ∀n :nat, pn, provided it is given a proof of p 0 and a function that

for every n and every proof of pn yields a proof of p(S n). The second and the

third argument of nat_ind represent what in mathematical speak is called the

basis step and the inductive step.

Coq’s tactic induction is applied to a variable of an inductive type and applies

the induction lemma of this type. In the case of nat_ind this will produce two

subgoals, one for the basis step and one for the inductive step. Here is a proof

that obtains the necessary induction by applying nat_ind directly.

Goal ∀ n, n + 0 = n.

Proof.

apply (nat_ind (fun n⇒ n + 0 = n)).

− reflexivity.

− intros n IHn. simpl. f_equal. exact IHn.

Qed.

1 Coq uses the capital letter P for the argument p. We follow our own conventions and use the

letter p. The difference will not matter in the following.
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The proof applies Coq’s induction lemma nat_ind with the right predicate p. This

yields two subgoals, one for the basis step and one for the inductive step. Note

the introduction of the inductive hypothesis IHn in the script for the inductive

step.

Here is a second example for the use of the induction lemma nat_ind.

Goal ∀ n m, n + S m = S (n + m).

Proof.

intros n m. revert n.

apply (nat_ind (fun n⇒ n + S m = S (n + m))) ; simpl.

− reflexivity.

− intros n IHn. f_equal. exact IHn.

Qed.

The proof would also go through with a more general inductive predicate p quan-

tifying overm. In this case the first line of the proof script would be deleted. See

Exercise 4.1.1.

We now know how to construct inductive proofs with the induction lemma

nat_ind. Next we explain how the lemma nat_ind is defined. Speaking type

theoretically, we have to define a function that has the type of nat_ind. We do

this with the definition command using a recursive abstraction.

Definition nat_ind (p : nat→ Prop) (basis : p 0) (step : ∀ n, p n→ p (S n))

: ∀ n, p n := fix f n := match n return p n with

| 0⇒ basis

| S n’⇒ step n’ (f n’)

end.

Note that the match specifies a return type function λn.pn. This is necessary

since the two rules of the match have different return types. The return type of

the first rule is p 0, and the return type of the second rule is p(S n′). The return

types of the rules are obtained by applying the return type function to the left

hand sides of the rules.

Exercise 4.1.1 Prove the following goal by applying the induction lemma nat_ind

immediately (i.e., don’t introduce n and m).

Goal ∀ n m, n + S m = S (n + m).
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Exercise 4.1.2 We consider an induction lemma for list types.

a) Complete the following definition of an induction lemma for list types.

Definition list_ind (X : Type) (p : list X→ Prop)

(basis : p nil)

(step : ∀ (x : X) (A : list X), p A→ p (x::A))

: ∀ A : list X, p A :=

b) Prove that list concatenation is associative using the induction lemma list_ind.

c) Use the command Check to find out the type of the induction lemma Coq

provides for list types. Since Coq’s lemma is also bound to the name list_ind,

you will have to undo your definition to see the type.

4.2 Primitive Recursion

Primitive recursion is a basic computational idea for natural numbers first stud-

ied in the 1930’s. We saw a formulation of primitive recursion called iteration

in Section 1.12. The basic idea is to apply a step function n-times to a start

value. We formalized the idea with a function nat_iter taking the number n, the

step function, and the start value as arguments.2 For the application of nat_iter

the type of nat_iter is crucial. The more general the type of nat_iter , the more

recursive functions can be expressed with nat_iter .

We will now formulate primitive recursion as a function prec that can express

both the computational function nat_iter and the induction lemma nat_ind. We

base the definition of prec on two equations.

prec x f 0 = x

prec x f (S n) = f n (prec x f n)

Compared to nat_iter , we have reordered the arguments and now work with a

step function that takes the number of iterations so far as an additional first

argument. For instance, prec x f 3 = f 2 (f 1 (f 0 x)). From the equations it is clear

that prec can express nat_iter .

We now come to the type of prec. We take the type of the induction lemma

nat_ind where the type of p is generalized to nat → Type (recall that propositions

are types).

prec : ∀p : nat → Type, p 0 → (∀n : nat, p n→ p (Sn)) → ∀n : nat, p n

Given the type and the equations, the definition of prec is straightforward.3

2 In Section 1.12 we used the short name iter for nat_iter . The function nat_iter is defined in

Coq’s standard library.
3 Due to implicit argument mode, p is accommodated as implicit argument of prec.
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Definition prec (p : nat→ Type) (x : p 0) (f : ∀ n, p n→ p (S n))

: ∀ n, p n := fix F n := match n return p n with

| 0⇒ x

| S n’⇒ f n’ (F n’)

end.

Note that the definition of prec is identical with the definition of the induction

lemma nat_ind except for the more general type of p. Since nat → Prop is a

subtype of nat → Type, we can instantiate the type of prec to the type of nat_ind.

Check fun p : nat→ Prop⇒ prec (p:= p).

∀p : nat → Prop, p 0 → (∀n : nat, p n→ p (Sn)) → ∀n : nat, p n

Thus we can use prec to obtain the induction lemma nat_ind.

Lemma nat_ind (p : nat→ Prop) :

p 0→ (∀ n, p n→ p (S n))→ ∀ n, p n.

Proof. exact (prec (p:=p)). Qed.

We can also define arithmetic functions like addition with prec.

Definition add := prec (fun y⇒ y) (fun _ r y⇒ S (r y)).

Compute add 3 7.

% 10

We prove that add agrees with the addition provided by Coq’s library.

Goal ∀ x y, add x y = x + y.

Proof. intros x y. induction x ; simpl ; congruence. Qed.

As announced before, we can obtain the function nat_iter from prec.

Goal ∀ X f x n ,

nat_iter n f x = prec (p:= fun _⇒ X) x (fun _⇒ f) n.

Proof. induction n ; simpl ; congruence. Qed.

If we were allowed only a single use of fix for nat, we could define prec and

then express all further recursions with prec. In fact, since prec can also express

matches on nat, we can work without fix and match for nat as long as we have

prec.

Coq automatically synthesizes a primitive recursion function X_rect for every

inductive type X. Print nat_rect to see the primitive recursion function for nat.

Exercise 4.2.1 Prove prec = nat_rect.

Exercise 4.2.2 Prove that prec satisfies the two characteristic equations stated

at the beginning of this section.

Exercise 4.2.3 Show that prec can express multiplication and factorial.
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Exercise 4.2.4 Show that prec can express the predecessor function pred.

Exercise 4.2.5 Show that prec can express matches for nat. Do this by complet-

ing and proving the following goal.

Goal ∀ X x f n ,

match n with O⇒ x | S n’⇒ f n’ end = prec . . . .

4.3 Size Induction

Given a predicate p : X → Prop, size induction says that we can prove px using

the assumption that we have a proof of py for every y whose size is smaller

than the size of x. The sizes of the elements of X are given by a size function

X → nat. We formulate size induction as a proposition and prove it with natural

induction (i.e., structural induction on nat).

Lemma size_induction X (f : X→ nat) (p : X→ Prop) :

(∀ x, (∀ y, f y < f x→ p y)→ p x)→

∀ x, p x.

Proof.

intros step x. apply step.

assert (G: ∀ n y, f y < n→ p y).

{ intros n. induction n.

− intros y B. exfalso. omega.

− intros y B. apply step. intros z C. apply IHn. omega. }

apply G.

Qed.

The proof is clever. It introduces the step function step of the size induction

and x, leaving us with the claim px. By applying step we obtain the claim

∀y : X . f y < f x → p y. The trick is now to generalize this claim to the more

general claim ∀n∀y : X . f y < n→ p y, which can be shown by natural induction

on n.

Note that we have not seen a definition of Coq’s order predicate “<" for nat.

The details of the definition do not matter since we are using the automation

tactic omega to solve goals involving the order predicate.

Exercise 4.3.1 The principle of complete induction can be formulated as follows.

Lemma complete_induction (p : nat→ Prop) :

(∀ x, (∀ y, y < x→ p y)→ p x)→ ∀ x, p x.

a) Prove the lemma using the lemma size_induction.

b) Prove the lemma using natural induction.
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Exercise 4.3.2 Define your own order predicate lt : nat → nat → Prop and prove

the size induction lemma for your order predicate. Hint: Define lt with the

boolean order test leb from Section 1.3 and prove the following lemma by in-

duction on x. No other lemma will be needed.

Lemma lt_tran x y z : lt x y→ lt y (S z)→ lt x z.

4.4 Equational Specification of Functions

It is often instructive to specify a recursive function by a system of equations.

We have seen such equational specifications for the functions plus, nat_iter , and

prec. For arithmetic functions like addition and multiplication equational spec-

ifications where already used by Dedekind. In Coq, we can express equational

specifications as predicates. Given a specification, we may prove that there is

a function satisfying the specification (satisfiability) and that any two function

satisfying the specification agree on all arguments (uniqueness). We start with a

somewhat unusual specification of addition.

Definition addition (f : nat→ nat→ nat) : Prop :=

∀ x y,

f x 0 = x ∧

f x (S y) = f (S x) y.

Lemma addition_existence :

addition plus.

Proof. intros x y. omega. Qed.

Lemma addition_uniqueness f g :

addition f→ addition g→ ∀ x y, f x y = g x y.

Proof.

intros A B x y. revert x. induction y ; intros x.

− destruct (A x 0) as [A’ _]. destruct (B x 0) as [B’ _]. congruence.

− destruct (A x y) as [_ A’]. destruct (B x y) as [_ B ’]. specialize (IHy (S x)). congruence.

Qed.

From the example we learn that an equational specification is abstract in that is

does not say how the specified function is realized. The specification addition

suggests a tail recursive function matching on the second argument. The func-

tion plus from the library recurses on the first argument and is not tail recursive.

Nevertheless, plus satisfies the specification addition.

Our second example specifies a function known as Ackermann’s function.4

4 Ackermann’s function grows rapidly. For example, for 4 and 2 it yields a number of 19,729

decimal digits. It was designed as a terminating recursive function that cannot be computed

with first-order primitive recursion. In Exercise 4.4.2 you will show that Ackermann’s function

can be computed with higher-order primitive recursion.
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Definition ackermann (f : nat→ nat→ nat) : Prop :=

∀m n,

f O n = S n ∧

f (S m) O = f m 1 ∧

f (S m) (S n) = f m (f (S m) n).

The satisfiability and uniqueness of this specification can be argued as follows.

Since for any two arguments exactly one of the three equations applies, f exists

and is unique if the application of the equations terminates. This is the case

since either the first argument is decreased, or the first argument stays the same

and the second argument is decreased.

The above termination argument is outside the scope of Coq’s termination

checker. Coq insists that every fix comes with an argument that is structurally

decreased by every recursive application. The problem can be solved by formu-

lating Ackermann’s function with two nested recursions.

Definition ack : nat→ nat→ nat :=

fix f m := match m with

| O⇒ S

| S m’⇒ fix g n := match n with

| O⇒ f m’ 1

| S n’⇒ f m’ (g n’)

end

end.

Note that ack is defined as a recursive function that yields a recursive function

when give an argument greater than 0. Each of the two recursions is structural

on its argument. The correctness proof for ack is straightforward.

Goal ackermann ack.

Proof. unfold ackermann. auto. Qed.

We can also show that any two functions satisfying the specification ackermann

agree on all arguments.

Goal ∀ f g x y, ackermann f→ ackermann g→ f x y = g x y.

Proof.

intros f g x y A B. revert y. induction x ; intros y.

− destruct (A 0 y) as [C _]. destruct (B 0 y) as [D _]. congruence.

− induction y.

+ destruct (A x 0) as [_ [C _]]. destruct (B x 0) as [_ [D _]]. congruence.

+ destruct (A x y) as [_ [_ C]]. destruct (B x y) as [_ [_ D]]. congruence.

Qed.

2013-7-26 79



4 Induction and Recursion

Exercise 4.4.1 Write an equational specification for multiplication and prove

that Coq’s multiplication satisfies the specification. Also prove that two func-

tions agree on all arguments if they satisfy the specification. Do the same for

subtraction.

Exercise 4.4.2 Write an Ackermann function using prec rather than fix and

match. Prove that your function satisfies the specification ackermann.

Exercise 4.4.3 We specify primitive recursion as follows.

Definition primitive_recursion

(r : ∀ p : nat→ Type, p 0→ (∀ n, p n→ p (S n))→ ∀ n, p n)

: Prop :=

∀ p x f n,

let r := r p x f in

r 0 = x ∧

r (S n) = f n (r n).

Note that a local declaration with let is used to write the specifying equations in

compact form. Show that prec satisfies the specification. Also prove that two

functions agree on all arguments if they satisfy the specification.

Exercise 4.4.4 Give an equational specification for nat_iter . Prove that nat_iter

satisfies the specification and that the specification is unique.

Coq Summary

New Features of the Term Language

• Matches can be specified with a return type function. See Section 4.1, defini-

tion of nat_ind.
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5 Truth Value Semantics and

Elim Restriction

Coq’s type theory is designed such that the truth value semantics of proposi-

tions commonly used in Mathematics can be consistently assumed. This design

comes at the price of the elim restriction, which restricts matches on proofs

such that proofs must be returned. The elim restriction severely restricts the

computational use of proofs.

5.1 Truth Value Semantics

In Mathematics one assumes that a proposition is either true or false. More

specifically, one assumes that every proposition denotes a truth value, which is

either true or false. With the boolean definition of disjunction it then follows

that for any proposition p the disjunction p ∨¬p is true.

Given the fact that propositions denote truth values, we could consider two

propositions equal if they denote the same truth value. This assumption is made

in boolean logic as well as in Church-Henkin simple type theory.

We formulate the mathematical assumption that a proposition is either true

or false as a proposition in Coq:

Definition TVS : Prop := ∀ X : Prop, X=True ∨ X=False.

We can now ask whether Coq can prove TVS or ¬TVS. It turns out that Coq

can prove neither of the two. That Coq cannot prove TVS seems intuitively clear

since there is nothing in the basic proof rules that would give us a proof of TVS.

On the other hand, that Coq cannot prove ¬TVS is not clear at all given the fact

that propositions in Coq are obtained as types.

We call a proposition p consistent in Coq if Coq cannot prove ¬p. Moreover,

we call a proposition p independent in Coq if Coq can prove neither p nor ¬p.

Note that every independent proposition is consistent, but not vice versa (e.g.

True is consistent but not independent).

Above we have stated that TVS is independent in Coq. The consistency of TVS

in Coq does not come for free. In fact, the design of Coq’s type theory has been

carefully arranged so that TVS is consistent. To obtain the consistency of TVS,
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Coq imposes a severe typing restriction known as the elim restriction. To prepare

the discussion of the elim restriction, we first consider some conseqences of TVS.

First we show that TVS implies XM (excluded middle). This follows from the

fact that True and False satisfy XM (i.e., True∨¬True and False∨¬False are

provable).

Goal TVS→ XM.

Proof. intros A X. destruct (A X) as [B|B] ; rewrite B ; auto. Qed.

Another important consequence of TVS is proof irrelevance.

Definition PI : Prop := ∀ (X : Prop) (A B : X), A=B.

Proof irrelevance says that a proposition has at most one proof. Here is a proof

that truth value semantics implies proof irrelevance.

Goal TVS→ PI.

Proof.

intros A X B C. destruct (A X) ; subst X.

− destruct B, C. reflexivity.

− contradiction B.

Qed.

The proof exploits that the proposition True has exactly one proof, a fact fol-

lowing from the inductive definition of True. The script uses the tactic subst,

which eliminates a variable x if there is an assumption x = s such that x does

not occur in s.

A third consequence of TVS is propositional extensionality.

Definition PE : Prop := ∀ X Y : Prop, (X ↔ Y)→ X=Y.

Propositional extensionality says that two propositions are equal if they are

equivalent.

Goal TVS→ PE.

Proof. intros A X Y B. destruct (A X), (A Y) ; subst X Y ; tauto. Qed.

Finally, we show that excluded middle and propositional extensionality to-

gether imply truth value semantics.

Goal XM→ PE→ TVS.

Proof.

intros xm pe X. destruct (xm X) as [A|A].

− left. apply pe. tauto.

− right. apply pe. tauto.

Qed.

We now know that TVS and XM ∧ PE are equivalent.
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Exercise 5.1.1 Make sure you can prove TVS ↔ XM ∧ PE

Exercise 5.1.2 Prove TVS → PE without using the tactic subst. Use the tactic

rewrite instead.

5.2 Elim Restriction

If we have a surjective function f : X → bool, then the type X must contain at

least two elements.

Goal ∀ X (f : X→ bool), surjective f→ ∃ x y : X, x ≠ y.

Proof.

intros X f A. destruct (A true) as [x B]. destruct (A false) as [y C].

∃ x, y. congruence.

Qed.

Now consider the inductive proposition

Inductive bp : Prop := P1 : bp | P2 : bp.

which by definition has two proofs P1 and P2. Given the match for bp, it is easy

to construct a surjective function bp → bool, it seems. However, Coq rejects the

following match on x : bp:

Check fun x : bp⇒match x with P1⇒ true | P2⇒ false end.

% Error : Incorrect elimination of "x" . . .

The reason is the so-called elim restriction: A match on a proof (i.e., on an ele-

ment of a proposition) is only allowed if the match returns a proof. The above

match does not return a proof and hence it is rejected by the elim restriction.

One important reason for the elim restriction is that it is needed so that truth

value semantics is consistent in Coq. Without the elim restriction, we get a sur-

jective function from bp to bool, which entails that the proposition bp has two

different elements. This however contradicts proof irrelevance, which says that

no proposition has more than one proof. Since TVS entails PI , not having the

elim restriction would mean that truth value semantics is inconsistent in Coq.

There are a few exceptions to the elim restriction, all of them being consistent

with proof irrelevance. For instance, there is no restriction on the matches for

True and False. The remaining exceptions will be discussed in Section 7.5.

We give another example illustrating the elim restriction. Consider the fol-

lowing lemma, which establishes the existence of a so-called Skolem function for

total predicates p : X → Y → Prop where Y is a proposition.

Lemma Prop_Skolem (X : Type) (Y : Prop) (p : X→ Y→ Prop) :

(∀ x, ∃ y, p x y)→ ∃ f, ∀ x, p x (f x).
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Proof.

intros A.

∃ (fun x⇒ let (y,_) := A x in y).

intros x.

destruct (A x) as [y B].

exact B.

Qed.

The let notation in the definition of the Skolem function is notational sugar for

the one-constructor match

match A x return Y with ex_intro y _⇒ y end

This match on the proof A x is legal since it returns a proof y . If we generalize

the lemma to Y : Type, the proof script fails since the match now violates the

elim restriction.

We will speak of proper types and proper values. A proper type is a type

that is not a proposition, and a proper value is an element of a proper type.

Thus a type is not proper if and only if it is a proposition, and a value is not

proper if and only if it is a proof. Examples of proper types are nat, list nat, and

nat → nat. Example of proper values are 5, cons, and λx : nat.x.

Exercise 5.2.1 Prove that the proposition ∀X : Type. X = True∨ X = False is in-

consistent in Coq. Note that TVS is a weaker statement where X is restricted to

propositional types. Find out where your proof breaks if you apply it to TVS.

5.3 Propositional Extensionality Entails Proof Irrelevance

It turns out that propositional extensionality entails proof irrelevance. This is

a surprising result with a very interesting proof. The proof rests on a fixpoint

theorem that given a surjective function X → X → Y states that every function

Y → Y has a fixpoint.

Lemma sur_fixpoint X Y (f : X→ X→ Y) (g : Y→ Y) :

surjective f → ∃ y, g y = y.

Proof.

intros A.

pose (h x := g (f x x)).

destruct (A h) as [x B].

∃ (h x). unfold h at 2. rewrite ← B. reflexivity.

Qed.

The proof of the theorem should remind you of Cantor’s theorem. In fact, we

can obtain Cantor’s theorem as a corollary of the surjective fixpoint theorem by

specializing to Y := Prop and g := not.
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We now assume PE and prove PI . It suffices to prove P1 = P2 for the two

constructors of bp since given two proofs x and y of a proposition X we can

obtain a function f such that f P1 = x and f P2 = y using the match for bp. For

P1 = P2 it suffices to show that the “negation” function mapping P1 to P2 and

P2 to P1 has a fixpoint. This we obtain with the surjective fixpoint theorem. To

do so, we need a surjective function bp → bp → bp. Such a function is easy to

obtain if we have the equation (bp → bp) = bp. This finishes the proof since the

equation is a straightforward consequence of PE .

Goal PE→ PI.

Proof.

intros pe.

cut (P1=P2).

{ intros A X B C.

change (B =match P1 with P1⇒ C | P2⇒ B end).

rewrite A. reflexivity . }

pose (neg x := match x with P1⇒ P2 | P2⇒ P1 end).

cut (∃ P, neg P = P).

{ unfold neg. intros [[|] C].

− symmetry. exact C.

− exact C. }

cut (∃ f : bp→ bp→ bp, surjective f).

{ intros [f A]. apply (sur_fixpoint (f:=f)). exact A. }

cut (bp = (bp→ bp)).

{ intros A. rewrite ← A. ∃ (fun x⇒ x). intros x. ∃ x. reflexivity. }

apply pe. split ; auto using P1.

Qed.

Note the use of the tactic cut to realize the backwards reasoning of the proof

outline. In the last line the automation tactic auto is used with a suffix telling it

to use the proof constructor P1 : bp.

Exercise 5.3.1 Prove Cantor’s theorem using the surjective fixpoint theorem

sur_fixpoint.

Lemma Cantor X :

¬ ∃ f : X→ X→ Prop, surjective f.

Exercise 5.3.2 Two types are isomorphic if there are commuting functions back

and forth.

Definition iso (X Y : Type) : Prop :=

∃ f : X→ Y, ∃ g : Y→ X, ∀ x y, g (f x) = x ∧ f (g y) = y.

Propositional univalence is the property that propositions are equal if they are

isomorphic.

2013-7-26 85



5 Truth Value Semantics and Elim Restriction

Definition PU : Prop := ∀ X Y : Prop, iso X Y→ X = Y.

It turns out that propositional extensionality factors into propositional univa-

lence and proof irrelevance, that is, PE ↔ PU ∧ PI . We have already shown

PE → PI . Prove PE → PU and PU → PI → PE to establish the equivalence.

Coq Summary

New Tactics

subst, cut.

Tactic auto with using

The tactic auto can be enhanced with lemmas and constructors specified with a

using suffix. See the proof of the goal PE → PI in Section 5.3.
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Sum types and sigma types are non-propositional variants of disjunctions and

existential quantifications. Since they are proper types, sum and sigma types are

not subject to the elim restriction. The elements of sum and sigma types are

computational values carrying a proof. With sum and sigma types we can write

certifying functions whose results contain correctness proofs.

6.1 Boolean Sums and Certifying Tests

Boolean sums are disjunctions placed in Type rather than Prop. Coq’s standard

library defines boolean sums as follows.

Inductive sumbool (X Y : Prop) : Type :=

| left : X→ sumbool X Y

| right : Y→ sumbool X Y.

Arguments left {X} {Y} _.

Arguments right {X} {Y} _.

Notation "{ X } + { Y }" := (sumbool X Y).

Boolean sums are like disjunctions except for the crucial difference that they are

proper types rather than propositions. Thus boolean sums are not subject to the

elim restriction. We call the elements of boolean sums decisions. We can think

of a decision as a proof-carrying boolean value, or as a proof of a disjunction on

which we can freely match.

A certifying test is a function that yields a decision. Coq’s library provides

many certifying tests. For instance, there is a certifying test for the order on

natural numbers:

le_dec : ∀xy : nat, {x ≤ y} + {¬(x ≤ y)}

The type of le_dec tells us that le_dec is a function that takes two numbers x

and y and returns a decision containing a proof of either x ≤ y or ¬x ≤ y . With

le_dec a minimum function can be written as follows:

Definition min (x y : nat) : nat :=

if le_dec x y then x else y.
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Compute min 7 3.

% 3 : nat

Note the use of the if-then-else notation in the definition of min. The if-then-else

notation is available for all inductive types with two constructors and expands

to a match. The definition of min expands as follows.

Set Printing All.

Print min.

min = fun x y : nat⇒match le_dec x y with left _⇒ x | right _⇒ y end

Unset Printing All.

We prove the correctness of min.

Goal ∀ x y, (x ≤ y→ min x y = x) ∧ (y ≤ x→ min x y = y).

Proof.

intros x y. split ; intros A.

− unfold min. destruct (le_dec x y) as [B|B].

+ reflexivity .

+ omega.

− unfold min. destruct (le_dec x y) as [B|B].

+ omega.

+ reflexivity .

Qed.

The proof can be shortened to a one-liner.

intros x y. split ; intros A ; unfold min ; destruct (le_dec x y) ; omega.

The Coq library Compare_dec offers many certifying tests for natural num-

bers. Here are a few.

le_lt_dec : ∀xy : nat, {x ≤ y} + {y < x}

le_ge_dec : ∀xy : nat, {x ≤ y} + {x ≥ y}

le_gt_dec : ∀xy : nat, {x ≤ y} + {x > y}

lt_eq_lt_dec : ∀xy : nat, {x < y} + {x = y} + {y < x}

The type of lt_eq_lt_dec needs explanation. Since boolean sums are proper types

taking propositions as arguments, they cannot be nested. Coq solves the prob-

lem with an additional sum type sumor and a concomitant notation.

Set Printing All.

Check {True} + {False} + {False}.

% sumor (sumbool True False) False : Type

Unset Printing All.

The type sumor and the accompanying notation are defined as follows.
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Inductive sumor (X : Type) (Y : Prop) : Type :=

| inleft : X→ sumor X Y

| inright : Y→ sumor X Y.

Notation "X + { Y }" := (sumor X Y).

Exercise 6.1.1 Prove the following goal.

Goal ∀ X Y : Prop, {X} + {Y}→ X ∨ Y.

Explain why you cannot prove the other direction∀X Y : Prop, X ∨ Y → {X} + {Y}.

Exercise 6.1.2 Prove the following goals.

Goal ∀ x y, if le_dec x y then x ≤ y else ¬ x ≤ y.

Goal ∀ x y, if le_dec x y then x ≤ y else x > y.

6.2 Inhabitation and Decidability

An inhabitant of a type is an element of a type. So saying that x is an inhabitant

of a type X means the same as saying that x is a member of X, or that x is an

element of X. We say that a type is inhabited if it has at least one inhabitant.

So a type is inhabited if and only if it is nonempty. Coq’s library comes with an

inductive predicate for inhabitation.

Inductive inhabited (X : Type) : Prop :=

| inhabits : X→ inhabited X.

A proposition is inhabited if and only if it is provable.

Goal ∀ X : Prop, inhabited X ↔ X.

Proof.

split .

− intros [A] ; exact A.

− intros A. constructor. exact A.

Qed.

Note the use of the tactic constructor . Here it has the same effect as the com-

mand apply inhabits. In general, the tactic constructor tries to prove an inductive

proposition by applying a constructor of the definition of the proposition. The

tactic constructor is convenient since the name of the constructor needs not to

be given.

We say that a proposition p is decidable if the sum {p} + {¬p} is inhabited.

To have a concise notation for decidable propositions, we define the function

Definition dec (X : Prop) : Type := {X} + {¬ X}.
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Note that dec is not a predicate. An element of dec X is a decision that gives us

a proof of either X or ¬X. We call a member of dec X a decision of X.

The certifying test le_dec from the standard library tells us that all proposi-

tions of the form x ≤ y are decidable.

Check le_dec : ∀ x y : nat, dec (x ≤ y).

We define a function that converts a decision to a boolean by forgetting the proof

coming with the decision.

Definition dec2bool (X : Prop) (d : dec X) : bool :=

if d then true else false.

Compute dec2bool (le_dec 2 3).

% true : bool

We now establish the decidability of True. To do so, we construct a decision

of type dec True. This is easy since the constructor I is a proof of True.

Definition True_dec : dec True := left I.

The decidability of False is also easy to establish.

Definition False_dec : dec False := right (fun A⇒ A).

In the next section we will show that implications, conjunctions, and disjunc-

tions of decidable propositions are decidable.

Exercise 6.2.1 Prove the following goal.

Goal ∀ X : Type, X→ inhabited X.

Note that X → inhabited X is notation for the proposition ∀x : X , inhabited X .

Explain why you cannot prove that the type ∀X : Type, inhabited X → X is in-

habited.

Exercise 6.2.2 Prove ∀X Y : Prop. X ∨ Y ↔ inhabited ({X} + {Y}).

Exercise 6.2.3 Prove ∀X : Prop. dec X → X ∨¬X .

6.3 Writing Certifying Tests

We show that implication preserves decidability of propositions.

Definition impl_dec (X Y : Prop) : dec X→ dec Y→ dec (X→ Y).

intros A [B|B].

− left. auto.

− destruct A as [A|A].

+ right. auto.

+ left . tauto.

Defined.
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The definition of the function impl_dec should come as a surprise. This is the

first time we construct a member of a type that is not a proposition with a script.

Use the command Print impl_dec to see that the function constructed is in fact

similar to what you would have written by hand. Note that the tactics left and

right so far used for disjunctions also work for boolean sums. In fact, left and

right will work for every inductive type with two constructors. We can compute

with the certifying test impl_dec.

Check impl_dec (le_dec 3 2) False_dec.

% dec(3 ≤ 2 → False)

Compute (dec2bool (impl_dec (le_dec 3 2) False_dec)).

% true : bool

Here is a certifying equality test for nat.

Definition nat_eq_dec (x y : nat) : dec (x=y).

revert y. induction x ; simpl ; intros [|y].

− left. auto.

− right. auto.

− right. auto.

− destruct (IHx y).

+ left . congruence.

+ right. congruence.

Defined.

Compute dec2bool (nat_eq_dec 3 3).

% true : bool

This is the first time we use the induction tactic to synthesize a function return-

ing a proper value. When you print nat_eq_dec, you will see that the induction

tactic realizes the necessary recursion with nat_rect, an automatically generated

function providing primitive recursion for nat.

A more convenient way to obtain a certifying equality test for nat is using the

automation tactic decide equality.

Goal ∀ x y : nat, dec (x=y).

Proof. unfold dec. decide equality. Qed.

The standard library offers a boolean test leb for the order on nat and a

correctness lemma

leb_iff : ∀xy :nat, leb x y = true↔ x ≤ y

We can use leb and leb_iff to write a certifying test for the order on nat.
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Definition le_dec (x y : nat) : dec (x ≤ y).

destruct (leb x y) eqn:A.

− left. apply leb_iff. exact A.

− right. intros B. apply leb_iff in B. congruence.

Defined.

Note that the script for the second subgoal applies the correctness lemma leb_iff

to the assumption B using the tactic apply. This is the first time we apply a

lemma to an assumption using the tactic apply. It is also possible to rewrite

assumptions with the tactic rewrite. We have already mentioned that the conver-

sion tactics can be applied to assumptions. To apply a tactic to an assumption A,

one ends the command with “in A”.

Decidability of propositions propagates through logical equivalences. That is,

if X and Y are equivalent propositions, then X is decidable if and only if Y is

decidable.

Definition dec_prop_iff (X Y : Prop) : (X ↔ Y)→ dec X→ dec Y.

intros A [B|B].

− left. tauto.

− right. tauto.

Defined.

There are many undecidable propositions in Coq. A prominent example of an

undecidable proposition is excluded middle (i.e., XM := ∀X : Prop,X ∨¬X ). In

fact, a proposition is undecidable in Coq if and only if it is independent in Coq.

Exercise 6.3.1 Prove the following goals.

Goal ∀ X : Prop, inhabited X→ dec X.

Goal ∀ X : Prop, dec X→ dec (inhabited X).

Goal ∀ X : Prop, dec (inhabited X)→ dec X.

Exercise 6.3.2 Complete the following definitions establishing the fact that de-

cidable propositions are closed under conjunction and disjunction.

Definition and_dec (X Y : Prop) : dec X→ dec Y→ dec (X ∧ Y).

Definition or_dec (X Y : Prop) : dec X→ dec Y→ dec (X ∨ Y).

Exercise 6.3.3 Write a certifying test ∀x y : nat. {x < y} + {x = y} + {y < x}.

Exercise 6.3.4 Write a certifying equality test for bool.

a) Use the automation tactic decide equality.

b) Write the test without using decide equality.
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Exercise 6.3.5 Compare the certifying equality test nat_eq_dec from this section

with the boolean equality test nat_eqb and its correctness lemma nat_eqb_agrees

from Section 3.9. We can say that the certifying test combines the boolean test

and its correctness lemma into a single function.

a) Define nat_eqb and nat_eqb_agrees using nat_eq_dec.

b) Define nat_eq_dec using nat_eqb and nat_eqb_agrees.

Exercise 6.3.6 Consider the boolean test leb and the certifying test le_dec from

the standard library.

a) Prove the correctness lemma for leb.

Lemma leb_iff x y : leb x y = true ↔ x ≤ y.

b) Define the certifying test le_dec using the induction tactic. Follow the defini-

tion of nat_eq_dec shown above. Compare this definition of le_dec with the

proof of leb_iff .

Exercise 6.3.7 Write a function that given a certifying equality test for a type X

yields a certifying equality test for list X . Write the function with and without

the automation tactic decide equality.

Exercise 6.3.8 Complete the following definition. It establishes a function trans-

lating a boolean decision of a proposition X into a certifying decision of X.

Definition bool2dec (X : Prop) (b : bool) : (X ↔ b = true)→ dec X.

Exercise 6.3.9 (Program Synthesis) One can use tactics to synthesize ordinary

functions not involving proofs. Here are two examples.

Definition cas (X Y Z : Type) : (X * Y→ Z)→ X→ Y→ Z.

intros f x y. exact (f (x,y )).

Defined.

Definition car (X Y Z : Type) : (X→ Y→ Z)→ X * Y→ Z.

intros f [x y]. exact (f x y).

Defined.

Use the command Print to see the synthesized functions. It is also possible to

synthesize recursive functions like addition.

Definition add : nat→ nat→ nat.

fix f 1. intros x y. destruct x as [|x’].

− exact y.

− exact (S (f x’ y )).

Defined.

Use the command Show Proof after each tactic to see the partial code of the

function synthesized by the tactic.
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6.4 Definitions and Lemmas

A definition in Coq is either inductive or plain. Inductive definitions extend the

underlying type theory with new inhabitants obtained with constructors. Plain

definitions do not extend the type theory but introduce names for already ex-

isting inhabitants. A plain definition takes the form x : t := s where x is a name

and t and s are terms. The term t must be a type and s must be a member of t.

We call x the name of the definition, t the type of the definition, and s the body

of the definition. The type of a plain definition acts as the type of the name of

the definition.

A plain definition can be either transparent or opaque. If the definition is

transparent, the name and the body of the definition are convertible (i.e., un-

folding and folding of the name, known as delta conversion). If the definition is

opaque, the name is abstract and cannot be unfolded. Thus all we know about

an opaque name is that it is an inhabitant of its type.

Opaque definitions are a means of abstraction. Given an opaque name x

(i.e., a name introduced by an opaque definition), we can use the specification

of x (i.e., the type of x) but not the implementation of x (i.e., the body of the

opaque definition of x). Thus every use of an opaque name x will be compatible

with every implementation of x. Opaque names are as abstract as variables

introduced with lambda abstractions, matches, or sections.

A transparent definition can be stated in Coq with a command of the form

Definition x : t := s or a sequence of commands taking the form

Definition x : t. tactic1 · · · tacticn Defined.

The tactics in the long form synthesize the body s of the definition. If we replace

the command Defined in the long form with the command Qed, we obtain an

opaque definition. The command Definition in the long form can be replaced

with the command Lemma, which has no effect. We use the command Lemma

only for sequences of the following form.1

Lemma x : t. Proof. tactic1 · · · tacticn Qed.

We also use the command sequence

Goal t. Proof. tactic1 · · · tacticn Qed.

This sequence has the same effect as the sequence starting with Lemma except

that the missing name x is automatically generated by Coq.

In Coq, a lemma is an opaque name established with an opaque definition.

The statement of the lemma is the type of the lemma, and the proof of the

1 The Coq library doesn’t always follow this convention. For instance, le_dec is defined with

Theorem and Defined.
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lemma is the hidden body of the definition. The proof of a lemma certifies that

the type of the lemma is inhabited. If we work with a lemma, the uses of the

lemma cannot see the proof of the lemma. So all uses of a lemma are abstract

in that they do not make any assumptions about the proof of the lemma. This

agrees with the mathematical use of lemmas.

There is also an engineering reason for representing lemmas as opaque names

in Coq. If lemmas were transparent names, they would be subject to unfolding

and their (possibly complex) proofs would unnecessarily participate in conver-

sion checking and type checking.

A strong lemma is a lemma whose type is not a proposition. Strong lemmas

are a speciality of constructive type theory that don’t seem to have a counterpart

in Mathematics.

6.5 Decidable Predicates

Every function definable in Coq is computable. Because of opaque definitions,

Coq’s interpreter may fail to fully evaluate a function application. So the above

statement is made with respect to an idealized interpreter treating all plain dec-

larations as transparent.

Functions are described with terms in Coq. When an idealized interpreter

evaluates a term describing a function, it will always end up with a term having

one of the following forms:

• A lambda abstraction.

• A recursive abstraction.

• A constructor.

• A constructor application ct1 . . . tn where c is a constructor and t1, . . . , tn are

n ≥ 1 terms. Examples of functions obtained as constructor applications are

cons 3 and prod nat.

We call a predicate p : X → Prop decidable if the there is some function that

yields for every x : X a decision of px.

Definition decidable (X : Type) (p : X→ Prop) : Type := ∀ x, dec (p x).

If p and some function f : decidable p are definable in Coq, then f is a decision

procedure for p and p is computationally decidable.

Coq can define undecidable predicates. An example of an undecidable pred-

icate is λX : Prop. X ∨¬X . The undecidability of this predicate follows from the

fact that XM is independent in Coq.2

2 Note that by undecidable we mean not decidable in Coq. Predicates that are undecidable in Coq

may be computationally decidable. On the other hand, predicates that are decidable in Coq are
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Goal decidable (fun X : Prop⇒ X ∨ ¬X)→ XM.

Proof. intros A X. destruct (A X) as [B|B] ; tauto. Qed.

The notion of decidability extends to predicates with more than one argu-

ment. As is, Coq doesn’t give us the possibility to define decidability of predi-

cates in one go, we have to give the definition for each number n ≥ 1 of argu-

ments. If, more generally, Coq would allow us to define decidability for n ≥ 0

arguments, decidability of propositions would fall out for n = 0.

Exercise 6.5.1 Every predicate equivalent to a boolean test is decidable. Prove

the following goal to show this fact.

Goal ∀ (X : Type) (p : X→ Prop) (f : X→ bool), (∀ x, p x ↔ f x = true)→ decidable p.

6.6 Sigma Types

Sigma types are existential quantifications expressed as proper types. The elim

restriction does not apply to sigma types. Given a type X and a predicate

p : X → Prop, the elements of the sigma type { x : X | p x } can be seen as pairs

consisting of a value x :X and a proof of p x. Coq defines sigma types as follows.

Inductive sig (X : Type) (p : X→ Prop) : Type :=

exist : ∀ x : X, p x→ sig p.

Notation "{ x | p }" := (sig (fun x⇒ p)).

Notation "{ x : X | p }" := (sig (fun x : X⇒ p)).

Consider the type ∀x : nat, {y | y = 2 ∗ x }. The elements of this types are func-

tions that take a number x and return a pair consisting of the number 2x and a

proof of the proposition y = 2∗ x. Here is a construction of such a function.

Definition double (x : nat) : { y | y = 2*x}.

∃ (2*x). reflexivity.

Defined.

Compute let (y,_) := double 4 in y.

% 8 : nat

Note the use of the tactic exists to construct a member of a sigma type. We will

refer to functions that yield an element of a sum or sigma type as certifying

functions. A certifying function combines a function and a correctness proof

into a single object. The types of certifying functions can be seen as specifica-

tions. For instance, while the type nat → nat gives us little information about its

inhabitants, the type ∀x : nat, {y | y = 2x } gives us much more information.

We define a certifying function that divides its argument by 2.

always computationally decidable.
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Definition div2_cert (n : nat) : {k | n = 2*k} + {k | n = 2*k + 1}.

induction n.

− left. ∃ 0. reflexivity.

− destruct IHn as [[k A]|[k A]].

+ right. ∃ k. omega.

+ left . ∃ (S k). omega.

Defined.

The result type of div2_cert is obtained with yet another kind of sum type

(needed since both constituents are proper types).

Inductive sum (X Y : Type) :=

| inl : X→ sum X Y

| inr : Y→ sum X Y.

Notation "x + y" := (sum x y) : type_scope.

Note that the definition of the “+” notation for sum is restricted to types. This

way the string 2+ 4 will still elaborate to the term plus 2 4.

Based on the certifying division function div2_cert we define ordinary modulo

and division functions and prove a correctness lemma.

Definition mod2 x := if div2_cert x then 0 else 1.

Definition div2 x := match div2_cert x with

| inl (exist k _) ⇒ k

| inr (exist k _) ⇒ k

end.

Goal ∀ x, x = 2 * div2 x + mod2 x.

Proof.

intros x. unfold div2, mod2.

destruct (div2_cert x) as [[k A]|[k A]] ; omega.

Qed.

Exercise 6.6.1 Prove ∀x. mod2 x ≤ 1.

Exercise 6.6.2 Prove the following fact about Skolem functions and sigma types.

Lemma Sigma_Skolem (X Y : Type) (p : X→ Y→ Prop) :

(∀ x, {y | p x y})→ { f | ∀ x, p x (f x) }.

Exercise 6.6.3 Establish the following goal and explain why the opposite direc-

tion from an existential quantification to a sigma type cannot be established.

Goal ∀ X (p : X→ Prop), {x | p x}→ ∃ x, p x.

Exercise 6.6.4 Prove ∀X : Type ∀p : X→Prop. (∃x.p x)↔ inhabited { x | p x }.
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Exercise 6.6.5 There is a function that for every decidable predicate yields an

equivalent boolean test. Prove the following goal to establish this fact.

Goal ∀ (X : Type) (p : X→ Prop), decidable p→ {f : X→ bool | ∀ x, p x ↔ f x = true}.

Exercise 6.6.6 Write a certifying function that divides its argument by 3.

Definition div3_cert (n : nat) : {k | n = 3*k} + {k | n = 3*k + 1} + {k | n = 3*k + 2}.

6.7 Strong Truth Value Semantics

There is a canonical injective embedding of bool into Prop :

Definition b2P (x : bool) : Prop := if x then True else False.

Proving the injectivity of b2P is straightforward. If we assume TVS, we can also

prove that b2P is surjective. In Mathematics, an injective and surjective function

f : X → Y always comes with an inverse function g such that g(fx) = x and

f(gy) = y for all x :X and y :Y . So it is natural to ask whether under TVS we

can define the inverse of b2p. The answer is no.

It is, however, consistent to assume strong truth value semantics.

Definition STVS : Type := ∀ X : Prop, {X=True} + {X=False}.

Assuming STVS means assuming a function that for every proposition X yields

a decision of type {X = True} + {X = False}. Clearly, STVS implies TVS.

Goal STVS→ TVS.

Proof. intros stvs X. destruct (stvs X) ; subst X ; auto. Qed.

If we assume STVS, we can construct an inverse function for b2p.

Section STVS.

Variable stvs : STVS.

Definition P2b (X : Prop) : bool := if stvs X then true else false.

Lemma P2bTrue : P2b True = true.

Proof.

unfold P2b. destruct (stvs True) as [A|A].

+ reflexivity .

+ exfalso. rewrite ← A. exact I.

Qed.

Lemma P2bFalse : P2b False = false.

Proof.

unfold P2b. destruct (stvs False) as [A|A].

+ exfalso. rewrite A. exact I.

+ reflexivity .

Qed.
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Goal ∀ x : bool, P2b (b2P x) = x.

Proof. intros [|] ; simpl. exact P2bTrue. exact P2bFalse. Qed.

Goal ∀ X : Prop, b2P (P2b X) = X.

Proof.

intros X. destruct (stvs X) ; subst X.

− rewrite P2bTrue. reflexivity.

− rewrite P2bFalse. reflexivity.

Qed.

End STVS.

The names defined in a section remain defined after a section is closed. Their

types are modified such that the variables of the section used in the definitions

are taken as arguments. For instance:

Print P2b.

> fun (stvs : STVS) (X : Prop)⇒ if stvs X then true else false

> : STVS→ Prop→ bool

Exercise 6.7.1 Prove that b2P is injective.

Exercise 6.7.2 Prove that TVS implies that b2P is surjective.

Exercise 6.7.3 Prove that P2b is injective.

Goal ∀ A : STVS, ∀ X Y : Prop, P2b A X = P2b A Y→ X = Y.

Exercise 6.7.4 Show that STVS implies that every proposition is decidable.

Goal STVS→ ∀ X : Prop, dec X.

Exercise 6.7.5 Show that STVS implies that every predicate is decidable.

Goal STVS→ ∀ (X : Type) (p : X→ Prop), decidable p.

Coq Summary

New Tactics

constructor , decide equality.

New Inductive Types from the Standard Library

sumbool, sumor , sum, sig, inhabited.

Applying Tactics to Assumptions

To apply a tactic to an assumption A, end the tactic command with “in A”. See

the definition of le_dec in Section 6.3 for an example.
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An inductive definition introduces a type constructor together with a family of

value constructors. If the type constructor yields a proposition, we speak of an

inductive predicate and of proof constructors. We already know Coq’s inductive

predicates for conjunctions (and), disjunctions (or), and existential quantifica-

tions (ex) (see Chapter 2). Another inductive predicate we have introduced is

inhabited.

In this chapter we will take a closer look at inductive predicates. Coq’s facility

for inductive definitions is extremely powerful and supports many advanced ap-

plications. The idea of inductive definitions originated with Peano’s axioms (i.e.,

the inductive definition of nat with O and S) and developed further with proof

systems for logical systems.

When we define an inductive predicate, we define a family of inductive propo-

sitions by specifying the syntax and the proof rules for the propositions. The

inductive predicates and, or and ex give us a first idea of the flexibility of this

approach. It turns out that we can go much further. Every recursively enumer-

able predicate can be defined as an inductive predicate in Coq. This is in contrast

to computable functions, which are not necessarily definable in Coq.

7.1 Nonparametric Arguments and Linearization

We start our explanation of inductive predicates with an extreme case: A defini-

tion of a predicate on numbers that holds exactly for the number 0.

Inductive zero : nat→ Prop :=

| zeroI : zero 0.

The definition provides exactly one proof zeroI , which proves the proposition

zero 0. The propositions zero 1, zero 2, zero 3, and so forth are all unprovable.

We characterize the inductive predicate zero as follows.

Lemma zero_iff x :

zero x ↔ x = 0.
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Proof.

split ; intros A.

− destruct A. reflexivity.

− subst x. constructor.

Qed.

The interesting step of the proof is destruct A, which does a case analysis on the

proof of zero x. Since there is only a single proof constructor zeroI : zero 0, the

case analysis yields a single subgoal where the variable x is instantiated to 0.

The argument of the inductive predicate zero is called nonparametric since

it is instantiated by the proof constructor zeroI : zero 0. This is the first time we

see an inductive predicate with a nonparametric argument. Check the definitions

of the inductive predicates and, or , ex, and inhabited to see that all arguments

of these predicates are parametric.

There is an important technicality one has to know about nonparametric ar-

guments: When the tactics destruct and induction are applied to an inductive

assumption A : ct1 . . . tn, the terms ti for the nonparametric arguments of c

must be variables not appearing in the other terms. We say that inductive as-

sumptions must be linear when they are used with destruct and induction. Coq

offers the tactic remember to linearize inductive assumptions.

Goal ¬ zero 2.

Proof. intros A. remember 2 as x. destruct A. discriminate Heqx. Qed.

Exercise 7.1.1 Make sure you can prove the propositions zero 0, ¬zero 7 , and

∀x. ¬zero (S x) without using lemmas.

Exercise 7.1.2 Prove that the predicate zero is decidable.

Exercise 7.1.3 Prove the following lemma.

Lemma remember (X : Type) (p : X→ Type) (x : X) :

(∀ y, y = x→ p y)→ p x.

Try to understand why the lemma justifies the tactic remember . Use the lemma

and the tactic pattern to prove the proposition ∀x.¬zero (S x).

Exercise 7.1.4 Prove the following impredicative characterization of zero.

Goal ∀ x, zero x ↔ ∀ p : nat→ Prop, p 0→ p x.

Exercise 7.1.5 Define a boolean test zerob : nat → bool and prove the correct-

ness condition ∀x. zero x ↔ zerob x = true.
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Exercise 7.1.6 Define an inductive predicate leo : nat → Prop with two proof

constructors leo0 : leo 0 and leo1 : leo 1.

a) Prove ∀x, leo x ↔ x ≤ 1.

b) Characterize leo impredicatively and prove the correctness.

c) Characterize leo with a boolean test leob : nat → bool and prove the correct-

ness of the characterization.

7.2 Even

Our next example is an inductive predicate even that holds exactly for the

even numbers. This time we use two proof rules, one for even 0 and one for

even (S (S x)).

even 0

even x

even (S(S x))

The two proof rules can be expressed with two proof constructors:

evenO : even 0

evenS : ∀x : nat. even x → even (S (S x))

From the types of the proof constructors it is clear that the argument of even is

nonparametric. We now introduce the predicate even and the proof constructors

evenO and evenS with a single inductive definition.

Inductive even : nat→ Prop :=

| evenO : even 0

| evenS x : even x→ even (S (S x)).

The type of the constructor evenS is specified with a notational convenience we

have seen before in the statement of lemmas. The convenience makes it possible

to specify argument variables of a constructor without types, leaving it to Coq to

infer the types.

We prove a lemma characterizing even non-inductively.

Lemma even_iff x :

even x ↔ ∃ k, x = 2*k.
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Proof.

split ; intros A.

− induction A.

+ ∃ 0. reflexivity.

+ destruct IHA as [k IHA]. subst x. ∃ (S k). simpl. omega.

− destruct A as [k A]. subst x. induction k ; simpl.

+ constructor.

+ replace (S(k+S(k+0))) with (S (S (2*k))) by omega.

constructor. exact IHk.

Qed.

Both directions of the proof deserve careful study. The direction from left to

right is by induction on the proof A : even x. The induction does a case analysis

for the two proof constructors of even. In each case the nonparametric argu-

ment x is instantiated as specified by the type constructor. For evenS we get

x = S(S x′) and the inductive hypothesis IHA : ∃k. x′ = 2 ∗ k.1

The direction from right to left first eliminates the existential quantification

for k and then proves the so obtained claim by induction on k : nat. The induc-

tion step uses the tactic replace to rewrite with the equation S(k + S(k + 0)) =

S(S(2∗k)), which is established by the tactic omega. This is the first time we use

the tactic replace. If the annotation by omega is omitted, replace will introduce

an extra subgoal to establish the equation.

The next two lemmas prove simple facts about even using case analysis on

proofs of propositions obtained with even. In each case the linearization of the

inductive assumption with the tactic remember is essential.

Goal ¬ even 3.

Proof.

intros A. remember 3 as x. destruct A.

− discriminate Heqx.

− destruct A ; discriminate Heqx.

Qed.

Lemma even_descent x :

even (S (S x)) → even x.

Proof.

intros A. remember (S (S x)) as y.

destruct A as [|y A].

− discriminate Heqy.

− congruence.

Qed.

1 The proof script reuses the variable x for x′. You can get the variable x′ by annotating the

induction command with as [|x′ A′].
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Exercise 7.2.1 Prove even 6 and ¬even 5 without using lemmas.

Exercise 7.2.2 Prove the following goals without using lemmas.

(a) Goal ∀ x y, even x→ even y→ even (x+y).

(b) Goal ∀ x y, even x→ even (x+y)→ even y.

(c) Goal ∀ x, even x→ even (S x)→ False.

Exercise 7.2.3 Prove the so-called inversion lemma for even.

Lemma even_inv x : even x→ x = 0 ∨ ∃ x’, x = S (S x’) ∧ even x’.

Exercise 7.2.4 Prove the following impredicative characterization of evenness.

Goal ∀ x, even x ↔ ∀ p : nat→ Prop, p 0→ (∀ y, p y→ p (S (S y)))→ p x.

Exercise 7.2.5 Some proofs need ideas. Try to prove ∀x, ¬even x → even (S x).

As is, the induction on x : nat will not go through. The problem is that the in-

duction on x :nat takes away a single S while the constructor evenS takes away

two S′s. The standard cure consists in generalizing the claim so that the induc-

tive hypothesis becomes strong enough. Convince yourself that the proof of the

following lemma generalizing the claim is doable.

Lemma even_succ x : (¬ even x→ even (S x)) ∧ (¬ even (S x)→ even x).

Hint: The apply tactic can be used with a proof of a conjunction of implications.

In this case apply attempts to apply one of the implications.

Exercise 7.2.6 Prove ∀x, even x ↔ ¬even (S x). Hint: Use the lemma even_succ

from Exercise 7.2.5.

Exercise 7.2.7 Prove that the predicate even is decidable. Hint: Use the lemma

even_succ from Exercise 7.2.5.

Exercise 7.2.8 Here is an inductive definition of an evenness predicate with a

parametric argument.

Inductive even’ (x : nat) : Prop :=

| even’O : x=0→ even’ x

| even’S y : even’ y→ x = S (S y)→ even’ x.

a) Prove ¬even′ 3.

b) Prove ∀x. even′ x ↔ even x.
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Exercise 7.2.9 Here is a boolean test for evenness.

Fixpoint evenb (x : nat) : bool :=

match x with

| 0⇒ true

| S (S x’) ⇒ evenb x’

| _⇒ false

end.

Try to prove ∀x. even x ↔ evenb x = true. The direction from left to right is a

straightforward induction on a proof of even x. The direction from right to left is

problematic since an induction on x :nat takes away one S while the constructor

evenS takes away two S’s. Proving the following more general claim solves the

problem.

Lemma evenb_even x : (evenb x = true→ even x) ∧ (evenb (S x) = true→ even (S x)).

7.3 Less or Equal

Coq defines the order predicate “≤” for natural numbers inductively based on

the following proof rules.2

x ≤ x

x ≤ y

x ≤ S y

The exact definition is

Inductive le (x : nat) : nat→ Prop :=

| le_n : le x x

| le_S y : le x y→ le x (S y).

Notation "x ≤ y" := (le x y) (at level 70).

Note that the first argument of the inductive predicate le is parametric and that

the second argument is nonparametric. We will always write inductive definitions

such that all parametric arguments appear as parameters in the head of the

inductive definition. Note that le is the first inductive predicate we see having

both parametric and nonparametric arguments.

To get familiar with le, we prove a lemma characterizing le non-inductively.

Lemma le_iff x y :

x ≤ y ↔ ∃ k, k + x = y.

2 Use the commands Locate and Print to see Coq’s definition of “≤” for nat.
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Proof.

split .

− intros A. induction A as [|y A].

+ ∃ 0. reflexivity.

+ destruct IHA as [k B]. ∃ (S k). simpl. congruence.

− intros [k A]. subst y. induction k ; simpl.

+ constructor.

+ constructor. exact IHk.

Qed.

The proof deserves careful study. The direction from left to right is by induction

on a proof of x ≤ y . The other direction is by induction on k.

Next we write an informative test for le. This takes some preparation. We

leave the proofs of the first three lemmas as exercises.

Lemma le_O x : 0 ≤ x.

Lemma le_SS x y : x ≤ y→ S x ≤ S y.

Lemma le_Strans x y : S x ≤ y→ x ≤ y.

Lemma le_zero x :

x ≤ 0→ x = 0.

Proof.

intros A. remember 0 as y. destruct A as [|y A].

− reflexivity.

− discriminate Heqy.

Qed.

Lemma le_SS’ x y :

S x ≤ S y→ x ≤ y.

Proof.

intros A. remember (S y) as y’. induction A as [|y’ A].

− injection Heqy’. intros A. subst y. constructor.

− injection Heqy’. intros B. subst y’. apply le_Strans, A.

Qed.

Definition le_dec x y : dec (x ≤ y).

revert y. induction x ; intros y.

− left. apply le_O.

− destruct y.

+ right. intros A. apply le_zero in A. discriminate A.

+ destruct (IHx y) as [A|A].

* left . apply le_SS, A.

* right. intros B. apply A, le_SS’, B.

Defined.
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Exercise 7.3.1 Prove the lemmas le_O, le_SS, and le_Strans without using omega.

Hints: Lemma le_O follows by induction on x. Lemmas le_SS and le_Strans

follow by induction for le.

Exercise 7.3.2 Prove the inversion lemma for le.

Lemma le_inv x y : x ≤ y→ x = y ∨ ∃ y’, y = S y’ ∧ x ≤ y’.

Exercise 7.3.3 Prove that le is transitive. Do not use omega.

Lemma le_trans x y z : x ≤ y→ y ≤ z→ x ≤ z.

Hint: Do the proof by induction for y ≤ z.

Exercise 7.3.4 Prove the following goal not using omega.

Goal ∀ x y, S x ≤ y→ x ≠ y.

Hint: Proceed by induction on y and use the lemmas le_zero and le_SS′.

Exercise 7.3.5 Prove that le is anti-symmetric. Do not use omega.

Goal ∀ x y, x ≤ y→ y ≤ x→ x=y.

Hint: Proceed by induction on x and use le_zero, le_Strans, and le_SS′.

Exercise 7.3.6 Prove that le and the boolean test leb from the standard library

agree. Do not use omega.

Goal ∀ x y, x ≤ y ↔ leb x y = true.

Hint: For the direction from left to right you will need two straightforward lem-

mas for leb. For the other directions use the lemmas le_O and le_SS.

7.4 Equality

Coq defines equality inductively.

Inductive eq (X : Type) (x : X) : X→ Prop :=

| eq_refl : eq x x.

Notation "x = y" := (eq x y) (at level 70).

Note that the first two arguments of the inductive predicate eq are parametric

and that the third argument is nonparametric. It is easy to establish the Leibniz

characterization of equality.

Lemma Leibniz (X : Type) (x y : X) :

x = y ↔ ∀ p : X→ Prop, p x→ p y.
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Proof.

split ; intros A.

− destruct A. auto.

− apply (A (fun z⇒ x = z)). constructor.

Qed.

7.5 Exceptions to the Elim Restriction

The exceptions to the elim restriction can be stated as follows: If an inductive

predicate has at most one proof constructor and the nonparametric arguments

of the proof constructor are all proofs, then the elim restriction does not apply

to matches for this predicate.

An interesting exception to the elim restriction is the inductive predicate eq

whose single proof constructor

eq_refl : ∀X : Type ∀x :X. eq x x

has only parametric arguments (i.e., arguments fixed in the head of the inductive

definition of eq). Thus the elim restriction does not apply to matches on equality

proofs. This provides for the definition of the following casting function.

Definition cast (X : Type) (x y : X) (f : X→ Type) : x = y→ f x→ f y.

intros A B. destruct A. exact B.

Defined.

The function cast gives us a function that given a proof of x = y converts from

type fx to type fy . Here is an example for the use of cast.

Definition fin (n : nat) : Type := nat_iter n option False.

Goal ∀ n, fin n→ fin (n+0).

Proof. intros n. apply cast. omega. Qed.

Note that the cast is needed since the terms fin n and fin (n+ 0) are not convert-

ible.

Exercise 7.5.1 Prove the following goal. Explain why the elim restriction does

not apply to conjunctions.

Goal ∀ X Y : Prop, X ∧ Y→ prod X Y.

Exercise 7.5.2 Explain why the elim restriction applies to matches for the induc-

tive predicate inhabited.
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Exercise 7.5.3 Complete the following definition. Explain why your definition

exploits an exception to the elim restriction.

Definition exfalso : False→ ∀ X : Type, X := · · ·

Exercise 7.5.4 Prove the following goal.

Goal ∀ (X : Type) (x y : X), (∀ p : X→ Prop, p x→ p y)→ ∀ p : X→ Type, p x→ p y.

Note that goal is formulated without making use of inductive types. Yet it can

only be proven using inductive types.

7.6 Safe and Nonuniform Parameters

Our final example is an inductive predicate safe : (nat → Prop)→ nat → Prop

such that safe p n holds if and only if p holds for some k ≥ n. We base the

inductive definition on the following rules.

pn

safe p n

safe p (S n)

safe p n

Defining safe in Coq is straightforward.

Inductive safe (p : nat→ Prop) (n : nat) : Prop :=

| safeB : p n→ safe p n

| safeS : safe p (S n)→ safe p n.

One reason for considering safe is that it has both a uniform and a nonuniform

parameter.3 The parameter p is uniform since it is not instantiated in the types

of the proof constructors safeB and safeS. The parameter n is nonuniform since

it is instantiated to S n in the type of the constructor safeS. The argument n does

not qualify as a nonparametric argument of safe since the instantiation appears

in argument position rather than in result position. This is the first time we

encounter a type constructor with a nonuniform parameter.

When we use the tactic induction on a proof of a proposition obtained with

an inductive predicate, both the nonuniform parametric arguments and the non-

parametric arguments of the proposition must be linearized. If we use the tactic

destruct, it suffices if the nonparametric arguments are linearized. For instance,

if we have an assumption A : safe p 0, destruct can be applied to A but induction

must not be applied to A.

We prove that safe p is downward closed.

Lemma safe_dclosed k n p :

k ≤ n→ safe p n→ safe p k.

3 A parameter is a parametric argument.
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Proof.

intros A B. induction A as [|n A].

− exact B.

− apply IHA. right. exact B.

Qed.

The proof is by induction on a proof of k ≤ n. Note the use of the tactic right to

apply the second constructor of safe. The tactics left and right can be used with

every type constructor that has two value constructors.

We prove that safe satisfies its specification.

Lemma safe_iff p n :

safe p n ↔ ∃ k, n ≤ k ∧ p k.

Proof.

split ; intros A.

− induction A as [n B|n A].

+ ∃ n. auto.

+ destruct IHA as [k [B C]].

∃ k. split. omega. exact C.

− destruct A as [k [A B]].

apply (safe_dclosed A). left. exact B.

Qed.

The direction from left to right is by induction on a proof of safe p n. From the

destructuring pattern for the induction we learn that a name for the nonuniform

parameter nmust be given for both subgoals. This must be done for nonuniform

parameters in general.

The direction from right to left follows with the lemma safe_dclosed. Using

this lemma is essential since a direct proof of the more specific claim we have at

this point seems impossible.

The predicate safe is different from the other inductive predicates we saw in

this chapter in that it is impossible to express it with a boolean test. This is the

case even if we assume that the argument p is a decidable predicate.4

Exercise 7.6.1 We define a predicate least such that least p n k holds if and only

if k is the least number such that n ≤ k and pk holds.

Inductive least (p : nat→ Prop) (n : nat) : nat→ Prop :=

| leastB : p n→ least p n n

| leastS k : ¬ p n→ least p (S n) k→ least p n k.

Note that the first argument of least is a uniform parameter, the second ar-

gument is a nonuniform parameter, and the third argument is nonparametric.

Prove the following correctness lemmas for least.

4 Think of pn as the statement saying that a particular Turing machine halts on a particular

input in at most n steps.

2013-7-26 111



7 Inductive Predicates

Lemma least_correct1 p n k : least p n k→ p k.

Lemma least_correct2 p n k : least p n k→ n ≤ k.

Lemma least_correct3 p n k : least p n k→ ∀ k’, n ≤ k’→ p k’→ k ≤ k’.

Lemma least_correct4 p n k : (∀ x, dec (p x))→ p (n+k)→ ∃ k’, least p n k’.

Lemma least_correct p n k (p_dec : ∀ x, dec (p x)) :

least p n k ↔ p k ∧ n ≤ k ∧ ∀ k’, n ≤ k’→ p k’→ k ≤ k’.

Hint: Use le_lt_eq_dec from the standard library for the proof of least_correct3.

7.7 Constructive Choice for Nat

We will now construct a function

cc_nat : ∀ p : nat→ Prop, (∀ x, dec (p x))→ (∃ x, p x)→ {x | p x}

we call constructive choice for nat. For a decidable predicate p on numbers con-

structive choice yields a function that for every proof of an existential quantifica-

tion ∃x.px yields a value of the sigma type {x | px }. Thus cc_nat bypasses the

elim restriction for existential quantifications of decidable predicates on num-

bers. We will obtain this remarkable result with a new proof technique based on

the inductive predicate safe from the last section.

For convenience, we declare a decidable predicate p in a section.

Section First.

Variable p : nat→ Prop.

Variable p_dec : ∀ n, dec (p n).

We now write a function first that from a proof of safe p n obtains a value of

{k | pk }. The function first is the cornerstone of the construction of cc_nat.

Clearly, first overcomes the elim restriction. We define first by recursion on the

given proof of safe p n.

Fixpoint first (n : nat) (A : safe p n) : {k | p k} :=

match p_dec n with

| left B⇒ exist p n B

| right B⇒ first match A with

| safeB C⇒match B C with end

| safeS A’⇒ A’

end

end.

Given that first computes by recursion on A, one would expect that first first

matches on A. However, this is impossible because of the elim restriction. So

we first match on p_dec n. If we obtain a proof of p n, we are done. Otherwise,

we recurse on a proof of safe p (S n) we obtain by matching on the proof A of
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safe p n. This time the elim restriction does not apply since we are constructing

a proof. We obtain two cases. The case for safeS is straightforward since we get

a proof of safe p (S n) by taking off the constructor. The case for safeB yields

a proof C of pn. Since we have a proof B of ¬pn, we can match on the proof

B C of False. Now we are done since each rule of the match returns a proof of

safe p (S n) that is obtained by taking off a constructor of the proof A (vacuous

reasoning).

The recursion scheme underlying first is nonstandard. The standard recur-

sion scheme would first match on the proof and than recurse. The recursion

scheme we see with first first recurses and only then matches on the proof. This

way the elim restriction can be bypassed. We speak of an eager proof term

recursion.

It is now straightforward to construct the certifying function cc_nat. We ob-

tain the result by applying first to a proof of safe p 0. The proof of safe p 0 we

obtain with the lemma safe_dclosed from a proof of safe p n for some n. The n

and the proof of safe p n we obtain from the given proof of ∃x.px.

Lemma cc_nat : (∃ x, p x)→ {x | p x}.

Proof.

intros A. apply first with (n:=0).

destruct A as [n A].

apply safe_dclosed with (n:=n). omega. left. exact A.

Qed.

Note the “with” annotations used with the tactic apply. They provide a conve-

nient means for specifying implicit arguments of the function being applied.

There is a straightforward algorithmic idea underlying cc_nat we may call

linear search: To find the least k ≥ n such that pn, increment n until pn holds.

What is interesting about linear search from our perspective is that linear search

is not structurally recursive and that it may not always terminate. We can see

first as a logical reformulation of linear search that is structurally recursive.

Exercise 7.7.1 Write a constructive choice function for bool.

Definition cc_bool (p : bool→ Prop) (p_dec : ∀ x, dec (p x)) : (∃ x, p x)→ {x | p x}.

Exercise 7.7.2 Complete the definitions of the following recursive and certify-

ing functions with scripts. Assume a section declaring a decidable predicate p.

Follow the eager proof term recursion scheme from first.

Fixpoint first1 (n : nat) (A : safe p n) : {k | p k ∧ k ≥ n}.

Fixpoint first2 (n : nat) (A : safe p n) : {k | p k ∧ k ≥ n ∧ ∀ k’, n ≤ k’→ p k’→ k ≤ k’}.
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Hint: First redefine first with a script. Check the partial proof terms you obtain

with the command Show Proof . Then refine the script for first to obtain the

script for first1.

Exercise 7.7.3 Write constructive choice functions for the finite types fin n.

Definition cc_fin (n : nat) (p : fin n→ Prop) (p_dec : ∀ x, dec (p x))

: (∃ x, p x)→ {x | p x}.

7.8 Technical Summary

An inductive definition introduces a family of typed names called constructors.

One of the constructors yields types and is called type constructor. The re-

maining constructors are called value constructors and yield the elements of the

types obtainable with the type constructor. An inductive value is a value ob-

tained with a constructor. Thus an inductive predicate is a predicate obtained

with a constructor, a proof constructor is a value constructor yielding a proof,

and inductive proposition is a proposition obtained with a type constructor.

An inductive definition comes with a list of named parameters specified in

the head of the definition. The parameters appear as leading arguments of every

constructor introduced by the inductive definition. We speak of the parametric

arguments of a constructor. The constructors may have additional arguments,

which we call nonparametric arguments. There is the constraint that the result

type of a value constructor must not instantiate parametric arguments of the

type constructor. The parametric arguments of a value constructor do not ap-

pear in matches and the type specification of the constructor in the introducing

inductive definition.

As example we consider the following inductive definition.

Inductive least (p : nat→ Prop) (n : nat) : nat→ Prop :=

| leastB : p n→ least p n n

| leastS k : ¬ p n→ least p (S n) k→ least p n k.

The definition introduces the constructors

least : (nat → Prop)→ nat → nat → Prop

leastB : ∀p : nat → Prop ∀n : nat. p n→ least p n n

leastS : ∀p : nat → Prop ∀n : nat ∀k : nat. ¬p n→ least p (S n) k → least p n k

The leading two arguments of each constructor are parametric, the remaining ar-

guments are nonparametric. The type constructor least and the value construc-

tor leastB have one nonparametric argument each, and the value constructor

leastS has three nonparametric arguments.
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Our inductive definitions will always be such that for every nonparametric

argument of the type constructor there will be at least one value constructor that

instantiates this argument in its result type. Coq does not enforce this condition.

The elim restriction applies to matches on proofs of inductive propositions

where the underlying inductive definition either has more than one proof con-

structor or has a single proof constructor taking a nonparametric argument spec-

ified with a proper type. For instance, the elim restriction applies to matches on

proofs of disjunctions and existential quantifications, but it does not apply to

matches on proofs of equations and conjunctions.

Coq distinguishes between uniform and nonuniform parameters of inductive

definitions. A parameter of an inductive definition is nonuniform if it is instan-

tiated in argument position in the type specification of a value constructor. For

instance, the inductive definition least has the uniform parameter p and the

nonuniform parameter n. The nonuniformity of n is due to the type of the third

nonparametric argument of the value constructor leastS.

When we apply the tactic destruct to a proof A of an inductive proposition

Ct1 . . . tn, all terms ti giving nonparametric arguments must be variables that do

not appear in the other terms. Similarly, when we apply the tactic induction to a

proof A of an inductive proposition Ct1 . . . tn, all terms ti giving nonparametric

or nonuniform parametric arguments must be variables that do not appear in

the other terms. We say that inductive propositions are linear if they satisfy this

condition. Inductive propositions can be linearized with the tactic remember .5

7.9 Induction Lemmas

When we apply the tactic induction to an assumed value of an inductive type,

the induction lemma for the underlying type constructor is applied. To have an

example, we consider the inductive definition of even.

Inductive even : nat→ Prop :=

| evenO : even 0

| evenS x : even x→ even (S (S x)).

5 Unfortunately, the tactics destruct and induction do not give warnings when they are applied

to proofs of nonlinear inductive propositions. Instead, they linearize the proposition auto-

matically and forget the equations relating the fresh variables with the moved away argument

terms. This often leads to unprovable subgoals.
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The type of the induction lemma even_ind Coq derives for even is as follows.

∀p : nat → Prop.

p 0→

(∀x : nat. even x → px → p(S(S x)))→

∀x : nat. even x → px

Note that each constructor contributes a premise of the implication. When we

apply the tactic induction to an assumption A : even x, the goal is rearranged by

moving all assumptions depending on the variable x to the claim. Thus these

assumptions become part of the induction predicate p and hence appear in the

inductive hypothesis px of the premise for the constructor evenS.

Our second example is the inductive definition of le.

Inductive le (x : nat) : nat→ Prop :=

| le_n : le x x

| le_S y : le x y→ le x (S y).

The induction lemma le_ind Coq generates for le quantifies the uniform param-

eter x at the outside.

∀x : nat ∀p : nat → Prop.

p x →

(∀ y : nat. le x y → py → p(S y))→

∀y : nat. le x y → py

If you look at the induction lemma Coq generates for least, you will see that

the nonuniform parameter is treated like the nonparametric argument in that it

appears as an argument of the induction predicate p.

When we work with paper and pencil, doing inductive proofs based on induc-

tive definitions requires considerable training and great care. When we work with

Coq, the tedious details are taken care of automatically and proof correctness is

guaranteed.

Exercise 7.9.1 Complete the following definitions of the induction lemmas for

even and le.

Definition even_ind’ (p : nat→ Prop) (r1 : p 0) (r2 : ∀ x, even x→ p x→ p (S (S x)))

: ∀ x, even x→ p x := · · · .

Definition le_ind’ (x : nat) (p : nat→ Prop) (r1 : p x) (r2 : ∀ y, le x y→ p y→ p (S y))

: ∀ y, le x y→ p y := · · · .
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Coq Summary

New Tactics

remember , replace.

Automation Tactic inversion

The automation tactic inversion subsumes the capabilities of the tactics destruct,

discriminate, and injection. The use of inversion is convenient if it solves the goal.

Otherwise inversion often creates subgoals with many equational assumptions.

We will use inversion only if it solves the goal. Here are two examples.

Goal ¬ even 1. Proof. intros A. inversion A. Qed.

Goal ¬ 7 ≤ 0. Proof. intros A. inversion A. Qed.

With Annotations for apply

With annotations used with the tactic apply are a convenient means for specify-

ing implicit arguments of the function being applied. See the definition of cc_nat

in Section 7.7.
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8 Lists and Finite Sets

Type theory does not come with sets. However, every list represents a finite set.

In this chapter we develop the basic theory of lists representing finite sets.

We study membership in and inclusion and equivalence of lists. We then

study duplicate-free lists and cardinality of lists.

For many results about lists, decidability properties play an important role.

Membership, inclusion, equivalence, and duplicate freeness of lists are decidable

provided the base type comes with decidable equality. Moreover, quantification

over lists preserves decidability.

To establish the results about lists, we will use and explain several advanced

features of Coq:

• Assumption management with sections.

• Automatic resolution of decidability conditions with type class inference.

• Setoid rewriting with list inclusions and list equivalences.

• New features of the tactics apply, destruct, and assert.

• Hint commands strengthening the auto tactic.

• The automation tactics eauto and firstorder .

In fact, the larger part of this chapter is concerned with new Coq features.

The development of this chapter will be used in later chapters. Ideally, most

of the definitions and lemmas we study in this chapter should be in Coq’s stan-

dard library. This is not the case. This chapter can serve as a case study of what

it takes to develop in Coq the basic theory of a basic data structure. We will

develop the theory of lists and finite sets further in a later chapter.

8.1 List Membership

The connection between lists and sets is made by membership. Here is an induc-

tive characterization of membership in lists.

x ∈ x :: A

x ∈ A

x ∈ y :: A
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x ∈ x :: A ∗eq

x ∈ A→ x ∈ y :: A ∗cons

x ∈ A∨ x ∈ B → x ∈ A++B ∗or_app

x ∉ nil ∗nil

x ∈ [y]→ x = y in_sing

x ∈ y :: A→ x ≠ y → x ∈ A cons_neq

x ∈ A++B ↔ x ∈ A∨ x ∈ B app_iff

x ∈map f A↔ ∃y. fy = x ∧y ∈ A map_iff

Figure 8.1: Membership laws for lists

A characterization of list membership with concatenation looks as follows.

x ∈ A ↔ ∃A1 A2. A = A1++[x]++A2

We can also characterize list membership recursively.

(x ∈ nil) = False

(x ∈ y :: A) = (x = y ∨ x ∈ A)

A list represents a set if the members of the list are exactly the members of the

set. Thus every set representable by a list is finite and all its members belong to

a common type. Since lists are ordered and can contain duplicates, different lists

may represent the same set. For instance, the lists [1; 2], [2; 1], and [1; 2; 2] are

three different representations of the set {1,2}. Even the empty set has different

list representations, since every list carries the type of its elements. For instance,

the lists @nil bool and @nil nat both represent the empty set. We say that a list

carries more information than the set of its members.

Figure 8.1 shows the most important membership laws for lists. The stared

laws are registered with auto (explained below).

We load Coq’s standard module for lists and activate the list notations.

Require Import List.

Export ListNotations.

The standard module List defines list membership with a recursive predicate:

Fixpoint In (X : Type) (x : X) (A : list X) : Prop :=

match A with

| nil ⇒ False

| y::A’⇒ y=x ∨ In x A’

end.
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We define an infix operator for the membership predicate:

Notation "x ’el’ A" := (In x A) (at level 70).

We will always write “∈” for the infix operator “el”. Coq’s library provides the

following lemmas for list membership.

Lemma in_eq X (x : X) A :

x ∈ x :: A.

Lemma in_cons X (x y : X) A :

x ∈ A→ x ∈ y :: A.

Lemma in_nil X (x : X) :

¬ x ∈ nil.

Lemma in_or_app X (x : X) A B :

x ∈ A ∨ x ∈ B→ x ∈ A ++ B.

We use the command Hint Resolve to enhance Coq’s auto tactic with the lemmas.

Hint Resolve in_eq in_cons in_nil in_or_app.

We now establish the characterization of list membership with concatenation.

Lemma in_iff X (x : X) A :

x ∈ A ↔ ∃ B C, A = B ++ [x] ++ C.

Proof.

induction A as [|y A] ; simpl ; split .

− intros [].

− intros [B [C D]]. destruct B ; discriminate D.

− intros [D|D].

+ subst y. ∃ nil, A. reflexivity.

+ apply IHA in D as [B [C D]]. ∃ (y::B), C. simpl. f_equal. exact D.

− intros [B [C D]]. destruct B as [|z B].

+ injection D. auto.

+ injection D. intros E _. right. subst A. auto.

Qed.

The proof is by induction on A and introduces four subgoals by splitting the

equivalence. Note the application of IHA to the assumption D in the third sub-

goal where the apply command is annotated with a destructuring pattern, which

immediately destructures the object obtained by the application. Also consider

the use of auto in the fourth subgoal, which automatically applies the lemmas

in_or_app and in_eq we registered with the command Hint Resolve.

Two lists are disjoint if they don’t have a common element.

Definition disjoint (X : Type) (A B : list X) :=

¬ ∃ x, x ∈ A ∧ x ∈ B.

We prove a lemma.
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Lemma disjoint_cons X (x : X) A B :

disjoint (x::A) B ↔ ¬ x ∈ B ∧ disjoint A B.

Proof.

split .

− intros D. split.

+ intros E. apply D. eauto.

+ intros [y [E F ]]. apply D. eauto.

− intros [D E] [y [[F|F] G]].

+ congruence.

+ apply E. eauto.

Qed.

Note the use of the automation tactic eauto, a version of auto that attempts to

find the witnesses of existential quantifications. Also note the deeply nested

destructuring pattern used for the direction from right to left.

Exercise 8.1.1 Prove the following lemmas.

Lemma in_sing X (x y : X) : x ∈ [y]→ x=y.

Lemma in_cons_neq X (x y : X) A : x ∈ y::A→ x ≠ y→ x ∈ A.

Exercise 8.1.2 Prove the following lemmas provided by the module List.

Lemma in_app_iff X (x : X) A B : x ∈ A++B ↔ x ∈ A ∨ x ∈ B.

Lemma in_map_iff X Y (f : X→ Y) A y : y ∈map f A ↔ ∃ x, f x = y ∧ x ∈ A.

Lemma in_map X Y (f : X→ Y) A x : x ∈ A→ f x ∈map f A.

Exercise 8.1.3 Prove the following characterization of list membership.

Lemma in_iff X (x : X) A : x ∈ A ↔ ∃ y A’, A = y::A’ ∧ (y=x ∨ x ∈ A’).

Exercise 8.1.4 Prove the following characterization of disjointness.

Lemma disjoint_forall X (A B : list X) : disjoint A B ↔ ∀ x, x ∈ A→ ¬ x ∈ B.

Exercise 8.1.5 Define an inductive predicate mem for list membership and prove

Lemma mem_iff X (x : X) A : mem x A ↔ x ∈ A.
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A ⊆ A ∗refl

A ⊆ B → A ⊆ x :: B ∗tl

x ∈ B → A ⊆ B → x :: A ⊆ B ∗cons

A ⊆ B → A ⊆ B++C ∗appl

A ⊆ C → A ⊆ B++C ∗appr

A ⊆ C → B ⊆ C → A++B ⊆ C ∗app

nil ⊆ A ∗nil

A ⊆ nil → A = nil nil_eq

A ⊆ B → x :: A ⊆ x :: B shift

x :: A ⊆ B ↔ x ∈ B ∧A ⊆ B lcons

x :: A ⊆ x :: B → x ∉ A→ A ⊆ B lrcons

Figure 8.2: Inclusion laws for lists

8.2 List Inclusion

List membership gives us list inclusion:

A ⊆ B ↔ ∀x. x ∈ A→ x ∈ B

If a list A is included in a list B, the set represented by A is a subset of the set

represented by B.

Figure 8.2 shows the most important inclusion laws for lists. The first six laws

are provided by the standard module List as lemmas. We register the lemmas

with auto.

Hint Resolve incl_refl incl_tl incl_cons incl_appl incl_appr incl_app.

Coq’s library defines list inclusion as follows.

Definition incl (X : Type) (A B : list X) : Prop :=

∀ x, x ∈ A→ x ∈ B.

Hint Unfold incl.

The Hint Unfold command tells the auto tactic to automatically unfold the defi-

nition of incl. We define an infix operator for the inclusion predicate.

Notation "A <<= B" := (incl A B) (at level 70).

We will always write “⊆” for the infix operator “<<=”.

We prove a basic lemma and register it with auto.
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Lemma incl_nil X (A : list X) :

nil ⊆ A.

Proof. intros x []. Qed.

Hint Resolve incl_nil.

Exercise 8.2.1 Prove the following lemmas from the standard library.

Lemma incl_appl X (A B C : list X) : A ⊆ B→ A ⊆ B ++ C.

Lemma incl_appr X (A B C : list X) : A ⊆ B→ A ⊆ C ++ B.

Lemma incl_app X (A B C : list X) : A ⊆ C→ B ⊆ C→ A ++ B ⊆ C.

Exercise 8.2.2 Prove the following lemma. Hint: Use the lemma in_map_iff .

Lemma incl_map X Y A B (f : X→ Y) : A ⊆ B→ map f A ⊆map f B.

Exercise 8.2.3 Prove the following lemmas.

Variable X : Type.

Implicit Types A B : list X.

Lemma incl_nil_eq A : A ⊆ nil→ A=nil.

Lemma incl_shift x A B : A ⊆ B→ x::A ⊆ x::B.

Lemma incl_lcons x A B : x::A ⊆ B ↔ x ∈ B ∧ A ⊆ B.

Lemma incl_rcons x A B : A ⊆ x::B→ ¬ x ∈ A→ A ⊆ B.

Lemma incl_lrcons x A B : x::A ⊆ x::B→ ¬ x ∈ A→ A ⊆ B.

8.3 List Equivalence

List membership also gives us list equivalence:

A ≡ B ↔ ∀x. x ∈ A↔ x ∈ B

Note that two lists are equivalent if and only if they represent the same set.

Figure 8.3 shows some useful laws for list equivalence.

We define list equivalence in Coq and register it with auto.

Definition equi X (A B : list X) : Prop :=

A ⊆ B ∧ B ⊆ A.

Notation "A === B" := (equi A B) (at level 70).

Hint Unfold equi.

We will always write “≡” for the infix operator “===”.

We prove some of the laws for list equivalence.
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x ∈ A→ A ≡ x :: A push

x :: A ≡ x :: x :: A dup

x :: y :: A ≡ y :: x :: A swap

x :: A++B ≡ A++x :: B shift

x :: A ≡ A++[x] rotate

Figure 8.3: Equivalence laws for lists

Section Equi.

Variable X : Type.

Implicit Types A B : list X.

Lemma equi_push x A : x ∈ A→ A ≡ x::A.

Proof. auto. Qed.

Lemma equi_dup x A : x::A ≡ x::x::A.

Proof. auto. Qed.

Lemma equi_swap x y A: x::y::A ≡ y::x::A.

Proof. split ; intros z ; simpl ; tauto. Qed.

Lemma equi_rotate x A : x::A ≡ A++[x].

Proof.

split ; intros y ; simpl.

− intros [D|D] ; subst ; auto.

− intros D. apply in_app_iff in D as [D|D].

+ auto.

+ apply in_sing in D. auto.

Qed.

End Equi.

The enclosing section makes it possible to declare the variable X and the typings

of the variables A and B in one go. Note that auto is in fact using the definitions

and lemmas we registered with it. Also note that the tactic subst is used without

arguments. In this case subst will eliminate as many variables as it can.

Exercise 8.3.1 Prove the following lemma.

Lemma equi_shift X (x : X) A B : x::A++B ≡ A++x::B.
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8.4 Automatic Decision Inference

Many results for lists depend on decidability assumptions. For instance, mem-

bership in and equality between lists are decidable if the base type comes with

decidable equality. We now set up an infrastructure that can derive decisions

and decision functions automatically. The infrastructure is based on Coq’s type

classes, which provide an inference mechanism for implicit arguments that is

based on user-defined rules. In the following, we constrain our interest to the

inference mechanism and make no attempt to explain the type class mechanism

in general.1 2

Recall the basic definition for decidability.

Definition dec (X : Prop) : Type := {X} + {¬ X}.

We define a parametric identity function for dec X

Definition decision (X : Prop) (D : dec X) : dec X := D.

and declare the second argument rather than the first argument implicit.

Arguments decision X {D}.

Now we can write decision X if we need a decision for a proposition X. As is,

Coq is not able to derive the implicit argument of decision X and thus the term

decision X will not type check. However, we can enable Coq to derive the implicit

argument of decision X for many propositions X by registering so-called instance

rules.

We will register the instance rules shown in Figure 8.4 for dec.3 Each instance

rule will be established with a definition or lemma. To register inference rules

for dec with Coq, we first register dec as a type class.

Existing Class dec.

We start with the rules for equality on nat and on list types. We define the rules

using the certifying tests eq_nat_dec and list_eq_dec from the standard library.

Definition eq_nat_Dec (x y : nat) : dec (x = y) :=

eq_nat_dec x y.

Definition eq_list_dec (X : Type) :

(∀ x y : X, dec (x=y))→ ∀ A B : list X, dec (A = B).

intros D. apply list_eq_dec. exact D.

Defined.

1 The idea of automatic decision inference is due to Steven Schäfer and Sigurd Schneider.
2 Type classes are still an experimental feature of Coq. When you step through our proofs, you

will notice that type class inference occasionally fails in situations where we would expect it

succeeds.
3 The two rules for list quantification can be formulated with the premise ∀x. x ∈ A→ dec (p x).

We don’t use this weaker premise since it doesn’t go well with type class inference and also is

not needed in the applications to come.
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dec True dec False

dec X dec Y

dec (X → Y )

dec X dec Y

dec (X ∧ Y )

dec X dec Y

dec (X ∨ Y )

x y : nat

dec (x = y)

x y : nat

dec (x ≤ y)

A : list X ∀xy :X. dec (x = y)

dec (x ∈ A)

A B : list X ∀xy :X. dec (x = y)

dec (A = B)

∀x. dec (p x)

dec (∀x. x ∈ A→ p x)

∀x. dec (p x)

dec (∃x. x ∈ A∧ p x)

Figure 8.4: Instance rules for dec

Next we register the rules as instance rules.

Existing Instance eq_nat_Dec.

Existing Instance eq_list_dec.

Here are examples for the automatic decision inference we obtain with the in-

stance rules eq_nat_Dec and eq_list_dec.

Set Printing Implicit.

Check decision (2 = 3).

Check decision ([0] = [0]).

Check fun A B : list nat⇒ decision (A = B).

Check fun A B : list (list nat)⇒ decision (A = B).

Check fun X (D : ∀ x y : X, dec (x = y)) (A B : list (list X))⇒ decision (A = B).

Unset Printing Implicit.

The enclosing commands Set and Unset switch printing of implicit arguments on

ond off. This way we can see the implicit arguments Coq derives for decision. For

a given example we can prove that Coq derives the correct certifying test.

Goal eq_list_dec (eq_list_dec eq_nat_dec) = fun A B⇒ decision (A = B).

Proof. reflexivity. Qed.

We define a notation for saying that a type has decidable equality

Notation "’eq_dec’ X" := (∀ x y : X, dec (x=y)) (at level 70).
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and register instance rules for list membership x ∈ A and comparisons x ≤ y

using certifying tests from Coq’s library. This time we write the definitions with

the command Instance, which defines and registers the rules in one go.

Instance in_Dec (X : Type) (x : X) (A : list X) : eq_dec X→ dec (x ∈ A).

intros D. apply in_dec. exact D.

Defined.

Instance le_Dec (x y : nat) : dec (x ≤ y) :=

le_dec x y.

Compute if decision (1 ∈ [2;1]) then true else false.

% true : bool

Decidable propositions are closed under the logical connectives. We register

instance rules implementing this insight. Since we do not intend to compute with

the certifying tests justifying the rules, we establish the more complex rules with

opaque definitions (i.e., lemmas).

Instance True_dec : dec True :=

left I .

Instance False_dec : dec False :=

right (fun A⇒ A).

Instance impl_dec (X Y : Prop) : dec X→ dec Y→ dec (X→ Y).

Proof. unfold dec ; tauto. Qed.

Instance and_dec (X Y : Prop) : dec X→ dec Y→ dec (X ∧ Y).

Proof. unfold dec ; tauto. Qed.

Instance or_dec (X Y : Prop) : dec X→ dec Y→ dec (X ∨ Y).

Proof. unfold dec ; tauto. Qed.

Instance not_dec (X : Prop) : dec X→ dec (¬ X).

Proof. intros D. exact (decision (X→ False)). Qed.

Note the use of the automation tactic tauto, which solves the goals by treating

boolean sums like disjunctions.4

We finish our infrastructure setup with a few additional commands. First, we

register the definition of dec with auto.

Hint Unfold dec.

Next we use Coq’s notation facility for tactics to establish a tactic notation

decide claim that for a claim p expands to the command exact (decision p)).

4 The rule not_dec is needed since not is made opaque for type class inference by many standard

modules (e.g., List).
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Tactic Notation "decide" "claim" :=

match goal with

| |− dec (?p)⇒ exact (decision p)

end.

Goal ∀ x y A , dec (x ≤ y→ x ∈ A).

Proof. intros x y A. decide claim. Qed.

Next we establish a tactic notation decide p that expands to the command

destruct (decision p).

Tactic Notation "decide" constr(p) :=

destruct (decision p).

Tactic Notation "decide" constr(p) "as" simple_intropattern(i) :=

destruct (decision p) as i.

Goal ∀ (x : nat) A, x ∈ A ∨ ¬ x ∈ A.

Proof. intros x A. decide (x ∈ A) as [D|D] ; auto. Qed.

The destructuring pattern [D|D] used with decide in the proof of the goal can

be omitted. In this case the first notational rule for decide applies and the tactic

destruct generates the names for the assumptions.

Finally, we strengthen the instance inference for dec with a hint command. As

is, Coq cannot infer the implicit argument for decision ((fun _⇒ True)0) since it

does not reduce the beta redex. We fix the problem with a hint command.

Hint Extern 4⇒

match goal with

| [ |− dec ((fun _⇒ _) _) ]⇒ simpl

end : typeclass_instances.

Goal decision ((fun _⇒ True) 0) = True_dec.

Proof. reflexivity. Qed.

Exercise 8.4.1 Prove the following goals stating the decidability of list member-

ship and list equality. Do not use certifying tests from the library or instance

rules defined above.

Goal ∀ X (x : X) A , eq_dec X→ dec (x ∈ A).

Goal ∀ X, eq_dec X→ eq_dec (list X).

Exercise 8.4.2 Prove the following lemmas.

Lemma dec_DN X : dec X→ ¬¬ X→ X.

Lemma dec_DM_and X Y : dec X→ dec Y→ ¬ (X ∧ Y)→ ¬ X ∨ ¬ Y.

Lemma dec_DM_impl X Y : dec X→ dec Y→ ¬ (X→ Y)→ X ∧ ¬ Y.

Exercise 8.4.3 Prove that decidability propagates through logical equivalence.

Lemma dec_prop_iff (X Y : Prop) : (X ↔ Y)→ dec X→ dec Y.
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8.5 List Quantification Preserves Decidability

We now establish the instance rules implementing the fact that quantification

over lists preserves decidability.

∀x. dec (p x)

dec (∀x. x ∈ A→ p x)

∀x. dec (p x)

dec (∃x. x ∈ A∧ p x)

We will obtain both rules from the following lemma. The lemma gives us a func-

tion that for a list and a decidable predicate yields either an element of the list

not satisfying the predicate or a proof that every element of the list satisfies the

predicate.

Lemma sigma_forall_list X A (p : X→ Prop) (p_dec : ∀ x, dec (p x)) :

{x | x ∈ A ∧ ¬ p x} + {∀ x, x ∈ A→ p x}.

Proof.

induction A as [|x A] ; simpl.

− right. tauto.

− destruct IHA as [[y [D E]]|D].

+ left . eauto.

+ destruct (p_dec x) as [E|E].

* right. intros y [[]| F] ; auto.

* left . eauto.

Qed.

To ease the use of the lemma sigma_forall_list, we declare A and p as explicit

arguments and X and p_dec as implicit arguments.

Arguments sigma_forall_list {X} A p {p_dec}.

We now establish the instance rule for universal list quantification.

Instance forall_list_dec X A (p : X→ Prop) (p_dec : ∀ x, dec (p x)) :

dec (∀ x, x ∈ A→ p x).

Proof.

destruct (sigma_forall_list A p) as [[x [D E]]|D] ; unfold dec ; auto.

Qed.

Next we establish the rule for existential list quantification.

Instance exists_list_dec X A (p : X→ Prop) (p_dec : ∀ x, dec (p x)) :

dec (∃ x, x ∈ A ∧ p x).

Proof.

destruct (sigma_forall_list A (fun x⇒ ¬ p x)) as [[x [D E]]|D].

− left. apply dec_DN in E ; eauto.

− right. intros [x [E F ]]. exact (D x E F).

Qed.
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We have now enough instance rules so that Coq can derive decisions for in-

clusion, equivalence, and disjointness of lists.

Set Printing Implicit.

Check fun X (A B :list X) (D : eq_dec X)⇒ decision (A ⊆ B).

Check fun X (A B :list X) (D : eq_dec X)⇒ decision (A ≡ B).

Check fun X (A B :list X) (D : eq_dec X)⇒ decision (disjoint A B).

Unset Printing Implicit.

Exercise 8.5.1 Prove the De Morgan law for universal list quantification.

Lemma dec_DM_forall X A (p : X→ Prop) :

(∀ x, dec (p x))→

¬ (∀ x, x ∈ A→ p x)→ ∃ x, x ∈ A ∧ ¬ p x.

Exercise 8.5.2 Prove constructive choice for existential list quantification.

Lemma dec_cc X (p : X→ Prop) A :

eq_dec X→ (∀ x, dec (p x))→

(∃ x, x ∈ A ∧ p x)→ {x | x ∈ A ∧ p x}.

8.6 Filtering of Lists

We define a function filter that given a decidable predicate and a list yields the

sublist containing all elements satisfying the predicate.5 6

Section Filter.

Variable X : Type.

Variable p : X→ Prop.

Variable p_dec : ∀ x, dec (p x).

Fixpoint filter (A : list X) : list X :=

match A with

| nil ⇒ nil

| x::A’⇒ if decision (p x) then x :: filter A’ else filter A’

end.

End Filter.

Arguments filter {X} p {p_dec} A.

The function filter will play an important role in proofs of existential claims. We

establish a few properties of filter . The proofs are left as exercises.

5 Our definition of filter shadows the definition of filter in the standard library, which employs a

boolean test rather than a decidable predicate.
6 Note that an application of the command Arguments inside a section will have a local effect

only.
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Section FilterLemmas.

Variable X : Type.

Variable p : X→ Prop.

Context {p_dec : ∀ x, dec (p x)}.

Lemma in_filter x A :

x ∈ filter A ↔ x ∈ A ∧ p x.

Lemma filter_incl A :

filter A ⊆ A.

Lemma filter_mono A B :

A ⊆ B→ filter A ⊆ filter B.

End FilterLemmas.

Note the use of the command Context. It is a variant of the command Variable

that accommodates the assumption as an implicit argument when the enclosing

section is closed.

We establish two further lemmas. We do this in a new section since one of

the proofs will use the lemma in_filter for the predicate q. The first lemma says

that filter is monotone in the strength of the filtering predicate. The second

lemma says that filter yields the same value for equivalent filtering predicates.

The proofs are left as exercises.

Section FilterLemmas_pq.

Variable X : Type.

Variable p q : X→ Prop.

Context {p_dec : ∀ x, dec (p x)}.

Context {q_dec : ∀ x, dec (q x)}.

Lemma filter_pq_incl A :

(∀ x, x ∈ A→ p x→ q x)→ filter p A ⊆ filter q A.

Lemma filter_pq_eq A :

(∀ x, x ∈ A→ (p x ↔ q x))→ filter p A = filter q A.

End FilterLemmas_pq.

Exercise 8.6.1 Prove the lemmas stated in this section.

Exercise 8.6.2 Prove the following lemma.

Lemma separation X A p (D : ∀ x : X, dec (p x)) :

{B | ∀ x, x ∈ B ↔ x ∈ A ∧ p x}.

Exercise 8.6.3 The result of filter does not depend on the particular decision

function used. Prove the following lemma formulating this statement.

Lemma filter_independence X A p (D D’ : ∀ x : X, dec (p x)) :

filter p A (p_dec:=D) = filter p A (p_dec:=D’).
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8.7 Rewriting with List Equivalences

Many operations on lists respect list equivalence in that they yield equivalents

results for equivalent arguments. Here are the equivalence rules we are going to

use.

A ≡ A′

x :: A ≡ x :: A′

A ≡ A′ B ≡ B′

A++B ≡ A′++B′

A ≡ A′

x ∈ A↔ x ∈ A′

A ≡ A′ B ≡ B′

A ⊆ B ↔ A′ ⊆ B′

The equivalence rules justify rewriting with list equivalences. We can perform

such rewritings with the tactic setoid_rewrite once we have registered the rules

with Coq. To do so, we need to load the standard module Morphisms, register

the predicate equi with the predefined class Equivalence, and then establish every

rule as an instance rule. We give the necessary Coq commands below. If you step

through the scripts you will get goals for all the facts that must be proved. While

it is important to understand the logical structure of what you see, the technical

details of the commands do not matter.7

Instance equi_Equivalence X : Equivalence (@equi X).

Proof. constructor ; hnf ; firstorder. Qed.

Instance cons_equi_proper X :

Proper (eq ==> @equi X ==> @equi X) (@cons X).

Proof. hnf. intros x y []. hnf. firstorder. Qed.

Instance app_equi_proper X :

Proper (@equi X ==> @equi X ==> @equi X) (@app X).

Proof.

hnf. intros A B D. hnf. intros A’ B’ E.

destruct D, E ; auto using incl_app, incl_appl, incl_appr.

Qed.

Instance in_equi_proper X :

Proper (eq ==> @equi X ==> iff) (@In X).

Proof. hnf. intros x y []. hnf. firstorder. Qed.

Instance incl_equi_proper X :

Proper (@equi X ==> @equi X ==> iff) (@incl X).

Proof. hnf. intros x y D. hnf. firstorder. Qed.

Note that several of the proofs use the automation tactic firstorder , which can

solve simple goals involving quantifiers. Also note that in one of the proofs auto

is enhanced with the lemmas incl_app and incl_appl.

Here is an example proof employing rewriting with the equivalences

equi_swap and equi_shift established in Section 8.1.

7 Recall that we are already using setoid_rewrite with logical equivalences (see Section 2.9). In

fact, the predicate iff is registered with the predefined class Equivalence, and the rules justify-

ing rewriting with logical equivalences are registered with iff .
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Goal ∀ X (x y : X) A B, x::A ++ [y] ++ A ++ B ≡ A ++ [y;x] ++ A ++ B.

Proof.

intros X x y A B. simpl.

setoid_rewrite equi_swap.

setoid_rewrite equi_shift at 1.

reflexivity .

Qed.

Note the use of the tactic reflexivity to solve the final goal. This is justified since

we have established equi as a reflexive predicate when we registered it as an

equivalence predicate (see the instance definition equi_Equivalence above).

Next we register list inclusion incl as a preorder (i.e., a reflexive and transitive

predicate). This makes it possible to use the tactics reflexivity and transitivity for

list inclusions. Moreover, it justifies top level setoid rewriting of list inclusions

with list inclusions.

Instance incl_preorder X : PreOrder (@incl X).

Proof. constructor ; hnf ; unfold incl ; auto. Qed.

Goal ∀ A B C D : list nat, A ⊆ B→ B ⊆ C→ C ⊆ D→ A ⊆ D.

Proof. intros A B C D F G H. setoid_rewrite F. setoid_rewrite ← H. exact G. Qed.

8.8 Duplicate-free Lists

A list is duplicate-free if it contains no element twice. Duplicate-free lists have

the important property that equivalent duplicate-free lists have the same length.

Moreover, the length of a duplicate-free list is the cardinality of the set the list

represents.

We start with an inductive definition of duplicate freeness.

dupfree nil

x ∉ A dupfree A

dupfree (x :: A)

Writing the definition in Coq is straightforward.

Inductive dupfree (X : Type) : list X→ Prop :=

| dupfreeN : dupfree nil

| dupfreeC x A : ¬ x ∈ A→ dupfree A→ dupfree (x::A).

We prove an inversion lemma for the predicate dupfree.

Section Dupfree.

Variable X : Type.

Implicit Types A B : list X.
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Lemma dupfree_inv x A :

dupfree (x::A)→ ¬x ∈ A ∧ dupfree A.

Proof. intros D. inversion D ; subst ; auto. Qed.

Note the use of the automation tactic inversion. We use inversion only if it solves

the goal, possibly together with other automation tactics as above. The inversion

lemma dupfree_inv will spare us further uses of the inversion tactic for dupfree.

Under certain conditions, the functions app, map, and filter preserve dupli-

cate freeness. We state these facts with three lemmas.

Lemma dupfree_app A B :

disjoint A B→ dupfree A→ dupfree B→ dupfree (A++B).

Lemma dupfree_map Y A (f : X→ Y) :

(∀ x y, x ∈ A→ y ∈ A→ f x = f y→ x=y)→ dupfree A→ dupfree (map f A).

Lemma dupfree_filter p (p_dec : ∀ x, dec (p x)) A :

dupfree A→ dupfree (filter p A).

Proof.

intros D. induction D as [|x A C D] ; simpl.

− left.

− decide (p x) as [E|E] ; [| exact IHD].

right ; [| exact IHD].

intros F. apply C. apply filter_incl in F. exact F.

Qed.

End Dupfree.

The proof script for dupfree_filter uses the construction ; [|exact IHD] twice.

This construction applies in situations where two subgoals are created and the

second subgoal can be solved with a single tactic. In such situations it is usually

convenient to immediately solve the second subgoal and then continue without

branching with the first subgoal.

Exercise 8.8.1 Prove the lemma dupfree_inv without using the inversion tactic.

Exercise 8.8.2 Prove the lemma dupfree_filter without using the construct

; [|exact IHD].

Exercise 8.8.3 Prove the lemmas dupfree_app and dupfree_map using induction

for dupfree.

Exercise 8.8.4 Prove that the predicate dupfree is decidable.

Lemma dupfree_dec X (A : list X) : eq_dec X→ dec (dupfree A).
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8.9 Undup

We now define a function undup that maps a list to an equivalent duplicate-free

list by keeping only the last occurrence of an element. We need the assumption

that the base type has decidable equality.

Section Undup.

Variable X : Type.

Context {eq_X_dec : eq_dec X}.

Implicit Types A B : list X.

Fixpoint undup (A : list X) : list X :=

match A with

| nil ⇒ nil

| x::A’⇒ if decision (x ∈ A’) then undup A’ else x :: undup A’

end.

We prove the correctness of undup. Note that rewriting with list equivalences is

essential in the proofs.

Lemma undup_equi A :

undup A ≡ A.

Proof.

induction A as [|x A] ; simpl.

− reflexivity.

− decide (x ∈ A) as [E|E].

+ setoid_rewrite IHA. apply equi_push, E.

+ setoid_rewrite IHA. reflexivity.

Qed.

Lemma undup_dupfree A :

dupfree (undup A).

Proof.

induction A as [|x A] ; simpl.

− left.

− decide (x ∈ A) as [E|E].

+ exact IHA.

+ right.

* setoid_rewrite undup_equi. exact E.

* exact IHA.

Qed.

Exercise 8.9.1 Prove the following lemmas.

Lemma undup_homo A B :

A ⊆ B ↔ undup A ⊆ undup B.

Lemma undup_iso A B :

A ≡ B ↔ undup A ≡ undup B.
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A ⊆ B → |A| ≤ |B| le

A ≡ B → |A| = |B| eq

A ⊆ B → |A| = |B| → A ≡ B equi

|A| < |B| → ∃x. x ∈ B ∧ x ∉ A ex

A ⊆ B → x ∈ B → x ∉ A→ |A| < |B| lt

Laws (equi) and (ex) require a base type with decidable equality

Figure 8.5: Length laws for duplicate-free lists

Lemma undup_eq A :

dupfree A→ undup A = A.

Lemma undup_idempotent A :

undup (undup A) = undup A.

8.10 Length of Duplicate-free Lists

The recursive function length from the standard library yields the length of a

list. The definition of length is based on the equations

|nil | = 0

|x :: A| = 1+ |A|

We will use the notation

Notation "| A |" := (length A) (at level 65).

In the following we prove basic laws about the length of duplicate-free lists.

The laws are shown in Figure 8.5. Note that the laws reflect basic facts about

the cardinality of finite sets. Recall that the length of a duplicate-free list is the

cardinality of the represented set.

For the proofs of the laws we need a reordering lemma for duplicate-free lists.

Section DupfreeLength.

Variable X : Type.

Implicit Types A B : list X.

Lemma dupfree_reorder A x :

dupfree A→ x ∈ A→

∃ A’, A ≡ x::A’ ∧ |A’| < |A| ∧ dupfree (x::A’).
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Proof.

intros E. revert x. induction E as [|y A H] ; intros x F.

− contradiction F.

− destruct F as [F|F].

+ subst y. ∃ A. auto using dupfree.

+ specialize (IHE x F). destruct IHE as [A’ [G [K1 K2]]].

∃ (y::A’). split ;[| split ].

* setoid_rewrite G. apply equi_swap.

* simpl. omega.

* { apply dupfree_inv in K2 as [K2 K3]. right.

− intros [M|M] ; subst ; auto.

− right ; [| exact K3]. intros M ; apply H. apply G. auto. }

Qed.

The proof is by induction on the assumption dupfree A. The annotation

using dupfree enhances the auto tactic with all constructors of the inductive type

dupfree. Note the use of the construct ; [|split] to further split the second sub-

goal of a split. Also note the use of the inversion lemma for dupfree.

Next we prove that length respects inclusion of duplicate-free lists.

Lemma dupfree_le A B :

dupfree A→ dupfree B→ A ⊆ B→ |A| ≤ |B|.

Proof.

intros E. revert B. induction A as [|x A] ; simpl ; intros B F G.

− omega.

− apply incl_lcons in G as [G H].

destruct (dupfree_reorder F G) as [B’ [K [L M]]].

apply dupfree_inv in E as [E1 E2]. apply dupfree_inv in M as [M1 M2].

cut (A ⊆ B’).

{ intros N. specialize (IHA E2 B’ M2 N). omega. }

apply incl_rcons with (x:=x) ; [|exact E1].

setoid_rewrite H. apply K.

Qed.

The proof is by induction on A and uses the reordering lemma dupfree_reorder .

It is now straightforward to prove that equivalent duplicate-free lists have the

same length.

Lemma dupfree_eq A B :

dupfree A→ dupfree B→ A ≡ B→ |A|=|B|.

Using the lemmas sigma_forall_list and dupfree_le, we can prove that a

duplicate-free list containing a shorter duplicate-free list must have an element

that is not in the shorter list.

Lemma dupfree_ex A B :

eq_dec X→ dupfree A→ dupfree B→ |A| < |B|→ ∃ x, x ∈ B ∧ ¬ x ∈ A.
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We can also prove the opposite direction: If a duplicate-free list is contained in

a duplicate-free list containing an extra element, the list with the etra argument

must be longer.

Lemma dupfree_lt A B x :

dupfree A→ dupfree B→ A ⊆ B→ x ∈ B→ ¬ x ∈ A → |A| < |B|.

This brings us to the final result of this section: Duplicate-free lists of the same

length are equivalent if one contains the other.

Lemma dupfree_equi A B :

eq_dec X→ dupfree A→ dupfree B→ A ⊆ B→ |A| = |B|→ A ≡ B.

Exercise 8.10.1 Prove the lemma dupfree_eq.

Exercise 8.10.2 Prove the lemma dupfree_ex. Use the lemmas sigma_forall_list

and dupfree_le. No induction is needed.

Exercise 8.10.3 Prove the lemma dupfree_lt. Use the lemmas dupfree_reorder ,

dupfree_eq, and dupfree_le. No induction is needed.

Exercise 8.10.4 Prove the lemma dupfree_equi. Use the lemmas

sigma_forall_list and dupfree_lt. No induction is needed.

Exercise 8.10.5 Prove the following Lemma.

Lemma dupfree_or X (A B : list X) :

eq_dec X→ dupfree A→ dupfree B→ A ⊆ B→ A ≡ B ∨ |A| < |B|.

Hint: Use dupfree_le, dupfree_equi, and le_lt_eq_dec from the standard library.

8.11 Cardinality of Lists

We are now ready to define the cardinality of lists.

Section Cardinality.

Variable X : Type.

Context {eq_X_dec : eq_dec X}.

Implicit Types A B : list X.

Definition card (A : list X) : nat := |undup A|.

Note that the cardinality function requires a base type with decidable equality

since the function undup does.

We will prove the basic cardinality laws shown in Figure 8.6. Because of the

cardinality function, all laws require a base type with decidable equality. Math-

ematically, the cardinality laws are straightforward consequences of the length
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A ⊆ B → card A ≤ card B le

A ≡ B → card A = card B eq

A ⊆ B → card A = card B → A ≡ B equi

card A < card B → ∃x. x ∈ B ∧ x ∉ A ex

A ⊆ B → x ∈ B → x ∉ A→ card A < card B lt

A ⊆ B → A ≡ B ∨ card A < card B or

Figure 8.6: Cardinality laws for lists

laws for duplicate-free lists and a few facts about the undup function. Proving

the laws in Coq nevertheless takes a little effort. We use the occasion to introduce

new features of the tactics destruct and assert that ease the proofs.

The proofs of the first three cardinality laws in Figure 8.6 are left as exercise.

We show the proof of the law card_equi since it illustrates certain weaknesses of

the tactic apply in the current version of Coq (8.4pl2).

Lemma card_equi A B :

A ⊆ B→ card A = card B→ A ≡ B.

Proof.

intros D E. apply ← undup_iso.

apply dupfree_equi.

− exact eq_X_dec.

− apply undup_dupfree.

− apply undup_dupfree.

− apply undup_homo, D.

− exact E.

Qed.

Note the arrow “←” in the first use of apply. It specifies which direction of the

equivalence lemma undup_iso is to be applied. Given that only one direction

of the lemma applies, one would expect that apply chooses this direction auto-

matically, but this is not the case. Also note that the second use of apply spans

a subgoal eq_dec X for an argument of dupfree_equi. This seems unnecessary

given the type class dec and the assumption eq_X_dec.

The proof of the cardinality law card_or illustrates a useful feature of the

tactic assert.

Lemma card_or A B :

A ⊆ B→ A ≡ B ∨ card A < card B.

Proof.

intros D.
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assert (F:= card_le D).

apply le_lt_eq_dec in F as [F|F].

− auto.

− left. exact (card_equi D F).

Qed.

The tactic assert is used with the definition symbol “:=” to establish an as-

sumption F : card A ≤ card B directly with a proof term. Then the decision

lemma le_lt_eq_dec from the library is used to split the proof into cases for

card A < card B and card A = card B.

The proof of the cardinality law card_ex illustrates a new feature of the tactic

destruct.

Lemma card_ex A B :

card A < card B→ ∃ x, x ∈ B ∧ ¬ x ∈ A.

Proof.

intros E.

destruct (dupfree_ex (A:=undup A) (B:=undup B)) as [x F].

− apply undup_dupfree.

− apply undup_dupfree.

− exact E.

− ∃ x. setoid_rewrite undup_equi in F. exact F.

Qed.

The proof applies the tactic destruct to a function that yields a proof of an ex-

istential quantification. In this situation, destruct automatically introduces sub-

goals to establish the arguments of the function it cannot derive automatically.

The subgoals for the missing arguments go before the subgoals for the case

analysis. Using destruct in mediating mode spares the effort of establishing the

arguments of the function with the tactic assert.

Exercise 8.11.1 Prove the following cardinality laws.

Lemma card_le A B : A ⊆ B→ card A ≤ card B.

Lemma card_eq A B : A ≡ B→ card A = card B.

Lemma card_lt A B x : A ⊆ B→ x ∈ B→ ¬ x ∈ A→ card A < card B.

8.12 Library LFS

In the rest of the book we will use the infrastructure defined in this chapter. For

Coq developments we provide a file LFS.v containing the Coq code establishing

the infrastructure of this chapter. Copy the file into the directory you are working

in and compile it with the shell command coqc. This will install the library LFS.

If you now start your Coq development with the line
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Require Import LFS.

you will get all the infrastructure set up in this chapter. This includes setting the

implicit arguments mode and importing the standard modules Omega, List, and

Morphisms. Browse the file LFS.v to see the details.

Coq Summary

New Tactics and Tacticals

• eauto. Variant of auto that can prove existential quantifications if strong

enough assumptions exist. See lemma disjoint_cons in Section 8.1.

• firstorder . Automation tactic that can solve simple goals involving quantifiers.

See Section 8.7 on setoid rewriting.

• ; [|t]. If a tactic is used with the suffix ; [|t], it must have produced two

subgoals. The tactic t is applied to the second subgoal. Can be used to solve

or split the second subgoal.

Tactic apply with Destructuring Pattern

If the tactic apply is applied to an assumption, a destructuring pattern can be

specified so that the value obtained by the application is immediately destruc-

tured. See the command apply IHA in D as [B [C D]] in the proof of in_iff in

Section 8.1.

Tactic destruct Applied to Functions

If the tactic destruct is applied to a function, Coq spans subgoals for the argu-

ments it cannot derive automatically. The subgoals for the arguments go before

the subgoals for the case analysis. This is also the case for implicit destructs

invoked with a destructuring pattern used with apply. See the proof of lemma

card_ex in Section 8.11.

Tactic assert with :=

The tactic assert can establish an assumption directly from a proof term. See the

proof of lemma card_or in Section 8.11.

Tactic auto with using

The tactic auto can be enhanced with the constructors of an inductive type spec-

ified with a using suffix. See the proof of the lemma dupfree_reorder in Sec-

tion 8.10.

Setoid Rewriting with List Equivalences and List Inclusions

One can register equivalence and preorder predicates for setoid rewriting. We

have registered list equivalence and list inclusion. See Section 8.7 on setoid
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rewriting.

New Commands

• Hint Resolve enhances auto with lemmas.

• Hint Unfold tells auto to unfold definitions.

• Existing Class x registers the constant x as a type class. See the registration

of dec in Section 8.4.

• Existing Instance x registers the constant x as an instance rule. See the regis-

tration of eq_nat_dec in Section 8.4.

• Instance establishes and registers an instance rule for a type class.

• Implicit Types associates names with types to be used with type inference.

• Context declares an assumption in a section that will be accommodated as

an implicit argument when the enclosing section is closed. See the section

FilterLemmas in Section 8.6.

• Set Printing Implicit and Unset Printing Implicit switch printing of implicit ar-

guments on and off.

• Print Instances C lists all instance rules for class C .

Library LFS

We provide the infrastructure set up in this chapter through a library LFS.

The Coq developments of the remaining chapters all start with the line

Require Import LFS. For this command to work the library LFS needs to be in

your load path. You can install the library LFS by copying the file LFS.v into your

working directory and then compiling it with the shell command coqc.

Tactic Notations Defined in LFS

• decide claim. Expands to exact (decision p) for a claim p.

• decide p. Expands to destruct (decision p).
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9 Proof Systems for Propositional Logic

Propositional logic is a logical system for propositional formulas. Propositional

formulas consist of atomic propositions (e.g., propositional variables, ⊥ and ⊤)

and are closed under logical connectives (e.g., implication, conjunction and dis-

junction). In this chapter we will restrict ourselves to propositional logic with

propositional variables and ⊥ and closed under implication. The systems and re-

sults can be extended to include other connectives, but we leave such extensions

to exercises.

We will first consider a natural deduction style proof system for intuitionistic

propositional logic. The natural deduction system will correspond closely to the

proof system in Coq. We next consider a classical natural deduction style proof

system. We will prove a result of Glivenko: a propositional formula is classi-

cally provable if and only if its double negation is intuitionistically provable. We

will then consider a Hilbert style proof system and prove the equivalence of the

natural deduction system and the Hilbert system.1

9.1 Propositional Formulas

We start with (propositional) formulas given by the following grammar where x

ranges over variables and s and t range over propositional formulas.

s, t ::= x | ⊥ | s → t

We can represent such formulas in Coq using an inductive type. We use natural

numbers to represent variables.

Definition var := nat.

Inductive form : Type :=

| Var : var→ form

| Imp : form→ form→ form

| Fal : form.

Just as in Coq, we consider ¬s as meaning s → ⊥. We implement this using a

Coq definition.

1 Proof systems are often called “calculi.” In this context, “calculus” is a synonym for “system.”
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Definition Not s := Imp s Fal.

Equality of formulas is decidable.

Instance form_eq_dec : ∀ s t:form, dec (s = t).

Proof. unfold dec. repeat decide equality. Qed.

Exercise 9.1.1 Prove decidability of equality of formulas without using the

decide equality tactic.

Exercise 9.1.2 Consider the following specification for a function which has the

type form→ (var → Prop)→ Prop.

Definition valspec (v:form→ (var→ Prop)→ Prop) : Prop :=

∀ p, (∀ x, v (Var x) p ↔ p x) ∧

(¬ v Fal p) ∧

(∀ s t, v (Imp s t) p ↔ (v s p→ v t p)).

a) Prove the following goals.

Goal ∀ v p s, valspec v→ v (Imp Fal s) p.

Goal ∀ v p s, valspec v→ v (Imp s s) p.

Goal ∀ v p s t, valspec v→ v (Imp s (Imp t s)) p.

b) Define a function val and prove the following:

Lemma valspec_val : valspec val.

9.2 Natural Deduction System

In this section we consider our first proof system for propositional formulas. A

proof system defines when a formula s is provable from a finite collection of

assumptions A. We write A ⊢ s to mean s is provable from A in the particular

proof system under discussion. The symbol ⊢ is a “turnstile.” Note that ⊢ is a

predicate on A and s and we will call it the provability predicate. Provability

predicates are typically defined inductively. The judgment of the proof system

is the provability predicate and the propositions built from it. We write A 6⊢ s to

mean the negation of A ⊢ s.

Deduction rules for logical connectives were given in Figure 2.1. The intro-

duction and elimination rules for → together with the elimination rule for ⊥

essentially give a proof system for propositional formulas. Since the introduc-

tion rule for→ changes the assumptions, we must have some explicit notion of a

collection of assumptions and some way of checking if a formula is such an as-

sumption. We use lists of formulas to represent such a collection of assumptions
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A
A ⊢ s

s ∈ A II
A, s ⊢ t

A ⊢ s → t
IE
A ⊢ s → t A ⊢ s

A ⊢ t
E
A ⊢ ⊥

A ⊢ s

Figure 9.1: Natural Deduction Rules

and refer to such a list of formulas as a context. We can check if a formula is an

assumption in the context using an assumption rule to check if the formula is

an element of the list. These rules are given in Figure 9.1.

The rules in Figure 9.1 define when A ⊢ s in the systemN . That is, the rules

define when s is provable from A in N . One can use the rules in Figure 9.1 to

justify A ⊢ s.

Consider the following example.

Example 9.2.1 Let A be a context and s and t be formulas. We can use the rules

ofN to derive A ⊢ s → ¬s → t as follows:

II

II

E

IE

A
A, s,¬s ⊢ s → ⊥

A
A, s,¬s ⊢ s

A, s,¬s ⊢ ⊥

A, s,¬s ⊢ t

A, s ⊢ ¬s → t

A ⊢ s → ¬s → t

We can represent the natural deduction system N in Coq as an inductive

predicate nd. The proposition nd A s is provable precisely when A ⊢ s. The

predicate nd and propositions of the form nd A s are the Coq representations

of the judgment of N . Note that A is a nonuniform parametric argument of nd

and s is a nonparametric argument of nd.

Definition context := list form.

Inductive nd (A : context) : form→ Prop :=

| ndA s : s ∈ A→ nd A s

| ndII s t : nd (s::A) t → nd A (Imp s t)

| ndIE s t : nd A (Imp s t)→ nd A s→ nd A t

| ndE s : nd A Fal→ nd A s.

We can now reconsider Example 9.2.1 as a proof in Coq. Compare the Coq

proof script with the diagram in Example 9.2.1.

Goal ∀ A s t, nd A (Imp s (Imp (Not s) t)).
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Proof.

intros A s t. apply ndII, ndII. apply ndE. apply ndIE with (s := s).

− apply ndA. left. reflexivity.

− apply ndA. right. left. reflexivity.

Qed.

The following alternative Coq proof script may also be enlightening if one com-

pares it with the diagram in Example 9.2.1.

Goal ∀ A s t, nd A (Imp s (Imp (Not s) t)).

Proof.

intros A s t.

assert (B:Not s ∈ Not s::s::A) by auto.

assert (C:s ∈ Not s::s::A) by auto.

exact (ndII (ndII (ndE t (ndIE (ndA B) (ndA C))))).

Qed.

As one can see in the Coq scripts above, in general to prove A ⊢ s using the

assumption rule we must prove the subgoal s ∈ A. It is useful to prove three

special cases A, s ⊢ s and A, s, t ⊢ s and A, s, t,u ⊢ s where the assumption is

one of the three most recently added formulas in the context. The use of these

lemmas avoids subgoals of the form s ∈ s :: A, s ∈ t :: s :: A and s ∈ u :: t :: s :: A.

Lemma ndA1 A s :

nd (s :: A) s.

Proof. apply ndA. left. reflexivity. Qed.

Lemma ndA2 A s t :

nd (t :: s :: A) s.

Proof. apply ndA. right. left. reflexivity. Qed.

Lemma ndA3 A s t u :

nd (u :: t :: s :: A) s.

Proof. apply ndA. right. right. left. reflexivity . Qed.

A rule is admissible in a proof system if adding the rule to the proof system

does not change what is provable in the system. This is equivalent to saying that

the conclusion of the rule is provable whenever the premises are provable. The

lemmas ndA1, ndA2 and ndA3 prove that the rules A1, A2 and A3 in Figure 9.2

are all admissible in the proof system N . We will go on to prove that the other

rules in Figure 9.2 are admissible inN .

We will often do proofs by induction over A ⊢ s, i.e., over the inductive pred-

icate nd. In the process of doing such an inductive proof we must consider each

of the four rules in Figure 9.1. Each rule has the form

A1 ⊢ s1 · · ·An ⊢ sn

A ⊢ s
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A1
A, s ⊢ s

A2
A, s, t ⊢ s

A3
A, s, t,u ⊢ s

app
A ⊢ s

A ⊢ u
s → u ∈ A

app1
A, s → u ⊢ s

A, s → u ⊢ u
app2

A, s → u, t ⊢ s

A, s → u, t ⊢ u
app3

A, s → u, t, v ⊢ s

A, s → u, t, v ⊢ u

weak
A ⊢ s

A′ ⊢ s
A ⊆ A′ W

A ⊢ s

A, t ⊢ s
DN

A ⊢ s

A ⊢ ¬¬s

Figure 9.2: Some Admissible Rules

for n ∈ {0,1,2}. For such a rule we assume the desired property for Ai and si

as inductive hypotheses and prove the desired property for A and s. In Coq the

induction principle of nd corresponds to the type of nd_ind:

Check (nd_ind :

∀ p : context→ form→ Prop,

(∀ (A : context) (s : form), s ∈ A→ p A s)→

(∀ (A : context) (s t : form), nd (s :: A) t→ p (s :: A) t→ p A (Imp s t))→

(∀ (A : context) (s t : form), nd A (Imp s t)→ p A (Imp s t)→ nd A s→ p A s→ p A t)→

(∀ (A : context) (s : form), nd A Fal→ p A Fal→ p A s)→

∀ (A : context) (s : form), nd A s→ p A s).

Note that the induction principle makes precise that we must prove a case for

each rule in Figure 9.1 and what inductive hypotheses we obtain in each case. We

can also visualize these four proof obligations in the form of rules.

A
p A s

s ∈ A II

A, s ⊢ t

(IH) p (A, s) t

p A (s → t)
IE

A ⊢ s → t A ⊢ s

(IH) p A (s → t) (IH) p A s

p A t

E

A ⊢ ⊥

(IH) p A ⊥

p A s

In each case we must prove the conclusion using the premises (including the

inductive hypotheses) and the side conditions as assumptions.

Our first such inductive proof will be of a property called weakening: if A ⊆

A′ and A ⊢ s, then A′ ⊢ s. In other words, we prove the following rule weak in

Figure 9.2 is admissible. Here the desired property of A and s is ∀A′, A ⊆ A′ →
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A′ ⊢ s. We prove by induction that A and s have this desired property whenever

A ⊢ s.

Lemma nd_weak A A’ s :

A ⊆ A’→ nd A s→ nd A’ s.

We first give a mathematical proof.

Proof We argue by induction on the proof of A ⊢ s and consider each rule care-

fully. Future mathematical proofs will not be given at this level of detail.

Consider the assumption rule A:

A
A ⊢ s

s ∈ A

Note that in this case s ∈ A. We must prove ∀A′, A ⊆ A′ → A′ ⊢ s. Assume

A ⊆ A′. Hence s ∈ A′ and so A′ ⊢ s by the assumption rule.

Consider the introduction rule II for implication:

II
A, s ⊢ t

A ⊢ s → t

We must prove∀A′, A ⊆ A′ → A′ ⊢ s → t. The inductive hypothesis is∀A′, A, s ⊆

A′ → A′ ⊢ t. Assume A ⊆ A′. Clearly A, s ⊆ A′, s. By the inductive hypothesis we

know A′, s ⊢ t. Hence A′ ⊢ s → t by II.

Consider the elimination rule IE for implication:

IE
A ⊢ s → t A ⊢ s

A ⊢ t

We must prove∀A′, A ⊆ A′ → A′ ⊢ t. Since there are two premises, there are two

inductive hypotheses. The first inductive hypothesis is∀A′, A ⊆ A′ → A′ ⊢ s → t.

The second inductive hypothesis is ∀A′, A ⊆ A′ → A′ ⊢ s. Assume A ⊆ A′. By

the inductive hypotheses we know A′ ⊢ s → t and A′ ⊢ s. Hence A′ ⊢ t by IE.

Consider the elimination rule E for ⊥:

E
A ⊢ ⊥

A ⊢ s

We must prove ∀A′, A ⊆ A′ → A′ ⊢ s. The inductive hypothesis is ∀A′, A ⊆ A′ →

A′ ⊢ ⊥. Assume A ⊆ A′. By the inductive hypotheses we know A′ ⊢ ⊥ and so

A′ ⊢ s by E. �

We now give the corresponding Coq proof script. The reader should step through

the Coq proof and compare it with the mathematical proof above.
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Proof.

intros E F. revert A’ E.

induction F as [A s F|A s t F IHF|A s t F1 IHF1 F2 IHF2|A s F IHF] ; intros A’ E.

− apply ndA, E. assumption.

− apply ndII, IHF. apply incl_shift, E.

− apply ndIE with (s:=s) ; auto.

− apply ndE, IHF, E.

Qed.

As an obvious corollary, we know that A, t ⊢ s whenever A ⊢ s.

Lemma ndW A s t :

nd A s→ nd (t::A) s.

Proof. apply nd_weak; auto. Qed.

We could also obtain corollaries which combine weakening with the defining

rules of the calculus. We will only do so for IE: If B ⊢ s → t, B ⊆ A and A ⊢ s,

then A ⊢ t.

Lemma ndIE_weak A B s t :

nd B (Imp s t)→ B ⊆ A→ nd A s→ nd A t.

Proof.

intros E F G. apply ndIE with (s:=s).

− exact (nd_weak F E).

− exact G.

Qed.

We next prove lemmas that allow us to simulate Coq’s apply tactic. If an

implication s → t is in the context A and we want to prove A ⊢ t, then it is

enough to prove A ⊢ s. This is the content of the following lemma. The proof is

simply a combination of the IE and A rules.

Lemma ndapp A s u :

Imp s u ∈ A→ nd A s→ nd A u.

Proof.

intros E F. apply ndIE with (s := s).

− apply ndA, E.

− exact F.

Qed.

We also prove three simple corollaries for the cases when the implication is

one of the three most recent assumptions. Using these corollaries avoids the

need to prove trivial subgoals that would result from applying ndapp.

Lemma ndapp1 A s u :

nd (Imp s u :: A) s→ nd (Imp s u :: A) u.

Proof. apply ndapp. left. reflexivity. Qed.
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Lemma ndapp2 A s t u :

nd (t :: Imp s u :: A) s→ nd (t :: Imp s u :: A) u.

Proof. apply ndapp. right. left. reflexivity. Qed.

Lemma ndapp3 A s t u v :

nd (t :: v :: Imp s u :: A) s→ nd (t :: v :: Imp s u :: A) u.

Proof. apply ndapp. right. right. left. reflexivity. Qed.

Finally we prove that if A ⊢ s, then A ⊢ ¬¬s.

Lemma ndDN A s :

nd A s→ nd A (Not (Not s)).

Proof. intros E. apply ndII, ndapp1, ndW, E. Qed.

It turns out that A ⊢ s is decidable, but we do not yet have the tools to prove

this. The decidability proof will come later.

Exercise 9.2.2 Extend the formulas and natural deduction system to include

conjunction and disjunction.

Exercise 9.2.3 Prove the following goals.

Goal ∀ A s, nd A (Imp s s).

Goal ∀ A s, nd A (Imp Fal s).

Goal ∀ A s t, nd A (Imp s (Imp t s)).

Goal ∀ A s t, nd A (Imp (Imp s t) (Imp (Not t) (Not s))).

Exercise 9.2.4 Prove the following two lemmas.

Lemma ndassert (A : context) (s u : form) :

nd A s→ nd (s::A) u→ nd A u.

Lemma ndappbin (A : context) (s t u : form) :

Imp s (Imp t u) ∈ A→ nd A s→ nd A t→ nd A u.

Exercise 9.2.5 Prove the following result.

Lemma nd_eval_sound A s (e:form→ Prop) :

¬e Fal→ (∀ t u, e (Imp t u) ↔ e t→ e u)→

nd A s→ (∀ t, t ∈ A→ e t)→ e s.

Exercise 9.2.6 Use the results of Exercises 9.1.2 and 9.2.5 to prove the following.

Goal ¬ nd nil Fal.
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A
A ⊢ s

s ∈ A II
A, s ⊢ t

A ⊢ s → t
IE
A ⊢ s → t A ⊢ s

A ⊢ t
C
A,¬s ⊢ ⊥

A ⊢ s

Figure 9.3: Classical Natural Deduction Rules

9.3 Classical Natural Deduction

We now consider classical propositional logic. Classical propositional logic can

prove formulas such as instances of double negation ¬¬s → s and instances of

Peirce’s law ((s → t) → s) → s. The propositional formulas provable in classi-

cal propositional logic correspond to those which evaluate to true under every

boolean assignment, if one interprets ⊥ as false and interprets implication by

truth tables (i.e., implb in the Coq library).

The classical natural deduction system NC is defined by the rules in Fig-

ure 9.3. Note that the difference from the previous system is that the elimination

rule E for ⊥ has been replaced by the contradiction rule C. In Coq, the classi-

cal natural deduction system can be defined as the following inductive predicate

ndc.

Inductive ndc (A : context) : form→ Prop :=

| ndcA s : s ∈ A→ ndc A s

| ndcII s t : ndc (s::A) t → ndc A (Imp s t)

| ndcIE s t : ndc A (Imp s t)→ ndc A s→ ndc A t

| ndcC s : ndc (Not s :: A) Fal→ ndc A s.

As before, we can prove lemmas for the special cases of the assumption rule

for which the assumption is recent. In this case, we only prove A, s ⊢ s.

Lemma ndcA1 A s :

ndc (s :: A) s.

Proof. apply ndcA. left. reflexivity. Qed.

As before, this lemma means the rule A1 from Figure 9.2 is admissible. One can

also prove the other rules in Figure 9.2 are admissible in the classical system

NC . We will only prove weak and W from Figure 9.2 are admissible and leave the

others to the reader.

We next prove weakening (weak) is admissible in NC . That is, we prove a

weakening lemma by induction on the proof of the inductive predicate ndc.

Lemma ndc_weak A A’ s :

A ⊆ A’→ ndc A s→ ndc A’ s.

Proof.
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intros E F. revert A’ E.

induction F as [A s F|A s t F IHF|A s t F1 IHF1 F2 IHF2|A s F IHF] ; intros A’ E.

− apply ndcA, E. assumption.

− apply ndcII, IHF. apply incl_shift, E.

− apply ndcIE with (s:=s) ; auto.

− apply ndcC, IHF. intros t [G|G].

+ rewrite G. left. reflexivity .

+ right. apply E. exact G.

Qed.

We again obtain as a special case that A, t ⊢ s whenever A ⊢ s. That is, W is

admissible inNC .

Lemma ndcW A s t :

ndc A s→ ndc (t::A) s.

Proof. apply ndc_weak; auto. Qed.

Since we have omitted the elimination rule for⊥, a natural question is whether

we can infer A ⊢ s from A ⊢ ⊥. That is, one may ask if the E rule (a defining rule

for N ) is admissible in the system NC . We can prove admissibility of E in NC

easily using the contradiction rule and weakening.

Lemma ndcE A s :

ndc A Fal→ ndc A s.

Proof. intros E. apply ndcC, ndcW, E. Qed.

Now we have enough information to know A ⊢ s in N implies A ⊢ s in NC .

The proof is by a simple induction on the proof of A ⊢ s inN .

Lemma nd_ndc A s :

nd A s→ ndc A s.

Proof.

intros F ; induction F as [A s F|A s t F IHF|A s t F1 IHF1 F2 IHF2|A s F IHF].

− apply ndcA. assumption.

− apply ndcII, IHF.

− apply ndcIE with (s:=s) ; auto.

− apply ndcE, IHF.

Qed.

Finally we prove A ⊢ s if and only if A,¬s ⊢ ⊥.

Lemma ndc_refute A s :

ndc A s ↔ ndc (Not s :: A) Fal.

Proof.

split ; intros E.

− apply ndcIE with (s:=s).

+ apply ndcA1.

+ apply ndcW, E.

− apply ndcC, E.

Qed.
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Exercise 9.3.1 Prove A ⊢ ¬¬s → s.

Goal ∀ A s, ndc A (Imp (Not (Not s)) s).

Exercise 9.3.2 Prove the following lemmas forNC .

Lemma ndcA2 A s t :

ndc (t :: s :: A) s.

Lemma ndcapp A s u :

Imp s u ∈ A→ ndc A s→ ndc A u.

Lemma ndcapp1 A s u :

ndc (Imp s u :: A) s→ ndc (Imp s u :: A) u.

Lemma ndcapp2 A s t u :

ndc (t :: Imp s u :: A) s→ ndc (t :: Imp s u :: A) u.

Lemma ndcapp3 A s t u v :

ndc (t :: v :: Imp s u :: A) s→ ndc (t :: v :: Imp s u :: A) u.

Use the lemmas above to prove A ⊢ ((s → t) → s) → s. That is, prove Peirce’s

Law.

Goal ∀ A s t, ndc A (Imp (Imp (Imp s t) s) s).

Exercise 9.3.3 Consider the following implemention of truth table semantics.

Fixpoint valb (s:form) (p:var→ bool) : bool :=

match s with

| Var x⇒ p x

| Fal⇒ false

| Imp s t⇒ implb (valb s p) (valb t p)

end.

Prove the following result.

Lemma ndc_valb_sound A s p :

ndc A s→ (∀ t, t ∈ A→ valb t p = true)→ valb s p = true.

Exercise 9.3.4 Prove the following result.

Lemma ndc_eval_xm_sound A s (e:form→ Prop) :

XM→

¬e Fal→ (∀ t u, e (Imp t u) ↔ e t→ e u)→

ndc A s→ (∀ t, t ∈ A→ e t)→ e s.
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9.4 Glivenko’s Theorem

Glivenko’s Theorem states that a propositional formula s is classically provable if

and only if its double negation is intuitionistically provable. The most interesting

half of this equivalence is that ¬¬s is intuitionistically provable if s is classically

provable. In particular, if A ⊢ s, then A ⊢ ¬¬s. We prove this implication by

induction on the proof of A ⊢ s. We leave the converse implication as an exercise.

Lemma Glivenko A s :

ndc A s→ nd A (Not (Not s)).

Proof.

intros E. induction E as [A s E|A s t E IHE|A s t E1 IHE1 E2 IHE2|A s E IHE].

− apply ndDN, ndA. assumption.

− apply ndII, ndapp1.

apply ndII, ndE. apply (ndIE_weak IHE).

+ auto.

+ apply ndII. apply ndapp3. apply ndII. apply ndA2.

− apply ndII. apply (ndIE_weak IHE2).

+ auto.

+ apply ndII. apply (ndIE_weak IHE1).

* auto.

* apply ndII. apply ndapp3. apply ndapp1. apply ndA2.

− apply ndII. apply (ndIE IHE). apply ndII, ndA1.

Qed.

As a consequence of Glivenko’s theorem, we can prove that refutability inN

is equivalent to refutability inNC .

Corollary Glivenko_refute A :

nd A Fal ↔ ndc A Fal.

Proof.

split .

− apply nd_ndc.

− intros E. apply Glivenko in E. apply (ndIE E). apply ndII, ndA1.

Qed.

A further consequence is that A ⊢ s inNC if and only if A,¬s ⊢ ⊥ inN .

Corollary nd_embeds_ndc A s :

ndc A s ↔ nd (Not s :: A) Fal.

Proof. setoid_rewrite ndc_refute. symmetry. apply Glivenko_refute. Qed.

Exercise 9.4.1 Prove the easy half of Glivenko’s theorem.

Lemma Glivenko_converse A s :

nd A (Not (Not s))→ ndc A s.
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A
s
s ∈ A K

s → t → s
S
(s → t → u)→ (s → t)→ s → u

E
⊥ → u

MP
s → t s

t

Figure 9.4: Hilbert Rules for Intuitionistic Propositional Logic

Exercise 9.4.2 Prove the following consequence of Glivenko’s theorem.

Goal ∀ A, ¬ ∃ s, ndc A (Not s) ∧ ¬ nd A (Not s).

9.5 Hilbert System

The natural deduction systems require assumption management. In particular

the implication introduction rule II changes the assumptions. It turns out that

we can omit the implication introduction rule if we replace it with a number

of initial rules – i.e., rules with no premises. One initial rule states that every

formula of the form s → t → s is provable. We call such a formula a K-formula.

Definition FK (s t : form) : form :=

Imp s (Imp t s).

Another initial rule states that every formula (s → t → u) → (s → t) → s → u is

provable. Such formulas are called S-formulas.

Definition FS (s t u : form) : form :=

(Imp (Imp s (Imp t u))

(Imp (Imp s t)

(Imp s u))).

Doing this would yield a system in which only two rules have premises: a rule

like IE and a rule like E. Indeed we can define a system in which the only rule with

premises is a rule known as modus ponens which has the same form as IE since

we can replace the E rule with an initial rule stating that every explosion formula

is provable. Such systems are called Hilbert systems. The rules in Figure 9.4

define our Hilbert system for intuitionistic propositional logic, which refer to

by the name H . In particular, we have A ⊢ s in system H when s is derivable

from context A using the rules in Figure 9.4.

We can define this in Coq as an inductive predicate hil.

Inductive hil (A : context) : form→ Prop :=
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| hilA s : s ∈ A→ hil A s

| hilK s t : hil A (FK s t)

| hilS s t u : hil A (FS s t u)

| hilE s : hil A (Imp Fal s)

| hilMP s t : hil A (Imp s t)→ hil A s→ hil A t.

Using the lemmas from the previous section, we can easily prove by induc-

tion (on proof terms) that if A ⊢ s in H , then A ⊢ s in N . We first give the

mathematical proof.

Proof We argue by induction on the proof of A ⊢ s in H . We must argue a

case for each rule in Figure 9.4. If s ∈ A, then we know A ⊢ s in N by A. The

next three cases involve proving K-formulas, S-formulas and formulas of the

form ⊥ → s in N . Each of these cases is easy. Finally, we consider the modus

ponens case. Assume A ⊢ s → t and A ⊢ s inH . The inductive hypotheses yield

A ⊢ s → t and A ⊢ s inN . We conclude A ⊢ t inN using IE. �

Note that in each case of the inductive proof, we have proven one of the defining

rules of H is admissible in N . Each case is easy. Here is the proof as a Coq

proof script.

Lemma hil_nd A s :

hil A s→ nd A s.

Proof.

intros E. induction E as [s E|s t |s t u|s|s t E1 IHE1 E2 IHE2].

− apply ndA. assumption.

− apply ndII, ndII, ndA2.

− apply ndII, ndII, ndII.

apply ndIE with (s:= Imp t u).

+ apply ndII. apply ndapp1. apply ndapp3. apply ndA2.

+ apply ndapp3, ndA1.

− apply ndII. apply ndE, ndA1.

− exact (ndIE IHE1 IHE2).

Qed.

The converse also holds: If A ⊢ s in N , then A ⊢ s in H . In order to prove

this, we must prove that each of the defining rules for N is admissible in H .

Before we can prove this, we need a few preliminary results.

We can combine the initial rule for K-formulas with modus ponens to obtain

the following result.

Lemma hilAK A s t :

hil A s→ hil A (Imp t s).

Proof. apply hilMP. apply hilK. Qed.

We can similarly combine the initial rule for S-formulas with modus ponens.
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Lemma hilAS A s t u :

hil A (Imp s (Imp t u))→ hil A (Imp s t)→ hil A (Imp s u).

Proof. intros B. apply hilMP. revert B. apply hilMP. apply hilS. Qed.

We can also use a combination of the initial rules to prove formulas of the

form s → s.

Lemma hilI A s :

hil A (Imp s s).

Proof.

assert (E:= hilS A s (Imp s s) s).

assert (F:= hilK A s (Imp s s)).

assert (G:= hilK A s s).

unfold FS, FK in *.

exact (hilMP (hilMP E F) G).

Qed.

We can now prove an important result called the deduction theorem. The

deduction theorem states that if A, s ⊢ t, then A ⊢ s → t. In other words, the

II rule (a defining rule of the system N ) is admissible in H . The proof is by

induction on the proof of A, s ⊢ t using the results above.

Lemma hilD s A t :

hil (s::A) t → hil A (Imp s t).

Proof.

intros E. induction E as [t E|t u|t u v|t | t u E1 IHE1 E2 IHE2].

− destruct E as [E|E].

+ subst t. apply hilI .

+ apply hilAK. apply hilA, E.

− apply hilAK, hilK.

− apply hilAK, hilS.

− apply hilAK, hilE.

− apply hilAS with (t:=t) ; assumption.

Qed.

We can now prove A ⊢ s in N implies A ⊢ s in H . The proof is by induction

on the proof of A ⊢ s in N . The deduction theorem is used for the II-case. The

remaining cases are straightforward.

Lemma nd_hil A s :

nd A s→ hil A s.

Proof.

intros E. induction E as [A s E|A s t E IHE|A s t E1 IHE1 E2 IHE2|A s E IHE].

− apply hilA. assumption.

− apply hilD, IHE.

− exact (hilMP IHE1 IHE2).

− exact (hilMP (hilE A s) IHE).

Qed.
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Combining the results we know A ⊢ s inH if and only if A ⊢ s inN .

Theorem hil_iff_nd A s :

hil A s ↔ nd A s.

Proof. split. apply hil_nd. apply nd_hil. Qed.

Exercise 9.5.1 Prove the following form of weakening for the Hilbert calculus.

Lemma hilW A s t :

hil A t→ hil (s::A) t.

Exercise 9.5.2 Prove the following.

Lemma hilassert A s u :

hil A s→ hil (s::A) u→ hil A u.

Exercise 9.5.3 Give a Hilbert calculus for classical propositional logic and define

a corresponding inductive predicate hilc in Coq. Prove the deduction theorem

for hilc and use the deduction theorem to prove the equivalence between hilc

and ndc.

Exercise 9.5.4 Define a substitution operation on formulas.

Fixpoint subst (theta : var→ form) (s : form) : form :=

match s with

| Var x⇒ theta x

| Imp s t⇒ Imp (subst theta s) (subst theta t)

| Fal⇒ Fal

end.

Prove the following.

Lemma nd_subst A s theta : nd A s→ nd (map (subst theta) A) (subst theta s).

Lemma ndc_subst A s theta : ndc A s→ ndc (map (subst theta) A) (subst theta s).

Lemma hil_subst A s theta : hil A s→ hil (map (subst theta) A) (subst theta s).

9.6 Properties of Proof Systems

The provability predicates ⊢ for all the proof systems we have considered in this

chapter satisfy a number of key properties.

• Assumption If s ∈ A, then A ⊢ s.

This is part of the definition of all of the proof systems we considered.

• Modus Ponens If A ⊢ s → t and A ⊢ s, then A ⊢ t.

This is also part of the definition of all of the proof systems we considered.
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• Deductivity If A, s ⊢ t, then A ⊢ s → t.

This is the implication introduction rule for the natural deduction systems.

For Hilbert systems, this is the deduction theorem.

• Explosivity If A ⊢ ⊥, then A ⊢ s.

This is true in each of the proof systems, but for different reasons in each

case. It is a defining rule of the intuitionistic natural deduction system. It is

an admissible rule of the classical natural deduction system. In the Hilbert

system it follows from the explosion axiom with the modus ponens rule.

• Weakening If A ⊢ s and A ⊆ A′, then A′ ⊢ s.

This is an admissible rule for each of the systems. We did not explicitly prove

it is admissible for the Hilbert system, but this follows form the equivalence

between the Hilbert system and the natural deduction system combined with

weakening for the natural deduction system. Alternatively, one can easily

prove weakening directly for the Hilbert system by an easy induction.

• Substitutivity Consider a substitution operation defined as

θ̂x = θx

θ̂(s → t) = θ̂s → θ̂t

θ̂⊥ = ⊥

for functions θ : var → form. The provability predicate satisfies substitutiv-

ity if A ⊢ s implies θ̂A ⊢ θ̂s. This property can be easily proven for each of

our proof systems by induction. (See Exercise 9.5.4.)

• Consistency ⊥ is not provable from the empty context: 6⊢ ⊥.

Consistency follows from some of the exercises in this chapter. In particular,

see Exercises 9.2.6 and 9.3.3.

Note that deductivity, assumption, weakening and modus ponens together imply

A, s ⊢ t if and only if A ⊢ s → t. The turnstile can be seen as an external impli-

cation which corresponds to the internal implication in propositional formulas.

Let ⊢ be the provability predicate satisfying the properties above. By induc-

tion using the first four properties, it is clear that if nd A s, then A ⊢ s. Hence

every provability predicate satisfying the properties above must at least include

the provability predicate for intuitionistic propositional logic.

Classical propositional logic demonstrates that there are provability predi-

cates satisfying the properties which include A ⊢ s where s is not intuitionisti-

cally provable from A. In particular, ⊢ ¬¬x → x inNC , but not inN .

Classical propositional logic provides the largest provability predicate satis-

fying the properties above. Suppose ⊢ is a provability predicate satisfying the

properties. We can prove if A ⊢ s, then ndc A s by induction on the number of

variables which occur in A and s. Note that the number of variables which occur

can be decreased using a substitution which maps a variable x to either ⊥ or
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⊥ → ⊥.

There are also provability predicates satisfying the properties which are be-

tween intuitionistic propositional logic and classical propositional logic. An ex-

ample of such a logic between the two can be obtained by adding the following

rule to the rules definingN :

A,¬s ⊢ t A,¬¬s ⊢ t

A ⊢ t

In Coq, the definitions above look as follows.

Definition Assumption (p:context→ form→ Prop) :=

forall A s, s ∈ A→ p A s.

Definition ModusPonens (p:context→ form→ Prop) :=

forall A s t, p A (Imp s t)→ p A s→ p A t.

Definition Deductivity (p:context→ form→ Prop) :=

forall A s t, p (s::A) t → p A (Imp s t).

Definition Explosivity (p:context→ form→ Prop) :=

forall A s, p A Fal→ p A s.

Definition Weakening (p:context→ form→ Prop) :=

forall A A’ s, A ⊆ A’→ p A s→ p A’ s.

Definition Substitutivity (p:context→ form→ Prop) :=

forall A s theta, p A s→ p (map (subst theta) A) (subst theta s).

Definition Consistency (p:context→ form→ Prop) :=

¬p nil Fal.

Definition ProvPred (p:context→ form→ Prop) :=

Assumption p ∧ ModusPonens p ∧ Deductivity p ∧ Explosivity p

∧ Weakening p ∧ Substitutivity p ∧ Consistency p.

Exercise 9.6.1 Prove nd is the least provability predicate by first proving nd is a

provability predicate and then proving it is contained by every other provability

predicate.

Lemma ProvPred_nd : ProvPred nd.

Lemma nd_min (p:context→ form→ Prop) :

ProvPred p→

∀ A s, nd A s→ p A s.

Exercise 9.6.2 We say a formula is closed if it contains no variables. We can

define this in Coq as follows.

Inductive closed : form→ Prop :=

| closedFal : closed Fal

| closedImp s t : closed s→ closed t→ closed (Imp s t).
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Prove that for all provability predicates ⊢ and all closed formulas s we either

have A ⊢ s (for every context A) or A ⊢ ¬s (for every context A).

Lemma ProvPred_closed_or p s :

ProvPred p→ closed s→ (∀ A, p A s) ∨ (∀ A, p A (Not s)).

9.7 Remarks

The first deduction systems developed by Frege in 1879 were in the Hilbert style.

(Hilbert studied and popularized such systems later.) Natural deduction systems

were created independently by Gentzen and Jaśkowski in 1934.
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In this chapter we give a variant of the natural deduction systems with proof

terms. We define proof terms as a certain class of terms using, in particular,

λ-abstraction and application. The main judgment of the modified natural de-

duction system is A ⊢ d : s which means that d proves s in context A. If we view

the propositions as types, then the system with proof terms is basic simple type

theory. From this point of view, A ⊢ d : s means d has type s in context A.

We first informally consider the intuitionistic case. In order to make the defi-

nitions precise, we define a way of identifying assumptions by a natural number.

We then give a formal definition of proof terms d and the judgment A ⊢ d : s. We

prove that A ⊢ s is provable inN if and only if there is a proof term d such that

A ⊢ d : s. We also prove that a proof term proves at most one proposition (in a

given context). In type theoretic terminology, this means we have uniqueness of

types. Furthermore, we prove that given a context A and a proof term d, one can

either compute a formula s such that A ⊢ d : s or compute a proof that there is

no such formula s. A consequence is that the judgment A ⊢ d : s is decidable. In

type theoretic terminology, this means that type checking is decidable.

The same program can be realized in the classical case. We sketch this, leaving

some details as exercises.

10.1 Proof Terms, Informally

We consider a natural deduction system with proof terms. In order to motivate

proof terms, let us reconsider the proof terms for certain propositions in Coq.

Suppose X,Y : Prop. In order to prove X → Y in Coq, we may assume x : X

and construct a term D of type Y under this assumption. In this case, the proof

term of X → Y will be λx : X.D. On the other hand, if we have a term D of type

X → Y and a term E of type X, then D E is a term of type Y . In this way, λ-

abstraction and application give proof terms corresponding to the introduction

and elimination rules for implication. For the elimination rule for ⊥, recall that

if D is of type False, then match D return X with end is of type X. We will use a

proof term constructor E corresponding to such a match in Coq.

Proof terms are given by the following grammar where x ranges over vari-

ables (natural numbers), s ranges over propositional formulas, and d and e range
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A
A ⊢ x : s

x : s ∈ A II
A,x : s ⊢ d : t

A ⊢ λx : s.d : s → t
IE
A ⊢ d : s → t A ⊢ e : s

A ⊢ de : t

E
A ⊢ d : ⊥

A ⊢ Eds : s

Figure 10.1: Rules for Natural Deduction with Proof Terms with Named

Assumptions

over proof terms.

d, e ::= x | de | λx : s.e | Eds

The four cases in the grammar correspond to the four rules defining the natural

deduction systemN .

Let us temporarily assume our contexts A are of the form x0 : s0, . . . , xn−1 :

sn−1. That is, variables give names to assumptions in the context. Under this

assumption we can give a first version of a natural deduction system with proof

terms as the rules in Figure 10.1. Following the propositions as types princi-

ple we can consider propositional formulas to be types. The proof terms are

essentially simply typed lambda terms. From this point of view we have also de-

fined a type theory we call basic simple type theory. This type theory is a small

fragment of the type theory of Coq.

Example 10.1.1 Reconsider the natural deduction derivation of A ⊢ s → ¬s → t

from Example 9.2.1.

II

II

E

IE

A
A, s,¬s ⊢ s → ⊥

A
A, s,¬s ⊢ s

A, s,¬s ⊢ ⊥

A, s,¬s ⊢ t

A, s ⊢ ¬s → t

A ⊢ s → ¬s → t

Let us assume the assumptions in A have been associated with variables. (This

will be made precise in the next section.) By examining the proof rules used

above, one can easily see that the corresponding proof term is λx : s.λy :

¬s.E (y x) t. Here is a derivation of

A ⊢ (λx : s.λy : ¬s.E (y x) t) : (s → ¬s → t)
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using the rules in Figure 10.3.

II

II

E

IE

A
A,x : s,y : ¬s ⊢ y : s → ⊥

A
A,x : s,y : ¬s ⊢ x : s

A,x : s,y : ¬s ⊢ y x : ⊥

A,x : s,y : ¬s ⊢ (E (y x) t) : t

A,x : s ⊢ (λy : ¬s.E (y x) t) : ¬s → t

A ⊢ (λx : s.λy : ¬s.E (y x) t) : s → ¬s → t

Exercise 10.1.2 Consider the following questions.

a) If d is of the form λx : s.e, then which of the rules in Figure 10.3 could

possibly justify A ⊢ d : t?

b) If s is of the form t → u, then which of the rules in Figure 10.3 could possibly

justify A ⊢ d : s?

c) Is it possible that A ⊢ d : s can be justified by two different rules in Fig-

ure 10.3?

d) Is it possible that A ⊢ (λx : s.d) : s?

10.2 Naming Assumptions

Before we can represent the judgment A ⊢ d : s in Coq, we must first determine

how to represent contexts in which assumptions are named by variables. We

can reasonably restrict to contexts in which the variables (i.e., natural numbers)

come in the obvious order:

0 : s0, . . . , n− 1 : sn−1

In this case it is redundant to include the variables and hence we can continue

to consider a context A to be a list of propositional formulas. In the A rule, the

side condition x : s ∈ A will mean that s is assumption x in A. Also, in the II

rule, there will need to be a side condition that the variable x equals the length

of A since the new assumption s must be assumption x in A, s.

We define the relation s is assumption x in A as an inductive predicate assum.

We do this for a general type F which will be specialized to the type form of

formulas in this chapter.

Section Assum.

Variable F : Type.

Implicit Types A : list F.
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assum s n (s :: A)
n = |A|

assum s n A

assum s n (t :: A)

Figure 10.2: Rules for identifying assumptions

The rules defining assum are given in Figure 10.2. The Coq definitions are as

follows.

Inductive assum (s : F) (n : nat) : list F→ Prop :=

| assumB A : n = |A|→ assum s n (s::A)

| assumS t A : assum s n A→ assum s n (t::A).

Note that assum s n A holds when s is in the nth position of the reverse of A.

An easy induction on lists verifies that an s is a member of a list A if and only

if there is some n such that assum s n A.

Lemma in_assum s A :

s ∈ A ↔ ∃ n, assum s n A.

Proof.

split .

− intros D. induction A as [|t A].

+ contradiction D.

+ destruct D as [D|D].

* subst t. ∃ (|A|). left. reflexivity .

* destruct (IHA D) as [n E]. ∃ n. right. exact E.

− intros [n D]. induction D as [A’|y A’] ; auto.

Qed.

We also have the following inversion principle on assum s n A: If s is assump-

tion n in A, then A must be nonempty and either s is the first element of the list

with n = |A| or s is assumption n in the rest of the list and n < |A|.

Lemma assum_inv s n A :

assum s n A→

match A with

| (t ::A)⇒ s = t ∧ n = |A| ∨ assum s n A ∧ n < |A|

| nil ⇒ False

end.

Proof.

intros B. induction B as [|t [| u A] B IHB].

− tauto.

− contradiction IHB.

− simpl. right. split.

+ assumption.
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+ destruct IHB as [[C D]|[C D]]; omega.

Qed.

Using the inversion principle above, we can prove that there is at most one

assumption n of A.

Lemma assum_uniq s t n A :

assum s n A→ assum t n A→ s = t.

Proof.

induction A as [|u A].

− intros B. apply assum_inv in B. contradiction B.

− intros B D. apply assum_inv in B as [[B C]|[B C]].

+ apply assum_inv in D as [[D E]|[D E]].

* congruence.

* omega.

+ apply assum_inv in D as [[D E]|[D E]].

* omega.

* tauto.

Qed.

Finally, there is a certifying function which, given n and A, can compute an s

such that s is assumption n in A or yields a proof that there is no such s.

Lemma assum_sig n A :

{s | assum s n A} + {∀ s, ¬ assum s n A}.

Proof.

induction A as [|s A]; simpl.

− right. intros s B. apply assum_inv in B. contradiction B.

− destruct IHA as [[t B]|B].

+ left . ∃ t. apply assumS, B.

+ decide (n = |A|) as [C|C].

* left . ∃ s. apply assumB, C.

* { right. intros t D. apply assum_inv in D as [[D E]|[D E]].

− tauto.

− revert D. apply B.

}

Qed.

Finally, we close the section and from now on use assum and the results above

with F instantiated to form.

End Assum.

Exercise 10.2.1 Prove the following.

Goal ∀ s t:F, {n:nat|assum s n (t::s::nil)}.

Goal ∀ s t:F, {n:nat|assum t n (t::s::nil)}.
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A
A ⊢ x : s

assum s x A II
A, s ⊢ d : t

A ⊢ λx : s.d : s → t
x = |A|

IE
A ⊢ d : s → t A ⊢ e : s

A ⊢ de : t
E
A ⊢ d : ⊥

A ⊢ Eds : s

Figure 10.3: Rules for Natural Deduction with Proof Terms

Exercise 10.2.2 Prove that if equality on F is decidable, then assum is decidable.

Then prove that if assum is decidable, then equality on F is decidable. Do not

use the inversion tactic. (Hint: Use assum_sig and assum_uniq for one direction

and use assum_inv for the other direction.)

Goal eq_dec F→ ∀ s n A, dec (assum s n A).

Goal (∀ s n A, dec (assum s n A))→ eq_dec F.

10.3 Proof Terms, Formally

Now that we have a way of associating variables with assumptions in a context,

we can refine the rules in Figure 10.1 to be the rules in Figure 10.3. The natural

deduction system with proof terms, system NP , is defined by the rules in Fig-

ure 10.3. That is, A ⊢ d : s in the system NP means derivability using the rules

in Figure 10.3.

Example 10.3.1 Recall the derivation from Example 10.1.1:

II

II

E

IE

A
A,x : s,y : ¬s ⊢ y : s → ⊥

A
A,x : s,y : ¬s ⊢ x : s

A,x : s,y : ¬s ⊢ y x : ⊥

A,x : s,y : ¬s ⊢ (E (y x) t) : t

A,x : s ⊢ (λy : ¬s.E (y x) t) : ¬s → t

A ⊢ (λx : s.λy : ¬s.E (y x) t) : s → ¬s → t

We give the derivation inNP using the rules in Figure 10.3. Let x be the length of

A. Let y be x + 1, i.e., the length of |A, s|. The NP-derivation is simply given by

removing the variables x and y from the assumptions. Note that s is assumption
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x of A, s,¬s and that ¬s is assumption y of A, s,¬s.

II

II

E

IE

A
A, s,¬s ⊢ y : s → ⊥

A
A, s,¬s ⊢ x : s

A, s,¬s ⊢ y x : ⊥

A, s,¬s ⊢ (E (y x) t) : t

A, s ⊢ (λy : ¬s.E (y x) t) : ¬s → t

A ⊢ (λx : s.λy : ¬s.E (y x) t) : s → ¬s → t

In Coq we use the inductive type pf to represent these proof terms.

Inductive pf : Type :=

| PVar : nat→ pf

| Lam : nat→ form→ pf→ pf

| Ap : pf→ pf→ pf

| Expl : pf→ form→ pf.

The corresponding inductive predicate in Coq, ndp, is defined as follows.

Inductive ndp (A : context) : pf→ form→ Prop :=

| ndpA n s : assum s n A→ ndp A (PVar n) s

| ndpII n d s t : n = |A|→ ndp (s::A) d t→ ndp A (Lam n s d) (Imp s t)

| ndpIE d e s t : ndp A d (Imp s t)→ ndp A e s→ ndp A (Ap d e) t

| ndpE d s : ndp A d Fal→ ndp A (Expl d s) s.

We can now show Example 10.3.1 as a Coq proof script.

Goal ∀ A s t, {d | ndp A d (Imp s (Imp (Not s) t))}.

Proof.

intros A s t.

pose (x := |A|).

pose (y := S (|A|)).

∃ (Lam x s (Lam y (Not s) (Expl (Ap (PVar y) (PVar x)) t))).

apply ndpII.

− reflexivity.

− apply ndpII.

+ reflexivity .

+ apply ndpE. apply ndpIE with (s := s).

* apply ndpA. apply assumB. reflexivity.

* apply ndpA. apply assumS. apply assumB. reflexivity.

Qed.

We prove A ⊢ s in N if and only if there is a proof term d such that A ⊢

d : s in NP . We give the informal mathematical proof. The Coq proof script is

available online.

Lemma nd_ndp A s :

nd A s ↔ ∃ d, ndp A d s.
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Proof We prove the two directions by induction. Proving ndp A d s implies

nd A s is easy, since one simply ignores the proof term d and applies the corre-

sponding natural deduction rule. We explain only the more interesting direction:

nd A s implies ∃d.ndp A d s. Since the two judgments have a different number

of arguments, we can, without ambiguity, write this as A ⊢ s → ∃d.A ⊢ d : s.

We argue by induction on A ⊢ s. For each of the rules A, II, IE and E defining the

intuitionistic natural deduction calculus, we will assume as inductive hypotheses

that there are appropriate proof terms for the premises and we must construct

an appropriate proof term for the conclusion.

Suppose s ∈ A. By in_assum there is some x such that s is assumption x of

A. Hence we know A ⊢ x : s.

Assume as an inductive hypothesis that there is a proof term d such that

A, s ⊢ d : t. Let x be the length of A. Note that s is assumption x of A, s. Hence

A ⊢ (λx : s.d) : s → t, as desired.

Assume as inductive hypotheses that there are proof terms d and e such that

A ⊢ d : s → t and A ⊢ e : s. Clearly we have A ⊢ de : t.

Finally, assume A ⊢ d : ⊥. Clearly A ⊢ E d s : s. �

We can prove the following inversion lemma. Essentially the inversion lemma

says that if A ⊢ d : s, then the form of d gives certain information about A and

s. Note that we are using a match to form the proposition. The reader should

carefully consider how this proposition simplifies for each kind of proof term d.

The formal proof is by a simple case analysis on the assumption A ⊢ d : s. The

informal proof is simply by inspecting the rules in Figure 10.3.

Lemma ndp_inv A d s :

ndp A d s→

match d with

| PVar x⇒ assum s x A

| Lam x t d =>

match s with

| Imp s1 s2⇒ x = |A| ∧ s1 = t ∧ ndp (t::A) d s2

| _⇒ False

end

| Ap d e⇒ exists t, ndp A d (Imp t s) ∧ ndp A e t

| Expl d t⇒ t = s ∧ ndp A d Fal

end.

Proof.

intros B. destruct B as [x s B|x d1 s1 s2 E B|d1 d2 s1 s2 B1 B2|s B].

− assumption.

− tauto.

− ∃ s1. tauto.

− tauto.

Qed.
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Using the inversion lemma above, we can prove that, in a given context, a

proof term proves at most one proposition. This property of a type theory is

called uniqueness of types. We give the informal mathematical proof. The Coq

proof script is available online.

Lemma ndp_uniq_typ A d s t :

ndp A d s→ ndp A d t→ s = t.

Proof We prove by induction on A ⊢ d : s that for all t, if A ⊢ d : t, then s = t.

Suppose d is a variable x and s is assumption x of A. Assume A ⊢ x : t.

Applying the inversion lemma to A ⊢ x : t, we also know t must be assumption

x of A. Since there is at most one assumption x of A (by assum_inv), s = t.

Suppose s is s1 → s2, d is λx : s1.d1, x is |A| and A, s1 ⊢ d1 : s2. Assume

A ⊢ (λx : s1.d1) : t. Applying the inversion lemma, we know t must be of the

form s1 → t2 where A, s1 ⊢ d1 : t2. By the inductive hypothesis, s2 = t2 and hence

s = t.

Suppose d is d1d2, A ⊢ d1 : s1 → s and A ⊢ d2 : s1 → s. Assume A ⊢ d1d2 : t.

By the inversion lemma there is some t1 such that A ⊢ d1 : t1 → t and A ⊢ d2 : t1.

By the inductive hypothesis s1 → s is the same as t1 → t. In particular, s = t.

Suppose d is E d1 s and A ⊢ d1 : ⊥. Assume A ⊢ E d1 s : t. By the inversion

lemma, t must be s. (Note that the inductive hypothesis was not needed for this

case.) �

In Coq proof scripts, ndp_uniq_typ can often profitably be used in combina-

tion with the tactic discriminate. Consider the following small example.

Goal ∀ A d x, ndp A d (Var x)→ ¬ ndp A d Fal.

Proof.

intros A d x B C. discriminate (ndp_uniq_typ B C).

Qed.

Of course, sometimes the equations proven by Coq terms of the form

ndp_uniq_typ B C are not contradictory. In such a case discriminate will not

help. A tactic which is useful when one wants to introduce propositions justified

by a Coq proof term is generalize. Suppose we are trying to prove a goal with

claim P and suppose D is a term with type Q. Using generalize D will change the

claim to be Q → P , so that we may afterwards make use of Q.

Consider the following small example in which we make use of the generalize

tactic twice.

Goal ∀ A d e s1 t1 u1 s2 t2,

ndp A d (Imp s1 t1)→ ndp A e u1→

ndp A d (Imp s2 t2)→ ndp A e s2→ s1 = u1.
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Proof.

intros A d e s1 t1 u1 s2 t2 B C D E.

generalize (ndp_uniq_typ B D).

generalize (ndp_uniq_typ C E).

congruence.

Qed.

Before the first application of generalize above, the claim of the goal is s1 = u1.

Since B : ndp A d (Imp s1 t1) and D : ndp A d (Imp s2 t2), the term

ndp_uniq_typ B D has type (Imp s1 t1) = (Imp s2 t2). After applying generalize

with this term, the claim of the goal is

(Imp s1 t1) = (Imp s2 t2)→ s1 = u1.

Likewise, the term ndp_uniq_typ C E has type u1 = s2 and so after the second

generalize the claim is

u1 = s2 → (Imp s1 t1) = (Imp s2 t2)→ s1 = u1.

The final congruence does the necessary equational reasoning to finish the proof.

We next turn to the proof of decidability of A ⊢ d : s. One might try to prove

decidability by induction on the proof term d. Such an attempt will fail when

attempting to argue the IE case because there is a formula s occurring in the

premises of IE which do not occur in the conclusion. (The reader is encouraged

to try such a proof in Coq and notice where the problem occurs.)

The key to proving decidability is to first construct a certifying function which

synthesizes the formula a proof term proves or yields a proof that there is no

such formula. We give the informal mathematical proof. The Coq proof script

is available online. The Coq proof script for ndp_synth makes use of the tactic

generalize.

Lemma ndp_synth A d :

{s | ndp A d s} + {¬ ∃ s, ndp A d s}.

Proof The proof is by induction on the proof term d. (That is, the certifying

function is defined by recursion over the structure of d.)

Assume d is a variable x. We know (using assum_sig) that there is either an

assumption x of A or there is no such assumption. If s is an assumption x of A,

then we have A ⊢ x : s. If there is no such assumption, then using the inversion

lemma we know ¬∃s.A ⊢ x : s.

Assume d is λx : s1.e. If x is not the length of A, then the inversion lemma

implies ¬∃s.A ⊢ (λx : s1.e) : s. Assume x is |A|. By the inductive hypothesis,

either there is some t such that A, s1 ⊢ e : t or there is no such t. If there is no

174 2013-7-26



10.3 Proof Terms, Formally

such t, then the inversion lemma again implies ¬∃s.A ⊢ (λx : s1.e) : s. Assume

A, s1 ⊢ e : t. Clearly A ⊢ (λx : s1.e) : s1 → t.

Assume d is d1d2. By the inductive hypothesis and the inversion lemma, it is

enough to consider the case in which we have terms t and u such that A ⊢ d1 : t

and A ⊢ d2 : u. If t is not of the form u → s, then the inversion lemma implies

¬∃s.A ⊢ (d1d2) : s. Assume t is of the form u→ s. In this case, A ⊢ (d1d2) : s.

Assume d is E e s. By the inductive hypothesis and the inversion lemma, it is

enough to consider the case in which A ⊢ e : ⊥. In this case, A ⊢ E e s : s. �

Using the previous two results, decidability easily follows.

Goal ∀ A d s, dec (ndp A d s).

Proof Let A, d and s be given. Using ndp_synth we either obtain a term t such

that A ⊢ d : t or we know there is no such t. If there is no such t, then we know

A 6⊢ d : s. Suppose t is such that A ⊢ d : t. If t is s, then we have A ⊢ d : s. If t is

different from s, then uniqueness of types (ndp_uniq_typ) implies A 6⊢ d : s. �

Here is the Coq proof script.

Proof.

intros A d s. destruct (ndp_synth A d) as [[t B]|B].

− decide (t = s) as [C|C].

+ subst. left. assumption.

+ right. intros D. apply C. apply (ndp_uniq_typ B D).

− right. intros D. apply B. ∃ s. exact D.

Qed.

As remarked earlier, A ⊢ s in N is also decidable, but this is not as easy to

prove as decidability of A ⊢ d : s.

Exercise 10.3.2 Prove the following.

Goal ∀ s t, {d | ndp (t::s::nil) d s}.

Goal ∀ s u, {d | ndp (Imp s u::s::nil) d u}.

Goal ∀ s t u, {d | ndp (Imp s (Imp t u)::t::nil) d (Imp s u)}.

Goal ∀ s u, {d | ndp (Imp (Imp s s) u::nil) d u}.

Exercise 10.3.3 Prove the following.

Goal ∀ A s u d e, ndp A d s→ ndp (s::A) e u→ {d’ | ndp A d’ u}.

Exercise 10.3.4 Prove the following weakening result.

Lemma ndp_weak A A’ d s : A ⊆ A’→ ndp A d s→ ∃ d’, ndp A’ d’ s.
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A
A ⊢ x : s

x : s ∈ A II
A,x : s ⊢ d : t

A ⊢ λx : s.d : s → t
IE
A ⊢ d : s → t e : A ⊢ s

A ⊢ de : t

E
A,x : ¬s ⊢ d : ⊥

A ⊢ Cx : s.d : s

Figure 10.4: Rules for Classical Natural Deduction with Proof Terms

The simpler weakening property using the same proof term is not provable. In

fact, one can prove there are contexts A and A′, a proof term d and a formula s

such that A ⊆ A′, A ⊢ d : s and A′ 6⊢ d : s. (This is a consequence of our way of

referencing assumptions.) Prove this in Coq.

Goal ∃ A A’ d s, A ⊆ A’ ∧ ndp A d s ∧ ¬ndp A’ d s.

10.4 Proof Terms for Classical Propositional Logic

The proof terms can be modified to give classical proof terms with easy modifi-

cations. Classical proof terms are given by the following grammar:

d, e ::= x | de | λx : s.e | Cx : s.d

In Coq we represent these using an inductive type.

Inductive pfc : Type :=

| PVarc : nat→ pfc

| Lamc : nat→ form→ pfc→ pfc

| Apc : pfc→ pfc→ pfc

| Contrac : nat→ form→ pfc→ pfc.

The classical rules defining A ⊢ d : s are given in Figure 10.4. Note that both λ

and C act as binders. The corresponding Coq definition is ndcp.

Inductive ndcp (A : context) : pfc→ form→ Prop :=

| ndcpA n s : assum s n A→ ndcp A (PVarc n) s

| ndcpII n d s t : n = |A|→ ndcp (s::A) d t→ ndcp A (Lamc n s d) (Imp s t)

| ndcpIE d e s t : ndcp A d (Imp s t)→ ndcp A e s→ ndcp A (Apc d e) t

| ndcpC d s n : n = |A|→ ndcp (Not s::A) d Fal→ ndcp A (Contrac n s d) s.

With minor modifications to the proofs for the intuitionistic case, one can

prove the following results. We leave the proofs as exercises for the reader.

A formula s is classically provable from A if and only if there is a classical

proof term d such that A ⊢ d : s.
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Lemma ndc_ndcp A s :

ndc A s ↔ ∃ d, ndcp A d s.

A classical proof term proves at most one formula.

Lemma ndcp_uniq_typ A d s t :

ndcp A d s→ ndcp A d t→ s = t.

There is a certifying function which, given A and d, will either compute a

formula s such that A ⊢ d : s or give a proof that no such s exists.

Lemma ndcp_synth A d :

{s | ndcp A d s} + {¬ ∃ s, ndcp A d s}.

Exercise 10.4.1 Prove the following.

Goal (∀ A s, {d | ndcp A d (Imp (Not (Not s)) s)}).

Exercise 10.4.2 Prove ndc_ndcp.

Exercise 10.4.3 Formulate an inversion lemma ndcp_inv, prove this inver-

sion lemma, and then use the inversion lemma to prove ndcp_uniq_typ and

ndcp_synth.

Exercise 10.4.4 Use ndcp_synth and ndcp_uniq_typ to prove the following de-

cidability result.

Goal ∀ A d s, dec (ndcp A d s).

Proof.

intros A d s. destruct (ndcp_synth A d) as [[t B]|B].

− decide (t = s) as [C|C].

+ subst. left. assumption.

+ right. intros D. apply C. apply (ndcp_uniq_typ B D).

− right. intros D. apply B. ∃ s. exact D.

Qed.

10.5 Remarks

The recognition that simply typed λ-terms can act as proof terms for proposi-

tional formulas is the origin of the propositions as types principle. This was

first recognized by Curry and Howard. As discussed in Chapter 2, the correspon-

dence extends to richer type theories in which the types are dependent and the

propositions include quantifiers. The Coq system is based on such a rich type

theory. The representation of bound variables we use to avoid putting names in

the context is called de Bruijn levels. An alternative way to avoid putting names

into the context is to use de Bruijn indices.
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Coq Summary

New Tactics

• generalize takes a term of type s and changes the claim from t to s → t.

Examples are given in Section 10.3.
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In this chapter we analyze the entailment relation of classical propositional logic

with a semantic characterization. The semantic characterization complements

the proof-theoretic characterizations we have seen so far. The semantic char-

acterization will give us a method for obtaining non-provability results. The

semantic characterization also provides the basis for a decision procedure for

classical provability of propositional formulas.

11.1 Semantic Entailment and Soundness

We will define a predicate sem such that we can eventually prove

∀A s. ndc A s ↔ sem A s

We call the predicate sem semantic entailment. The definition of sem constitutes

a semantic characterization of classical propositional provability. In this section

we will see the definition of sem and a proof of ∀A s. ndc A s → sem A s. This

direction of the equivalence result is known as soundness. The other direction

∀A s. sem A s → ndc A s of the equivalence result is known as completeness.

Completeness is much harder to establish than soundness. We will obtain

completeness with a decision procedure for classical propositional provability.

We start with the definition of semantic entailment. The idea is to interpret

formulas as propositions such that implication of formulas is interpreted as im-

plication of propositions. Consider the formula ¬¬x → x. Interpreting the

formula as the proposition

∀X : Prop, ¬¬X → X

does not work since the formula is classically provable while the proposition is

not provable in Coq. We can fix the problem by modeling the variable x of the

formula with a boolean variable.

∀x : bool, ¬¬(x=true)→ x=true

This time the proposition is provable in Coq. It turns out that the boolean coding

of variables works in general. The reason is that boolean equality is decidable

and that decidable propositions behave classically.

We use boolean assignments
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Definition assn := var→ bool.

to provide boolean values for all variables at once. Given a boolean assignment,

we can map every formula to a proposition.

Fixpoint satis (f : assn) (s : form) : Prop :=

match s with

| Var x⇒ f x = true

| Imp s1 s2⇒ satis f s1→ satis f s2

| Fal⇒ False

end.

We read a proposition satis f s as “f satisfies s”.

It is decidable whether an assignment satisfies a formula.

Instance eq_bool_dec x y : dec (x = y :> bool).

Proof. unfold dec ; decide equality. Qed.

Instance satis_dec f s : dec (satis f s).

Proof. induction s ; decide claim. Qed.

Note the notation for typed equality in the formulation of eq_bool_dec. The

notation “x = y :> X” stands for the term @eq X x y.

We now define semantic entailment.

Definition sem (A : context) (s : form) : Prop :=

∀ f, (∀ t, t ∈ A→ satis f t)→ satis f s.

We read sem A s as “A semantically entails s”. Our definition is such that A

semantically entails s if and only if every assignment satisfying every assumption

in A satisfies s.

We show that classical provability entails semantic entailment. Recall that

this property is known as soundness.

Lemma ndc_sem A s :

ndc A s→ sem A s.

Proof.

intros E f F.

induction E as [A s E|A s t _ IH|A s t _ IHs _ IHt|A s _ IH] ; simpl in *.

− apply F, E.

− intros G. apply IH. intros u [[]|H]. exact G. apply F, H.

− apply (IHs F), (IHt F).

− decide (satis f s) as [G|G]. exact G.

exfalso ; apply IH. intros t [[]| H]. exact G. apply F, H.

Qed.

The proof shows that each proof rule preserves semantic entailment. For the

soundness of the contradiction rule it is essential that propositions of the form
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satis f s are decidable. Note the use of the tactic simpl in ∗, which simplifies

the assumptions and the claim of the goal in one go. Step carefully through the

proof with Coq to understand every detail.

The contraposition of soundness says that s is not provable from A if s is not

semantically entailed by A.

Lemma contra_ndc_sem A s :

¬ sem A s→ ¬ ndc A s.

Proof. auto using ndc_sem. Qed.

Using this fact it is easy to prove that classical provability is consistent (i.e., ⊥ is

not provable in the empty context).

Lemma ndc_consistent : ¬ ndc nil Fal.

Proof. apply contra_ndc_sem. intros D. apply (D (fun x⇒ true)). intros t []. Qed.

Exercise 11.1.1 Prove the following equivalences stating that implication of for-

mulas is interpreted classically. We will refer to the equivalences as decomposi-

tion equivalences for implications.

Lemma satis_pos_impl f s t :

satis f (Imp s t) ↔ ¬ satis f s ∨ satis f t .

Lemma satis_neg_impl f s t :

¬ satis f (Imp s t) ↔ satis f s ∧ ¬ satis f t.

Can you say beforehand for each equivalence which direction of the proof re-

quires the decidability of satis?

Exercise 11.1.2 Prove the following goal saying that negation of formulas is in-

terpreted as negation in Coq.

Goal ∀ f s, satis f (Not s) = ¬ satis f s.

Exercise 11.1.3 Prove the following goal. Do not use soundness.

Goal ∀ f x, satis f (Imp (Not (Not (Var x))) (Var x)).

Exercise 11.1.4 Define a boolean evaluation function evalb : assn→ form→ bool

and prove that it agrees with the evaluation predicate.

Lemma evalb_agree f s : evalb f s = true ↔ satis f s.

Exercise 11.1.5 Show that variables are not provable in the empty context.

Lemma ndc_var x : ¬ ndc nil (Var x).

a) Give a semantic proof using soundness.
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b) Give a syntactic proof of consistency using ndc_var . That is, prove the propo-

sition ¬ndc nil Fal without using assignments.

Exercise 11.1.6 You will show that two assignments that agree on all variables

of a formula map the formula to the same proposition. This property is known

as coincidence.

a) Define a function vars : form→ list var that for a formula yields a list con-

taining exactly the variables occurring in the formula. The list may contain

duplicates.

b) Prove the coincidence property.

Lemma coincidence f g s : (∀ x, x ∈ vars s→ f x = g x)→ satis f s = satis g s.

11.2 Clauses and Satisfiability

For the remaining results, which concern decidability and completeness, we will

employ lists of signed formulas called clauses.1 A signed formula is a pair of a

sign and a formula, where a sign is either positive or negative.

Inductive sform : Type :=

| Pos : form→ sform

| Neg : form→ sform.

Notation "+ s" := (Pos s) (at level 35).

Notation "− s" := (Neg s).

Definition clause := list sform.

For a positively signed formula we write s+ or simply s, and for a negatively

signed formula we write s−. We will speak of positive and negative formulas.

An assignment satisfies a clause if it satisfies every positive formula of the

clause and dissatisfies every negative formula of the clause. A clause is satisfi-

able if it is satisfied by at least one assignment.

By our definitions an assignment dissatisfies a formula if and only if it sat-

isfies the negation of the formula. Thus a negative formula s− is semantically

equivalent to the formula ¬s. While signs are redundant semantically, they will

matter computationally.

In Coq, we define satisfiability of clauses based on an unsign function and a

recursive satisfaction predicate for clauses.

Definition uns (S : sform) : form :=

match S with +s⇒ s | −s⇒ Not s end.

1 For experts: Clauses are like sequents in Gentzen systems. In a sequent the positive formulas

would appear on the left and the negative formulas would appear on the right.
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Fixpoint satis’ (f : assn) (C : clause) : Prop :=

match C with

| nil ⇒ True

| T::C’⇒ satis f (uns T) ∧ satis’ f C’

end.

Definition sat (C : clause) := ∃ f, satis’ f C.

The definitions are done such that they maximize conversion, which will ease

many proofs.

We establish three characterizations of the satisfaction predicate for clauses.

Lemma satis_iff f C :

satis’ f C ↔ ∀ S, S ∈ C→ satis f (uns S).

Lemma satis_uns f C :

satis’ f C ↔ ∀ s, s ∈map uns C→ satis f s.

Lemma satis_Pos f A :

satis’ f (map Pos A) ↔ ∀ s, s ∈ A→ satis f s.

Each of the characterizations can be established with the following brute force

script (replace C with A for the third characterization).

Proof. induction C ; simpl ; firstorder ; subst ; auto. Qed.

The following lemma specializing satis_iff will be useful in proofs.

Lemma satis_in f C S :

satis’ f C→ S ∈ C→ satis f (uns S).

Semantic entailment can be characterized as unsatisfiability of clauses.

Lemma sem_unsat_iff A s :

sem A s ↔ ¬ sat (−s :: map Pos A).

Proof.

split .

− intros D [f [E F ]]. apply E, (D f). apply satis_Pos, F.

− intros D f E. decide (satis f s) as [F|F]. exact F. exfalso.

apply D. ∃ f. split. exact F. apply satis_Pos, E.

Qed.

Exercise 11.2.1 Prove the following weakening results.

Lemma satis_weak f C C’ : C ⊆ C’→ satis’ f C’→ satis’ f C.

Lemma sat_weak C C’ : C ⊆ C’→ sat C’→ sat C.

Exercise 11.2.2 Prove the following fact about the unsign function.

Lemma uns_Pos A : map uns (map Pos A) = A.
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Exercise 11.2.3 In the following we assume that an instance rule sform_eq_dec

for the decidability of equality of signed formulas is registered.

a) Register such a rule.

b) Explain why such a rule yields the decidability of membership and equality

for clauses.

Exercise 11.2.4 A formula is valid if it is satisfied by every assignment. Show

the following with Coq.

a) Every formula provable in the empty context is valid.

b) A formula s is valid if and only if the clause [s−] is unsatisfiable.

11.3 Main Results

Completeness and decidability of classical natural deduction follow from a

lemma saying that a clause is either satisfiable or refutable with natural deduc-

tion.2 We will refer to this lemma as main lemma. We assume the main lemma

in a section and prove decidability and completeness.

Section MainResults.

Variable main : ∀ C, {sat C} + {ndc (map uns C) Fal}.

Lemma ndc_dec A s :

dec (ndc A s).

Proof.

destruct (main (−s :: map Pos A)) as [E|E].

− right. destruct E as [f [E F ]]. intros G. apply ndc_sem in G.

simpl in E. apply E. apply G. apply satis_Pos, F.

− left. simpl in E. rewrite uns_Pos in E. apply ndcC, E.

Qed.

Lemma ndc_iff_sem A s :

ndc A s ↔ sem A s.

Proof.

split .

− apply ndc_sem.

− intros E. apply sem_iff_unsat in E.

destruct (main (−s :: map Pos A)) as [F|F].

+ contradiction (E F).

+ simpl in F. rewrite uns_Pos in F. apply ndcC, F.

Qed.

End MainResults.

2 Recall that classical refutability agrees with intuitionistic refutability by Glivenko’s Theorem.
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Exercise 11.3.1 Assume the main lemma and prove the following propositions.

a) ∀ s, ndc nil s ↔ ∀ f, satis f s.

b) ∀ s, ndc nil s ↔ ¬ sat [−s].

c) ∀ A, ndc A Fal ↔ ¬ sat (map Pos A).

d) ∀ A s, ndc A s ↔ ¬ sat (−s :: map Pos A).

e) ∀ C, dec (sat C).

11.4 Solved Clauses

We will prove the main lemma with a recursive procedure that simplifies a given

clause until it arrives at a solved clause or a clashed clause. Solved clauses are

always satisfiable and clashed clauses are always refutable.

A clause is clashed if it contains ⊥ or a conflicting pair s+ and s− of signed

formulas.

A clause is solved if it contains only signed variables and no conflicting

pair x+ and x−. A solved clause can be understood as a partial assignment

that fixes the values of finitely many variables. A solved clause is satisfied by

every assignment that respects the constraints imposed by the signed variables

of the clause. Since the signed variables of a solved clause do not clash, every

signed clause is satisfiable. We will work with an inductive definition of solved

clauses.

Inductive sol : clause→ Prop :=

| solNil : sol nil

| solPV C x : ¬ −Var x ∈ C→ sol C→ sol (+Var x :: C)

| solNV C x : ¬ +Var x ∈ C→ sol C→ sol (−Var x :: C).

Lemma sol_clash C x :

sol C→ +Var x ∈ C→ −Var x ∈ C→ False.

Proof.

intros A E F.

induction A as [|C y G _ IH|C y G _ IH] ; simpl in *.

− contradiction E.

− apply IH ; destruct E, F ; congruence.

− apply IH ; destruct E, F ; congruence.

Qed.

Lemma sol_satis’ f C :

sol C→

(∀ x, +Var x ∈ C→ f x = true)→

(∀ x, −Var x ∈ C→ f x = false)→

satis’ f C.
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Proof.

intros A E F.

induction A as [|C y G _ IH|C y G _ IH] ; simpl in *.

− exact I.

− auto.

− split ; [| now auto].

intros H. rewrite F in H. discriminate H. auto.

Qed.

Lemma sol_sat C :

sol C→ sat C.

Proof.

intros A.

∃ (fun x⇒ if decision (+Var x ∈ C) then true else false).

apply (sol_satis’ A) ; intros x E ; decide (+Var x ∈ C) as [G|G] ; auto.

contradiction (sol_clash A G E).

Qed.

Exercise 11.4.1 Prove that every clashed clause is refutable.

Exercise 11.4.2 A Hintikka set is a set H of formulas satisfying the following

conditions:

1. ⊥ ∉ H.

2. If x− ∈ H, then x ∉ H.

3. If s → t ∈ H, then either s− ∈ H or t ∈ H.

4. If s → t− ∈ H, then s ∈ H and t− ∉ H.

Show that every clause representing a Hintikka set is satisfiable. Proceed as

follows.

Definition Hintikka’ (S : sform) (C : clause) : Prop :=

match S with

| − Var x⇒ ¬ + Var x ∈ C

| + Imp s t⇒ −s ∈ C ∨ +t ∈ C

| − Imp s t⇒ +s ∈ C ∧ −t ∈ C

| + Fal⇒ False

| _⇒ True

end.

Definition Hintikka (C : clause) : Prop :=

∀ S, S ∈ C→ Hintikka’ S C.

Lemma Hintikka_satis C f s :

Hintikka C→

(∀ x, +Var x ∈ C→ f x = true)→

(∀ x, −Var x ∈ C→ f x = false)→

(+s ∈ C→ satis f s) ∧ (−s ∈ C→ ¬ satis f s).
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((x → y)→ x)→ x− 1

(x → y)→ x 2

x−

x → y− 3 x

x ⊗

y−

⊗

Figure 11.1: Complete tableau for the clause [((x → y)→ x)→ x−]

Lemma hin_sat C : Hintikka C→ sat C.

Hint: Hintikka_satis can be shown by induction on s.

11.5 Tableau Procedure

There is a straightforward procedure that given a clause decides whether the

clause is satisfiable. We call the procedure tableau procedure. The tableau pro-

cedure can be refined so that it yields a certifying function proving the main

lemma.

The tableau procedure reduces the satisfiability of clauses with implications

to the satisfiability of clauses without implications. For implication-free clauses

satisfiability is obviously decidable. The removal of implications is justified by

the equivalences

sat (s → t+ :: C) ↔ sat (s− :: C) ∨ sat (t+ :: C)

sat (s → t− :: C) ↔ sat (s+ :: t− :: C)

The equivalences are straightforward consequences of the decomposition equiv-

alences for implications (see Exercise 11.1.1).

If we run the tableau procedure by hand, we can do the necessary bookkeep-

ing with tables known as tableaux. Figure 11.1 shows a complete tableau for the

clause [((x → y) → x) → x−]. We start with the signed formulas of the clause

and decompose the present implications one by one. For positive implications

we branch since we need to consider two clauses. This yields a tree structure

where each branch represents a clause. New formulas are added at the end of

a branch. Decomposed implications are marked with a number. We stop the

exploration of a branch if it contains a clash, which we mark with the symbol ⊗.

A clash is either a pair s and s− or a positive occurrence of ⊥. We stop the expan-

sion of the tableau if either there is a solved branch or all branches are clashed.
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¬¬x → ¬(x → ¬y)− 1

¬¬x 3

¬(x → ¬y)− 2

x → ¬y 5

⊥−

¬x− 4 ⊥

x ⊗

⊥−

x− ¬y 6

⊗
y− ⊥

solved ⊗

Figure 11.2: Complete tableau for the clause [¬¬x → ¬(x → ¬y)−]

A branch is solved if it contains no clash and all implications are decomposed.

If all branches are clashed, we know that the initial clause is unsatisfiable. If

there is a solved branch, we know that the initial clause is satisfiable. In fact,

every assignment satisfying all signed variables of a solved branch will satisfy all

formulas on the branch.

Figure 11.2 shows a complete tableau for the clause [¬¬x → ¬(x → ¬y)−].

The tableau has 4 branches, three of them clashed and one of them solved. Thus

the initial clause is satisfiable. In fact, the initial clause is satisfied by every

assignment satisfying the solved clause [x,y−].

Exercise 11.5.1 For each of the following formulas s give a complete tableau for

the clause [s−]. Then say whether the formula is valid. If the formula is not valid,

give a solved clause such that every assignment satisfying the clause dissatisfies

the formula.

a) x → y → x

b) (x → y → z)→ (x → y)→ x → z

c) (x → ¬y → ⊥)→ ¬¬(x → y)

d) ¬¬x → ¬y → ¬(x → y)

e) (x → y)→ (y → x)→ z

Exercise 11.5.2 The tableau procedure can be improved by adding decomposi-

tion rules. Two such rules are

sat (¬s− :: C) ↔ sat (s+ :: C)

sat (¬s+ :: C) ↔ sat (s− :: C)
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rec C nil rec C (⊥ :: D)

rec C D

rec C (⊥− :: D)

x− ∈ C

rec C (x :: D)

x− ∉ C rec (x :: C) D

rec C (x :: D)

x ∈ C

rec C (x− :: D)

x ∉ C rec (x− :: C) D

rec C (x− :: D)

rec C (s− :: D) rec C (t :: D)

rec C (s → t :: D)

rec C (s :: t− :: D)

rec C (s → t− :: D)

Figure 11.3: Recursion rules for the tableau procedure

Prove the correctness of the rules and redo some of the examples of Exer-

cise 11.5.1 using the rules.

11.6 Tableau Recursion Rules

We refine the tableau procedure such that it works on two clauses rather than

one. The concatenation of the two clauses represents the single clause of the

naive procedure. We refer to the two clauses as partial assignment and agenda.

The partial assignment is a solved clause and contains the signed variables seen

so far. When we start the procedure, the partial assignment is empty and the

agenda contains all the formulas. The procedure proceeds by processing the

formulas on the agenda in the order they appear. If it finds a clash, it stops

and announces unsatisfiability. If it ends up with an empty agenda, it announces

satisfiability. In this case every assignment satisfying the partial assignment

satisfies the initial clause.

The rules in Figure 11.3 describe the recursion structure of the procedure.

Each rule says that the satisfiability of the partial assignment and the agenda

in the conclusion can be decided by analyzing the results of the recursive calls

specified by the premises. Note that to each pair of clauses exactly one rule ap-

plies (taking into account the side conditions of the variable rules). The first rule

handles the case of an empty agenda. It is correct since the partial assignment

will always be a solved clause.

The termination of the procedure follows from the fact that each recursion

step reduces the size of the agenda, where the size of the agenda is the sum of
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the sizes of the formulas on the agenda.

It is now routine to implement the tableau procedure in a programming lan-

guage. In Coq, however, we face the problem that the procedure is not struc-

turally recursive. The problem has an elegant solution. We will write two func-

tions called provider and decider. The provider takes two clauses C and D and

returns a decision tree for C and D as established by the recursion rules. The de-

cider recurses on the decision tree and decides the satisfiability of C ++D. Make

sure you can say for each recursion rule how the decider decides the satisfiabil-

ity of the conclusion given the decisions for the premises. Writing the decider in

Coq is straightforward.

We formalize the recursion rules and the concomitant decision trees with an

inductive type definition.

Inductive rec (C : clause) : clause→ Type :=

| recNil : rec C nil

| recPF D : rec C (+Fal :: D)

| recNF D : rec C D→ rec C (−Fal ::D)

| recPV D x : −Var x ∈ C→ rec C (+Var x :: D)

| recPV’ D x : ¬ −Var x ∈ C→ rec (+Var x :: C) D→ rec C (+Var x :: D)

| recNV D x : +Var x ∈ C→ rec C (−Var x :: D)

| recNV’ D x : ¬ +Var x ∈ C→ rec (−Var x :: C) D→ rec C (−Var x :: D)

| recPI D s t : rec C (−s :: D)→ rec C (+t :: D)→ rec C (+Imp s t :: D)

| recNI D s t : rec C (+s :: −t :: D)→ rec C (−Imp s t :: D).

From the structure of the rules it is clear that every type rec C D has an element

which is a decision tree for the clauses C and D. The provider is a function that

for two clauses C and D yields a decision tree in rec C D. We realize the provider

by recursion on the size of the agenda. The necessary recursion operator will be

obtained as a straightforward generalization of size induction.

Writing the provider in Coq amounts to proving the termination of the tableau

procedure. The provider cound be written as an ordinary proof if we made the

type constructor rec an inductive predicate. Given that the proof method size

induction smoothly generalizes to the computation method size recursion, there

is no problem in accommodating rec as an inductive type constructor. Accom-

modating rec as an inductive type constructor has the advantage that the decider

is not hindered by the elim restriction.

We define the size of signed formulas and clauses as one would expect.

Fixpoint sizeF (s : form) : nat :=

match s with

| Imp s1 s2⇒ 1 + sizeF s1 + sizeF s2

| _⇒ 1

end.
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Fixpoint size (C : clause) : nat :=

match C with

| nil ⇒ 0

| +s::C’⇒ sizeF s + size C’

| −s::C’⇒ sizeF s + size C’

end.

We establish size recursion with a lemma. The proof is the same as for size

induction (see Section 4.3).

Lemma size_recursion X (f : X→ nat) (t : X→ Type) :

(∀ x, (∀ y, f y < f x→ t y)→ t x)→ ∀ x, t x.

We can now write the provider.

Lemma rec_total C D : rec C D.

Proof.

revert D C.

refine (size_recursion (f:= size) _).

intros [|[[ x|s t |]|[ x|s t |]] D] IH C.

− constructor.

− decide (−Var x ∈ C) as [E|E].

+ apply (recPV _ E).

+ apply (recPV’ E). apply IH. simpl ; omega.

− constructor ; apply IH ; simpl ; omega.

− constructor ; apply IH ; simpl ; omega.

− decide (+Var x ∈ C) as [E|E].

+ apply (recNV _ E).

+ apply (recNV’ E). apply IH. simpl ; omega.

− constructor ; apply IH ; simpl ; omega.

− constructor ; apply IH ; simpl ; omega.

Qed.

Note that size recursion is applied with the tactic refine. The tactic refine is

like the tactic exact but creates subgoals for underivable wildcard arguments

(arguments specified with “_”). The tactic refine is often the right solution if the

tactic apply fails to do the right thing.

11.7 Generic Certifying Tableau Procedure

We will formalize the decider for the tableau procedure as a certifying function.

This way we verify the correctness of the tableau procedure. In fact, writing the

provider amounts to proving termination, and writing the decider amounts to

proving partial correctness of the tableau procedure.
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Given our design, the decider should have the type

∀C D. rec C D → sol C → {sat (C++D)} + {¬sat (C++D)}

where the argument of type sol C formalizes the invariant that the partial assign-

ment C is a solved clause. We will write the decider in a generalized form where

the right hand side of the sum is written with an abstract refutation predicate

ref .

∀C D. rec C D → sol C → {sat (C++D)} + {ref (C++D)}

The decider for satisfiability can then be obtained by choosing the refutation

predicate λC.¬sat C.

To write the generalized decider, we need certain assumptions about the refu-

tation predicate. The necessary assumptions become obvious once we construct

the decider by recursion on the decision tree. We state the assumptions for the

refutation predicate beforehand.

Section GCTP.

Variable ref : clause→ Prop.

Variable ref_Fal : ∀ C, +Fal ∈ C→ ref C.

Variable ref_weak : ∀ C C’, C ⊆ C’→ ref C→ ref C’.

Variable ref_clash : ∀ x C, +Var x ∈ C→ −Var x ∈ C→ ref C.

Variable ref_pos_imp : ∀ s t C, ref (−s::C)→ ref (+t::C)→ ref (+Imp s t::C).

Variable ref_neg_imp : ∀ s t C, ref (+s::−t::C)→ ref (−Imp s t::C).

It is now straightforward to write the decider by recursion on the decision tree.

We generate the code for the decider with a script.

Lemma rec_sat_ref C D :

rec C D→ sol C→ {sat (D++C)} + {ref (D++C)}.

Proof.

intros A B.

induction A as [C|C D|C D _ IH|C D x E|C D x E _ IH|C D x E|C D x E _ IH|

C D s t _ IHs _ IHt|C D s t _ IH] ; simpl.

one subgoal for every recursion rule

Qed.

Constructing the certifying decision procedure rec_sat_ref with a script amounts

to computer-assisted programming. Of great help is the induction tactic, which

takes care of the bureaucratic details and gives us a subgoal for every recursion

rule. The subgoals provides us with precise specifications of the missing code

fragments, which must realize the local deciders for the recursion rules. Here

are the scripts for the fragments.
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− left. apply sol_sat, B.

− right. apply ref_Fal. auto.

− destruct (IH B) as [F|F].

+ left . destruct F as [f F]. ∃ f. simpl ; auto.

+ right. revert F. apply ref_weak. auto.

− right. apply ref_clash with (x:=x) ; auto.

− destruct IH as [F|F].

+ constructor ; assumption.

+ left . revert F. apply sat_weak. auto.

+ right. revert F. apply ref_weak. auto.

− right. apply ref_clash with (x:=x) ; auto.

− destruct IH as [F|F].

+ constructor ; assumption.

+ left . revert F. apply sat_weak. auto.

+ right. revert F. apply ref_weak. auto.

− destruct (IHs B) as [F|F].

+ left . destruct F as [f [F G]]. ∃ f. simpl in *. tauto.

+ destruct (IHt B) as [G|G].

* left . destruct G as [f G]. ∃ f. simpl in *. tauto.

* right. apply (ref_pos_imp F G).

− destruct (IH B) as [F|F].

+ left . destruct F as [f F]. ∃ f. simpl in *. tauto.

+ right. apply ref_neg_imp, F.

We now combine the provider with the generalized decider and obtain a

generic certifying tableau procedure.

Lemma sat_plus_ref C :

{sat C} + {ref C}.

Proof.

destruct (rec_sat_ref (C:=nil) (D:=C)) as [E|E].

− apply rec_total.

− constructor.

− left. revert E. apply sat_weak. auto.

− right. revert E. apply ref_weak. auto.

Qed.

End GCTP.

We now instantiate the generic certifying tableau procedure to a certifying

decision procedure for satisfiability. To do this, we have to prove that unsatisfi-

ability satisfies the properties of a refutation predicate.

Lemma sat_dec C :

dec (sat C).

Proof.

revert C. apply sat_plus_ref with (ref:= fun C⇒ ¬ sat C).
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− intros C E [f F]. apply (satis_in F E).

− intros C C’ A E F. apply E. revert A F. apply sat_weak.

− intros s C A B [f E]. apply (satis_in E B), (satis_in E A).

− intros s t C A B [f [E F ]]. apply satis_pos_imp in E as [E|E].

+ apply A. ∃ f. simpl. auto.

+ apply B. ∃ f. simpl. auto.

− intros s t C A [f [E F ]]. apply A. ∃ f. simpl in *.

apply satis_neg_imp in E as [E G]. auto.

Qed.

Exercise 11.7.1 Extend the section GCTP with the following lemmas for sound

refutation predicates.

Variable ref_sound : ∀ C, ref C→ ¬ sat C.

Lemma ref_iff_unsat C : ref C ↔ ¬ sat C.

Lemma ref_dec C : dec (ref C).

11.8 Proof of the Main Lemma

Given the generic certifying tableau procedure, the proof of the main lemma is

straightforward: We simply show that (λC. ndc (map uns C) ⊥) is a refutation

predicate.

Lemma main C :

{sat C} + {ndc (map uns C) Fal}.

Proof.

revert C. apply sat_plus_ref ; simpl.

− intros C A. apply ndcA. exact (in_map uns _ _ A).

− intros C C’ A. apply ndc_weak. apply incl_map, A.

− intros x C A B. apply ndcIE with (s:=Var x) ; apply ndcA.

+ exact (in_map uns _ _ B).

+ exact (in_map uns _ _ A).

− intros s t C A B. apply ndcIE with (s:= Not s).

+ apply ndcW, ndcII, A.

+ apply ndcII. apply ndcIE with (s:=t).

* apply ndcW, ndcW, ndcII, B.

* apply ndcIE with (s:=s) ; apply ndcA ; auto.

− intros s t C A. apply ndcIE with (s:= Imp s t).

+ apply ndcA ; auto.

+ apply ndcII, ndcE. apply ndcIE with (s:= Not t).

* { apply ndcIE with (s:= s).

− apply ndcW, ndcW, ndcII, ndcII. revert A. apply ndc_weak. firstorder.

− apply ndcA ; auto. }

* { apply ndcII. apply ndcIE with (s:= Imp s t).
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− apply ndcA ; auto.

− apply ndcII, ndcA ; auto. }

Qed.

Exercise 11.8.1 Consider the following refutation rules for clauses.

C,⊥ C, s, s−

C, s− C, t

C, s → t

C, s, t−

C, s → t−

C

C′
C ⊆ C′

You will show that the rules yield a sound and complete derivation system for

unsatisfiable clauses.

a) Verify for each rule that it has a satisfiable premise if the conclusion is sat-

isfiable. Note that this implies that the rules derive unsatisfiable conclusions

from unsatisfiable premises.

b) Formalize the rules as an inductive predicate tab : clause→ Prop.

c) Verify that tab is a refutation predicate.

d) Prove ∀C. tab C → ¬sat C.

e) Prove ∀C. {sat C} + {tab C}.

f) Prove ∀C. tab C ↔ ¬sat C.

g) Prove ∀C. dec (tab C).

Exercise 11.8.2 Consider the following demo rules for clauses.

C
C solved

C

C,⊥−

C, s−

C, s → t

C, t

C, s → t

C, s, t−

C, s → t−

C

C′
C′ ⊆ C

You will show that the rules yield a sound and complete derivation system for

satisfiable clauses.

a) Verify for each rule that the conclusion is satisfiable if all premises are satis-

fiable.

b) Formalize the rules as an inductive predicate dem : clause→ Prop.

c) Prove ∀C. dem C → sat C.

d) Prove ∀C. {dem C} + {¬sat C}.

e) Prove ∀C. dem C ↔ sat C.

f) Prove ∀C. dec (dem C).

The final three results are best obtained with a tableau procedure of the type

∀C. {dem C} + {¬sat C}.
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Exercise 11.8.3 Prove that a clause is satisfiable if and only if it can be extended

to a Hintikka clause. The direction from Hintikka to satisfiability is already cov-

ered by Exercise 11.4.2. The other direction can be shown by proving

∀C. dem C → ∃H. Hintikka H ∧ C ⊆ H

for the demo predicate from Exercise 11.8.2.

Coq Summary

New Tactics

• simpl in ∗ simplifies all assumptions and the claim of the goal.

• refine is like exact but creates subgoals for underivable wildcard arguments

(arguments specified with “_”). See the proof of rec_total in Section 11.6.

Tactical now

In the Coq file for this chapter you will see a few uses of the tactical now. If now

is written in front of a tactic command, the tactic command will fail if it does

not solve the goal. For instance, now auto succeeds if and only if auto solves the

goal. If a split spawns a first subgoal that can be solved by t, we may write

split . now t. script for second subgoal

If the second subgoal of a split can be solved by t, we may write

split ; [| now t]. script for first subgoal

If t is exact or reflexivity or another tactic that always fails if it doesn’t solve the

goal, we omit now.

The use of now and bullets (i.e., −, +, ∗) is a matter of style. It improves

readability of scripts. It pays off when you adapt the existing script of a modified

lemma.

New Notations

• “x = y :> X” stands for the term @eq X x y.
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In this chapter we prove results about intuitionistic propositional logic. We be-

gin by giving an appropriate semantics for the intuitionistic case. The semantics

will be given by models which consist of a collection of states where each state

represents a boolean assignment. We will prove a soundness result for the intu-

itionistic natural deduction system relative to this class of models. The notion

of a model allows us to define when clauses are satisfiable or unsatisfiable.

We next consider a special case of these models called demos. Demos have

properties which make it easy to see that certain formulas are either satisfied or

dissatisfied at a state of the demo. We will use a demo to prove an independence

result: ¬¬x → x is not intuitionistically provable. There is a tableau procedure

which can be used to construct a demo for a satisfiable clause or to determine

that a clause is unsatisfiable. The algorithmic interpretation of a demo moti-

vates a tableau refutation system which characterizes the unsatisfiable clauses.

We prove one can translate from tableau refutations to natural deduction deriva-

tions.

We finally turn to the question of decidability of A ⊢ s inN and completeness

of N with respect to clausal models. These results will easily follow from an

assumption which we call the main lemma. This is analogous to the main lemma

for the classical case considered in Section 11.3. The main lemma states that

every clause is either satisfiable or tableau refutable. The proof of the main

lemma will be the subject of the next chapter.

12.1 Clausal Models

In the classical case it was enough to consider boolean assignments. That is,

when a formula is not classically provable, there is an assignment making the

formula false. Assignments do not provide enough counterexamples to handle

intuitionistically unprovable formulas. For example, ¬¬x → x is intuitionisti-

cally unprovable, but is true when evaluated under an assignment. What we need

is some way to interpret formulas so that a formula may be neither true nor false.

We begin with an informal description of how to obtain such an interpretation.

One option is to use sets of assignments and to reconsider how we interpret

implication. As a simple example, consider two assignments f and g where

197



12 Intuitionistic Semantics

fy = false for all variables y , gx = true, and gy = false for all y 6= x. An

equivalent way to represent an assignment is as the set of variables assigned to

true. The set of variables assigned to true by f is the empty set 0. The set of

variables assigned to true by g is the singleton set {x}. Since

0 ⊆ {x}

we consider {x} as an extension of 0. We can consider 0 and {x} as two states of

one model. The state 0 is the “earlier” state and the state {x} is the “later” state.

In the earlier state, x is not satisfied. In the later state, x is satisfied. Suppose

we interpret implication so that ¬s is satisfied if there is no later state where s is

satisfied. Then ¬x is not satisfied in either state. Consequently ¬¬x is satisfied

in the state 0, even though x is not satisfied in 0.

Instead of defining models using sets of assignments, we will use sets of

clauses. In terms of the satisfaction of formulas, it will only matter which pos-

itive variables occur in the clauses. Using clauses will pay off later when we

consider a special case of models.

Recall that a clause is a list of signed formulas. We will define clausal models

as lists of clauses. There will be an important relation between these clauses.

In order to define and prove properties of this relation, we first need to con-

sider positive signed formulas and an operation which removes negative formu-

las from a clause.

In Coq, we have the following (obviously decidable) predicate for testing if a

signed formula is positive:

Definition positive (S : sform) : Prop :=

match S with +s⇒ True | −s⇒ False end.

For a clause A, we define A+ to be {s+|s+ ∈ A}. That is, A+ is the set of positive

formulas in A.

Fixpoint pos (C : clause) : clause :=

match C with

| nil ⇒ nil

| + s :: C’⇒ + s :: pos C’

| − s :: C’⇒ pos C’

end.

There are a number of easily proven properties of pos. We list three and leave

the reader to do the proofs.

Lemma pos_iff S C :

S ∈ pos C ↔ S ∈ C ∧ positive S.

Lemma pos_incl C :

pos C ⊆ C.
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Lemma pos_incl_pos A B :

pos A ⊆ B→ pos A ⊆ pos B.

In this chapter we will also use the term state for the clauses of a model. A

model is a list of states.

Definition state := clause.

Definition model := list state.

For a model M , we define A �M B to hold when A ∈ M , B ∈ M and A+ ⊆ B. We

will write A � B when the model M is clear from the context. When A � B holds,

we will say “A before B” and refer to A as an “earlier” state and B as a “later”

state.

We will now define � in Coq. Let M be a model.

Section Model.

Variable M : model.

We define � as follows.

Definition before (A B : state) : Prop :=

A ∈ M ∧ B ∈ M ∧ pos A ⊆ B.

It is easy to see that � is a reflexive and transitive relation on M . In particular,

A � A since A+ ⊆ A. Also, if A � B and B � C , then A+ ⊆ C since A+ ⊆ B+ ⊆ C .

Note that if A � B and s+ ∈ A, then s+ ∈ B.

Lemma before_refl A :

A ∈ M→ before A A.

Proof. unfold before. intuition. apply pos_incl. Qed.

Lemma before_tran A B C :

before A B→ before B C→ before A C.

Proof.

intros [F [_ G]] [_ [H K]]. unfold before. intuition.

setoid_rewrite ← K. apply pos_incl_pos, G.

Qed.

Lemma before_in s A B :

before A B→ +s ∈ A→ +s ∈ B.

Proof. intros [_ [_ E]] F. apply E. apply pos_iff. simpl. auto. Qed.

The Coq proof scripts for reflexivity and transtivity use a new automation tactic

intuition. intuition simplifies goals by means of intros and propositional rea-

soning. In general, intuition may leave several subgoals for the user. In this

chapter we will only use intuition when proving a conjunctive claim of the form

s1 ∧ · · · ∧ sn where Coq can prove all the conjuncts except one. After such an

application of intuition, we will be left with one subgoal to prove.

We now define when a state A in M satisfies a formula s. The definition is by

recursion on s:
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• A satisfies x if x+ ∈ A.

• A satisfies s → t if B satisfies t whenever B is a state such that A � B and B

satisfies s.

• A does not satisfy ⊥.

In Coq, the definition is as follows.

Fixpoint satis (A : state) (s : form) : Prop :=

match s with

| Var x⇒ +Var x ∈ A

| Imp s t⇒ forall B, before A B→ satis B s→ satis B t

| Fal⇒ False

end.

The following result follows easily from reflexivity of �: For all A ∈ M , if A

satisfies ¬s, then A does not satisfy s.

Lemma satis_not A s :

A ∈ M→ satis A (Not s)→ ¬ satis A s.

Transitivity of � can be used to easily prove all later states satisfy all the formu-

las the earlier state satisfied. We call this property monotonicity.

Lemma satis_mono A B s :

before A B→ satis A s→ satis B s.

We now extend the notion of satisfaction from formulas to clauses. We say

a state A satisfies a clause C if A satisfies s for every s+ ∈ C and A dissatisfies

s for every s− ∈ C . In Coq we realize this definition using recursion over the

clause.

Fixpoint satis’ (A : state) (C : clause) : Prop :=

match C with

| nil ⇒ True

| +s :: C’⇒ satis A s ∧ satis’ A C’

| −s :: C’⇒ ¬ satis A s ∧ satis’ A C’

end.

An induction on C justifies the equivalence between the recursive definition and

a characterization closer to the mathematical definition above.

Lemma satis_iff A C :

satis’ A C ↔ ∀ S, S ∈ C→

match S with

| +s⇒ satis A s

| −s⇒ ¬ satis A s

end.

Clearly for states A and clauses C and D if C ⊆ D and A satisfies D, then A

satisfies C .

200 2013-7-26



12.2 Soundness

Lemma satis_weak C D A :

C ⊆ D→ satis’ A D→ satis’ A C.

We noted above that if a state A satisfies a formula s, then every later state B

also satisfies s. The converse does not hold in general. It is possible for a state A

to dissatisfy a formula s but for a later state B to satisfy s. Consequently, a state

A may satisfy the clause [s−] while a later state B does not satisfy [s−].

It is not difficult to prove the satisfaction predicate is decidable.

Global Instance satis_dec A s :

dec (satis A s).

The proof is by induction on s using the following lemma which follows from the

fact that list quantification preserves decidability.

Global Instance before_forall_dec A p :

(∀ B, dec (p B))→ dec (∀ B, before A B→ p B).

12.2 Soundness

We now define semantic entailment using clausal models. We say A semanti-

cally entails s if for every clausal model M and every state B in M , if B satisfies

all the formulas in A, then B satisfies s.

Definition sem (A : context) (s : form) : Prop :=

∀ M B, B ∈ M→ (∀ t, t ∈ A→ satis M B t)→ satis M B s.

We can now prove soundness. That is, we prove that if A ⊢ s, then A seman-

tically entails s.

Lemma nd_sem A s :

nd A s→ sem A s.

The proof is by induction. We fix a model M . We must check the four rules

definingN preserve the following property (of A and s):

∀B ∈ M.if B satisfies A, then B satisfies s.

• A: Assume s ∈ A and B satisfies A. Clearly B satisfies s.

• II: The inductive hypothesis in this case is

∀M,B ∈ M.if B satisfies A, s, then B satisfies t.

Assume B satisfies A. We will prove B satisfies s → t. Let B′ be such that

B � B′ and B′ satisfies s. In particular, B′ ∈ M . By monotonicity B′ satisfies

the context A. By the inductive hypothesis B′ satisfies t, as desired.
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• IE: In this case there are two inductive hypotheses:

∀M,B ∈ M.if B satisfies A, then B satisfies s → t.

∀M,B ∈ M.if B satisfies A, then B satisfies s.

Assume B satisfies A. We must prove B satisfies t. By the inductive hypothe-

ses B satisfies s → t and s. Since B � B we know B satisfies t.

• E: In this case the inductive hypothesis implies there is no state satisfying the

context A. We vacuously conclude that every B satisfying A also satisfies s.

12.3 Satisfiability

A clause is satisfiable if there is a model M and a state A ∈ M such that A

satisfies C .

Definition sat (C : clause) : Prop :=

∃ M A, A ∈ M ∧ satis’ M A C.

A clause is unsatisfiable if it is not satisfiable.

Clearly if a clause D is satisfiable and C ⊆ D, then C is satisfiable. (The same

model can act as a witness.)

Lemma sat_weak C D :

C ⊆ D→ sat D→ sat C.

If A semantically entails s, then clearly there is no model with a state satisfy-

ing A and dissatisfying s and so the clause A, s− is unsatisfiable.

Lemma sem_unsat A s :

sem A s→ ¬ sat (−s :: map Pos A).

The equivalence can also be proven.

Lemma sem_iff_unsat A s :

sem A s ↔ ¬ sat (−s :: map Pos A).

The proof uses decidability of satis M B s.

12.4 Demos

Given a clause C we would like an algorithm for determining whether or not C

is satisfiable. In addition, if C is satisfiable, we would like to obtain a model

satisfying C . A way to approach this is to analyze the subformulas of the signed

formulas of C . Suppose M is a model, A ∈ M and A satisfies C . Assume a

positive implication s → t is in C . By reflexivity of �, if A satisfies s, then A must
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also satisfy t. Hence either A dissatisfies s or satisfies t. Consequently, A also

satisfies the clause C, s− or the clause C, t.

Next assume a negative implication s → t− is in C . Since A dissatisfies s → t,

there must be some B such that A � B, B satisfies s and B dissatisfies t. Also,

by monotonicity, B must satisfy all the positive formulas in C . Hence B satisfies

C+, s, t−.

We can try to construct a model satisfying C by extending C to include either

s− or t whenever s → t is in C . Furthermore, if a negative implication s → t− is in

C , then we can simultaneously attempt to include a state in the model satisfying

C+, s, t−. Of course, if we reach a point in which ⊥ is in C or there are conflicting

signed formulas x and x− in C , then we know C is unsatisfiable.

The procedure sketched above will allow us to construct special models called

demos when the original clause is satisfiable. A demo is a modelM such that for

every state A ∈ M we have the following conditions:

• ⊥ ∉ A.

• If x− ∈ A, then x ∉ A.

• If s → t ∈ A, then s− ∈ A or t ∈ A.

• If s → t− ∈ A, then there is some B ∈ M such that A � B, s ∈ B and t− ∈ B.

In Coq we can realize this definition using an auxiliary definition with a match

corresponding to the conditions above.

Definition demo’ (M : model) (A : clause) (S : sform) : Prop :=

match S with

| − Var x⇒ ¬ +Var x ∈ A

| + Imp s t⇒ −s ∈ A ∨ +t ∈ A

| − Imp s t⇒ exists B, before M A B ∧ +s ∈ B ∧ −t ∈ B

| + Fal⇒ False

| _⇒ True

end.

Definition demo (M : model) : Prop :=

∀ A, A ∈ M→ ∀ S, S ∈ A→ demo’ M A S.

We now turn to the Demo Theorem (demo_satis). If M is a demo and A is a

state in M , then A satisfies all the positive formulas in A and dissatisfies all the

negative formulas in A. We use an axiliary function sign to conveniently state

and prove the result.

Definition sign (b : bool) :=

if b then Pos else Neg.

Lemma demo_satis M A b s :

demo M→ A ∈ M→ sign b s ∈ A→

if b then satis M A s else ¬ satis M A s.

2013-7-26 203



12 Intuitionistic Semantics

The demo theorem is proven by induction on s.

• Suppose x ∈ A. Clearly A satisfies x+.

• Suppose x− ∈ A. Since M is a demo, x ∉ A. Hence A dissatisfies x.

• Suppose s → t ∈ A. We prove A satisfies s → t. Let B be such that A � B

and B satisfies s. Since A+ ⊆ B, we know s → t is in B. Since M is a demo,

either s− ∈ B or t ∈ B. By the inductive hypothesis for s, if s− ∈ B, then

B dissatisfies s, contradicting our assumption about B. Hence t ∈ B. By the

inductive hypothesis for t, B satisfies t, as desired.

• Suppose s → t− ∈ A. We prove A dissatisfies s → t. SinceM is a demo, there is

some B ∈ M such that A � B, s ∈ B and t− ∈ B. By the inductive hypotheses,

B satisfies s and dissatisfies t. This B witnesses that A dissatisfies s → t.

• We cannot have ⊥ ∈ A since M is a demo.

• Suppose ⊥− ∈ A. Clearly A dissatisfies ⊥, as desired.

Here is a simple corollary of the Demo Theorem.

Lemma demo_satis’ M A :

demo M→ A ∈ M→ satis’ M A A.

Example 12.4.1 Let x be a variable. In this example we construct a demo with a

state satisfying the clause ¬¬x → x−. Clearly such a demo must include a state

satisfying ¬¬x+ and x−. Since such a state cannot satisfy ⊥, it must also satisfy

¬x−. Combining these signed formulas, let A be the state

¬¬x → x−,¬¬x+,¬x−, x−.

Since ¬x− is in A, there must be another state with all the positive formulas in

A, the positive formula x and the negative formula ⊥−. That is, we need a state

satisfying

¬¬x+, x+,⊥−.

To satisfy the demo condition for ¬¬x+, we also include ¬x−. Let B be the state

¬¬x+, x+,⊥−,¬x−.

Let M be the model with the two states A and B. It is easy to check that M is a

demo. By the Demo Theorem, A dissatisfies ¬¬x → x. As as a consequence of

soundness, nil 6⊢ ¬¬x → x inN . �

Exercise 12.4.2 Use the demo theorem to prove the following.

Goal ∀ M A s, demo M→ A ∈ M→ +s ∈ A→ ¬ −s ∈ A.
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Exercise 12.4.3 For each of the following clauses, construct a demo with a state

satisfying the clause. Assume x, y and z are distinct variables.

a) x → y, ¬x → y,y−

b) ¬x → y, ¬¬x → y, y−

c) (x → y)→ z, (y → x)→ z, z−

d) ¬x → y, x → z, y → z, z−

12.5 Intuitionistic Tableau System

All attempts to construct a demo for an unsatisfiable clause C must fail. If we

analyze the choices one makes while trying to construct a demo, we arrive at a

derivation system for unsatisfiable clauses. This is often called an intuitionistic

tableau system. We first give the tableau system as rules.

C,⊥ C, s, s−

C, s− C, t

C, s → t

C+, s, t−

C, s → t−

C

C′
C ⊆ C′

We say a clause C is tableau refutable if it is derivable from these rules. For each

of the tableau rules, if the conclusion is satisfiable, then one of the premises must

be satisfiable. In Coq, we define a corresponding predicate as follows.

Inductive tab : clause→ Prop :=

| tabF C : tab (+Fal :: C)

| tabC x C : tab (−Var x :: +Var x :: C)

| tabIP s t C : tab (−s :: C)→ tab (+ t :: C)→ tab (+Imp s t :: C)

| tabIN s t C : tab (+s :: −t :: pos C)→ tab (−Imp s t :: C)

| tabW C C’ : C’ ⊆ C→ tab C’→ tab C.

Note that in the rule to demonstrate refutability of C, s → t− (i.e., a clause with a

negative implication) the premise is C+, s, t−, not C, s, t−.

We now prove we can translate from tableau refutations to natural deduction

derivations. Since the tableau system works on clauses C while natural deduction

works on contexts A and formulas s, it is not immediately clear what should be

provable in the natural deduction system if C is tableau refutable. The obvious

choice for a context A is {t|t+ ∈ C}. This leaves the question of which formula

s should follow from this context. A first approximation is to take some s such

that s− ∈ C . That is, some negative formula in C should follow from the positive

formulas in C . However, it is possible that there is no negative formula in C . For

this reason, we prove a disjunction: If C is tableau refutable, then {t|t+ ∈ C} ⊢ ⊥

or there is some s such that s− ∈ C and {t|t+ ∈ C} ⊢ s. To represent {t|t+ ∈ C}

we use the uns function from the previous chapter.
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Definition uns (S : sform) : form :=

match S with +s⇒ s | −s⇒ Not s end.

We can now represent the disjunction as the following definition.

Definition ndr (C : clause) : Prop :=

nd (map uns (pos C)) Fal ∨ ∃ s, −s ∈ C ∧ nd (map uns (pos C)) s.

The translation result can now be stated in a compact manner.

Lemma tab_ndr C :

tab C→ ndr C.

The proof is by induction on the tableau refutation. We check only the two

implication rules. The others are easy. To ease notation let 〈C〉 denote the

context {t|t+ ∈ C} for a clause C .

• Assume two inductive hypothesis.

(1) Either 〈C, s−〉 ⊢ ⊥ or 〈C, s−〉 ⊢ u for some u such that u− ∈ C, s−.

(2) Either 〈C, t〉 ⊢ ⊥ or 〈C, t〉 ⊢ u for some u such that u− ∈ C, t.

If there is some u− ∈ C such that 〈C〉 ⊢ u, then we are done. Otherwise, the

first inductive hypothesis implies 〈C〉 ⊢ s. Hence 〈C, s → t〉 ⊢ t. If 〈C, t〉 ⊢ ⊥,

then we conclude 〈C, s → t〉 ⊢ ⊥. Otherwise, suppose u is such that u− ∈ C, t

and 〈C, t〉 ⊢ u. Clearly u− ∈ C, s → t and 〈C, s → t〉 ⊢ u.

• Since t− is the only negative formula in C+, s, t−, the inductive hypothesis

implies 〈C+, s〉 ⊢ t. Hence 〈C〉 ⊢ s → t.

An easy consequence is that if A is a context and the clause A, s− is tableau

refutable, then A ⊢ s. The previous result gives that either A ⊢ ⊥ (so that A ⊢ s)

or there is some u such that u− ∈ A, s− such taht A ⊢ ⊥. Since s is the only

negative formula in A, s−, u must be s.

Lemma tab_nd A s :

tab (−s :: map Pos A)→ nd A s.

Exercise 12.5.1 Prove the following.

Lemma satis_sem M A C s :

A ∈ M→ satis’ M A C→ sem (map uns (pos C)) s→ satis M A s.

Use the result satis_sem, tab_nd and nd_sem to prove soundness of tableau

refutability.

Lemma tab_sound C :

tab C→ sat C→ False.
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12.6 Main Results

We assume the following property we call the main lemma. For every clause C

we can decide whether C is satisfiable or C is tableau refutable.

Variable main : ∀ C, {sat C} + {tab C}.

From the main lemma it is easy to prove that for a context A and formula s,

either A ⊢ s or A does not semantically entail s. One simply applies the main

lemma to the clause A, s−. If A, s− is satisfiable, then A does not semantically

entail s. If A, s− is tableau refutable, then A ⊢ s.

Lemma nd_plus_not_sem A s :

{nd A s} + {¬ sem A s}.

We can now prove decidability of nd. By the lemma above, either A ⊢ s (so we

are done) or A does not semantically entail s. Assume A does not semantically

entail s. We will prove A 6⊢ s. Assume A ⊢ s. By soundness (nd_sem), A must

semantically entail s, contradicting our assumption.

Lemma nd_dec A s :

dec (nd A s).

Similarly, we can prove the equivalence of nd and semantic entailment.

Lemma nd_iff_sem A s :

nd A s ↔ sem A s.

Half of the equivalence is soundness (nd_sem). The other half will be complete-

ness. We assume A semantically entails s and must prove A ⊢ s. Appying the

nd_plus_not_sem, either A ⊢ s (so we are done) or A does not semantically entail

s (contradicting our assumption).

12.7 Remarks

The first complete semantics for intuitionistic propositional logic was given by

Saul Kripke. These are known as Kripke models. Kripke originally used such

models as a semantics for various modal logics in 1959. Since intuitionistic logic

can be embedded into a certain modal logic, this already provides a semantics for

intuitionistic logic. In 1965 Kripke considered the intiuitionistic case in depth.

The clausal models we have given here are essentially special cases of Kripke

models.

The tableau system considered in this chapter is essentially the same as a

tableau system given by Fitting in 1969.
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Coq Summary

New Tactics

• intuition is an automation tactic simplifying goals by means of intros and

propositional reasoning.
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In this chapter we construct a procedure that given a clause decides whether

the clause is intuitionistically satisfiable. The procedure will be realized as an

informative test ∀C. {sat C} + {tab C} proving the main lemma. The procedure

relies on the so-called subformula property of the tableau rules. If the input

clause is satisfiable, the procedure will construct a demo satisfying the clause,

where the demo will only contain formulas that are subformulas of formulas

occurring in the input clause.

13.1 Outline

When we look at the intuitionistic tableau rules, we see that the premises of each

rule contain only subformulas of formulas occurring in the conclusion of the

rule.

C,⊥ C, s, s−

C, s− C, t

C, s → t

C+, s, t−

C, s → t−

C

C′
C ⊆ C′

This property is known as subformula property and will be crucial for the de-

cidability result.

In the following, we will see clauses as finite sets of signed formulas, and

demos as a finite sets of clauses. This has the important consequence that a

clause has only finitely many subclauses. In the Coq formalization clauses will

still be represented as lists, but we will arrange things such that we can exploit

the finiteness property coming with the finite set view.

We assume that U is a subformula-closed clause. By subformula closedness

we mean that U satisfies the following properties:

• If s → t is in U , then s− and t are in U .

• If s → t− is in U , then s and t− are in U .

The subformula property of the tableau rules tells us that a tableau derivation

of a subclause of U contains only subclauses of U . Since there are only finitely

many subclauses of U , we can argue that tableau refutability of subclauses of U

is decidable. We will discuss this point in detail later.
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Since a formula has only finitely many subformulas, we can compute for every

clause C a subformula-closed clause U containing C . It follows that tableau

refutability is decidable for all clauses.

We call a clause consistent if it is not tableau refutable. Since tableau

refutability is decidable, consistency of clauses is decidable. From the tableau

rules it follows that every consistent clause C satisfies the following properties:

(1) C contains neither ⊥ nor a clashing pair s and s−.

(2) If s → t is in C , then either C, s− or C, t is consistent.

(3) If s → t− is in C , then C+, s, t− is consistent.

We now look at the set M of all maximal consistent subclauses of U . A clause C

is in M if and only if it is a consistent subclause of U such that C = D for every

consistent subclause D of U such that C ⊆ D. One can verify the following

properties:

(4) Every consistent subclause of U is a subclause of a clause in M . This follows

from the finiteness of U .

(5) M is a demo.

(6) M satisfies every consistent subclause of U .

We call M the canonical demo for U .

We now construct the function proving the main lemma. Given a clause C ,

we decide whether C is tableau refutable. If C is tableau refutable, we have a

tableau refutation and we are done. If C is consistent, we compute a subformula-

closed clause U extending C . Next we compute the canonical demo M for U as

described above. Since M satisfies C , we have a oroof that C is satisfiable. Thus

we are done.

Formalizing the outlined proof in Coq takes considerable effort (about 550

lines). Half of the effort goes into general-purpose results for finite sets repre-

sented as lists. There are two Coq files for this chapter:

• LFS2 Extends LFS with a power set representation and theorems for finite

fixpoints and finite maximal extensions.

• Deci Extends Semi with syntactic closures, canonical demos, decidability of

tableau refutability, and the main lemma. Requires the file LFS2.

13.2 Subformula Closedness

We define subformula closedness of clauses as follows.
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Definition sf_closed’ (S : sform) (C : clause) : Prop :=

match S with

| + Imp s t⇒ −s ∈ C ∧ +t ∈ C

| − Imp s t⇒ +s ∈ C ∧ −t ∈ C

| _⇒ True

end.

Definition sf_closed (C : clause) : Prop :=

∀ S, S ∈ C→ sf_closed’ S C.

Next we define a function scl that for every clause yields a subformula-closed

superclause.

Lemma scl_correct C : sf_closed (scl C) ∧ C ⊆ scl C.

We call scl C the syntactic closure of C . The function scl is defined with a func-

tion scl′ that for a signed formula S yields a subformula-closed clause contain-

ing S. The function scl applies scl′ to every signed formula in its argument clause

and yields the concatenation of the resulting clauses. This yields the desired re-

sult since the concatenation of subformula-closed clauses is subformula-closed.

The correctness proofs for scl and scl′ involve many subcases. Making clever

use of Coq’s automation features they still can be obtained with compact proof

scripts.

13.3 Power Set Representation

Given a subformula-closed clause U , we need a representation of the power set

of U . This will be a list of lists that contains all subclauses of U (up to equiva-

lence).

We establish the power set representation for a general base type X with

decidable equality.

Section PowerRep.

Variable X : Type.

Context {eq_X_dec : eq_dec X}.

We define a function that yields the power list of a list.

Fixpoint power (U : list X ) : list ( list X) :=

match U with

| nil ⇒ [nil]

| x :: U’⇒ power U’ ++ map (cons x) (power U’)

end.

By induction on U we show that every element of power U is a sublist of U .

Lemma power_incl A U :

A ∈ power U→ A ⊆ U.
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For the other direction we have to work harder. First of all, the other direction is

not literally true. What we can show is that power U contains every sublist of U

up to equivalence. We define a function rep that for every sublist of U yields an

equivalent list in power U .

Definition rep (A U : list X) : list X :=

filter (fun x⇒ x ∈ A) U.

Lemma rep_power A U :

rep A U ∈ power U.

Lemma rep_equi A U :

A ⊆ U→ rep A U ≡ A.

Exercise 13.3.1 Assume that X is a type with decidable equality and U is a list

over X. Prove the following facts about power and rep.

a) nil ∈ power U

b) rep A U ⊆ A

c) A ⊆ B→ rep A U ⊆ rep B U

d) A ≡ B→ rep A U = rep B U

e) A ⊆ U→ B ⊆ U→ rep A U = rep B U→ A ≡ B

f) rep (rep A U) U = rep A U

g) dupfree U→ dupfree (power U)

h) A ∈ power U→ dupfree U→ dupfree A

i) dupfree U→ A ∈ power U→ rep A U = A

j) dupfree U→ A ∈ power U→ B ∈ power U→ A ≡ B→ A = B

13.4 Step Predicates and Finite Fixpoint Theorem

An inductive predicate X → Prop can often be analyzed with a step predicate

step : list X → X → Prop modeling one-step derivability. The idea is that step A x

holds if x can be obtained from the elements of A with a single rule application

(i.e., there is an instance of a rule where x is the conclusion and all premises are

elements of A).

We will show the decidability of tableau refutability using a step predicate.

We postpone the definition of the step predicate and first elaborate the decision

technique in the abstract.

For the abstract development we assume a base type with decidable equality

and a monotone and decidable step predicate. We also assume a list U over the

base type.
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Section LFP.

Variable X : Type.

Context {eq_X_dec : eq_dec X}.

Variable step : list X→ X→ Prop.

Variable step_mono : ∀ A B x, A ⊆ B→ step A x→ step B x.

Context {step_dec : ∀ A x, dec (step A x)}.

Variable U : list X.

We use the step predicate to define an inductive predicate lfp.1 We only admit

derivation steps whose conclusion is in U .

Inductive lfp : X→ Prop :=

| lfpI A x : (∀ a, a ∈ A→ lfp a)→ step A x→ x ∈ U→ lfp x.

When we apply the technique to tableau refutability, we will choose for U the

power list of the syntactic closure of the initial clause for wich we want to decide

tableau refutability. Since the tableau rules have the subformula property, all

premises of a rule instance are in U if the conclusion is in U . Thus the predicate

lfp will hold exactly for the tableau refutable elements of U .

We show in the abstract that the predicate lfp is decidable. To do so, we define

a step function that for a list A yields a list containing the elements of U that

are one-step derivable from A.

Definition fstep (A : list X) : list X :=

filter (step A) U.

If we iterate the step function n-times on the empty list, we obtain a chain

nil = C0 ⊆ C1 ⊆ · · · ⊆ Cn ⊆ U

where C0 := nil and Ci+1 := fstep Ci. The chain property follows from the mono-

tonicity of the step function, which follows from the monotonicity of the step

predicate. The key insight now is that Ci ≡ Ci+1 implies Ci+1 ≡ Ci+2 (by the

monotonicity of the step function). Thus all jumps Ci ⊊ Ci+1 precede the sta-

tionary steps Ci ≡ Ci+1. Since there can be at most one jump per element of U ,

we know that the chain is stationary after at most card U steps.

Definition limit := nat_iter (card U) fstep nil.

Lemma limit_fixpoint:

fstep limit ≡ limit.

From what we have said it is clear that limit is a least fixpoint of the step function.

We can now show that limit contains exactly those element of X for which the

predicate lfp holds.

1 lfp stands for least fixpoint. The motivation for this technical name will be explained later in

this section.
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Lemma lfp_limit x :

lfp x ↔ x ∈ limit.

Thus lfp is a decidable predicate.

Lemma lfp_dec x :

dec (lfp x).

End LFP.

We will refer to lfp_dec as the finite fixpoint theorem.

13.5 Decidability of Tableau Refutability

We are now well prepared for showing the decidability of tableau refutability.

First we capture the tableau predicate tab with a step predicate step.

Definition sup (A : list clause) (C : clause) : Prop :=

∃ D, D ∈ A ∧ D ⊆ C.

Definition step’ (A : list clause) (S : sform) (C : clause) : Prop :=

match S with

| + Fal⇒ True

| − Var x⇒ +Var x ∈ C

| + Imp s t⇒ sup A (−s :: C) ∧ sup A (+t :: C)

| − Imp s t⇒ sup A (+s :: −t :: pos C)

| _⇒ False

end.

Definition step (A : list clause) (C : clause) : Prop :=

∃ S, S ∈ C ∧ step’ A S C.

We read sup A C as “A supports C”. Note that sup A C and step A C are defined

such that A can be seen as a set of sets and C can be seen as a set (i.e., order

and duplicates don’t matter). It is not difficult to show that the step predicate is

monotone and decidable.

The decidability of the tableau predicate will be obtained with the finite fix-

point theorem. It suffices to show that

C ∈ power U→ (tab C ↔ lfp step (power U) (rep C U))

holds for every subformula-closed clause U . The decidability of tab can then be

obtained with U := scl C . We start as follows.

Section Decidability.

Variable U : clause.

Variable sfcU : sf_closed U.

Given the definition of the step predicate, it is not difficult to show that lfp

implies tab.
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Lemma lfp_tab C :

lfp step (power U) C→ tab C.

This yields the direction from right to left of the equivalence. For the other

direction we prove

Lemma tab_lfp C :

C ⊆ U→ tab C→ lfp step (power U) (rep C U).

by induction on tab C. Using the generalized assumption C ⊆ U is crucial for the

induction to go through. From this we obtain

Lemma tab_dec’ C :

C ⊆ U→ dec (tab C).

End Decidability.

which yields the general decidability of tab with U := scl C .

Lemma tab_dec C :

dec (tab C).

13.6 Quasi-Maximal Extensions

Think of clauses as finite sets of signed formulas. Suppose C is a consistent

subclause of a clause U . Then it is intuitively clear that there exists a maximal

subclause of U that extendsA and is consistent. Proving this result in type theory

will take some effort. We have to construct a function that given C computes a

maximal extension in U that is consistent.

We first solve the problem in the abstract. We assume a type X with decidable

equality and a decidable predicate p on lists over X. We also assume a list U .

Section QME.

Variable X : Type.

Context {eq_X_dec : eq_dec X}.

Variable p : list X→ Prop.

Context {p_dec : ∀ A, dec (p A)}.

Variable U : list X.

Next we define the quasi-maximal sublists of U satisfying p.

Definition qmax (M : list X) : Prop :=

M ⊆ U ∧ p M ∧ ∀ x, x ∈ U→ p (x::M)→ x ∈ M.

Note that qmax M holds if and only if M is a sublist of U satisfying p such that

M contains x whenever x :: M satisfies p. This notion of maximality will suffice

for our purposes.

Let A be a sublist of U satisfying p. We show that A can be extended to a

quasi-maximal sublist of U satisfying p.
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13 Intuitionistic Decidability

Lemma qmax_exists A :

A ⊆ U→ p A→ {M | A ⊆ M ∧ qmax M}.

The mathematical proof is straightforward. Either A is already quasi-maximal or

there is an element x ∈ U such that x ∉ A and p satisfies x :: A. In the second

case we proceed recursively with x :: A. The recursion terminates since U is

finite and each recursion steps adds a new element of U .

The first argument of the mathematical proof of qmax_exists can be justified

with the lemma

Lemma qmax_or A :

A ⊆ U→ p A→ {x | x ∈ U ∧ p (x::A) ∧ ¬ x ∈ A} + {qmax A}.

The proof of this lemma uses the lemmas sigma_forall_list and dec_DM_impl

from Section 8.

The second argument of the mathematical proof of qmax_exists can be jus-

tified with size recursion (see Section 11.6) using the size function f A :=

card U − card A. This form of size recursion is sometimes called slack recur-

sion.

Exercise 13.6.1 Assume that X is a type with decidable equality and let U be a

list over X. Prove the following slack recursion principle for sublists of U .

Lemma slack_recursion U (t : list X→ Type) :

(∀ A, A ⊆ U→ (∀ B, B ⊆ U→ card A < card B→ t B)→ t A)→

∀ A, A ⊆ U→ t A.

13.7 Canonical Demos

We now come to the construction of the canonical demo. We say that a clause is

consistent if it is not tableau refutable.

Definition con C := ¬ tab C.

Consistency is decidable since tableau refutability is decidable. Decidability of

consistency is essential for the construction of the canonical demo. We assume

a subformula-closed clause U and define a model CD as the list of maximal con-

sistent clauses in power U .

Section CanonicalDemo.

Variable U : clause.

Variable sfcU : sf_closed U.

Context {tab_dec : ∀ C, dec (tab C)}.

Definition CD : model := filter (qmax con U) (power U).
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We will show that CD is a canonical demo for U . The key lemma for doing this

is the Extension Lemma

Lemma extension C :

C ⊆ U→ con C→ {C’ | C’ ∈ power U ∧ C ⊆ C’ ∧ qmax con U C’}.

which says that every consistent subclause of U can be extended to a maximal

consistent subclause of U in power U .2 The Extension Lemma follows with the

quasi-maximal extension lemma qmax_exists.

We can now prove that CD is a demo.

Lemma CD_demo : demo CD.

The proof uses the properties of consisten clauses stated in Section 13.1. For the

proof of property (2) the decidability of tableau refutability is essential. For the

proof of the demo requirement for negative implications (see Section 12.4) the

Extension Lemma is needed.

It remains to show that CD satisfies every consistent subclause of U .

Lemma CD_con_satis C :

C ⊆ U→ con C→ ∃ A, A ∈ CD ∧ C ⊆ A ∧ satis’ CD A C.

The proof extends A to a clause A ∈ CD using the extension lemma. That A

satisfies C in CD follows with the corollary demo_satis′ of the Demo Theorem

(see Section 12.4).

13.8 Proof of Main Lemma

The proof of the main lemma is now straightforward. We need the correctness

lemma for the syntactic closure function, the lemma for tableau decidability, and

the canonical demo lemma.

Lemma main C : {sat C} + {tab C}.

Proof.

destruct (scl_correct C) as [E F].

assert (T : ∀ C, dec (tab C)) by apply tab_dec.

decide (tab C) as [D|D]. tauto.

left . destruct (CD_con_satis E F D) as [A G]. ∃ (CD (scl C)), A. tauto.

Qed.

2 An extension lemma with a propositional existential quantification would suffice for our re-

sults.
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13.9 Discussion and Tableau Procedure

In this chapter we presented a proof of the main lemma for intuitionistic propo-

sitional logic. The ideas of the proof were presented at an abstract level where

we talk about finite sets rather than lists. The abstract presentation is needed for

simplicity and clarity. The formalization of finite sets as lists and the proofs of

the necessary lemmas took considerable effort. The most complex part is the de-

cidability of tableau refutability, which requires a power set representation and

a finite fixpoint theorem.

There should be a simpler proof of the main lemma using a tableau procedure

generalizing the tableau procedure for the classical case. This time the procedure

works on a finite set of clauses we call pool. The procedure decides whether

all clauses in the pool are satisfiable. A pool is failed if it contains a clause

containing ⊥ or a clash s/s−. A pool is solved if it is not failed and satisfies the

following saturation conditions.

1. If a positive implication s → t is in a clause C in the pool, the pool contains a

clause containing either C, s− or C, t.

2. If a negative implication s → t− is in a clause C in the pool, the pool contains

a clause containing C+, s, t−.

It is not difficult to see that the maximal clauses of a solved pool are a demo.

Thus all clauses of a solved pool are satisfiable.

The procedure now works as follows. It starts with just the input clause in the

pool. If the pool is solved, the procedure stops and returns a demo satisfying all

clauses in the pool. If the pool is failed, the procedures stops and returns a proof

that a clause in the pool is unsatisfiable. If the pool is neither solved nor failed,

a saturation condition is violated. In this case the procedure adds a clause to the

pool to satisfy the violated saturation condition and recurses. The termination

of the procedure follows from the fact that added clauses do not contain new

subformulas.

As in the classical case, it is possible to modify the procedure such that in the

negative case it returns an abstract refutation proof. The requirements on the

refutation predicate correspond again to the tableau rules.

Exercise 13.9.1 Prove the main lemma with a tableau procedure.
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