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Introduction

This course is an introduction to basic logic principles, constructive type theory,

and interactive theorem proving with the proof assistant Coq. At Saarland Uni-

versity the course is taught in this format since 2010. Students are expected to

be familiar with basic functional programming and the structure of mathemati-

cal definitions and proofs. Talented students at Saarland University often take

the course in the second semester of their Bachelor’s studies.

Constructive type theory provides a programming language for developing

mathematical and computational theories. Theories consist of definitions and

theorems, where theorems state logical consequences of definitions. Every the-

orem comes with a proof justifying it. If the proof of a theorem is correct, the

theorem is correct. Constructive type theory is designed such that the correct-

ness of definitions and proofs can be checked automatically.

Coq is an implementation of a constructive type theory known as the calculus

of inductive definitions. Coq is designed as an interactive system that assists the

user in developing theories. The most interesting part of the interaction is the

construction of proofs. The idea is that the user points the direction while Coq

takes care of the details of the proof. In the course we use Coq from day one.

Coq is a mature system whose development started in the 1980’s. In recent

years Coq has become a popular tool for research and education in formal the-

ory development and program verification. Landmarks are a proof of the four

color theorem, a proof of the Feit-Thompson theorem, and the verification of a

compiler for the programming language C (COMPCERT).

Coq is the applied side of this course. On the theoretical side we explore the

basic principles of constructive type theory, which are essential for programming

languages, logical languages, proof systems, and the foundation of mathematics.

An important part of the course is the theory of classical and intuitionis-

tic propositional logic. We study various proof systems (Hilbert, ND, sequent,

tableaux), decidability of proof systems, and the semantic analysis of proof sys-

tems based on models. The study of propositional logic is carried out in Coq and

serves as a case study of a substantial formal theory development.

Dedication

This text is dedicated to the many people who have designed and implemented

Coq since 1985.

1
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1 Types and Functions

In this chapter, we take a first look at Coq and its mathematical programming

language. We define basic data types such as booleans, natural numbers, and

lists and functions operating on them. For the defined functions we prove equa-

tional theorems, constructing the proofs in interaction with the Coq interpreter.

The definitions we study are often recursive and the proofs we construct are

often inductive.

In the following it is absolutely essential that you have a Coq interpreter run-

ning and that you experiment with the definitions and proofs we discuss. In Coq,

proofs are constructed with scripts and the resulting proof process can only be

understood in interaction with a Coq interpreter.

1.1 Booleans

We start with the definition of a type bool with two elements true and false.

Inductive bool : Type :=

| true : bool

| false : bool.

The words Inductive and Type are keywords of Coq and the identifiers bool, true,

and false are the names we have chosen for the type and its elements. The identi-

fiers bool, true, and false serve as constructors, where bool is a type constructor

and true and false are the value constructors of bool. The above definition over-

writes the definition of bool in Coq’s standard library, but this does not matter

for our first encounter with Coq.

We define a negation function negb.

Definition negb (x : bool) : bool :=

match x with

| true⇒ false

| false⇒ true

end.

The match term represents a case analysis for the boolean argument x. There is

a rule for each value constructor of bool. We can check the type of terms with

the command Check:

3



1 Types and Functions

Check negb.

% negb : bool → bool

Check negb (negb true).

% negb (negb true) : bool

We can evaluate terms with the command Compute.

Compute negb (negb true).

% true : bool

We are now ready for our first proof with Coq.

Lemma L1 :

negb true = false.

Proof. simpl. reflexivity. Qed.

The command starting with the keyword Lemma states the equation we want to

prove and gives the lemma the name L1. The sequence of commands starting

with Proof and ending with Qed constructs the proof of Lemma L1. It is now

essential that you step through the commands with the Coq interpreter one by

one. Once the lemma command is accepted, Coq switches from top level mode

to proof editing mode. The commands between Proof and Qed are called tactics.

The tactic simpl simplifies both sides of the equation to be shown by applying

the definition of negb. This leaves us with the trivial equation false = false, which

we prove with the tactic reflexivity. The command Qed finishes the proof.

Our second proof shows that double negation is identity.

Lemma negb_negb (x : bool) :

negb (negb x) = x.

Proof.

destruct x.

− reflexivity.

− reflexivity.

Qed.

This time the claim involves a boolean variable x and the proof proceeds by case

analysis on x. Since reflexivity performs simplification automatically, we have

omitted the tactic simpl.

It is important that with Coq you step back and forth in the proof script and

observe what happens. This way you can see how the proof advances. At each

point in the proof process you are confronted with a proof goal comprised of a

list of assumptions (possibly empty) and a claim. Here are the proof goals you

will see when you step through the above proof script.

x : bool

negb (negb x) = x negb (negb true) = true

negb (negb false) = false

4 2014-7-16



1.1 Booleans

In each goal, the assumptions appear above and the claim appears below the

rule. The tactic destruct x does the case analysis and replaces the initial goal

with two subgoals, one for x = true and one for x = false. The proof is finished if

both subgoals are solved (i.e., proved).

Since the proof finishes with reflexivity in both cases, we can shorten the

proof script by combining the tactics destruct x and reflexivity with the semi-

colon operator.

Proof. destruct x ; reflexivity. Qed.

We define a boolean conjunction function andb.

Definition andb (x y : bool) : bool :=

match x with

| true⇒ y

| false⇒ false

end.

We prove that boolean conjunction is commutative.

Lemma andb_com x y :

andb x y = andb y x.

Proof.

destruct x.

− destruct y ; reflexivity.

− destruct y ; reflexivity.

Qed.

The proof can be written more succinctly as

Proof. destruct x, y ; reflexivity . Qed.

The short proof script has the drawback that you don’t see much when you step

through it. For that reason we will often give proof scripts that are longer than

necessary.

Note that we have stated the lemma andb_com without giving types for the

variables x and y . This leaves it to Coq to infer the missing types. When you

look at the initial goal of the proof, you will see that x and y have both received

the type bool. Automatic type inference is an important feature of Coq.

A word on terminology. In mathematics, theorems are usually classified into

propositions, lemmas, theorems, and corollaries. This distinction is a matter of

style and does not matter logically. When we state a theorem in Coq, we will

mostly use the keyword Lemma. Coq also accepts the keywords Proposition,

Theorem, and Corollary, which are treated as synonyms.

Exercise 1.1.1 A boolean disjunction x ∨ y yields false if and only if both x

and y are false.

2014-7-16 5



1 Types and Functions

a) Define disjunction as a function orb : bool → bool → bool in Coq.

b) Prove that disjunction is commutative.

c) Formulate and prove the De Morgan law ¬(x ∨y) = ¬x ∧¬y in Coq.

1.2 Cascaded Functions

When we look at the type of andb

Check andb.

% andb : bool → bool → bool

we note that Coq realizes andb as a cascaded function taking a boolean ar-

gument and returning a function bool → bool. This means that an application

andb x y first applies andb to just x. The resulting function is then applied to y .

Cascaded functions are standard in functional programming languages where

they are called curried functions.

To say more about cascaded functions, we consider lambda abstractions. A

lambda abstraction is a term λx : s.t describing a function taking an argument x

of type s and yielding the value described by the term t. For instance, the term

λx : bool.x describes an identity function on bool. In Coq, lambda abstractions

are written with the keyword fun :

Check fun x : bool⇒ x.

% fun x : bool ⇒ x : bool → bool

Given an application of a lambda abstraction to a term, we can perform an eval-

uation step known as beta reduction:

(λx : s.t)u ⇝ txu

The notation txu represents the term obtained from t by replacing the variable x

with the term u. Beta reduction captures the intuitive notion of function appli-

cation. Beta reduction is a basic computation rule in Coq.

Compute (fun x : bool⇒ x) true.

% true : bool

Given the above explanations, the term

Check andb true.

% andb true : bool → bool

should describe an identity function bool → bool. We confirm this hypothesis by

evaluating the term with Coq.

Compute andb true.

% fun y : bool ⇒ y : bool → bool

6 2014-7-16



1.2 Cascaded Functions

To evaluate a term, Coq rewrites the term with symbolic reduction rules. The

evaluation of andb true involves three reduction steps.

andb true

unfolding of the definition of andb

= (fun x : bool⇒ fun y : bool⇒match x with true⇒ y | false⇒ false end) true

beta reduction

= fun y : bool⇒match true with true⇒ y | false⇒ false end

match reduction

= fun y : bool⇒ y

The unfolding step done first suggests that we wrote the definition of andb using

notational sugar. Using plain notation, we can define andb as follows.

Definition andb : bool→ bool→ bool :=

fun x : bool⇒

fun y : bool⇒

match x with

| true⇒ y

| false⇒ false

end.

Internally, Coq represents definitions and terms always in plain syntax. You can

check this with the command Print.

Print negb.

negb = fun x : bool⇒match x with

| true⇒ false

| false⇒ true

end

: bool→ bool

Coq prints the definition of andb with a notational convenience to ease reading.

Print andb.

andb = fun x y : bool⇒match x with

| true⇒ y

| false⇒ false

end

: bool→ bool→ bool

The additional argument variable y in the lambda abstraction for x represents a

nested lambda abstraction for y (see the definition of andb above).

There are two basic notational rules for function types and function applica-

tions making many parentheses superfluous:

s → t → u ⇝ s → (t → u) function arrow groups to the right

s t u ⇝ (s t) u function application groups to the left

2014-7-16 7



1 Types and Functions

We have made use of these rules already. Without the rules, the application

andb x y would have to be written as (andb x)y, and the type of andb would

have to be written as bool → (bool → bool).

When using the commands Print and Check, you may see the keyword Set in

places where you would expect the keyword Type. Types of sort Set are types at

the lowest level of a type hierarchy. For now this hierarchy does not matter.

1.3 Natural Numbers

The natural numbers can be obtained with two constructors O and S:

Inductive nat : Type :=

| O : nat

| S : nat→ nat.

Expressed with O and S, the natural numbers 0, 1, 2, 3, . . . look as follows:

O, S O, S(S O), S(S(S O)), . . .

We say that the natural numbers are obtained by iterating the successor func-

tion S on the initial number O. This is a form of recursion. The recursion makes

it possible to obtain infinitely many values with finitely many constructors. The

constructor representation of the natural numbers goes back to Dedekind and

Peano.

Here is a function that yields the predecessor of a number.

Definition pred (x : nat) : nat :=

match x with

| O⇒ O

| S x’⇒ x’

end.

Compute pred (S(S O)).

% S O : nat

We now define an addition function for the natural numbers. We base the

definition on two equations:

O +y = y

Sx +y = S(x +y)

The equations are valid for all numbers x and y if we read Sx as x + 1. Read

from left to right, they constitute a recursive algorithm for computing the sum of

two numbers. The left-hand sides of the two equations amount to an exhaustive

case analysis. The second equation is recursive in that it reduces an addition

8 2014-7-16



1.3 Natural Numbers

Sx + y to an addition x + y with a smaller argument. Here is a computation

applying the equations for +:

S(S(S O))+y = S(S(S O)+y) = S(S(S O +y)) = S(S(S y))

In Coq, we express the recursive algorithm described by the equations with a

recursive function plus.

Fixpoint plus (x y : nat) : nat :=

match x with

| O⇒ y

| S x’⇒ S (plus x’ y)

end.

Compute plus (S O) ( S O).

% S(S O)) : nat

The keyword Fixpoint indicates that a recursive function is being defined. In Coq,

functional recursion is always structural recursion. Structural recursion means

that the recursion acts on the values of an inductive type and that each recursion

step takes off at least one constructor. Structural recursion always terminates.

Here is the definition of a comparison function leb : nat → nat → bool that

tests whether its first argument is less or equal than its second argument.

Fixpoint leb (x y: nat) : bool :=

match x with

| O⇒ true

| S x’⇒match y with

| O⇒ false

| S y’ ⇒ leb x’ y’

end

end.

A shorter, more readable definition of leb looks as follows:

Fixpoint leb’ (x y: nat) : bool :=

match x, y with

| O, _⇒ true

| _, O⇒ false

| S x’, S y’ ⇒ leb’ x’ y’

end.

Coq translates the short form automatically into the long form (you can check

this with the command Print leb′). The underline character used in the short

form serves as wildcard pattern that matches everything. The order of the rules

in sugared matches is significant. The second rule in the sugared match is only

correct if the order of the rules is taken into account.
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Exercise 1.3.1 Define a multiplication function mult : nat → nat → nat. Base

your definition on the equations

O ·y = O

Sx ·y = y + x ·y

and use the addition function plus.

Exercise 1.3.2 Define functions as follows. In each case, first write down the

equations your function is based on.

a) A function power : nat → nat → nat that yields xn for x and n.

b) A function fac : nat → nat that yields n! for n.

c) A function evenb : nat → bool that tests whether its argument is even.

d) A function mod2 : nat → nat that yields the remainder of x on division by 2.

e) A function minus : nat → nat → nat that yields x −y for x ≥ y .

f) A function gtb : nat → nat → bool that tests x > y .

g) A function eqb : nat → nat → bool that tests x = y . Do not use leb or gtb.

1.4 Structural Induction and Rewriting

The inductive type nat comes with two basic principles: structural recursion for

defining functions and structural induction for proving lemmas. Suppose we

have a proof goal

x : nat

px

where px is a claim that depends on a variable x of type nat. Then structural

induction on x will reduce the goal to two subgoals:

pO

x : nat
IHx : px

p(S x)

This reduction is a case analysis on the structure of x, but has the additional

feature that the second subgoal comes with an extra assumption IHx known as

inductive hypothesis. We think of IHx as a proof of px. If we can prove both

subgoals, we have established the initial claim px for all x : nat. The correctness

of the proof rule for structural induction can be argued as follows.

1. The first subgoal gives us a proof of pO.

2. The second subgoal gives us a proof of p(S O) from the proof of pO.
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3. The second subgoal gives us a proof of p(S(S O)) from the proof of p(S O).

4. After finitely many steps we arrive at a proof of px.

It makes sense to see the proof of the second subgoal as a function that for

a proof of px yields a proof of p(S x). We can now obtain a proof of px by

structural recursion: If x = O, we take the proof provided by the first subgoal. If

x = S x′, we first obtain a proof of px′ by recursion and then obtain a proof of

px = p(S x′) by applying the function provided by the second subgoal.

We will explore the logical correctness of structural recursion in more detail

once we have laid out more foundations. For now we are interested in apply-

ing the rule when we construct proofs with Coq, and this will turn out to be

straightforward.

Our first case study of structural induction will be a proof that addition is

commutative, that is, plus x y = plus y x. Formally, this fact is not completely

obvious, since the definition of plus is by recursion on the first argument and

thus asymmetric. We will first show that the symmetric variants

x +O = x

x + Sy = S(x +y)

of the equations underlying the definition of plus hold. Here is our first inductive

proof in Coq.

Lemma plus_O x :

plus x O = x.

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. reflexivity.

Qed.

If you step through the proof script with Coq, you will see the following proof

goals.

x : nat

plus x O = x O = O

x : nat
IHx : plus x O = x

S(plus x O) = Sx

x : nat
IHx : plus x O = x

Sx = Sx

induction x ; simpl reflexivity rewrite IHx reflexivity

Of particular interest is the application of the inductive hypothesis with the tactic

rewrite IHx. The tactic rewrites a subterm of the claim with the equation IHx.

Doing inductive proofs with Coq is fun since Coq takes care of the bureau-

cratic aspects of the proof process. Here is our next example.
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Lemma plus_S x y :

plus x (S y) = S (plus x y).

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. reflexivity.

Qed.

Note that the proof scripts for the lemmas plus_S and plus_O are identical. When

you run the script for each of the two lemmas, you see that they generate differ-

ent proofs. Using the lemmas, we can prove that addition is commutative.

Lemma plus_com x y :

plus x y = plus y x.

Proof.

induction x ; simpl.

− rewrite plus_O. reflexivity.

− rewrite plus_S. rewrite IHx. reflexivity.

Qed.

Note that the lemmas are applied with the rewrite tactic.

Next we prove that addition is associative.

Lemma plus_asso x y z :

plus (plus x y) z = plus x (plus y z).

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. reflexivity.

Qed.

Exercise 1.4.1 Prove the commutativity of plus by induction on y .

1.5 More on Rewriting

When we rewrite with an equational lemma like plus_com, it may happen that

the lemma applies to several subterms of the claim. In such a situation it may

be necessary to tell Coq which subterm it should rewrite. To do such controlled

rewriting, we have to load the module Omega of the standard library and use the

tactic setoid_rewrite. Here is an example deserving careful exploration with Coq.

Require Import Omega.

Lemma plus_AC x y z :

plus y (plus x z) = plus (plus z y) x.
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Proof.

setoid_rewrite plus_com at 3.

setoid_rewrite plus_com at 1.

apply plus_asso.

Qed.

Note the use of the tactic apply to finish the proof by application of the lemma

plus_asso. Here is a more involved example.

Lemma plus_AC’ x y z :

plus (plus (mult x y) (mult x z)) (plus y z) = plus (plus (mult x y) y) (plus (mult x z) z).

Proof.

rewrite plus_asso. rewrite plus_asso. f_equal.

setoid_rewrite plus_com at 1. rewrite plus_asso. f_equal.

apply plus_com.

Qed.

Run the proof script to understand the effect of the tactic f _equal.

Both rewrite tactics can apply equations from right to left. This is requested

by writing an arrow “<-” before the name of the equation. Here is an example

(one can use the keyword Example as a synonym for Lemma).

Example Ex1 x y z :

S (plus x (plus y z)) = S (plus (plus x y) z).

Proof. rewrite ← plus_asso. reflexivity. Qed.

Exercise 1.5.1 Prove the following lemma without using the tactic reflexivity for

the inductive step (i.e., the second subgoal of the induction). Use the tactics

f _equal and apply to substitute for reflexivity.

Lemma mult_S’ x y :

mult x (S y) = plus (mult x y) x.

Exercise 1.5.2 Prove the following lemmas.

Lemma mult_O (x : nat) :

mult x O = O.

Lemma mult_S (x y : nat) :

mult x (S y) = plus (mult x y) x.

Lemma mult_com (x y : nat) :

mult x y =mult y x.

Lemma mult_dist (x y z: nat) :

mult (plus x y) z = plus (mult x z) (mult y z).

Lemma mult_asso (x y z: nat) :

mult (mult x y) z =mult x (mult y z).
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1.6 Recursive Abstractions

The plain notation for recursive functions uses recursive abstractions written

with the keyword fix.

Print plus.

plus = fix f (x y : nat) {struct x} : nat :=

match x with

| O⇒ y

| S x’⇒ S (f x’ y)

end

: nat→ nat→ nat

The variable f appearing after the keyword fix is local to the abstraction and rep-

resents the recursive function described. As with argument variables, the local

name of a recursive function does not matter. You may use g or plus in place

of f , for instance. The annotation {struct x} says that the structural recursion

is on x. If you write a recursive abstraction by hand you may omit the anno-

tation and Coq will infer it automatically. In fully plain notation the recursive

abstraction for plus takes only one argument:

fix f (x : nat) : nat→ nat :=

fun y : nat⇒match x with

| O⇒ y

| S x’⇒ S (f x’ y)

end.

The reduction rule for recursive abstractions only applies if the argument of

the recursive abstraction exhibits at least one constructor. When a recursive ab-

straction is reduced, the local name of the recursive function is replaced with the

recursive abstraction. Experiment with Coq to get a feel for this. The following

interactions will get you started.

Compute plus O.

% fun y : nat ⇒ y

Compute plus (S (S O)).

% fun y : nat ⇒ S(Sy)

Compute fun x⇒ plus (S x).

fun x : nat⇒

fun y : nat⇒

S ( (fix f (x : nat) : nat→ nat :=

fun y : nat⇒match x with

| O⇒ y

| S x’⇒ S (f x’ y)

end) x y )
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At first, the many notational variants Coq supports for a term can be confus-

ing. Even in printing-all mode identical terms may be displayed with different

names for the local variables. You can find out more by stating equational lem-

mas and using the tactics compute and reflexivity. Here are examples.

Goal plus O = fun x⇒ x.

Proof. compute. reflexivity. Qed.

Goal (fun x⇒ plus (S x)) = fun x y⇒ S (plus x y).

Proof. compute. reflexivity. Qed.

The command Goal states a lemma without giving it a name. The tactic compute

computes the normal form of the claim. We have inserted the compute tactic so

that we can see the normal forms of the terms being equated. The normal form

of a term s is the term obtained by fully evaluating s. Every term has exactly

one normal form. The reflexivity tactic proves every equation where both sides

evaluate to the same normal form.

1.7 Defined Notations

Coq comes with commands for defining notations. For instance, we can define

infix notations for plus and mult.

Notation "x + y" := (plus x y) (at level 50, left associativity).

Notation "x * y" := (mult x y) (at level 40, left associativity).

We can now write the distributivity law for multiplication and addition in familiar

form:

Lemma mult_dist’ x y z :

x * (y + z) = x*y + x*z.

Proof.

induction x ; simpl.

− reflexivity.

− rewrite IHx. rewrite plus_asso. rewrite plus_asso. f_equal.

setoid_rewrite ← plus_asso at 2.

setoid_rewrite plus_com at 4.

symmetry. apply plus_asso.

Qed.

Note the use of the tactic symmetry to turn around the equation to be shown.

You can tell Coq to not use defined notations when it prints terms.1

Set Printing All.

1 When working with CoqIde, use the view menu to switch printing-all mode on and off (display

all basic low-level contents).
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Check O + O * S O.

% plus O (mult O (S O)) : nat

Unset Printing All.

It is very important to distinguish between notation and abstract syntax when

working with Coq. Notations are used when reading input from and writing

output to the user. Internally, all notational sugar is removed and terms are

represented in abstract syntax. The abstract syntax is basically what you see in

printing-all mode. All logical reasoning is defined on the abstract syntax. As it

comes to semantic issues, it is irrelevant in which notation a syntactic object is

described. So if for some term written with notational sugar it is not clear to you

how it translates to abstract syntax, switching to printing-all mode is always a

good idea.

Exercise 1.7.1 Prove the lemmas from Exercise 1.5.2 once more using infix no-

tations for plus and mult. Note that the proof scripts remain unchanged.

Exercise 1.7.2 Prove associativity of multiplication using the distributivity

lemma mult_dist′ from this section. This proof requires more applications of

the commutativity law for multiplication than a proof using the lemma mult_dist

from Exercise 1.5.2.

Exercise 1.7.3 Prove (x + x)+ x = x + (x + x) by induction on x using Lemma

plus_S. Note that the direct proof of this instance of the associativity law is more

complicated than the proof of the general associativity law. In fact, it seems

impossible to prove (x + x)+ x = x + (x + x) without using a lemma.

1.8 Standard Library

Coq comes with an extensive standard library providing definitions, notations,

lemmas, and tactics. When it starts, the Coq interpreter loads part of the stan-

dard library. You can load additional modules using the command Require. (We

have already used Require to load the module Omega so that we can use the

smart rewriting tactic setoid_rewrite.)

The definitions the Coq interpreter starts with include the types bool and

nat. So there is no need to define these types when we want to use them. The

standard library equips nat with many notations familiar from Mathematics. For

instance, we may write 2 + 3 ∗ 2 for plus (S(S O)) (mult (S(S(S O))) (S(S O))).

The following interaction illustrates the predefined notational sugar.

Set Printing All.
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Check 2+3*2.

% plus (S(S O)) (mult (S(S(S O))) (S(S O))) : nat

Unset Printing All.

The above interaction took place in a context where the library definitions of

nat, plus, and mult were not overwritten. If you execute the above commands

in a context where you have defined your own versions of nat, plus, and times,

you will see that the notations 2, 3, +, and ∗ still refer to the predefined objects

from the library. If you want to know more about predefined identifiers, you may

use the commands Check and Print or consult the Coq library pages in the Web

(at coq.inria.fr). If you want to know more about a notation, you may use the

command Locate.

Locate ‘‘*’’.

When you run the above command, you will see that “*” is used with more than

one definition (so-called overloading).

For boolean matches, Coq’s library provides the if-then-else notation. For

instance:

Set Printing All.

Check if false then 0 else 1.

% match false return nat with true⇒ O | false⇒ S O end

Unset Printing All.

Note that the match is shown with a return type annotation. The return type

annotation is part of the abstract syntax of a match. The annotation is usually

added by Coq but can also be stated explicitly.

The standard module Omega comes with an automation tactic omega that

knows about the arithmetic primitives of the library. For instance, omega can

prove that addition is associative:

Goal ∀ x y z, (x + y) + z = x + (y + z).

Proof. intros x y z. omega. Qed.

Note the explicit quantification of the variables x, y , and z with the universal

quantifier ∀. The symbol ∀ can written as the string forall in Coq. Also note the

use of the tactic intros to introduce the quantified variables as assumptions.

The tactic omega works well for goals that involve addition and subtraction.

It knows little about multiplication but can deal well with products where one

side is a constant.

Goal ∀ x y, 2 * (x + y) = (y + x) * 2.

Proof. intros x y. omega. Qed.
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1.9 Pairs and Implicit Arguments

Given two values x and y , we can form the ordered pair (x,y). Given two

types X and Y , we can form the product type X × Y containing all pairs whose

first component is an element of X and whose second component is an element

of Y . This leads to the Coq definition

Inductive prod (X Y : Type) : Type :=

| pair : X→ Y→ prod X Y.

which fixes two constructors

prod : Type→ Type→ Type

pair : ∀X Y : Type. X → Y → prod X Y

for obtaining products and pairs. The pairing constructor takes four arguments,

where the first two arguments are the types of the components of the pair to be

constructed. Here are typings explaining the type of the pairing constructor.

pair nat : ∀Y : Type. nat → Y → prod nat Y

pair nat bool : nat → bool → prod nat bool

pair nat bool O : bool → prod nat bool

pair nat bool O true : prod nat bool

One says that pair is a polymorphic constructor. This addresses the fact

that the types of the third and fourth argument are given as first and second

argument. While the logical analysis is conclusive, the resulting notation for

pairs is tedious. As is, we have to write pair nat bool 0 true for the pair (0, true).

Fortunately, Coq comes with a type inference feature making it possible to just

write pair 0 true and leave it to the interpreter to insert the missing arguments.

One speaks of implicit arguments. With the command

Arguments pair {X} {Y} _ _.

we tell Coq to treat the arguments X and Y of pair as implicit arguments. Now

we can obtain pairs without specifying the types of the components.

Check pair 0 true.

% pair 0 true : prod nat bool

The implicit arguments of a function can still be given explicitly if we prefix the

name of the function with the character @:

Check @pair nat.

% @pair nat : ∀ Y : Type, nat → Y → prod nat Y

Check @pair nat bool 0.

% @pair nat bool 0 : bool → prod nat bool
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We can see which terms Coq inserts for the implicit arguments by switching to

printing-all mode.

Set Printing All.

Check pair 0 true.

% @pair nat bool 0 true : prod nat bool

Unset Printing All.

You can use the command About to find out which arguments of a function name

are implicit.

About pair.

pair : ∀ X Y : Type, X→ Y→ prod X Y

Arguments X, Y are implicit

Coq actually prints more information about the arguments, but the extra infor-

mation is not relevant for now.

We can switch Coq into implicit arguments mode, which has the effect that

some arguments are automatically declared implicit when a function name is de-

fined. With implicit arguments mode on, the inductive definition of pairs would

automatically equip the constructor pair with the two implicit arguments de-

clared above. We now switch to implicit arguments mode

Set Implicit Arguments.

Unset Strict Implicit.

and define functions yielding the first and the second component of a pair (so-

called projections).

Definition fst (X Y : Type) (p : prod X Y) : X :=

match p with pair x _⇒ x end.

Definition snd (X Y : Type) (p : prod X Y) : Y :=

match p with pair _ y⇒ y end.

Compute fst (pair O true).

% O : nat

Compute snd (pair O true).

% true : bool

Note that the first two arguments of fst and snd are implicit. We prove the so-

called eta law for pairs.

Lemma pair_eta (X Y : Type) (p : prod X Y) :

pair ( fst p) (snd p) = p.

Proof. destruct p as [x y]. simpl. reflexivity. Qed.
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Note the use of the tactic destruct. It replaces the variable p with the pair pair x y

where x and y are fresh variables. This is justified since pair is the only con-

structor with which a value of type prod X Y can be obtained. Destructuring of

a variable of a single constructor type is similar to matching on a variable of a

single constructor type (see the definitions of fst and snd).

The standard library defines products and pairs as shown above and equips

them with familiar notations. Using the definitions and notations of the standard

library, we can state and prove the eta law as follows.

Lemma pair_eta (X Y : Type) (p : X * Y) :

( fst p, snd p) = p.

Proof. destruct p as [x y]. simpl. reflexivity. Qed.

Here is a function swapping the components of a pair:

Definition swap (X Y : Type) (p : X * Y) : Y * X :=

(snd p, fst p).

Compute swap (0, true).

% (true,0) : prod bool nat

Lemma swap_swap (X Y : Type) (p : X * Y) :

swap (swap p) = p.

Proof. destruct p as [x y]. unfold swap. simpl. reflexivity. Qed.

Note the use of the tactic unfold. We use it since simpl does not simplify appli-

cations of functions not involving a match. Since reflexivity does all the required

unfolding and simplification automatically, we may omit the unfold and simpli-

fication tactics in the above script.

The notations for pairs and products are defined such that nesting to the

left may be written without parentheses. For instance, we may write (1,2,3) for

((1,2),3) and nat ∗ nat ∗ nat for (nat ∗ nat)∗ nat. So the command

Check (fun x : nat * nat * nat⇒ fst x) (1,2,3)

will succeed with the type nat ∗ nat.

Exercise 1.9.1 An operation taking two arguments can be represented either as

a function taking its arguments one by one (cascaded representation) or as a

function taking both arguments bundled in one pair (cartesian representation).

While the cascaded representation is natural in Coq, the cartesian representation

is common in mathematics. Define polymorphic functions

car : ∀X Y Z : Type, (X → Y → Z)→ (X ∗ Y → Z)

cas : ∀X Y Z : Type, (X ∗ Y → Z)→ (X → Y → Z)

that translate between the cascaded and cartesian representation and prove the

correctness of your functions with the following lemmas.
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Lemma car_spec X Y Z (f : X→ Y→ Z) x y :

car f (x,y) = f x y.

Lemma cas_spec X Y Z (f : X * Y→ Z) x y :

cas f x y = f (x,y).

Note that the arguments X, Y , and Z of car and cas are implicit.

1.10 Lists

Lists represent finite sequences [x1 ; . . . ; xn] with two constructors nil and cons.

[] ֏ nil

[x] ֏ cons x nil

[x ;y] ֏ cons x (cons y nil)

[x ;y ;z] ֏ cons x (cons y (cons z nil))

The constructor nil represents the empty sequence. Nonempty sequences are

obtained with the constructor cons. All elements of a list must be taken from the

same type. This design is realized by the following inductive definition.

Inductive list (X : Type) : Type :=

| nil : list X

| cons : X→ list X→ list X.

The definition provides three constructors:

list : Type→ Type

nil : ∀X : Type. list X

cons : ∀X : Type. X → list X → list X

With implicit arguments mode switched on, the type argument of cons is declared

implicit. This is not the case for the type argument of nil since there is no other

argument where the argument can be obtained from. So we use the arguments

command to declare the argument of nil as implicit.

Arguments nil {X}.

Now Coq will try to derive the argument of nil from the context surrounding an

occurrence of nil. For instance:

Set Printing All.

Check cons 1 nil.

% @cons nat (S O) (@nil nat) : list nat

Unset Printing All.

We define an infix notation for cons.
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Notation "x :: y" := (cons x y) (at level 60, right associativity).

Set Printing All.

Check 1::2::nil.

% @cons nat (S O) (@cons nat (S (S O)) (@nil nat)) : list nat

Unset Printing All.

We also define the bracket notation for lists.

Notation "[]" := nil.

Notation "[ x ]" := (cons x nil).

Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).

Set Printing All.

Check [1;2].

% @cons nat (S O) (@cons nat (S (S O)) (@nil nat)) : list nat

Unset Printing All.

Using informal notation, we define functions yielding the length, the concate-

nation, and the reversal of lists.

|[x1 ; . . . ;xn]| := n

[x1 ; . . . ;xm]++ [y1 ; . . . ;yn] := [x1 ; . . . ;xm ;y1 ; . . . ;yn]

rev [x1 ; . . . ;xn] := [xn ; . . . ;x1]

The formal definitions of these functions replace the dot-dot-dot notation with

structural recursion on the constructor representation of lists. The idea is ex-

pressed with the following equations.

|nil| = 0

|x :: A| = 1+ |A|

nil++B = B

x :: A++B = x :: (A++B)

rev nil = nil

rev (x :: A) = rev A++[x]

The Coq definitions are now straightforward.

Fixpoint length (X : Type) (A : list X) : nat :=

match A with

| nil ⇒ O

| _ :: A’⇒ S (length A’)

end.

Notation "| A |" := (length A) (at level 70).
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Fixpoint app (X : Type) (A B : list X) : list X :=

match A with

| nil ⇒ B

| x :: A’⇒ x :: app A’ B

end.

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint rev (X : Type) (A : list X) : list X :=

match A with

| nil ⇒ nil

| x :: A’⇒ rev A’ ++ [x]

end.

Compute rev [1;2;3].

% [3 ; 2 ; 1] : list nat

Properties of the list operations can be shown by structural induction on lists,

which has much in common with structural induction on numbers.

Lemma app_nil (X : Type) (A : list X) :

A ++ nil = A.

Proof.

induction A as [|x A] ; simpl.

− reflexivity.

− rewrite IHA. reflexivity.

Qed.

Note that the script applies the induction tactic with an annotation specifying

the variable names to be used in the inductive step. Try out what happens if you

replace x with b and A with B. The vertical bar in the annotation separates the

base case of the induction from the inductive step.

Lists are provided through the standard module List. The following com-

mands load the module and the notations coming with it.

Require Import List.

Import ListNotations.

Notation "| A |" := (length A) (at level 70).

This gives you everything we have defined so far. The notation command defines

the notation for length, which is not defined in the standard library.

Exercise 1.10.1 Prove the following lemmas.

Lemma app_assoc (X : Type) (A B C : list X) :

(A ++ B) ++ C = A ++ (B ++ C).

Lemma length_app (X : Type) (A B : list X) :

|A ++ B| = |A| + |B|.

2014-7-16 23



1 Types and Functions

Lemma rev_app (X : Type) (A B : list X) :

rev (A ++ B) = rev B ++ rev A.

Lemma rev_rev (X : Type) (A : list X) :

rev (rev A) = A.

1.11 Quantified Inductive Hypotheses

So far the inductive hypotheses of our inductive proofs were plain equations.

We will now see inductive proofs where the inductive hypothesis is a universally

quantified equation, and where the quantification is needed for the proof to go

through. As examples we consider correctness proofs for tail-recursive variants

of recursive functions.

If you are familiar with functional programming, you will know that the func-

tion rev defined in the previous section takes quadratic time to reverse a list.

This is due to the fact that each recursion step involves an application of the

function app. One can write a tail-recursive function that reverses lists in linear

time. The trick is to move the elements of the main list to a second list passed

as an additional argument.

Fixpoint revi (X : Type) (A B : list X) : list X :=

match A with

| nil ⇒ B

| x :: A’⇒ revi A’ (x :: B)

end.

The following lemma gives us a non-recursive characterization of revi.

Lemma revi_rev (X : Type) (A B : list X) :

revi A B = rev A ++ B.

We prove this lemma by induction on A. For the induction to go through, the

inductive hypothesis must hold for all lists B. To get this property, we move the

universal quantification for B from the assumptions to the claim before we start

the induction. We use the tactic revert to move the quantification.

Proof.

revert B. induction A as [|x A] ; simpl.

− reflexivity.

− intros B. rewrite IHA. rewrite app_assoc. simpl. reflexivity.

Qed.

Step through the script to see how the proof works. The tactic intros B moves

the universal quantification of B from the claim back to the assumptions.

Exercise 1.11.1 Prove the following lemma.
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Lemma rev_revi (X : Type) (A : list X) :

rev A = revi A nil.

Note that the lemma tells us how we can reverse lists with revi.

Exercise 1.11.2 Here is a tail-recursive function obtaining the length of a list

with an additional argument.

Fixpoint lengthi (X : Type) (A : list X) (n : nat) :=

match A with

| nil ⇒ n

| _ :: A’⇒ lengthi A’ (S n)

end.

Proof the following lemmas. The tactic omega will be helpful.

Lemma lengthi_length X (A : list X) n :

lengthi A n = |A| + n.

Lemma length_lengthi X (A : list X) :

|A| = lengthi A 0.

Exercise 1.11.3 Define a factorial function fact and a tail-recursive function facti

that computes factorials using an additional argument. Prove fact n = facti n 1

for all n. Use the tactic omega and the lemmas mult_plus_distr_l,

mult_plus_distr_r , mult_assoc, and mult_comm from the standard library.

1.12 Iteration as Polymorphic Higher-Order Function

We now define a function iter that yields fnx given n, f , and x. Speaking pro-

cedurally, fnx is obtained from x by applying n-times the function f . We base

the definition of iter on two equations:

iter 0 f x = x

iter (S n) f x = f (iter n f x)

For the definition of iter we need the type of x. Since this can be any type, we

take the type of x as argument.

Fixpoint iter (n : nat) (X : Type) (f : X→ X) (x : X) : X :=

match n with

| 0⇒ x

| S n’⇒ f (iter n’ f x)

end.
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Since we are working in implicit arguments mode, the type argument X of iter is

implicit.

The function iter formulates a recursion principle known as iteration or prim-

itive recursion. It also serves us as an example of a polymorphic higher-order

function. A function is polymorphic if it takes a type as argument, and higher-

order if it takes a function as argument.

Many operations can be expressed with iter . We consider addition.

Lemma iter_plus x y :

x + y = iter x S y.

Proof. induction x ; simpl ; congruence. Qed.

Note the use of the automation tactic congruence. This tactic can finish off proofs

if rewriting with unquantified equations and reflexivity suffice.

Subtraction is another operation that can be expressed with iter .

Lemma iter_minus x y :

x−y = iter y pred x.

Proof. induction y ; simpl ; omega. Qed.

The minus notation and the predecessor function pred are from the standard

library. Use the commands locate and Print to find out more.

The standard library provides iter under the name nat_iter .

Exercise 1.12.1 Prove the following lemma:

Lemma iter_mult x y :

x * y = iter x (plus y) 0.

Exercise 1.12.2 Prove the following lemma:

Lemma iter_shift X (f : X→ X) x n :

iter (S n) f x = iter n f (f x)

Exercise 1.12.3 Define a function power computing powers xn and prove the

following lemma.

Lemma iter_power x n :

power x n = iter n (mult x) 1.

Exercise 1.12.4 iter can compute factorials by iterating on pairs.

(0,0!)→ (1,1!)→ (2,2!)→ ·· · → (n,n!)

Write a factorial function fact and a step function step such that you can prove

the following lemmas.
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Lemma iter_fact_step n :

step (n, fact n) = (S n, fact (S n)).

Lemma iter_fact’ n :

iter n step (O,1) = (n, fact n).

Lemma iter_fact n :

fact n = snd (iter n step (O,1)).

Exercise 1.12.5 We can see iter n as a functional representation of the num-

ber n carrying with it the structural recursion coming with n. The type of the

functional representations is as follows.

Definition Nat := ∀ X : Type, (X→ X)→ X→ X.

Write conversion functions encode : nat → Nat and decode : Nat → nat and prove

decode (encode n) = n for every number n.

1.13 Options and Finite Types

We will define a function that for a number n yields a type with n elements. The

function will start from an empty type and n-times apply a function that for a

given type yields a type with one additional element.

Coq’s standard library defines an empty type Empty_set as an inductive type

without constructors:

Inductive Empty_set : Type := .

Since Empty_set is empty, it is inconsistent to assume that it has an element. In

fact, if we assume that Empty_set has an element, we can prove everything. For

instance:

Lemma vacuous_truth (x : Empty_set) :

1 = 2.

Proof. destruct x. Qed.

The proof is by case analysis over the assumed element x of Empty_set. Since

Empty_set has no constructor, we can prove the claim 1 = 2 for every construc-

tors of Empty_set. One says that the claim follows vacuously. Vacuous reasoning

is a basic logical principle.2

The type constructor option from the standard library can be applied to any

type and yields a type with one additional element.

2 From Wikipedia: A vacuous truth is a truth that is devoid of content because it asserts some-

thing about all members of a class that is empty or because it says “If A then B” when in fact A

is inherently false. For example, the statement “all cell phones in the room are turned off” may

be true simply because there are no cell phones in the room. In this case, the statement “all

cell phones in the room are turned on” would also be considered true, and vacuously so.
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Inductive option (X : Type) : Type :=

| Some : X→ option X

| None : option X.

The constructor Some yields the elements of X and the constructor None yields

the new element (none of the old elements). The elements of an option type are

called options. The standard library declares the type argument X of both Some

and None as implicit argument (check with Print).

We can now define a function fin : nat → Type such that fin n is a type with n

elements.

Definition fin (n : nat) : Type :=

nat_iter n option Empty_set.

Here are definitions naming the elements of the types fin 1, fin 2, and fin 3.

Definition a11 : fin 1 := @None Empty_set.

Definition a21: fin 2 := Some a11.

Definition a22 : fin 2 := @None (fin 1).

Definition a31: fin 3 := Some a21.

Definition a32 : fin 3 := Some a22.

Definition a33 : fin 3 := @None (fin 2).

For clarity we have specified the implicit argument of None. You may omit the

implicit arguments and leave it to Coq to insert them. Next we establish three

simple facts about finite types.

Goal ∀ n, fin (2+n) = option (fin (S n)).

Proof. intros n. reflexivity. Qed.

Goal ∀m n, fin (m+n) = fin (n+m).

Proof.

intros m n. f_equal. omega.

Qed.

Lemma fin1 (x : fin 1) :

x = None.

Proof.

destruct x as [x|].

− simpl in x. destruct x.

− reflexivity.

Qed.

Exercise 1.13.1 One can define a bijection between bool and fin 2. Show this fact

by completing the definitions and proving the lemmas shown below.

Definition fromBool (b : bool) : fin 2 :=

Definition toBool (x : fin 2) : bool :=

Lemma bool_fin b : toBool (fromBool b) = b.

Lemma fin_bool x : fromBool (toBool x) = x.
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Exercise 1.13.2 One can define a bijection between nat and option nat. Show

this fact by defining functions fromNat and toNat and by proving that they com-

mute.

Exercise 1.13.3 In Coq every function is total. Option types can be used to ex-

press partial functions as total functions.

a) Define a function find : ∀X : Type, (X → bool)→ list X → option X that given

a test p and a list A yields an element of A satisfying p if there is one.

b) Define a function minus_opt : nat → nat → option nat that yields x − y if

x ≥ y and None otherwise.

1.14 More about Functions

Functions are objects of our imagination. A function relates arguments with

results, where an argument is related with at most one result. One says that

functions map arguments to results.

Functions in Coq are very general in that they can take functions and types as

arguments and yield functions and types as results. For instance:

• The type constructor list is a function that maps types to types.

• The value constructor nil is a function that maps types to lists.

• The function plus maps numbers to functions that map numbers to numbers.

• The function fin maps numbers to types.

Coq describes functions, arguments, and results with syntactic objects called

terms. There are four canonical forms for terms describing functions:

1. A lambda abstraction λx : s.t.

2. A recursive abstraction fix f (x : s) : t := u.

3. A constructor c.

4. An application c t1 · · · tn of a constructor c to n ≥ 1 terms t1, . . . , tn.

The general form of a function type is ∀x : s.t. A function of type ∀x : s.t

relates every element x of type s with exactly one element of type t. One speaks

of a dependent function type if the argument variable x appears in t. If x does

not appear in t, there is no dependency and ∀x : s.t is written as s → t.

Check ∀ x : nat, nat.

% nat → nat : Type

In Coq, every function has a unique type. Here are examples of functions and
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their types:

andb : bool → bool → bool

cons : ∀X : Type, X → list X → list X

iter : nat → ∀X : Type, (X → X)→ X → X

fin : nat → Type

The functions andb, cons, and iter are cascaded, which means that they yield a

function when applied to an argument. One says that a cascaded function takes

more than one argument. The function andb takes 2 arguments, and cons takes 3

arguments. The function iter is more interesting. It takes at least 4 arguments,

but it may take additional arguments if the second argument is a function type:

iter 2 nat : (nat → nat)→ nat → nat

iter 2 (nat → nat) : ((nat → nat)→ nat → nat)→ (nat → nat)→ nat → nat

One says that a function of type ∀x : s.t is polymorphic if x ranges over types.

The constructors nil and cons are typical examples of polymorphic functions.

The function iter yields a polymorphic function for every argument.

Coq comes with reduction rules for terms. A reduction rule describes a com-

putation step. Coq is designed such that the application of reduction rules to

terms always terminates with a unique normal form. We say that a term evalu-

ates to its normal form. We have seen four reduction rules so far:

• The application of a lambda abstraction to a term can always be reduced (beta

reduction).

• A match on a constructor or the application of a constructor can always be

reduced.

• A defined name can always be reduced to the term the name is bound to

(unfolding).

• The application of a recursive abstraction to a constructor or the application

of a constructor can always be reduced.

Coq differs from functional programming languages in that its type discipline

is more general and in that it restricts recursion to structural recursion. In Coq,

types are first-class values and polymorphic types are first-class types, which is

not the case in functional programming languages. On the other hand, recursion

in Coq is always tied to an inductive type and every recursion step must take off

at least one constructor.
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1.15 Discussion and Remarks

A basic feature of Coq’s language are inductive types. We have introduced induc-

tive types for booleans, natural numbers, pairs, and lists. The elements of induc-

tive types are obtained with so-called constructors. Inductive types generalize

the structure underlying the Peano axioms for the natural numbers. Inductive

types are a basic feature of modern functional programming languages (e.g., ML

and Haskell). The first functional programming language with inductive types

was Hope, developed in the 1970’s in Edinburgh by Rod Burstall and others.

Inductive types are accompanied by structural case analysis, structural re-

cursion, and structural induction. Typical examples of recursive functions are

addition and multiplication of numbers and concatenation and reversal of lists.

We have also seen a polymorphic higher-order function iter formulating a recur-

sion scheme known as iteration.

Coq is designed such that evaluation always terminates. For this reason Coq

restricts recursion to structural recursion on inductive types. Every recursion

step must take off at least one constructor of a given argument.

The idea of cascaded functions appeared 1924 in a paper by Moses Schön-

finkel and was fully developed in the 1930’s by Alonzo Church and Haskell

Curry. Lambda abstractions and beta reduction were first studied in the 1930’s

by Alonzo Church and his students in an untyped syntactic system called lambda

calculus. The idea of dependent function types evolved in the 1970’s in the works

of Nicolaas de Bruijn, Jean-Yves Girard, and Per Martin-Löf.

Coq comes with many notational devices including user-defined infix nota-

tions and implicit arguments. It is very important to distinguish between no-

tational conveniences and abstract syntax. Notational conveniences are familiar

from mathematics and make it possible for humans to work with complex terms.

However, all semantic issues and all logical reasoning are defined on the abstract

syntax where all conveniences are removed and all details are filled in.

Coq supports the formulation and the proof of theorems. So far we have

just seen the tip of the iceberg. We have formulated equational theorems and

used case analysis, induction, and rewriting to prove them. In Coq, Proofs are

constructed by scripts, which are obtained with commands called tactics. A tactic

either resolves a proof goal or reduces a proof goal to one or several subgoals.

Proof scripts are constructed in interaction with Coq, where Coq applies the

proof rules and maintains and displays the open subgoals.

Proof scripts are programs that construct proofs. To understand a proof,

one steps with the Coq interpreter through the script constructing the proof and

looks at the proof goals obtained with the tactics. Eventually, we will learn that

Coq represents proofs as terms. If you are curious, you may use the command
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Print L to see the term serving as the proof of a lemma L.

Coq Summary

Type and Value Constructors from the Standard Library

bool, true, false, nat, O, S, prod, pair , list, nil, cons, Empty_set, option, Some,

None.

Defined Functions from the Standard Library

negb, andb, pred, plus, mult, minus, nat_iter , length, app, rev.

Term Variants

Names, applications, matches (match), lambda abstractions (fun), recursive ab-

stractions (fix).

Definitional Commands

Inductive, Definition, Fixpoint, Lemma, Example, Goal, Proof , Qed.

Tactics

destruct, induction, simpl, unfold, reflexivity, symmetry, f _equal, rewrite,

setoid_rewrite, apply, intros, revert, congruence, omega.

Notational Commands

Notation, Arguments, Set Implicit Arguments, Unset Strict Implicit.

Module Commands

Require Import, Import.

Query Commands

Check, Compute, Print, About, Locate, Set/Unset Printing All.

Make sure that for each of the above constructs you can point to examples in

the text of this chapter. To know more, consult the Coq online documentation at

coq.inria.fr.
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Logical statements are called propositions in Coq. So far we have only seen

equational propositions. We now extend our repertoire to propositions involving

connectives and quantifiers.

2.1 Logical Connectives and Quantifiers

When we argue logically, we often combine primitive propositions into com-

pound propositions using logical operations. The logical operations include con-

nectives like implication and quantifiers like “for all”. Here is an overview of the

logical operations we will consider.

Operation Notation Reading

conjunction A∧ B A and B

disjunction A∨ B A or B

implication A→ B if A, then B

equivalence A↔ B A if and only if B

negation ¬A not A

universal quantification ∀x :T .A for all x in T , A

existential quantification ∃x :T .A for some x in T , A

There are two different ways of assigning meaning to logical operations and

propositions. The classical approach commonly used in mathematics postulates

that every proposition has a truth value that is either true or false. The more

recent constructive approach defines the meaning of propositions in terms of

their proofs and does not rely on truth values. Coq and our presentation of

logic follow the constructive approach. The cornerstone of the constructive ap-

proach is the BHK interpretation,1 which relates proofs and logical operations

as follows.

• A proof of A∧ B consists of a proof of A and a proof of B.

• A proof of A∨ B is either a proof of A or a proof of B.

• A proof of A→ B is a function that for every proof of A yields a proof of B.

1 The name BHK interpretation reflects the origin of the scheme in the work of the mathemati-

cians Luitzen Brouwer, Arend Heyting, and Andrey Kolmogorov in the 1930’s.

33



2 Propositions and Proofs

• A proof of ∀x :T .A is a function that for every x :T yields a proof of A.

• A proof of ∃x :T .A consists of a term s : T and a proof of Axs .

The notation Axs stands for the proposition obtained from the proposition A by

replacing the variable x with the term s. One speaks of a substitution and says

that s is substituted for x. Equivalence and negation are missing in the above

list since they are definable with other connectives:

A↔ B := (A→ B)∧ (B → A)

¬A := A→ ⊥.

The symbol ⊥ represents the primitive proposition false that has no proof. To

give a proof of ¬A we thus have to give a function that yields for every proof

of A a proof of ⊥. If such a function exists, no proof of A can exist since no

proof of false exists.

In this chapter we will learn how Coq accommodates the logical operations

and the concomitant proof rules. We start with implication and universal quan-

tification.

2.2 Implication and Universal Quantification

Example: Symmetry of Equality

We begin with the proof of a proposition saying that equality is symmetric.

Goal ∀ (X : Type) (x y : X), x=y→ y=x.

Proof. intros X x y A. rewrite A. reflexivity. Qed.

The command Goal is like the command Lemma but leaves it to Coq to choose

a name for the lemma. The tactic intros takes away the universal quantifications

and the implication of the claim by representing the respective assumptions as

explicit assumptions of the proof goal.

X : Type

x : X

y : X

A : x = y

y = x

The rest of the proof is straightforward since we have the assumption A : x = y

saying that A is a proof of the equation x = y . The proof A can be used to

rewrite the claim y = x into the trivial equation y = y .

Recall the revert tactic and note that revert can undo the effect of intros.
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Exercise 2.2.1 Prove the following goal.

Goal ∀ x y, andb x y = true→ x = true.

Example: Modus Ponens

Our second example is a proposition stating a basic law for implication known

as modus ponens.

Goal ∀ X Y : Prop, X→ (X→ Y)→ Y.

Proof. intros X Y x A. exact (A x). Qed.

The proposition quantifies over all propositions X and Y since Prop is the type

of all propositions. The proof first takes away the universal quantifications and

the outer implications2 leaving us with the goal

X : Prop

Y : Prop

x : X

A : X → Y

Y

Given that we have a proof A of X → Y and a proof x of X, we obtain a proof of

the claim Y by applying the function A to the proof x.3 Coq accommodates this

reasoning with the tactic exact.

Example: Transitivity of Implication

Goal ∀ X Y Z : Prop, (X→ Y)→ (Y→ Z)→ X→ Z.

Proof. intros X Y Z A B x. exact (B (A x)). Qed.

Exercise 2.2.2 Prove that equality is transitive.

2.3 Predicates

Functions that eventually yield a proposition are called predicates. With predi-

cates we can express properties and relations. Here is a theorem involving two

predicates p and q and a nested universal quantification.

Goal ∀ p q : nat→ Prop, p 7→ (∀ x, p x→ q x)→ q 7.

2 Like the arrow for function types the arrow for implication adds missing parentheses to the

right, that is, X → (X → Y)→ Y elaborates to X → ((X → Y)→ Y).
3 Recall from Section 2.1 that proofs of implications are functions.
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Proof. intros p q A B. exact (B 7 A). Qed.

Think of p and q as properties of numbers. After the intros we have the goal

p : nat → Prop

q : nat → Prop

A : p 7

B : ∀x, p x → qx

q 7

The proof now exploits the fact that B is a function that yields a proof of q 7

when applied to 7 and a proof of p 7.

2.4 The Apply Tactic

The tactic apply applies proofs of implications in a backward manner.

Goal ∀ X Y Z : Prop, (X→ Y)→ (Y→ Z)→ X→ Z.

Proof. intros X Y Z A B x. apply B. apply A. exact x. Qed.

The tactic apply also works for universally quantified implications.

Goal ∀ p q : nat→ Prop, p 7→ (∀ x, p x→ q x)→ q 7.

Proof. intros p q A B. apply B. exact A. Qed.

Step through the proofs with Coq to understand.

Exercise 2.4.1 Prove the following goals.

Goal ∀ X Y, (∀ Z, (X→ Y→ Z)→ Z)→ X.

Goal ∀ X Y, (∀ Z, (X→ Y→ Z)→ Z)→ Y.

Exercise 2.4.2 Prove the following goals, which express essential properties of

booleans, numbers, and lists.

Goal ∀ (p : bool→ Prop) (x : bool),

p true→ p false→ p x.

Goal ∀ (p : nat→ Prop) (x : nat),

p O→ (∀ n, p n→ p (S n))→ p x.

Goal ∀ (X : Type) (p : list X→ Prop) (xs : list X),

p nil → (∀ x xs, p xs→ p (cons x xs))→ p xs.

Hint: Use case analysis and induction.
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2.5 Leibniz Characterization of Equality

What does it mean that two objects are equal? The mathematician and philoso-

pher Leibniz answered this question in an interesting way: Two objects are equal

if they have the same properties. We know enough to prove in Coq that Leibniz

was right.

Goal ∀ (X : Type) (x y : X),

(∀ p : X→ Prop, p x→ p y)→ x=y.

Proof. intros X x y A. apply (A (fun z⇒ x=z)). reflexivity. Qed.

Run the proof with Coq to understand. After the intros we have the goal

X : Type

x : X

y : X

A : ∀p : X → Prop. px → py

x = y

Applying the proof A to the predicate λz.x=z gives us a proof of the implication

x=x → x=y .4 Backward application of this proof reduces the claim to the trivial

claim x=x, which can be established with reflexivity.

Exercise 2.5.1 Prove the following goals.

Goal ∀ (X : Type) (x y : X),

x=y→ ∀ p : X→ Prop, p x→ p y.

Goal ∀ (X : Type) (x y : X),

(∀ p : X→ Prop, p x→ p y)→

forall p : X→ Prop, p y→ p x.

2.6 Propositions are Types

You may have noticed that Coq’s notations for implications and universal quan-

tifications are the same as the notations for function types. This goes well with

our assumption that the proofs of implications and universal quantifications are

functions (see Section 2.1). The notational coincidence is profound and reflects

the propositions as types principle, which accommodates propositions as types

taking the proofs of the propositions as members. The propositions as types

principle is also known as Curry-Howard correspondence after two of its inven-

tors.

4 λz. x=z is the mathematical notation for the function fun z => x=z, which for z yields the

equation x=z.

2014-7-16 37



2 Propositions and Proofs

There is a special universe Prop that takes exactly the propositions as mem-

bers. Universes are types that take types as members. Prop is a subuniverse of

the universe Type. Consequently, every member of Prop is a member of Type.

A function type s → t is actually a function type ∀x : s. t where the variable x

does not occur in t. Thus an implication s → t is actually a quantification∀x : s. t

saying that for every proof of s there is a proof of t. Note that the reduction

of implications to quantifications rests on the ability to quantify over proofs.

Constructive type theory has this ability since proofs are first-class citizens that

appear as members of types in the universe Prop.

The fact that implications are universal quantifications explains why the tac-

tics intros and apply are used for both implications and universal quantifications.

Given a function type∀x : s. t, we call x a bound variable. What concrete name

is chosen for a bound variable does not matter. Thus the notations ∀X : Type.X

and ∀Y : Type.Y denote the same type. Moreover, if we have a type ∀x : s. t

where x does not occur in t, we can omit x and just write s → t without losing

information. That the concrete names of bound variables do not matter is a basic

logic principle.

Exercise 2.6.1 Prove the following goals in Coq. Explain what you see.

Goal ∀ X : Type,

(fun x : X⇒ x) = (fun y : X⇒ y)

Goal ∀ X Y : Prop,

(X→ Y)→ ∀ x : X, Y.

Goal ∀ X Y : Prop,

(∀ x : X, Y)→ X→ Y.

Goal ∀ X Y : Prop,

(X→ Y) = (∀ x : X, Y).

2.7 Falsity and Negation

Coq comes with a proposition False that by itself has no proof. Given certain

assumptions, a proof of False may however become possible. We speak of in-

consistent assumptions if they make a proof of False possible. There is a basic

logic principle called explosion saying that from a proof of False one can obtain

a proof of every proposition. Coq provides the explosion principle through the

tactic contradiction.

Goal ⊥ → 2=3.

Proof. intros A. contradiction A. Qed.
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We also refer to the proposition False as falsity. The logical notation for False

is ⊥. With falsity Coq defines negation as ¬s := s → ⊥. So we can prove ¬s by

assuming a proof of s and constructing a proof of ⊥.

Goal ∀ X : Prop, X→ ¬¬ X.

Proof. intros X x A. exact (A x). Qed.

The proof script works since Coq automatically unfolds the definition of nega-

tion. The double negation ¬¬X unfolds into (X → ⊥) → ⊥. Here is another

example.

Goal ∀ X : Prop,

(X→ ¬ X)→ (¬ X→ X)→ ⊥.

Proof.

intros X A B. apply A.

− apply B. intros x. exact (A x x).

− apply B. intros x. exact (A x x).

Qed.

Sometimes the tactic exfalso is helpful. It replaces the claim with ⊥, which is

justified by the explosion principle.

Goal ∀ X : Prop,

¬¬ X→ (X→ ¬ X)→ X.

Proof. intros X A B. exfalso. apply A. intros x. exact (B x x). Qed.

Exercise 2.7.1 Prove the following goals.

Goal ∀ X : Prop, ¬¬¬ X→ ¬ X.

Goal ∀ X Y : Prop, (X→ Y)→ ¬ Y→ ¬ X.

Exercise 2.7.2 Prove the following goals.

Goal ∀ X : Prop, ¬¬ (¬¬ X→ X).

Goal ∀ X Y : Prop, ¬¬ (((X→ Y)→ X)→ X).

Exercise 2.7.3 Prove the following proposition in Coq using only the tactic exact.

Goal ∀ X:Prop,

(X→ ⊥)→ (¬ X→ ⊥)→ ⊥.
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2.8 Conjunction and Disjunction

The tactics for conjunctions are destruct and split.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.

Proof.

intros X Y A. destruct A as [x y]. split .

− exact y.

− exact x.

Qed.

The tactics for disjunctions are destruct, left, and right.

Goal ∀ X Y : Prop, X ∨ Y→ Y ∨ X.

Proof.

intros X Y A. destruct A as [x|y].

− right. exact x.

− left. exact y.

Qed.

Run the proof scripts with Coq to understand. Note that we can prove a con-

junction s ∧ t if and only if we can prove both s and t, and that we can prove a

disjunction s ∨ t if and only if we can prove either s or t.

The intros tactic destructures proofs when given a destructuring pattern. This

leads to shorter proof scripts.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.

Proof.

intros X Y [x y]. split .

− exact y.

− exact x.

Qed.

Goal ∀ X Y : Prop, X ∨ Y→ Y ∨ X.

Proof.

intros X Y [x|y].

− right. exact x.

− left. exact y.

Qed.

Nesting of destructuring patterns is possible:

Goal ∀ X Y Z : Prop,

X ∨ (Y ∧ Z)→ (X ∨ Y) ∧ (X ∨ Z).

Proof.

intros X Y Z [x|[y z ]].

− split; left ; exact x.
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− split; right.

+ exact y.

+ exact z.

Qed.

Note that the bullet + is used to indicate proofs of subgoals of the last main

subgoal. One can use three levels of bullets, − for top level subgoals, + for

second level subgoals, and ∗ for third level subgoals. One can also separate part

of a proof using curly braces {· · · } inside which one can restart using the bullets

−, +, and ∗. In this way Coq supports an arbitrary number of subgoal levels.

Exercise 2.8.1 Prove the following goals.

Goal ∀ X : Prop,

¬ (X ∨ ¬ X)→ X ∨ ¬ X.

Goal ∀ X : Prop,

(X ∨ ¬ X→ ¬ (X ∨ ¬ X))→ X ∨ ¬ X.

Goal ∀ X Y Z W : Prop,

(X→ Y) ∨ (X→ Z)→ (Y→ W) ∧ (Z→ W)→ X→ W.

Exercise 2.8.2 Prove the following goals.

Goal ∀ X : Prop, ¬¬ (X ∨ ¬ X).

Goal ∀ X Y : Prop, ¬¬ ((X→ Y)→ ¬ X ∨ Y).

2.9 Equivalence and Rewriting

Coq defines equivalence as s ↔ t := (s → t)∧ (t → s). Thus an equivalence s ↔ t

is provable if and only if the implications s → t and t → s are both provable. Coq

automatically unfolds equivalences.

Lemma and_com : ∀ X Y : Prop, X ∧ Y ↔ Y ∧ X.

Proof.

intros X Y. split .

− intros [x y]. split .

+ exact y.

+ exact x.

− intros [y x]. split .

+ exact x.

+ exact y.

Qed.

Lemma deMorgan : ∀ X Y : Prop, ¬ (X ∨ Y) ↔ ¬ X ∧ ¬ Y.
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Proof.

intros X Y. split .

− intros A. split.

+ intros x. apply A. left. exact x.

+ intros y. apply A. right. exact y.

− intros [A B] [x|y].

+ exact (A x).

+ exact (B y).

Qed.

One can use the tactic apply with equivalences. Since an equivalence is a con-

junction of implications, the apply tactic will choose one of the two implications

to use. The user can choose which of the two implications to use by using the

tactic apply with one of the arrows → and ← (similar to the tactic rewrite).

One can often reason with equivalences in the same ways as with equations.

Part of the justification for this is the fact that logical equivalence is an equiva-

lence relation (i.e., it is reflexive, symmetric and transitive). A number of lemmas

can justify rewriting with equivalences in many (but not all) contexts. For exam-

ple, the following result allows us rewrite with equivalences below conjunctions.

Goal ∀ X Y Z W : Prop, (X ↔ Y)→ (Z ↔ W)→ (X ∧ Z ↔ Y ∧ W).

We leave the proof of this goal as an exercise.

In contexts where rewriting with equivalences is allowed, we may use the

tactic setoid_rewrite.5

Goal ∀ X Y Z : Prop, ¬ (X ∨ Y) ∧ Z ↔ Z ∧ ¬ X ∧ ¬ Y.

Proof.

intros X Y Z.

setoid_rewrite deMorgan.

apply and_com.

Qed.

Goal ∀ X : Type, ∀ p q : X→ Prop, (∀ x, ¬ (p x ∨ q x))→ ∀ x, ¬ p x ∧ ¬ q x.

Proof.

intros X p q A.

setoid_rewrite ← deMorgan.

exact A.

Qed.

One can also use the tactics reflexivity, symmetry and transitivity to reason

about equivalences.

Goal ∀ X : Prop, X ↔ X.

Proof. reflexivity. Qed.

5 Recall that the tactic setoid_rewrite is provided by the standard library module Omega.
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Goal ∀ X Y : Prop, (X ↔ Y)→ (Y ↔ X).

Proof. intros X Y A. symmetry. exact A. Qed.

Goal ∀ X Y Z : Prop, (X ↔ Y)→ (Y ↔ Z)→ (X ↔ Z).

Proof.

intros X Y Z A B. transitivity Y.

− exact A.

− exact B.

Qed.

Proof scripts done using the tactics setoid_rewrite, reflexivity, symmetry, and

transitivity to reason with equivalences can always be replaced by proof scripts

that do not use these tactics. Some of the exercises below should give the reader

an idea how such a replacement could be accomplished.

Exercise 2.9.1 Prove equivalence is an equivalence relation without using the

tactics setoid_rewrite, reflexivity, symmetry and transitivity.

Goal ∀ X : Prop, X ↔ X.

Goal ∀ X Y : Prop, (X ↔ Y)→ (Y ↔ X).

Goal ∀ X Y Z : Prop, (X ↔ Y)→ (Y ↔ Z)→ (X ↔ Z).

Exercise 2.9.2 Prove the following facts which justify rewriting with equiva-

lences in certain contexts. Do not use the tactics setoid_rewrite, reflexivity,

symmetry and transitivity.

Goal ∀ (X Y Z W : Prop), (X ↔ Y)→ (Z ↔ W)→ (X ∧ Z ↔ Y ∧ W).

Goal ∀ (X:Type) (p q:X→ Prop), (∀ x:X, p x ↔ q x)→ ((∀ x:X, p x) ↔ ∀ x:X, q x).

Exercise 2.9.3 Prove the following facts using setoid_rewrite, reflexivity,

symmetry and transitivity. You may use the lemmas deMorgan and and_com.

Goal ∀ X Y Z : Prop, X ∧ ¬ (Y ∨ Z) ↔ (¬ Y ∧ ¬ Z) ∧ X.

Goal ∀ X : Type, ∀ p q : X→ Prop, (∀ x, ¬ (p x ∨ q x)) ↔ ∀ x, ¬ p x ∧ ¬ q x.

Exercise 2.9.4 Prove the following goals.

Goal ∀ X Y : Prop, X ∧ (X ∨ Y) ↔ X.

Goal ∀ X Y : Prop, X ∨ (X ∧ Y) ↔ X.

Goal ∀ X:Prop, (X→ ¬ X)→ X ↔ ¬¬ X.

Exercise 2.9.5 (Impredicative Characterizations) It turns out that falsity, nega-

tions, conjunctions, disjunctions, and even equations are all equivalent to propo-

sitions obtained with just implication and universal quantification. Prove the fol-

lowing goals to get familiar with this so-called impredicative characterizations.
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Goal ⊥ ↔ ∀ Z : Prop, Z.

Goal ∀ X : Prop,

¬ X ↔ ∀ Z : Prop, X→ Z.

Goal ∀ X Y : Prop, X ∧ Y ↔ ∀ Z : Prop, (X→ Y→ Z)→ Z.

Goal ∀ X Y : Prop, X ∨ Y ↔ ∀ Z : Prop, (X→ Z)→ (Y→ Z)→ Z.

Goal ∀ (X : Type) (x y : X), x=y ↔ ∀ p : X→ Prop, p x→ p y.

2.10 Automation Tactics

Coq provides various automation tactics that help in the construction of proofs.

In a proof script, an automation tactic can always be replaced by a sequence of

basic tactics.

A simple automation tactic is assumption. This tactic solves goals whose claim

appears as an assumption.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.

Proof. intros X Y [x y]. split ; assumption. Qed.

The automation tactic auto is more powerful. It uses the tactics intros, apply,

assumption, reflexivity and a few others to construct a proof. We may use auto

to finish up proofs once the goal has become obvious.

Goal ∀ (X : Type) (p : list X→ Prop) (xs : list X),

p nil → (∀ x xs, p xs→ p (cons x xs))→ p xs.

Proof. induction xs ; auto. Qed.

The automation tactic tauto solves every goal that can be solved with the

tactics intros and reflexivity, the basic tactics for falsity, implication, conjunction,

and disjunction, and the definitions of negation and equivalence.

Goal ∀ X : Prop, ¬ (X ↔ ¬ X).

Proof. τto. Qed.

2.11 Existential Quantification

The tactics for existential quantifications are destruct and exists.6

Goal ∀ (X : Type) (p q : X→ Prop),

(∃ x, p x ∧ q x)→ ∃ x, p x.

6 The existential quantifier ∃ can be written as the keyword exists in Coq code. When we display

Coq code, we always replace the string exists with the symbol ∃. For this reason the tactic exists

appears as the symbol ∃ in Coq code.

44 2014-7-16



2.11 Existential Quantification

Proof.

intros X p q A. destruct A as [x B]. destruct B as [C _].

∃ x. exact C.

Qed.

Run the proof scripts with Coq to understand.

The diagonal law is a simple fact about nonexistence that has amazing con-

sequences. One such consequence is the undecidability of the halting problem.

We state the diagonal law as follows:

Definition diagonal : Prop := ∀ (X : Type) (p : X→ X→ Prop),

¬ ∃ x, ∀ y, p x y ↔ ¬ p y y.

If X is the type of all Turing machines and pxy says that x halts on the string

representation of y , the diagonal law says that there is no Turing machine x

such that x halts on a Turing machine y if and only if y does not halt on its

string representation.

The proof of the diagonal law is not difficult.

Lemma circuit (X : Prop) : ¬ (X ↔ ¬ X).

Proof. τto. Qed.

Goal diagonal.

Proof. intros X p [x A]. apply (@circuit (p x x)). exact (A x). Qed.

We can prove the diagonal law without a lemma if we use the tactic specialize.

Goal diagonal.

Proof. intros X p [x A]. specialize (A x). τto. Qed.

A disequation s≠t is a negated equation ¬(s=t). We prove the correctness of

a characterization of disequality that employs existential quantification.

Goal ∀ (X : Type) (x y : X),

x ≠ y ↔ ∃ p : X→ Prop, p x ∧ ¬ p y.

Proof.

split .

− intros A. ∃ (fun z⇒ x = z). auto.

− intros [p [A B]] C. apply B. rewrite ← C. apply A.

Qed.

Note that split tacitly introduces X, x, and y .

Exercise 2.11.1 Prove the De Morgan law for existential quantification.

Goal ∀ (X : Type) (p : X→ Prop),

¬ (∃ x, p x) ↔ ∀ x, ¬ p x.

Exercise 2.11.2 Prove the exchange rule for existential quantifications.
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Goal ∀ (X Y : Type) (p : X→ Y→ Prop),

(∃ x, ∃ y, p x y) ↔ ∃ y, ∃ x, p x y.

Exercise 2.11.3 (Impredicative Characterization) Prove the following goal. It

shows that existential quantification can be expressed with implication and uni-

versal quantification.

Goal ∀ (X : Type) (p : X→ Prop),

(∃ x, p x) ↔ ∀ Z : Prop, (∀ x, p x→ Z)→ Z.

Exercise 2.11.4 Below are characterizations of equality and disequality based on

reflexive relations. Prove the correctness of the characterizations.

Goal ∀ (X : Type) (x y : X),

x = y ↔ ∀ r : X→ X→ Prop, (∀ z : X, r z z)→ r x y.

Goal ∀ (X : Type) (x y : X),

x ≠ y ↔ ∃ r : X→ X→ Prop, (∀ z : X, r z z) ∧ ¬ r x y.

Hint for first goal: Use the tactic specialize and simplify the resulting assumption

with simpl in A where A is the name of the assumption.

Exercise 2.11.5 Prove the following goal.

Goal ∀ (X: Type) (x : X) (p : X→ Prop), ∃ q : X→ Prop,

q x ∧ (∀ y, p y→ q y) ∧ ∀ y, q y→ p y ∨ x = y.

Exercise 2.11.6

a) Prove the following goal.

Goal ∀ (X : Type) (Y : Prop) ,

X→ Y ↔ (∃ x : X, ⊤)→ Y.

b) Explain why s → t is a proposition if s is a type and t is a proposition.

2.12 Basic Proof Rules

By now we have conducted many proofs in Coq. In this chapter we mostly proved

general properties of the logical connectives and quantifiers. The proofs were

constructed with a small set of tactics, where every tactic performs a basic proof

step. The proof steps performed by the tactics can be described by the proof

rules appearing in Figure 2.1. We may say that the rules describe basic logic

principles and that the tactics implement these principles.

Each proof rule says that a proof of the conclusion (the proposition appearing

below the line) can be obtained from proofs of the premises (the items appearing
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s ⇒ t

s → t

s → t s

t

x : s ⇒ t

∀x : s. t

∀x : s. t u : s

txu

⊥

u

s t

s ∧ t

s ∧ t s, t ⇒ u

u

s

s ∨ t

t

s ∨ t

s ∨ t s ⇒ u t ⇒ u

u

u : s txu

∃x : s. t

∃x : s. t x : s , t ⇒ u

u

Figure 2.1: Basic proof rules

above the line). The notation s ⇒ t used in some premises says that there is a

proof of t under the assumption that there is a proof of s. The notation u : s

says that the term u has type s, and the notation s xt stands for the proposition

obtained from s by replacing x with t.

We explain one of the proof rules for disjunctions in detail.

s ∨ t s ⇒ u t ⇒ u

u

The rule says that we can obtain a proof of a proposition u if we are given a

proof of a disjunction s ∨ t, a proof of u assuming a proof of s, and a proof of u

assuming a proof of t. The rule is justified since a proof of the disjunction s ∨ t

gives us a proof of either s or t. Speaking more generally, the rule tells us that

we can do a case analysis if we have a proof of a disjunction. Coq implements

the rule in a backward fashion with the tactic destruct.

A : s ∨ t

u destruct A as [B|C]

B : s

u

C : t

u

Each row in Figure 2.1 describes the rules for one particular family of propo-

sitions. The rules on the left are called introduction rules, and the rules on the
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right are called elimination rules. The introduction rule for a logical operation O

tells us how we can directly prove propositions obtained with O, and the elim-

ination rule tells us how we can make use of a proof of a proposition obtained

with O. For most families of propositions there is exactly one introduction and

exactly one elimination rule. The exceptions are falsity (no introduction rule) and

disjunctions (two introduction rules). Coq realizes the rules in Figure 2.1 with

the following tactics.

introduction elimination

→ intros apply, exact

∀ intros apply, exact

⊥ contradiction, exfalso

∧ split destruct

∨ left, right destruct

∃ exists destruct

There are no proof rules for negation and equivalence since these logical con-

nectives are defined on top of the basic logical connectives.

¬s := s → ⊥

s ↔ t := (s → t)∧ (t → s)

The proof rules in Figure 2.1 were first formulated and studied by Gerhard

Gentzen in 1935. They are known as intuitionistic natural deduction rules.

Exercise 2.12.1 Above we describe the elimination rule for disjunction in detail

and relate it to a Coq tactic. Make sure that you can discuss each rule in Figure 2.1

in this fashion.

2.13 Proof Rules as Lemmas

Coq can express proof rules as lemmas. Here are the lemmas for the introduction

and the elimination rule for conjunctions.

Lemma AndI (X Y : Prop) :

X→ Y→ X ∧ Y.

Proof. τto. Qed.

Lemma AndE (X Y U : Prop) :

X ∧ Y→ (X→ Y→ U)→ U.

Proof. τto. Qed.

To apply the proof rules, we can now apply the lemmas.

Goal ∀ X Y : Prop, X ∧ Y→ Y ∧ X.
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Proof.

intros X Y A. apply (AndE A).

intros x y. apply AndI.

− exact y.

− exact x.

Qed.

If you look at the applications of the lemmas in the proof above, it becomes

clear that in Coq the name of a lemma is actually the name of the proof of the

lemma. Since the statement of a lemma is typically universally quantified, the

proof of a lemma is typically a proof generating function. Thus lemmas can be

applied as you see it in the above proof scripts. When we represent a proof rule

as a lemma, the proposition of the lemma formulates the rule as we see it, and

the proof of the lemma is a function constructing a proof of the conclusion of

the rule from the proofs required by the premises of the rule.

Next we represent the proof rules for existential quantifications as lemmas.

Given a proposition ∃x : s.t, we face a bound variable x that may occur in the

term t. To preserve the binding, we represent the proposition t as the predicate

λx : s.t.

Lemma ExI (X : Type) (p : X→ Prop) :

forall x : X, p x→ ∃ x, p x.

Proof. intros x A. ∃ x. exact A. Qed.

Lemma ExE (X : Type) (p : X→ Prop) (U : Prop) :

(∃ x, p x)→ (∀ x, p x→ U)→ U.

Proof. intros [x A] B. exact (B x A). Qed.

We can now prove propositions involving existential quantifications without us-

ing the tactics exists and destruct.

Goal ∀ (X : Type) (p q : X→ Prop),

(∃ x, p x ∧ q x)→ ∃ x, p x.

Proof.

intros X p q A. apply (ExE A).

intros x B. apply (AndE B). intros C _.

exact (ExI C).

Qed.

Exercise 2.13.1 Formulate the introduction and elimination rules for disjunc-

tions as lemmas and use the lemmas to prove the commutativity of disjunction.

2.14 Inductive Propositions

Recall that Coq provides for the definition of inductive types. So far we have used

this facility to populate the universe Type with types providing booleans, natural

2014-7-16 49



2 Propositions and Proofs

numbers, lists, and a few other families of values. It is also possible to populate

the universe Prop with inductive types. We will speak of inductive propositions

following the convention that types in Prop are called propositions. Here are the

definitions of two inductive propositions from Coq’s standard library.7

Inductive ⊤ : Prop :=

| I : ⊤.

Inductive ⊥ : Prop := .

Recall that the proofs of a proposition A are the members of the type A. Thus

the proposition True has exactly one proof (i.e., the proof constructor I ), and the

proposition False has no proof (since we defined False with no proof constructor).

By case analysis over the constructors of True we can prove that True has

exactly one proof.

Goal ∀ x y : ⊤, x=y.

Proof. intros x y. destruct x. destruct y. reflexivity. Qed.

By case analysis over the constructors of False we can prove that from a proof of

False we can obtain a proof of every proposition.

Goal ∀ X : Prop, ⊥ → X.

Proof. intros X A. destruct A. Qed.

The case analysis over the proofs of False immediately succeeds since False has

no constructor. We have discussed this form of reasoning in Section 1.13 where

we considered the type void.

Coq defines conjunction and disjunction as inductive predicates (i.e., induc-

tive type constructors into Prop).8

Inductive and (X Y : Prop) : Prop :=

| conj : X→ Y→ and X Y.

Inductive or (X Y : Prop) : Prop :=

| or_introl : X→ or X Y

| or_intror : Y→ or X Y.

Note that the inductive definitions of conjunction and disjunction follow exactly

the BHK interpretation: A proof of X ∧ Y consists of a proof of X and a proof of

Y , and a proof of X ∨Y consists of either a proof of X or a proof of Y . Also note

that the definition of conjunction mirrors the definition of the product operator

prod in Section 1.9.

Coq defines existential quantification as an inductive predicate that takes a

type and a predicate as arguments:

7 Use the command Print to look up the definitions
8 Use the commands Set Printing All and Print to find out the definitions of the infix notations

“∧” and “∨”.
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Inductive ex (X : Type) (p : X→ Prop) : Prop :=

| ex_intro : ∀ x : X, p x→ ex p.

With this definition an existential quantification ∃x : s.t is represented as the

application ex (λx : s.t). This way the binding of the local variable x is delegated

to the predicate λx : s.t. We have used this technique before to formulate the

introduction and elimination rules for existential quantifications as lemmas (see

Section 2.13).

Negation and equivalence are defined with plain definitions in Coq’s standard

library:

Definition not (X : Prop) : Prop := X→ ⊥.

Definition iff (X Y : Prop) : Prop := (X→ Y) ∧ (Y→ X).

Exercise 2.14.1 Prove the commutativity of disjunction without using the tactics

left and right.

Exercise 2.14.2 Define your own versions of the logical operations and prove

that they agree with Coq’s predefined operations. Choose names different from

Coq’s predefined names to avoid conflicts.

Exercise 2.14.3 One can characterize negation with the following introduction

and elimination rules not using falsity.

x : Prop, s ⇒ x

¬s

¬s s

u

The introduction rule requires a proof of an arbitrary proposition x under the

assumption that a proof of s is given.

a) Formulate the rules as lemmas and prove the lemmas.

b) Give an inductive definition of negation based on the introduction rule.

c) Prove the elimination lemma for your inductive definition of negation.

2.15 An Observation

Look at the introduction rules for conjunction, disjunction, and existential quan-

tification. If we formulate these rules as lemmas, we get exactly the types of the

proof constructors of the inductive definitions of the respective logical opera-

tions.

Given the inductive definition of a logical operation, we can prove the elim-

ination lemma for the operation. Since the inductive definition is only based
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on the introduction rule of the operation, we can see the elimination rule as a

consequence of the introduction rule.

We can also go from the elimination rules to the introduction rules. Look at

the impredicative characterization of the logical operations in terms of implica-

tion and universal quantification appearing in Exercises 2.9.5 and 2.11.3. These

characterizations reformulate the elimination rules of the logical operations. If

we define a logical operation based on its impredicative characterization, we can

prove the corresponding introduction and elimination lemmas. For conjunction

we get the following development.

Definition AND (X Y : Prop) : Prop :=

forall Z : Prop, (X→ Y→ Z)→ Z.

Lemma ANDI (X Y : Prop) :

X→ Y→ AND X Y.

Proof. intros x y Z. auto. Qed.

Lemma ANDE (X Y Z: Prop) :

AND X Y→ (X→ Y→ Z)→ Z.

Proof. intros A. exact (A Z). Qed.

Lemma AND_agree (X Y : Prop) :

AND X Y ↔ X ∧ Y.

Proof.

split .

− intros A. apply A. auto.

− intros [x y] Z A. apply A ; assumption.

Qed.

Exercise 2.15.1 Define disjunction with a plain definition based on the impred-

icative characterization in Exercise 2.9.5. Prove an introduction, an elimination,

and an agreement lemma for your disjunction. Carry out the same program for

the existential quantifier.

2.16 Excluded Middle

In Mathematics, one assumes that every proposition is either false or true. Con-

sequently, if X is a proposition, the proposition X ∨ ¬X must be true. The

assumption that X ∨¬X is true for every proposition X is known as principle of

excluded middle, XM for short. Here is a definition of XM in Coq.

Definition XM : Prop := ∀ X : Prop, X ∨ ¬ X.
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Coq can neither prove XM nor ¬XM . This means that we can consistently

assume XM in Coq. The philosophy here is that XM is a basic mathematical as-

sumption but not a basic proof rule. By not building in XM , we can make explicit

which proofs rely on XM . Logical systems that build in XM are called classical,

and systems not building in XM are called constructive or intuitionistic.

Exercise 2.16.1 Prove the following goals. They state consequences of the De

Morgan laws for conjunction and universal quantification whose proofs require

the use of excluded middle.

Goal ∀ X Y : Prop,

XM→ ¬ (X ∧ Y)→ ¬ X ∨ ¬ Y.

Goal ∀ (X : Type) (p : X→ Prop),

XM→ ¬ (∀ x, p x)→ ∃ x, ¬ p x.

Exercise 2.16.2 Prove that the following propositions are equivalent. There are

short proofs if you use tauto.

Definition XM : Prop := ∀ X : Prop, X ∨ ¬ X. (* excluded middle *)

Definition DN : Prop := ∀ X : Prop, ¬¬ X→ X. (* double negation *)

Definition CP : Prop := ∀ X Y : Prop, (¬ Y→ ¬ X)→ X→ Y. (* contraposition *)

Definition Peirce : Prop := ∀ X Y : Prop, ((X→ Y)→ X)→ X. (* Peirce’s Law *)

Exercise 2.16.3 (Drinker’s Paradox) Consider a bar populated by at least one

person. Using excluded middle, one can prove that one can pick some person

in the bar such that everyone in the bar drinks Whiskey if this person drinks

Whiskey. Do the proof in Coq.

Lemma drinker (X : Type) (d : X→ Prop) :

XM→ (∃ x : X, ⊤)→ ∃ x, d x→ ∀ x, d x.

Exercise 2.16.4 (Glivenko’s Theorem) A proposition is pure if it is either a vari-

able, falsity, or an implication, negation, conjunction, or disjunction of pure

propositions. Valery Glivenko showed in 1929 that a pure proposition is prov-

able classically if and only if its double negation is provable intuitionistically.

That is, if s is a pure proposition, then XM → s is provable in Coq if and only if

¬¬s is provable in Coq. This tells us that tauto can prove the following goals.

Goal ∀ X : Prop,

¬¬ (X ∨ ¬ X).

Goal ∀ X Y : Prop,

¬¬ (((X→ Y)→ X)→ X).

Goal ∀ X Y : Prop,

¬¬ (¬ (X ∧ Y) ↔ ¬ X ∨ ¬ Y).
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Goal ∀ X Y : Prop,

¬¬ ((X→ Y) ↔ (¬ Y→ ¬ X)).

Do the proofs without using tauto and try to find out why the outer double

negation can replace excluded middle.

Exercise 2.16.5 A proposition s is propositionally decidable if the proposition

s ∨¬s is provable. Prove that the following propositions are propositionally de-

cidable.

a) ∀ X : Prop, ¬ (X ∨ ¬ X)

b) ∃ X : Prop, ¬ (X ∨ ¬ X)

c) ∀ P : Prop, ∃ f : Prop→ Prop, ∀ X Y : Prop,

(X ∧ P→ Y) ↔ (X→ f Y)

d) ∀ P : Prop, ∃ f : Prop→ Prop, ∀ X Y : Prop,

(X→ Y ∧ P) ↔ (f X→ Y)

2.17 Discussion and Remarks

Our treatment of propositions and proofs is based on the constructive approach,

which sees proofs as first-class objects and defines the meaning of propositions

by relating them to their proofs. In contrast to the classical approach, no notion

of truth value is needed. Our starting point is the BHK interpretation, which

identifies the proofs of implications and quantifications as functions. The BHK

interpretation is refined by the propositions as types principle, which models

implications and universal quantification as function types such that the proofs

of a proposition appear as the members of the type representing the proposi-

tion. As it turns out, universal quantification alone suffices to express all logical

operations (impredicative characterizations).

The ideas of the constructive approach developed around 1930 and led to the

BHK interpretation (Brouwer, Heyting, Kolmogorov). A complementary achieve-

ment is the system of natural deduction (i.e., basic proof rules) formulated in

1935 by Gerhard Gentzen. While the BHK interpretation starts with proofs as

first-class objects, Gentzen’s approach takes the proof rules as starting point

and sees proofs as derivations obtained with the rules. Given the BHK interpre-

tation, the correctness of the proof rules can be argued. Given the proof rules,

the correctness of the BHK interpretation can be argued.

A formal model providing functions as assumed by the BHK interpretation

was developed in the 1930’s by Alonzo Church under the name lambda calculus.

The notion of types was first formulated by Bertrand Russell around 1900. A

typed lambda calculus was published by Alonzo Church in 1940. Typed lambda
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calculus later developed into constructive type theory, which became the foun-

dation for Coq.

The correspondence between propositions and types was recognized by Curry

and Howard for pure propositional logic and first reported about in a paper from

1969. The challenge then was to formulate a type theory strong enough to model

quantifications as propositions. For such a type theory dependent function types

are needed. Dependently typed type theories were developed by Nicolaas de

Bruijn, Per Martin-Löf, and Jean-Yves Girard around 1970. Coq’s type theory

originated in 1985 (Coquand and Huet) and has been refined repeatedly.

2.18 Tactics Summary

intros x1 . . . xn introduces implications and universal quantifications

apply t reduces claim by backward application of proof function t

exact t Solves goal with proof t

contradiction t Soves goal by explosion if t is proof of ⊥

exfalso Changes claim to ⊥ (explosion)

split splits conjunctive claim

left reduces disjunctive claim to left constituent

right reduces disjunctive claim to right constituent

exists t instantiates existential claim with witness t

specialize (x t) instantiates assumption x with t

assumption solves goals whose claim appears as assumption

auto tries to solve goal with intros, apply, assumption, reflexivity, . . .

τto solves goals solvable by pure propositional reasoning
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Propositional Equality

In this chapter we study equality in Coq. Equality in Coq rests on conversion,

an equivalence relation on terms coming with the type theory underlying Coq.

There is the basic assumption that convertible terms represent the same object.

Moreover, evaluation steps respect conversion in that they rewrite terms to con-

vertible terms.

We will see many basic proofs involving equality. For instance, we will prove

that the number 1 is different from 2, and that constructors like S or cons are

injective. We will also prove that the type nat is different from the type bool. We

will study these proofs at the level of the underlying type theory.

3.1 Conversion Principle

The type theory underlying Coq comes with an equivalence relation on terms

called convertibility. The type theory assumes that convertible terms have the

same meaning. This assumption is expressed in the conversion principle, which

says that convertible types have the same elements. Applied to propositions,

the conversion principle says that a proof s of a proposition t is also a proof of

every proposition t′ that is convertible with t. Thus if we search for a proof of

a proposition t, we can switch to a convertible proposition t′ and search for a

proof of t′.

The convertibility relation is defined as the least equivalence relation on terms

that is compatible with the term structure and certain conversion rules. Conver-

sion rules can be applied in both directions (i.e., from left to right and from right

to left). For the terms introduced so far we have the following conversion rules.

• Alpha conversion. Consistent renaming of local variables. For instance,

λx : s.x and λy : s.y are alpha convertible.

• Beta conversion. The terms (λx : s.t)u and txu are beta convertible. Beta

conversion is the undirected version of beta reduction. The direction from txu
to (λx : s.t)u is called beta expansion. Terms of the form (λx : s.t)u are

called beta redexes.
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• Eta conversion. The terms λx : s.tx and t are eta convertible if x does not

occur in t and both terms have the same type. The direction from λx : s.tx

to t is called eta reduction, and the reverse direction is called eta expansion.

Eta reduction eliminates unnecessary lambda abstractions.

• Delta conversion. A defined name x and the term t it is bound to are convert-

ible. The direction from the name to the term is called unfolding, the other

direction is called folding.1

• Match conversion. The undirected version of match reduction.

• Fix conversion. The undirected version of fix reduction.

Since the computation rules are directed versions of the conversion rules for

lambda abstractions (beta), matches, fixes, and defined names (delta), every eval-

uation step is a conversion step. Thus a term is always convertible to its normal

form.

Coq comes with various conversion tactics making it possible to convert the

claim and the assumptions of proof goals. Such conversions are logically jus-

tified by the conversion principle. We will see the conversion tactics change,

pattern, hnf , cbv, simpl, unfold, and fold. The following examples do not prove

interesting lemmas but illustrate the conversion rules and the conversion tactics.

Goal ¬¬⊤.

Proof. ¬¬True

change (¬⊤ → ⊥). ¬True→ False

change (¬(⊤ → ⊥)). ¬(True→ False)

change (¬¬⊤). ¬¬True

hnf. ¬True→ False

change (¬¬⊤). ¬¬True

cbv. (True→ False)→ False

change (¬¬⊤). ¬¬True

simpl. ¬¬True

pattern ⊤. (λp : Prop.¬¬p)True

pattern not at 2. (λf : Prop→Prop.(λp : Prop.¬f p)True)not

hnf. ¬True→ False

exact (fun f⇒ f I).

Show Proof.

Qed.

The tactic change t changes the current claim to t provided the current claim

and t are convertible. The tactic change gives us a means to check with Coq

whether two terms are convertible. The tactic hnf (head normal form) applies

computation rules to the top of a term until the top of the term cannot be re-

duced further. The tactic cbv (call by value) fully evaluates a term (similar to the

1 The names of lemmas established with Qed cannot be unfolded.
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command Compute). The tactic pattern t abstracts out a subterm t of a claim by

converting the claim to a beta redex (λx : s.u)t that reduces to the claim by a

beta reduction step. Note that pattern performs a beta expansion. The second

use of pattern in the above script abstracts out only the second occurrence of

the subterm not.

Note that all terms shown at the right of the above proof are convertible

propositions. By the conversion principle we know that all of these propositions

have the same proofs.

The above script also contains an occurrence of the tactic simpl so that we

can compare it with the tactics hnf and cbv. Note that the occurrence of simpl

has no effect in the above script. In fact, simpl will change a term only if the

conversion involves a match reduction. If you study the examples in Chapter 1,

you will learn that simpl applies computation rules but also performs folding

steps for recursive definitions (backward application of definition unfolding).

Note the command Show Proof at the end of the script. It shows the proof

term the script will have constructed at this point. The conversion tactics do

not show in the proof term, except for the fact that the missing types in the

description of the proof term appearing as argument of exact will be derived

based on the goal visible at this point.

All conversion tactics can be applied to assumptions. For instance, the com-

mand “simpl in A” will simplify the assumption A.

For the following conversion examples we define an inductive predicate demo.

Inductive demo (X : Type) (x : X) : Prop :=

| demoI : demo x.

First we demo delta conversion with the tactics unfold and fold.

Goal demo plus.

Proof. demo plus

unfold plus. demo (fix plus (x y : nat) : nat :=match x with · · · end)

unfold plus. demo (fix plus (x y : nat) : nat :=match x with · · · end)

fold plus. demo plus

apply demoI.

Qed.

Note that the second occurrence of the unfold tactic has no effect since the claim

does not contain a defined name plus.

Next we demo alpha conversion.

Goal demo (fun x : nat⇒ x).

Proof.

change (demo (fun y : nat⇒ y)).

change (demo (fun myname : nat⇒myname)).
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apply demoI.

Qed.

For the remaining demos we use Coq’s section facility to conveniently declare

variables.2

Section Demo.

Variable n : nat.

Here is a conversion demo involving match and fix conversions.

Goal demo (5+n+n).

Proof. demo (5 + n+ n)

change (demo (2+3+n+n)). demo (2 + 3+ n+ n)

simpl. demo (S (S (S (S (S (n+ n))))))

change (demo (10+n−5+n)). demo (10 + n− 5 + n)

pattern n at 1. (λx : nat. demo (10 + x − 5 + n))n

hnf. demo (10 + n− 5 + n)

simpl. demo (S (S (S (S (S (n+ n))))))

apply demoI.

Qed.

Finally, we demonstrate eta conversion.

Variable X : Type.

Variable f : X→ X→ X.

Goal demo f.

Proof. demo f

change (demo (fun x⇒ f x)). demo (λx : X . f x)

cbv. demo (λx : X . f x)

change (demo (fun x y⇒ f x y)). demo (λx : X . λy : X . f x y)

cbv. demo (λx : X . λy : X . f x y)

apply demoI.

Qed.

End Demo.

You may wonder why Coq does not employ eta reduction as computation rule.

The reason is that naive eta reduction is not always type preserving. For instance,

the term

λx : Prop. (λy : Type. y)x

has type Prop → Type. The application of the inner lambda abstraction to x type

checks since every proposition is a type. A naive eta reduction would yield the

term λy : Type. y , which has type Type→ Type. This violates type preservation

since the types Prop → Type and Type→ Type are incomparable in Coq.

2 This is the first time we use Coq’s section facility.
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Exercise 3.1.1 The tactic reflexivity can prove an equation s = t if and only if

the terms s and t are convertible. Argue for each of the following goals whether

or not it can be shown by reflexivity and check your answer with Coq.

(a) Goal plus 1 = S.

(b) Goal (fun y⇒ 3+y) = plus (4−1).

(c) Goal S = fun x⇒ x + 1.

(d) Goal S = fun x⇒ 1 + x.

(e) Goal S = fun x⇒ 2+x+1−2.

(f) Goal plus 3 = fun x⇒ 5+x−2.

(g) Goal mult 2 = fun x⇒ x + (x + 0).

(h) Goal S = fun x⇒ S (pred (S x)).

(i) Goal minus = fun x y⇒ x−y.

3.2 Disjointness and Injectivity of Constructors

Different constructors of an inductive type always yield different values. We start

by proving that the constructors true and false of bool are different.

Goal false ≠ true.

Proof.

intros A.

change (if false then ⊤ else ⊥).

rewrite A.

exact I.

Qed.

The proof follows a simple path. We first introduce the equation false = true.

Then we convert the resulting claim into a conditional with the condition false.

Using the assumed equation false = true, we rewrite the condition of the con-

ditional to true. By conversion we obtain the claim True and finish the proof.

What makes the proof go through is the conversion rule for matches and the

conversion principle.

The idea of the proof of false ≠ true carries over to nat. We prove that the

constructors O and S yield different values.

Lemma disjoint_O_S n :

0 ≠ S n.

Proof.

intros A.

change (match 0 with 0⇒ ⊥ | _⇒ ⊤ end).

rewrite A.

exact I.

Qed.
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With a similar idea we can prove that the constructor S is injective.

Lemma injective_S x y :

S x = S y→ x = y.

Proof.

intros A.

change (pred (S x) = pred (S y)).

rewrite A.

reflexivity .

Qed.

Coq’s tactics discriminate, injection, and congruence can do this sort of proofs

automatically (that is, construct suitable proof terms).

Goal ∀ x, S x ≠ 0.

Proof. intros x A. discriminate A. Qed.

Goal ∀ x y, S x = S y→ x = y.

Proof. intros x y A. injection A. auto. Qed.

The tactic congruence can prove both of the above goals in one go.

Exercise 3.2.1 Give three proofs for each of the following goals: with

congruence, with discriminate, and with change.

(a) Goal ∀ (X : Type) (x : X),

Some x ≠ None.

(b) Goal ∀ (X : Type) (x : X) (A : list X),

x::A ≠ nil.

Exercise 3.2.2 Give three proofs for each of the following goals: with

congruence, with injection, and with change.

(a) Goal ∀ (X Y: Type) (x x’ : X) (y y’ : Y),

(x,y) = (x’,y’)→ x=x’ ∧ y = y’.

(b) Goal ∀ (X : Type) (x x’ : X) (A A’ : list X),

x::A = x’::A’→ x=x’ ∧ A = A’.

Exercise 3.2.3 Prove the following goals.

(a) Goal ∀ x, negb x ≠ x.

(b) Goal ∀ x, S x ≠ x.

(c) Goal ∀ x y z, x + y = x + z→ y = z.

(d) Goal ∀ x y : nat, x = y ∨ x ≠ y.

Hint: Recall that you can simplify an assumption A with the command simpl in A.
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Exercise 3.2.4 Prove the following goal.

Goal ∃ (X : Type) (f : list X→ X), ∀ A B, f A = f B→ A = B.

Before you prove the goal, you may define an inductive type.

Exercise 3.2.5 Prove False ≠ True.

Exercise 3.2.6 A term λx : s. tx can only be eta reduced if x does not occur in t.

If this restriction was removed, we could obtain a proof of False. Show this by

proving the following goal.

Goal ∃ (f : nat→ nat→ nat) x,

(fun x⇒ f x x) ≠ f x.

3.3 Leibniz Equality

There is a straightforward characterization of equality that can be expressed in

every logical system that can quantify over predicates. The characterization is

due to the philosopher and mathematician Gottfried Wilhelm Leibniz and says

that two objects x and y are equal if they have the same properties. Formally,

Leibniz’ characterization can be expressed with the equivalence

x = y ↔ ∀p :X → Prop. px ↔ py

We can use the equivalence to define equality. If equality is obtained in some

other way, we still expect it to satisfy the equivalence. This means that equality

is determined up to logical equivalence in any logical system that can quantify

over predicates. The Leibniz characterization of equality suffices to justify the

tactics reflexivity and rewrite.

1. Assume that s and t are convertible terms such that the equation s = t is well

typed. We prove the proposition s = t. First we observe that the propositions

s = t and s = s are convertible since s and t are convertible (recall that

propositions are terms). Thus we know by the conversion principle that s = t

is provable if s = s is provable. By the Leibniz characterization of equality we

know that s = s is provable if∀p :X → Prop. ps ↔ ps is provable, which is the

case. So we have a proof of s = t and a justification of the tactic reflexivity.

2. Assume we have a proof of an equation s = t and two propositions us and ut.

Then we know by the Leibniz characterization of s = t that us is provable if

and only if ut is provable. So if we have a claim or an assumption us, we can

rewrite it to ut. This justifies the rewriting tactic for the case where s and t

appear as the right constituent of a top level application. Since we have beta

2014-7-16 63



3 Definitional Equality and Propositional Equality

conversion, the restriction to top level applications is not significant. Given

a term v containing a subterm s, beta expansion will give us a term u such

that the terms v and us are convertible. Taken together, we have arrived at a

justification of the tactic rewrite.

We now define an equality predicate we call Leibniz equality.

Definition leibniz_eq (X : Type) (x y : X) : Prop :=

∀ p : X→ Prop, p x→ p y.

The definition deviates from Leibniz’ characterization in that it uses an implica-

tion rather than an equivalence. As it turns out, the asymmetric version we use

is logically equivalent to the symmetric version with the equivalence. We have

chosen the asymmetric version since it is simpler than the symmetric version.

We can read the asymmetric version as follows: A proof of x = y is a function

that for every predicate p maps a proof of px to a proof of py .

We define a convenient notation for Leibniz equality and prove that it is re-

flexive and symmetric.

Notation "x == y" := (leibniz_eq x y) (at level 70, no associativity).

Lemma leibniz_refl X (x : X) :

x == x.

Proof. hnf. auto. Qed.

Lemma leibniz_sym X (x y : X) :

x == y→ y == x.

Proof.

unfold leibniz_eq. intros A p.

apply (A (fun z⇒ p z→ p x)).

auto.

Qed.

Next we show that Leibniz equality agrees with Coq’s predefined equality.

Lemma leibniz_agrees X (x y : X) :

x == y ↔ x = y.

Proof.

split ; intros A.

− apply (A (fun z⇒ x=z)). reflexivity.

− rewrite A. apply leibniz_refl.

Qed.

Since we can turn Leibniz equations into Coq equations, we can rewrite with

Leibniz equations. However, we can also rewrite without going through Coq’s

predefined equality. All we need is the following lemma.

Lemma leibniz_rewrite X (x y : X) (p : X→ Prop) :

x == y→ p y→ p x.
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Proof. intros A. apply (leibniz_sym A). Qed.

We now prove that addition is associative with respect to Leibniz equality without

using anything connected with Coq’s predefined equality.

Lemma leibniz_plus_assoc x y z :

(x + y) + z == x + (y + z).

Proof.

induction x ; simpl.

− apply leibniz_refl.

− pattern (x+y+z). apply (leibniz_rewrite IHx). apply leibniz_refl.

Qed.

The proof deserves careful study. One interesting point is the use of pattern to

abstract out the term we want to rewrite. With pattern we can convert a term s

containing a subterm u to a beta redex (λx.t)u such that λx.t is the predicate p

we need to rewrite with a Leibniz equation u==v . So beta conversion makes it

possible to reduce general rewriting to top level rewriting pu⇝ pv . A proof of

the proposition ∀p.pv → pu is a function that makes it possible to rewrite a

claim with the equation u = v .

Coq’s library defines equality as an inductive predicate. This is in harmony

with the definitions of the logical connectives and of existential quantification.

We will discuss Coq’s inductive definition of equality in a later chapter on induc-

tive predicates.

Exercise 3.3.1 Prove that addition is commutative for Leibniz equality without

using Coq’s predefined equality. You will need two lemmas.

Exercise 3.3.2 Prove the following rewrite lemmas for Leibniz equality without

using other lemmas.

(a) Lemma leibniz_rewrite_lr X (x y : X) (p : X→ Prop) :

x == y→ p y→ p x.

(b) Lemma leibniz_rewrite_rl X (x y : X) (p : X→ Prop) :

x == y→ p x→ p y.

Exercise 3.3.3 Suppose we want to rewrite a subterm u in a proposition t us-

ing the lemma leibniz_rewrite. Then we need a predicate λx.s such that t and

(λx.s)u are convertible and s is obtained from t by replacing the occurrence of u

we want to rewrite with the variable x. Let t be the proposition x +y + x = y .

a) Give a predicate for rewriting the first occurrence of x in t.

b) Give a predicate for rewriting the second occurrence of y in t.

c) Give a predicate for rewriting all occurrences of y in t.

d) Give a predicate for rewriting the term x +y in t.

e) Explain why the term y + x cannot be rewritten in t.
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3.4 By Name Specification of Implicit Arguments

We take the opportunity to discuss an engineering detail of Coq’s term language.

In implicit arguments mode, Coq derives for some constants (i.e., defined names)

an expanded type providing for additional implicit arguments. The real type and

the expanded type are always convertible, so the difference does not matter for

type checking. We can use the command About to find out whether Coq has

determined an expanded type for a constant. For instance, this is the case for

the constant leibniz_sym defined in the previous section.

About leibniz_sym.

leibniz_sym : ∀ (X : Type) (x y : X), x == y→ y == x

Expanded type for implicit arguments

leibniz_sym : ∀ (X : Type) (x y : X), x == y→ ∀ p : X→ Prop, p y→ p x

Arguments X, x, y, p are implicit

If you print the lemma leibniz_rewrite from the previous section, you will see the

following proof term:

fun (X : Type) (x y : X) (p : X→ Prop) (A : x == y) =>

leibniz_sym (x:=x) (y:=y) A (p:=p)

Note that the implicit arguments x, y , and p of leibniz_sym are explicitly speci-

fied by name. By-name specification of implicit and explicit arguments can also

be used when you give terms to Coq. Step through the following script to under-

stand the many notational possibilities Coq has in offer.

Goal ∀ X (x y : X) (p : X→ Prop),

x == y→ p y→ p x.

Proof.

intros X x y p A.

Check leibniz_sym A.

Check leibniz_sym A (p:=p).

Check @leibniz_sym X x y A p.

Check @leibniz_sym _ _ _ A p.

exact (leibniz_sym A (p:=p)).

Show Proof.

Qed.

3.5 Local Definitions

Coq’s term language has a construct for local definitions taking the form

let x : t := s in u

66 2014-7-16



3.6 Proof of nat ≠ bool

where x is the local name, t is the type declared for x, s is value of x, and u is

the term in which the local definition is visible. Coq will check that the term s has

the declared type t. In case the declared type is omitted, Coq will try to infer it.

Local definitions come with a reduction rule called zeta reduction that replaces

the defined name with its value:

let x : t := s in u ⇝ ux
s

Here are examples.

Compute let x := 2 in x + x.

% 4 : nat

Compute let x := 2 in let x := x + x in x.

% 4 : nat

Compute let f := plus 3 in f 7.

% 10 : nat

The undirected version of zeta reduction serves as a conversion rule (zeta con-

version). Note that zeta reduction looks very much like beta reduction. There is

however an important difference between a local definition let x : t := s in u and

the corresponding beta redex (λx : t. u) s : The continuation u of a local definition

is type checked with delta conversion enabled between the local name x and the

defining term s. Thus the local definition

Check let X := nat in (fun x : X⇒ x) 2.

will type check while the corresponding beta redex will not.

Check (fun X⇒ (fun x : X⇒ x) 2) nat.

% Error : The term 2 is expected to have type X .

Besides for local definitions, Coq uses the let notation also as a syntactic

convenience for one-constructor matches. For instance:

let (x,y) := (2,7) in x + y ⇝ match (2,7) with pair x y⇒ x + y end

3.6 Proof of nat ≠ bool

We will now prove that the types bool and nat are different. The proof will

employ a predicate p on types that holds for bool but does not hold for nat.

For p we choose the property that a type has at most two elements. The proof

script uses two important tactics we have not seen before.

Goal bool ≠ nat.
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Proof.

pose (p X := ∀ x y z : X, x=y ∨ x=z ∨ y=z).

assert (H: ¬p nat).

{ intros B. specialize (B 0 1 2). destruct B as [B|[B|B]] ; discriminate B. }

intros A. apply H. rewrite ← A.

intros [|] [|] [|] ; auto.

Qed.

The tactic pose defines the discriminating predicate p.3 The tactic assert states

the intermediate claim ¬p nat. For the proof of the intermediate claim Coq in-

troduces a subgoal. The script proving the subgoal is enclosed in curly braces.

The tactic specialize is used to instantiate the universally quantified assumption

p nat with the numbers 0, 1, and 2. With case analysis and discriminate we show

that the instantiated assumption is contradictory. After the intermediate claim

is established, we can use it as an additional assumption H. We now introduce

the assumption A : bool = nat and apply the intermediate claim H. The claim is

now p nat. We rewrite with the assumption A and obtain the claim p bool. This

claim follows by case analysis over the universally quantified boolean variables.

As always, step carefully through the proof script to understand.

Exercise 3.6.1 Prove the following goals.

(a) Goal bool ≠ option bool.

(b) Goal option bool ≠ prod bool bool.

(c) Goal bool ≠ ⊥.

Exercise 3.6.2 Step through the proof of bool ≠ nat and insert the command

Show Proof immediately after the assert. You will see that the local definition

of p is realized with a let and that the assumptionH is realized with a beta redex.

let p := fun X : Type⇒ forall x y z : X, x = y ∨ x = z ∨ y = z in

(fun H : ¬ p nat⇒ ?2) ?1

The two existential variables ?2 and ?1 represent the claims of the two subgoals

that have to be solved at this point (1 represents the claim of the subgoal for the

assert and ?2 represents the claim of the remaining subgoal).

3.7 Cantor’s Theorem

Cantor’s theorem says that there is no surjective function from a set to its power

set. This means that the power set of a set X is strictly larger than X. For his

proof Cantor used a technique commonly called diagonalisation. It turns out

3 The tactic pose constructs a proof term with a let expression accommodating the local defini-

tion.
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that Cantor’s proof carries over to type theory. Here we can show that there is

no surjective function from a Type X to the type X → Prop. Speaking informally,

this means that there are strictly more predicates on X than there are elements

of X.

Definition surjective (X Y : Type) (f : X→ Y) : Prop := ∀ y, ∃ x, f x = y.

Lemma Cantor X :

¬ ∃ f : X→ X→ Prop, surjective f.

Proof.

intros [f A].

pose (g x := ¬ f x x).

specialize (A g).

destruct A as [x A].

assert (H: ¬ (g x ↔ ¬ g x)) by τto.

apply H. unfold g at 1. rewrite A. τto.

Qed.

The proof assumes a type X and a surjective function f from X to X → Prop

and constructs a proof of False. We first define a spoiler function gx := ¬fxx in

X → Prop. Since f is surjective, there is an x such that fx = g. Thus gx =

¬fxx = ¬gx, which is contradictory.

Exercise 3.7.1 Prove the following goals.

(a) Goal ¬ ∃ f : nat→ nat→ nat, surjective f.

(b) Goal ¬ ∃ f : bool→ bool→ bool, surjective f.

Exercise 3.7.2 Prove the following generalization of Cantor’s Theorem.

Lemma Cantor_generalized X Y :

(∃ N : Y→ Y, ∀ y, N y ≠ y)→

¬ ∃ f : X→ X→ Y, surjective f.

Exercise 3.7.3 Prove the following variant of Cantor’s Theorem.

Lemma Cantor_neq X Y (f : X→ X→ Y) (N : Y→ Y) :

(∀ y, N y ≠ y)→ ∃ h, ∀ x, f x ≠ h.

Exercise 3.7.4 Prove the following goals. They establish sufficient conditions for

the surjectivity and injectivity of functions based on inverse functions.

Definition injective (X Y : Type) (f : X→ Y) : Prop := ∀ x x’ : X, f x = f x’→ x = x’.

Goal ∀ X Y : Type, ∀ f : X→ Y, (∃ g : Y→ X, ∀ y, f (g y) = y)→ surjective f.

Goal ∀ X Y : Type, ∀ f : X→ Y, (∃ g : Y→ X, ∀ x, g (f x) = x)→ injective f.
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Exercise 3.7.5 One can also show that no type X admits an injective function f

from X → Prop to X. Given X and f , the proof defines a predicate p : X → Prop

such that both ¬p(f p) and p(f p) are provable. Given the definition of p, the

proof is routine. Complete the following proof script.

Goal ∀ X, ¬ ∃ f : (X→ Prop)→ X, injective f.

Proof.

intros X [f A].

pose (p x := ∃ h, f h = x ∧ ¬ h x).

· · ·

Qed.

3.8 Kaminski’s Equation

Kaminski’s equation4 takes the form f(f(f x)) = f x and holds for every func-

tion f : bool → bool and every boolean x. The proof proceeds by repeated boolean

case analysis: First on x and then on f true and f false. For the proof to work,

the boolean case analysis on f true must provide the equations f true = true and

f true = false coming with the case analysis. The equations are also needed for

the case analysis on f false. We use the annotation eqn to tell the tactic destruct

that we need the equations.

Goal ∀ (f : bool→ bool) (x : bool), f (f (f x)) = f x.

Proof. intros f x. destruct x, (f true) eqn:A, (f false) eqn:B ; congruence. Qed.

To understand, replace the semicolon before congruence with a period and solve

the 8 subgoals by hand.

For boolean case analyses, the annotated use of destruct can be simulated

with the following lemma.

Lemma destruct_eqn_bool (p : bool→ Prop) (x : bool) :

(x = true→ p true)→ (x = false→ p false)→ p x.

Proof. destruct x ; auto. Qed.

To apply the lemma, we use the tactic pattern to identify the predicate p.

Goal ∀ (f : bool→ bool) (x : bool), f (f (f x)) = f x.

Proof.

destruct x ;

pattern (f true) ; apply destruct_eqn_bool ;

pattern (f false) ; apply destruct_eqn_bool ;

congruence.

Qed.

4 The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote

his Bachelor’s thesis on classical higher-order logic.
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Replace the semicolons with periods and solve the subgoals by hand to under-

stand.

Exercise 3.8.1 Prove the following variant of Kaminski’s equation.

Goal ∀ (f g : bool→ bool) (x : bool), f (f (f (g x))) = f (g (g (g x))).

3.9 Boolean Equality Tests

It is not difficult to write a boolean equality test for nat.

Fixpoint nat_eqb (x y : nat) : bool :=

match x, y with

| O, O⇒ true

| S x’, S y’ ⇒ nat_eqb x’ y’

| _, _⇒ false

end.

We prove that the boolean equality test agrees with Coq’s equality.

Lemma nat_eqb_agrees x y :

nat_eqb x y = true ↔ x = y.

Proof.

revert y.

induction x ; intros [|y] ; split ; simpl ; intros A ; try congruence.

− f_equal. apply IHx, A.

− apply IHx. congruence.

Qed.

Note that the proof uses the tactical try. Try is needed since congruence can

only solve 6 of the 8 subgoals produced by the induction on x, the case analysis

on y , and the split of the equivalence. A command try t behaves like the tactic

t if t succeeds but leaves the goal unchanged if t fails. Also note the command

apply IHx, A. It first applies the inductive hypothesis from left to right and then

applies the assumption A. So we learn that apply can apply equivalences in either

direction and that succeeding applications can be condensed in one apply with

commas. Without these conveniences, we may write apply IHx, A as

destruct (IHx y) as [C _]. apply C. apply A.

Exercise 3.9.1 Write a boolean equality test for bool and prove that it agrees

with Coq’s equality.

Exercise 3.9.2 Write a boolean equality test for lists and prove that it agrees with

Coq’s equality. The equality test for lists should take a boolean equality test for

the element type of the lists as arguments. Prove the correctness of your equality

test with the following lemma.
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Lemma list_eqb_agrees X (X_eqb : X→ X→ bool) (A B : list X) :

(∀ x y, X_eqb x y = true ↔ x = y)→

(list_eqb X_eqb A B = true ↔ A = B).

Coq Summary

Conversion Tactics

change, pattern, hnf , cbv, simpl, unfold, fold.

Constructor Tactics

discriminate, injection, congruence.

Other Tactics

pose, assert.

Tacticals

try

New Features of the Tactics apply and destruct

• apply can apply equivalences in either direction. See Section 3.9, proof of

nat_eqb_agrees.

• A sequence of applies can be written as a single apply using commas. For

instance, we may write “apply A, B, C.” for “apply A. apply B. apply C.”. See

Section 3.9, proof of nat_eqb_agrees.

• destruct can be used with an eqn-annotation to provide the equations gov-

erning the case analysis as assumptions. The eqn-annotation goes after the

as-annotation.

New Features of the Term Language

• Implicit arguments can be specified by name rather than by position. See

Section 3.4, application of leibniz_sym.

• Local definitions with the let notation. See Section 3.5.

• Let notation for one-constructor matches. See Section 3.5.

Sections

See Section 3.1.
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So far we have done all inductive proofs with the tactic induction. We will con-

tinue to do so, but it is time to explain how inductive proofs are obtained in

Coq’s type theory. Recall that tactics are not part of Coq’s type theory, that

propositions are represented as types, and that proofs are represented as terms

describing elements of propositions. So there must be some way to represent

inductive proofs as terms of the type theory. Since inductive proofs in Coq are

always based on inductive types (e.g., nat or list X ), the fact that Coq obtains

structural induction as structural recursion should not come as a surprise.

4.1 Induction Lemmas

When we define an inductive type, Coq automatically establishes an induction

lemma for this type. For nat the induction lemma has the following type.1

Check nat_ind.

nat_ind : ∀p : nat → Prop, p 0 → (∀n : nat, p n→ p (Sn)) → ∀n : nat, p n

The type tells us that nat_ind is a function that takes a predicate p and yields

a proof of ∀n :nat, pn, provided it is given a proof of p 0 and a function that

for every n and every proof of pn yields a proof of p(S n). The second and the

third argument of nat_ind represent what in mathematical speak is called the

basis step and the inductive step.

Coq’s tactic induction is applied to a variable of an inductive type and applies

the induction lemma of this type. In the case of nat_ind this will produce two

subgoals, one for the basis step and one for the inductive step. Here is a proof

that obtains the necessary induction by applying nat_ind directly.

Goal ∀ n, n + 0 = n.

Proof.

apply (nat_ind (fun n⇒ n + 0 = n)).

− reflexivity.

− intros n IHn. simpl. f_equal. exact IHn.

Qed.

1 Coq uses the capital letter P for the argument p. We follow our own conventions and use the

letter p. The difference will not matter in the following.

73



4 Induction and Recursion

The proof applies Coq’s induction lemma nat_ind with the right predicate p. This

yields two subgoals, one for the basis step and one for the inductive step. Note

the introduction of the inductive hypothesis IHn in the script for the inductive

step.

Here is a second example for the use of the induction lemma nat_ind.

Goal ∀ n m, n + S m = S (n + m).

Proof.

intros n m. revert n.

apply (nat_ind (fun n⇒ n + S m = S (n + m))) ; simpl.

− reflexivity.

− intros n IHn. f_equal. exact IHn.

Qed.

The proof would also go through with a more general inductive predicate p quan-

tifying overm. In this case the first line of the proof script would be deleted. See

Exercise 4.1.1.

We now know how to construct inductive proofs with the induction lemma

nat_ind. Next we explain how the lemma nat_ind is defined. Speaking type

theoretically, we have to define a function that has the type of nat_ind. We do

this with the definition command using a recursive abstraction.

Definition nat_ind (p : nat→ Prop) (basis : p 0) (step : ∀ n, p n→ p (S n))

: ∀ n, p n := fix f n := match n return p n with

| 0⇒ basis

| S n’⇒ step n’ (f n’)

end.

Note that the match specifies a return type function λn.pn. This is necessary

since the two rules of the match have different return types. The return type of

the first rule is p 0, and the return type of the second rule is p(S n′). The return

types of the rules are obtained by applying the return type function to the left

hand sides of the rules.

Exercise 4.1.1 Prove the following goal by applying the induction lemma nat_ind

immediately (i.e., don’t introduce n and m).

Goal ∀ n m, n + S m = S (n + m).
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Exercise 4.1.2 We consider an induction lemma for list types.

a) Complete the following definition of an induction lemma for list types.

Definition list_ind (X : Type) (p : list X→ Prop)

(basis : p nil)

(step : ∀ (x : X) (A : list X), p A→ p (x::A))

: ∀ A : list X, p A :=

b) Prove that list concatenation is associative using the induction lemma list_ind.

c) Use the command Check to find out the type of the induction lemma Coq

provides for list types. Since Coq’s lemma is also bound to the name list_ind,

you will have to undo your definition to see the type.

4.2 Primitive Recursion

Primitive recursion is a basic computational idea for natural numbers first stud-

ied in the 1930’s. We saw a formulation of primitive recursion called iteration

in Section 1.12. The basic idea is to apply a step function n-times to a start

value. We formalized the idea with a function nat_iter taking the number n, the

step function, and the start value as arguments.2 For the application of nat_iter

the type of nat_iter is crucial. The more general the type of nat_iter , the more

recursive functions can be expressed with nat_iter .

We will now formulate primitive recursion as a function prec that can express

both the computational function nat_iter and the induction lemma nat_ind. We

base the definition of prec on two equations.

prec x f 0 = x

prec x f (S n) = f n (prec x f n)

Compared to nat_iter , we have reordered the arguments and now work with a

step function that takes the number of iterations so far as an additional first

argument. For instance, prec x f 3 = f 2 (f 1 (f 0 x)). From the equations it is clear

that prec can express nat_iter .

We now come to the type of prec. We take the type of the induction lemma

nat_ind where the type of p is generalized to nat → Type (recall that propositions

are types).

prec : ∀p : nat → Type, p 0 → (∀n : nat, p n→ p (Sn)) → ∀n : nat, p n

Given the type and the equations, the definition of prec is straightforward.3

2 In Section 1.12 we used the short name iter for nat_iter . The function nat_iter is defined in

Coq’s standard library.
3 Due to implicit argument mode, p is accommodated as implicit argument of prec.
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Definition prec (p : nat→ Type) (x : p 0) (f : ∀ n, p n→ p (S n))

: ∀ n, p n := fix F n := match n return p n with

| 0⇒ x

| S n’⇒ f n’ (F n’)

end.

Note that the definition of prec is identical with the definition of the induction

lemma nat_ind except for the more general type of p. Since nat → Prop is a

subtype of nat → Type, we can instantiate the type of prec to the type of nat_ind.

Check fun p : nat→ Prop⇒ prec (p:= p).

∀p : nat → Prop, p 0 → (∀n : nat, p n→ p (Sn)) → ∀n : nat, p n

Thus we can use prec to obtain the induction lemma nat_ind.

Lemma nat_ind (p : nat→ Prop) :

p 0→ (∀ n, p n→ p (S n))→ ∀ n, p n.

Proof. exact (prec (p:=p)). Qed.

We can also define arithmetic functions like addition with prec.

Definition add := prec (fun y⇒ y) (fun _ r y⇒ S (r y)).

Compute add 3 7.

% 10

We prove that add agrees with the addition provided by Coq’s library.

Goal ∀ x y, add x y = x + y.

Proof. intros x y. induction x ; simpl ; congruence. Qed.

As announced before, we can obtain the function nat_iter from prec.

Goal ∀ X f x n ,

nat_iter n f x = prec (p:= fun _⇒ X) x (fun _⇒ f) n.

Proof. induction n ; simpl ; congruence. Qed.

If we were allowed only a single use of fix for nat, we could define prec and

then express all further recursions with prec. In fact, since prec can also express

matches on nat, we can work without fix and match for nat as long as we have

prec.

Coq automatically synthesizes a primitive recursion function X_rect for every

inductive type X. Print nat_rect to see the primitive recursion function for nat.

Exercise 4.2.1 Prove prec = nat_rect.

Exercise 4.2.2 Prove that prec satisfies the two characteristic equations stated

at the beginning of this section.

Exercise 4.2.3 Show that prec can express multiplication and factorial.
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Exercise 4.2.4 Show that prec can express the predecessor function pred.

Exercise 4.2.5 Show that prec can express matches for nat. Do this by complet-

ing and proving the following goal.

Goal ∀ X x f n ,

match n with O⇒ x | S n’⇒ f n’ end = prec . . . .

4.3 Size Induction

Given a predicate p : X → Prop, size induction says that we can prove px using

the assumption that we have a proof of py for every y whose size is smaller

than the size of x. The sizes of the elements of X are given by a size function

X → nat. We formulate size induction as a proposition and prove it with natural

induction (i.e., structural induction on nat).

Lemma size_induction X (f : X→ nat) (p : X→ Prop) :

(∀ x, (∀ y, f y < f x→ p y)→ p x)→

∀ x, p x.

Proof.

intros step x. apply step.

assert (G: ∀ n y, f y < n→ p y).

{ intros n. induction n.

− intros y B. exfalso. omega.

− intros y B. apply step. intros z C. apply IHn. omega. }

apply G.

Qed.

The proof is clever. It introduces the step function step of the size induction

and x, leaving us with the claim px. By applying step we obtain the claim

∀y : X . f y < f x → p y. The trick is now to generalize this claim to the more

general claim ∀n∀y : X . f y < n→ p y, which can be shown by natural induction

on n.

Note that we have not seen a definition of Coq’s order predicate “<" for nat.

The details of the definition do not matter since we are using the automation

tactic omega to solve goals involving the order predicate.

Exercise 4.3.1 The principle of complete induction can be formulated as follows.

Lemma complete_induction (p : nat→ Prop) :

(∀ x, (∀ y, y < x→ p y)→ p x)→ ∀ x, p x.

a) Prove the lemma using the lemma size_induction.

b) Prove the lemma using natural induction.
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Exercise 4.3.2 Define your own order predicate lt : nat → nat → Prop and prove

the size induction lemma for your order predicate. Hint: Define lt with the

boolean order test leb from Section 1.3 and prove the following lemma by in-

duction on x. No other lemma will be needed.

Lemma lt_tran x y z : lt x y→ lt y (S z)→ lt x z.

4.4 Equational Specification of Functions

It is often instructive to specify a recursive function by a system of equations.

We have seen such equational specifications for the functions plus, nat_iter , and

prec. For arithmetic functions like addition and multiplication equational spec-

ifications where already used by Dedekind. In Coq, we can express equational

specifications as predicates. Given a specification, we may prove that there is

a function satisfying the specification (satisfiability) and that any two function

satisfying the specification agree on all arguments (uniqueness). We start with a

somewhat unusual specification of addition.

Definition addition (f : nat→ nat→ nat) : Prop :=

∀ x y,

f x 0 = x ∧

f x (S y) = f (S x) y.

Lemma addition_existence :

addition plus.

Proof. intros x y. omega. Qed.

Lemma addition_uniqueness f g :

addition f→ addition g→ ∀ x y, f x y = g x y.

Proof.

intros A B x y. revert x. induction y ; intros x.

− destruct (A x 0) as [A’ _]. destruct (B x 0) as [B’ _]. congruence.

− destruct (A x y) as [_ A’]. destruct (B x y) as [_ B ’]. specialize (IHy (S x)). congruence.

Qed.

From the example we learn that an equational specification is abstract in that is

does not say how the specified function is realized. The specification addition

suggests a tail recursive function matching on the second argument. The func-

tion plus from the library recurses on the first argument and is not tail recursive.

Nevertheless, plus satisfies the specification addition.

Our second example specifies a function known as Ackermann’s function.4

4 Ackermann’s function grows rapidly. For example, for 4 and 2 it yields a number of 19,729

decimal digits. It was designed as a terminating recursive function that cannot be computed

with first-order primitive recursion. In Exercise 4.4.2 you will show that Ackermann’s function

can be computed with higher-order primitive recursion.
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Definition ackermann (f : nat→ nat→ nat) : Prop :=

∀m n,

f O n = S n ∧

f (S m) O = f m 1 ∧

f (S m) (S n) = f m (f (S m) n).

The satisfiability and uniqueness of this specification can be argued as follows.

Since for any two arguments exactly one of the three equations applies, f exists

and is unique if the application of the equations terminates. This is the case

since either the first argument is decreased, or the first argument stays the same

and the second argument is decreased.

The above termination argument is outside the scope of Coq’s termination

checker. Coq insists that every fix comes with an argument that is structurally

decreased by every recursive application. The problem can be solved by formu-

lating Ackermann’s function with two nested recursions.

Definition ack : nat→ nat→ nat :=

fix f m := match m with

| O⇒ S

| S m’⇒ fix g n := match n with

| O⇒ f m’ 1

| S n’⇒ f m’ (g n’)

end

end.

Note that ack is defined as a recursive function that yields a recursive function

when give an argument greater than 0. Each of the two recursions is structural

on its argument. The correctness proof for ack is straightforward.

Goal ackermann ack.

Proof. unfold ackermann. auto. Qed.

We can also show that any two functions satisfying the specification ackermann

agree on all arguments.

Goal ∀ f g x y, ackermann f→ ackermann g→ f x y = g x y.

Proof.

intros f g x y A B. revert y. induction x ; intros y.

− destruct (A 0 y) as [C _]. destruct (B 0 y) as [D _]. congruence.

− induction y.

+ destruct (A x 0) as [_ [C _]]. destruct (B x 0) as [_ [D _]]. congruence.

+ destruct (A x y) as [_ [_ C]]. destruct (B x y) as [_ [_ D]]. congruence.

Qed.
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Exercise 4.4.1 Write an equational specification for multiplication and prove

that Coq’s multiplication satisfies the specification. Also prove that two func-

tions agree on all arguments if they satisfy the specification. Do the same for

subtraction.

Exercise 4.4.2 Write an Ackermann function using prec rather than fix and

match. Prove that your function satisfies the specification ackermann.

Exercise 4.4.3 We specify primitive recursion as follows.

Definition primitive_recursion

(r : ∀ p : nat→ Type, p 0→ (∀ n, p n→ p (S n))→ ∀ n, p n)

: Prop :=

∀ p x f n,

let r := r p x f in

r 0 = x ∧

r (S n) = f n (r n).

Note that a local declaration with let is used to write the specifying equations in

compact form. Show that prec satisfies the specification. Also prove that two

functions agree on all arguments if they satisfy the specification.

Exercise 4.4.4 Give an equational specification for nat_iter . Prove that nat_iter

satisfies the specification and that the specification is unique.

Coq Summary

New Features of the Term Language

• Matches can be specified with a return type function. See Section 4.1, defini-

tion of nat_ind.
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Elim Restriction

Coq’s type theory is designed such that the truth value semantics of proposi-

tions commonly used in Mathematics can be consistently assumed. This design

comes at the price of the elim restriction, which restricts matches on proofs

such that proofs must be returned. The elim restriction severely restricts the

computational use of proofs.

5.1 Truth Value Semantics

In Mathematics one assumes that a proposition is either true or false. More

specifically, one assumes that every proposition denotes a truth value, which is

either true or false. With the boolean definition of disjunction it then follows

that for any proposition p the disjunction p ∨¬p is true.

Given the fact that propositions denote truth values, we could consider two

propositions equal if they denote the same truth value. This assumption is made

in boolean logic as well as in Church-Henkin simple type theory.

We formulate the mathematical assumption that a proposition is either true

or false as a proposition in Coq:

Definition TVS : Prop := ∀ X : Prop, X=⊤ ∨ X=⊥.

We can now ask whether Coq can prove TVS or ¬TVS. It turns out that Coq

can prove neither of the two. That Coq cannot prove TVS seems intuitively clear

since there is nothing in the basic proof rules that would give us a proof of TVS.

On the other hand, that Coq cannot prove ¬TVS is not clear at all given the fact

that propositions in Coq are obtained as types.

We call a proposition p consistent in Coq if Coq cannot prove ¬p. Moreover,

we call a proposition p independent in Coq if Coq can prove neither p nor ¬p.

Note that every independent proposition is consistent, but not vice versa (e.g.

True is consistent but not independent).

Above we have stated that TVS is independent in Coq. The consistency of TVS

in Coq does not come for free. In fact, the design of Coq’s type theory has been

carefully arranged so that TVS is consistent. To obtain the consistency of TVS,
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Coq imposes a severe typing restriction known as the elim restriction. To prepare

the discussion of the elim restriction, we first consider some conseqences of TVS.

First we show that TVS implies XM (excluded middle). This follows from the

fact that True and False satisfy XM (i.e., True∨¬True and False∨¬False are

provable).

Goal TVS→ XM.

Proof. intros A X. destruct (A X) as [B|B] ; rewrite B ; auto. Qed.

Another important consequence of TVS is proof irrelevance.

Definition PI : Prop := ∀ (X : Prop) (A B : X), A=B.

Proof irrelevance says that a proposition has at most one proof. Here is a proof

that truth value semantics implies proof irrelevance.

Goal TVS→ PI.

Proof.

intros A X B C. destruct (A X) ; subst X.

− destruct B, C. reflexivity.

− contradiction B.

Qed.

The proof exploits that the proposition True has exactly one proof, a fact fol-

lowing from the inductive definition of True. The script uses the tactic subst,

which eliminates a variable x if there is an assumption x = s such that x does

not occur in s.

A third consequence of TVS is propositional extensionality.

Definition PE : Prop := ∀ X Y : Prop, (X ↔ Y)→ X=Y.

Propositional extensionality says that two propositions are equal if they are

equivalent.

Goal TVS→ PE.

Proof. intros A X Y B. destruct (A X), (A Y) ; subst X Y ; τto. Qed.

Finally, we show that excluded middle and propositional extensionality to-

gether imply truth value semantics.

Goal XM→ PE→ TVS.

Proof.

intros xm pe X. destruct (xm X) as [A|A].

− left. apply pe. τto.

− right. apply pe. τto.

Qed.

We now know that TVS and XM ∧ PE are equivalent.
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Exercise 5.1.1 Make sure you can prove TVS ↔ XM ∧ PE

Exercise 5.1.2 Prove TVS → PE without using the tactic subst. Use the tactic

rewrite instead.

5.2 Elim Restriction

If we have a surjective function f : X → bool, then the type X must contain at

least two elements.

Goal ∀ X (f : X→ bool), surjective f→ ∃ x y : X, x ≠ y.

Proof.

intros X f A. destruct (A true) as [x B]. destruct (A false) as [y C].

∃ x, y. congruence.

Qed.

Now consider the inductive proposition

Inductive bp : Prop := P1 : bp | P2 : bp.

which by definition has two proofs P1 and P2. Given the match for bp, it is easy

to construct a surjective function bp → bool, it seems. However, Coq rejects the

following match on x : bp:

Check fun x : bp⇒match x with P1⇒ true | P2⇒ false end.

% Error : Incorrect elimination of "x" . . .

The reason is the so-called elim restriction: A match on a proof (i.e., on an ele-

ment of a proposition) is only allowed if the match returns a proof. The above

match does not return a proof and hence it is rejected by the elim restriction.

One important reason for the elim restriction is that it is needed so that truth

value semantics is consistent in Coq. Without the elim restriction, we get a sur-

jective function from bp to bool, which entails that the proposition bp has two

different elements. This however contradicts proof irrelevance, which says that

no proposition has more than one proof. Since TVS entails PI , not having the

elim restriction would mean that truth value semantics is inconsistent in Coq.

There are a few exceptions to the elim restriction, all of them being consistent

with proof irrelevance. For instance, there is no restriction on the matches for

True and False. The remaining exceptions will be discussed in Section 7.5.

We give another example illustrating the elim restriction. Consider the fol-

lowing lemma, which establishes the existence of a so-called Skolem function for

total predicates p : X → Y → Prop where Y is a proposition.

Lemma Prop_Skolem (X : Type) (Y : Prop) (p : X→ Y→ Prop) :

(∀ x, ∃ y, p x y)→ ∃ f, ∀ x, p x (f x).
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Proof.

intros A.

∃ (fun x⇒ let (y,_) := A x in y).

intros x.

destruct (A x) as [y B].

exact B.

Qed.

The let notation in the definition of the Skolem function is notational sugar for

the one-constructor match

match A x return Y with ex_intro y _⇒ y end

This match on the proof A x is legal since it returns a proof y . If we generalize

the lemma to Y : Type, the proof script fails since the match now violates the

elim restriction.

We will speak of proper types and proper values. A proper type is a type

that is not a proposition, and a proper value is an element of a proper type.

Thus a type is not proper if and only if it is a proposition, and a value is not

proper if and only if it is a proof. Examples of proper types are nat, list nat, and

nat → nat. Example of proper values are 5, cons, and λx : nat.x.

Exercise 5.2.1 Prove that the proposition ∀X : Type. X = True∨ X = False is in-

consistent in Coq. Note that TVS is a weaker statement where X is restricted to

propositional types. Find out where your proof breaks if you apply it to TVS.

5.3 Propositional Extensionality Entails Proof Irrelevance

It turns out that propositional extensionality entails proof irrelevance. This is

a surprising result with a very interesting proof. The proof rests on a fixpoint

theorem that given a surjective function X → X → Y states that every function

Y → Y has a fixpoint.

Lemma sur_fixpoint X Y (f : X→ X→ Y) (g : Y→ Y) :

surjective f → ∃ y, g y = y.

Proof.

intros A.

pose (h x := g (f x x)).

destruct (A h) as [x B].

∃ (h x). unfold h at 2. rewrite ← B. reflexivity.

Qed.

The proof of the theorem should remind you of Cantor’s theorem. In fact, we

can obtain Cantor’s theorem as a corollary of the surjective fixpoint theorem by

specializing to Y := Prop and g := not.
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We now assume PE and prove PI . It suffices to prove P1 = P2 for the two

constructors of bp since given two proofs x and y of a proposition X we can

obtain a function f such that f P1 = x and f P2 = y using the match for bp. For

P1 = P2 it suffices to show that the “negation” function mapping P1 to P2 and

P2 to P1 has a fixpoint. This we obtain with the surjective fixpoint theorem. To

do so, we need a surjective function bp → bp → bp. Such a function is easy to

obtain if we have the equation (bp → bp) = bp. This finishes the proof since the

equation is a straightforward consequence of PE .

Goal PE→ PI.

Proof.

intros pe.

cut (P1=P2).

{ intros A X B C.

change (B =match P1 with P1⇒ C | P2⇒ B end).

rewrite A. reflexivity . }

pose (neg x := match x with P1⇒ P2 | P2⇒ P1 end).

cut (∃ P, neg P = P).

{ unfold neg. intros [[|] C].

− symmetry. exact C.

− exact C. }

cut (∃ f : bp→ bp→ bp, surjective f).

{ intros [f A]. apply (sur_fixpoint (f:=f)). exact A. }

cut (bp = (bp→ bp)).

{ intros A. rewrite ← A. ∃ (fun x⇒ x). intros x. ∃ x. reflexivity. }

apply pe. split ; auto using P1.

Qed.

Note the use of the tactic cut to realize the backwards reasoning of the proof

outline. In the last line the automation tactic auto is used with a suffix telling it

to use the proof constructor P1 : bp.

Exercise 5.3.1 Prove Cantor’s theorem using the surjective fixpoint theorem

sur_fixpoint.

Lemma Cantor X :

¬ ∃ f : X→ X→ Prop, surjective f.

Exercise 5.3.2 Two types are isomorphic if there are commuting functions back

and forth.

Definition iso (X Y : Type) : Prop :=

∃ f : X→ Y, ∃ g : Y→ X, ∀ x y, g (f x) = x ∧ f (g y) = y.

Propositional univalence is the property that propositions are equal if they are

isomorphic.
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Definition PU : Prop := ∀ X Y : Prop, iso X Y→ X = Y.

It turns out that propositional extensionality factors into propositional univa-

lence and proof irrelevance, that is, PE ↔ PU ∧ PI . We have already shown

PE → PI . Prove PE → PU and PU → PI → PE to establish the equivalence.

5.4 A Simpler Proof

There is a simpler proof of PE → PI .1 The idea is to use PE to reduce proving

proof irrelevance of a general proposition to proof irrelevance for True. Since

True has only one proof by definition, we are done. The Coq proof looks as

follows.

Goal PE→ PI.

intros D X E F.

assert (C: X=⊤) by (apply D; τto).

subst. destruct E, F. reflexivity .

Qed.

Exercise 5.4.1 Prove the following subgoals which together prove PE → PI .

Goal PE→ ∀ X:Prop, X→ X = ⊤.

Goal (∀ X:Prop, X→ X = ⊤)→ P1 = P2.

Coq Summary

New Tactics

subst, cut.

Tactic auto with using

The tactic auto can be enhanced with lemmas and constructors specified with a

using suffix. See the proof of the goal PE → PI in Section 5.3.

1 This was pointed out by Jonas Oberhauser and Fabian Kunze during the teaching of Introduc-

tion to Computational Logic in 2014.
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Sum types and sigma types are non-propositional variants of disjunctions and

existential quantifications. Since they are proper types, sum and sigma types are

not subject to the elim restriction. The elements of sum and sigma types are

computational values carrying a proof. With sum and sigma types we can write

certifying functions whose results contain correctness proofs.

6.1 Boolean Sums and Certifying Tests

Boolean sums are disjunctions placed in Type rather than Prop. Coq’s standard

library defines boolean sums as follows.

Inductive sumbool (X Y : Prop) : Type :=

| left : X→ sumbool X Y

| right : Y→ sumbool X Y.

Arguments left {X} {Y} _.

Arguments right {X} {Y} _.

Notation "{ X } + { Y }" := (sumbool X Y).

Boolean sums are like disjunctions except for the crucial difference that they are

proper types rather than propositions. Thus boolean sums are not subject to the

elim restriction. We call the elements of boolean sums decisions. We can think

of a decision as a proof-carrying boolean value, or as a proof of a disjunction on

which we can freely match.

A certifying test is a function that yields a decision. Coq’s library provides

many certifying tests. For instance, there is a certifying test for the order on

natural numbers:

le_dec : ∀xy : nat, {x ≤ y} + {¬(x ≤ y)}

The type of le_dec tells us that le_dec is a function that takes two numbers x

and y and returns a decision containing a proof of either x ≤ y or ¬x ≤ y . With

le_dec a minimum function can be written as follows:

Definition min (x y : nat) : nat :=

if le_dec x y then x else y.
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Compute min 7 3.

% 3 : nat

Note the use of the if-then-else notation in the definition of min. The if-then-else

notation is available for all inductive types with two constructors and expands

to a match. The definition of min expands as follows.

Set Printing All.

Print min.

min = fun x y : nat⇒match le_dec x y with left _⇒ x | right _⇒ y end

Unset Printing All.

We prove the correctness of min.

Goal ∀ x y, (x ≤ y→ min x y = x) ∧ (y ≤ x→ min x y = y).

Proof.

intros x y. split ; intros A.

− unfold min. destruct (le_dec x y) as [B|B].

+ reflexivity .

+ omega.

− unfold min. destruct (le_dec x y) as [B|B].

+ omega.

+ reflexivity .

Qed.

The proof can be shortened to a one-liner.

intros x y. split ; intros A ; unfold min ; destruct (le_dec x y) ; omega.

The Coq library Compare_dec offers many certifying tests for natural num-

bers. Here are a few.

le_lt_dec : ∀xy : nat, {x ≤ y} + {y < x}

le_ge_dec : ∀xy : nat, {x ≤ y} + {x ≥ y}

le_gt_dec : ∀xy : nat, {x ≤ y} + {x > y}

lt_eq_lt_dec : ∀xy : nat, {x < y} + {x = y} + {y < x}

The type of lt_eq_lt_dec needs explanation. Since boolean sums are proper types

taking propositions as arguments, they cannot be nested. Coq solves the prob-

lem with an additional sum type sumor and a concomitant notation.

Set Printing All.

Check {⊤} + {⊥} + {⊥}.

% sumor (sumbool True False) False : Type

Unset Printing All.

The type sumor and the accompanying notation are defined as follows.
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Inductive sumor (X : Type) (Y : Prop) : Type :=

| inleft : X→ sumor X Y

| inright : Y→ sumor X Y.

Notation "X + { Y }" := (sumor X Y).

Exercise 6.1.1 Prove the following goal.

Goal ∀ X Y : Prop, {X} + {Y}→ X ∨ Y.

Explain why you cannot prove the other direction∀X Y : Prop, X ∨ Y → {X} + {Y}.

Exercise 6.1.2 Prove the following goals.

Goal ∀ x y, if le_dec x y then x ≤ y else ¬ x ≤ y.

Goal ∀ x y, if le_dec x y then x ≤ y else x > y.

6.2 Inhabitation and Decidability

An inhabitant of a type is an element of a type. So saying that x is an inhabitant

of a type X means the same as saying that x is a member of X, or that x is an

element of X. We say that a type is inhabited if it has at least one inhabitant.

So a type is inhabited if and only if it is nonempty. Coq’s library comes with an

inductive predicate for inhabitation.

Inductive inhabited (X : Type) : Prop :=

| inhabits : X→ inhabited X.

A proposition is inhabited if and only if it is provable.

Goal ∀ X : Prop, inhabited X ↔ X.

Proof.

split .

− intros [A] ; exact A.

− intros A. constructor. exact A.

Qed.

Note the use of the tactic constructor . Here it has the same effect as the com-

mand apply inhabits. In general, the tactic constructor tries to prove an inductive

proposition by applying a constructor of the definition of the proposition. The

tactic constructor is convenient since the name of the constructor needs not to

be given.

We say that a proposition p is decidable if the sum {p} + {¬p} is inhabited.

To have a concise notation for decidable propositions, we define the function

Definition dec (X : Prop) : Type := {X} + {¬ X}.
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Note that dec is not a predicate. An element of dec X is a decision that gives us

a proof of either X or ¬X. We call a member of dec X a decision of X.

The certifying test le_dec from the standard library tells us that all proposi-

tions of the form x ≤ y are decidable.

Check le_dec : ∀ x y : nat, dec (x ≤ y).

We define a function that converts a decision to a boolean by forgetting the proof

coming with the decision.

Definition dec2bool (X : Prop) (d : dec X) : bool :=

if d then true else false.

Compute dec2bool (le_dec 2 3).

% true : bool

We now establish the decidability of True. To do so, we construct a decision

of type dec True. This is easy since the constructor I is a proof of True.

Definition ⊤_dec : dec ⊤ := left I.

The decidability of False is also easy to establish.

Definition ⊥_dec : dec ⊥ := right (fun A⇒ A).

In the next section we will show that implications, conjunctions, and disjunc-

tions of decidable propositions are decidable.

Exercise 6.2.1 Prove the following goal.

Goal ∀ X : Type, X→ inhabited X.

Note that X → inhabited X is notation for the proposition ∀x : X , inhabited X .

Explain why you cannot prove that the type ∀X : Type, inhabited X → X is in-

habited.

Exercise 6.2.2 Prove ∀X Y : Prop. X ∨ Y ↔ inhabited ({X} + {Y}).

Exercise 6.2.3 Prove ∀X : Prop. dec X → X ∨¬X .

6.3 Writing Certifying Tests

We show that implication preserves decidability of propositions.

Definition impl_dec (X Y : Prop) : dec X→ dec Y→ dec (X→ Y).

intros A [B|B].

− left. auto.

− destruct A as [A|A].

+ right. auto.

+ left . τto.

Defined.
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The definition of the function impl_dec should come as a surprise. This is the

first time we construct a member of a type that is not a proposition with a script.

Use the command Print impl_dec to see that the function constructed is in fact

similar to what you would have written by hand. Note that the tactics left and

right so far used for disjunctions also work for boolean sums. In fact, left and

right will work for every inductive type with two constructors. We can compute

with the certifying test impl_dec.

Check impl_dec (le_dec 3 2) ⊥_dec.

% dec(3 ≤ 2 → False)

Compute (dec2bool (impl_dec (le_dec 3 2) ⊥_dec)).

% true : bool

Here is a certifying equality test for nat.

Definition nat_eq_dec (x y : nat) : dec (x=y).

revert y. induction x ; simpl ; intros [|y].

− left. auto.

− right. auto.

− right. auto.

− destruct (IHx y).

+ left . congruence.

+ right. congruence.

Defined.

Compute dec2bool (nat_eq_dec 3 3).

% true : bool

This is the first time we use the induction tactic to synthesize a function return-

ing a proper value. When you print nat_eq_dec, you will see that the induction

tactic realizes the necessary recursion with nat_rect, an automatically generated

function providing primitive recursion for nat.

A more convenient way to obtain a certifying equality test for nat is using the

automation tactic decide equality.

Goal ∀ x y : nat, dec (x=y).

Proof. unfold dec. decide equality. Qed.

The standard library offers a boolean test leb for the order on nat and a

correctness lemma

leb_iff : ∀xy :nat, leb x y = true↔ x ≤ y

We can use leb and leb_iff to write a certifying test for the order on nat.
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Definition le_dec (x y : nat) : dec (x ≤ y).

destruct (leb x y) eqn:A.

− left. apply leb_iff. exact A.

− right. intros B. apply leb_iff in B. congruence.

Defined.

Note that the script for the second subgoal applies the correctness lemma leb_iff

to the assumption B using the tactic apply. This is the first time we apply a

lemma to an assumption using the tactic apply. It is also possible to rewrite

assumptions with the tactic rewrite. We have already mentioned that the conver-

sion tactics can be applied to assumptions. To apply a tactic to an assumption A,

one ends the command with “in A”.

Decidability of propositions propagates through logical equivalences. That is,

if X and Y are equivalent propositions, then X is decidable if and only if Y is

decidable.

Definition dec_prop_iff (X Y : Prop) : (X ↔ Y)→ dec X→ dec Y.

intros A [B|B].

− left. τto.

− right. τto.

Defined.

There are many undecidable propositions in Coq. A prominent example of an

undecidable proposition is excluded middle (i.e., XM := ∀X : Prop,X ∨¬X ). In

fact, a proposition is undecidable in Coq if and only if it is independent in Coq.

Exercise 6.3.1 Prove the following goals.

Goal ∀ X : Prop, inhabited X→ dec X.

Goal ∀ X : Prop, dec X→ dec (inhabited X).

Goal ∀ X : Prop, dec (inhabited X)→ dec X.

Exercise 6.3.2 Complete the following definitions establishing the fact that de-

cidable propositions are closed under conjunction and disjunction.

Definition and_dec (X Y : Prop) : dec X→ dec Y→ dec (X ∧ Y).

Definition or_dec (X Y : Prop) : dec X→ dec Y→ dec (X ∨ Y).

Exercise 6.3.3 Write a certifying test ∀x y : nat. {x < y} + {x = y} + {y < x}.

Exercise 6.3.4 Write a certifying equality test for bool.

a) Use the automation tactic decide equality.

b) Write the test without using decide equality.
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Exercise 6.3.5 Compare the certifying equality test nat_eq_dec from this section

with the boolean equality test nat_eqb and its correctness lemma nat_eqb_agrees

from Section 3.9. We can say that the certifying test combines the boolean test

and its correctness lemma into a single function.

a) Define nat_eqb and nat_eqb_agrees using nat_eq_dec.

b) Define nat_eq_dec using nat_eqb and nat_eqb_agrees.

Exercise 6.3.6 Consider the boolean test leb and the certifying test le_dec from

the standard library.

a) Prove the correctness lemma for leb.

Lemma leb_iff x y : leb x y = true ↔ x ≤ y.

b) Define the certifying test le_dec using the induction tactic. Follow the defini-

tion of nat_eq_dec shown above. Compare this definition of le_dec with the

proof of leb_iff .

Exercise 6.3.7 Write a function that given a certifying equality test for a type X

yields a certifying equality test for list X . Write the function with and without

the automation tactic decide equality.

Exercise 6.3.8 Complete the following definition. It establishes a function trans-

lating a boolean decision of a proposition X into a certifying decision of X.

Definition bool2dec (X : Prop) (b : bool) : (X ↔ b = true)→ dec X.

Exercise 6.3.9 (Program Synthesis) One can use tactics to synthesize ordinary

functions not involving proofs. Here are two examples.

Definition cas (X Y Z : Type) : (X * Y→ Z)→ X→ Y→ Z.

intros f x y. exact (f (x,y )).

Defined.

Definition car (X Y Z : Type) : (X→ Y→ Z)→ X * Y→ Z.

intros f [x y]. exact (f x y).

Defined.

Use the command Print to see the synthesized functions. It is also possible to

synthesize recursive functions like addition.

Definition add : nat→ nat→ nat.

fix f 1. intros x y. destruct x as [|x’].

− exact y.

− exact (S (f x’ y )).

Defined.

Use the command Show Proof after each tactic to see the partial code of the

function synthesized by the tactic.
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6.4 Definitions and Lemmas

A definition in Coq is either inductive or plain. Inductive definitions extend the

underlying type theory with new inhabitants obtained with constructors. Plain

definitions do not extend the type theory but introduce names for already ex-

isting inhabitants. A plain definition takes the form x : t := s where x is a name

and t and s are terms. The term t must be a type and s must be a member of t.

We call x the name of the definition, t the type of the definition, and s the body

of the definition. The type of a plain definition acts as the type of the name of

the definition.

A plain definition can be either transparent or opaque. If the definition is

transparent, the name and the body of the definition are convertible (i.e., un-

folding and folding of the name, known as delta conversion). If the definition is

opaque, the name is abstract and cannot be unfolded. Thus all we know about

an opaque name is that it is an inhabitant of its type.

Opaque definitions are a means of abstraction. Given an opaque name x

(i.e., a name introduced by an opaque definition), we can use the specification

of x (i.e., the type of x) but not the implementation of x (i.e., the body of the

opaque definition of x). Thus every use of an opaque name x will be compatible

with every implementation of x. Opaque names are as abstract as variables

introduced with lambda abstractions, matches, or sections.

A transparent definition can be stated in Coq with a command of the form

Definition x : t := s or a sequence of commands taking the form

Definition x : t. tactic1 · · · tacticn Defined.

The tactics in the long form synthesize the body s of the definition. If we replace

the command Defined in the long form with the command Qed, we obtain an

opaque definition. The command Definition in the long form can be replaced

with the command Lemma, which has no effect. We use the command Lemma

only for sequences of the following form.1

Lemma x : t. Proof. tactic1 · · · tacticn Qed.

We also use the command sequence

Goal t. Proof. tactic1 · · · tacticn Qed.

This sequence has the same effect as the sequence starting with Lemma except

that the missing name x is automatically generated by Coq.

In Coq, a lemma is an opaque name established with an opaque definition.

The statement of the lemma is the type of the lemma, and the proof of the

1 The Coq library doesn’t always follow this convention. For instance, le_dec is defined with

Theorem and Defined.
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lemma is the hidden body of the definition. The proof of a lemma certifies that

the type of the lemma is inhabited. If we work with a lemma, the uses of the

lemma cannot see the proof of the lemma. So all uses of a lemma are abstract

in that they do not make any assumptions about the proof of the lemma. This

agrees with the mathematical use of lemmas.

There is also an engineering reason for representing lemmas as opaque names

in Coq. If lemmas were transparent names, they would be subject to unfolding

and their (possibly complex) proofs would unnecessarily participate in conver-

sion checking and type checking.

A strong lemma is a lemma whose type is not a proposition. Strong lemmas

are a speciality of constructive type theory that don’t seem to have a counterpart

in Mathematics.

6.5 Decidable Predicates

Every function definable in Coq is computable. Because of opaque definitions,

Coq’s interpreter may fail to fully evaluate a function application. So the above

statement is made with respect to an idealized interpreter treating all plain dec-

larations as transparent.

Functions are described with terms in Coq. When an idealized interpreter

evaluates a term describing a function, it will always end up with a term having

one of the following forms:

• A lambda abstraction.

• A recursive abstraction.

• A constructor.

• A constructor application ct1 . . . tn where c is a constructor and t1, . . . , tn are

n ≥ 1 terms. Examples of functions obtained as constructor applications are

cons 3 and prod nat.

We call a predicate p : X → Prop decidable if the there is some function that

yields for every x : X a decision of px.

Definition decidable (X : Type) (p : X→ Prop) : Type := ∀ x, dec (p x).

If p and some function f : decidable p are definable in Coq, then f is a decision

procedure for p and p is computationally decidable.

Coq can define undecidable predicates. An example of an undecidable pred-

icate is λX : Prop. X ∨¬X . The undecidability of this predicate follows from the

fact that XM is independent in Coq.2

2 Note that by undecidable we mean not decidable in Coq. Predicates that are undecidable in Coq

may be computationally decidable. On the other hand, predicates that are decidable in Coq are
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Goal decidable (fun X : Prop⇒ X ∨ ¬X)→ XM.

Proof. intros A X. destruct (A X) as [B|B] ; τto. Qed.

The notion of decidability extends to predicates with more than one argu-

ment. As is, Coq doesn’t give us the possibility to define decidability of predi-

cates in one go, we have to give the definition for each number n ≥ 1 of argu-

ments. If, more generally, Coq would allow us to define decidability for n ≥ 0

arguments, decidability of propositions would fall out for n = 0.

Exercise 6.5.1 Every predicate equivalent to a boolean test is decidable. Prove

the following goal to show this fact.

Goal ∀ (X : Type) (p : X→ Prop) (f : X→ bool), (∀ x, p x ↔ f x = true)→ decidable p.

6.6 Sigma Types

Sigma types are existential quantifications expressed as proper types. The elim

restriction does not apply to sigma types. Given a type X and a predicate

p : X → Prop, the elements of the sigma type { x : X | p x } can be seen as pairs

consisting of a value x :X and a proof of p x. Coq defines sigma types as follows.

Inductive sig (X : Type) (p : X→ Prop) : Type :=

exist : ∀ x : X, p x→ sig p.

Notation "{ x | p }" := (sig (fun x⇒ p)).

Notation "{ x : X | p }" := (sig (fun x : X⇒ p)).

Consider the type ∀x : nat, {y | y = 2 ∗ x }. The elements of this types are func-

tions that take a number x and return a pair consisting of the number 2x and a

proof of the proposition y = 2∗ x. Here is a construction of such a function.

Definition double (x : nat) : { y | y = 2*x}.

∃ (2*x). reflexivity.

Defined.

Compute let (y,_) := double 4 in y.

% 8 : nat

Note the use of the tactic exists to construct a member of a sigma type. We will

refer to functions that yield an element of a sum or sigma type as certifying

functions. A certifying function combines a function and a correctness proof

into a single object. The types of certifying functions can be seen as specifica-

tions. For instance, while the type nat → nat gives us little information about its

inhabitants, the type ∀x : nat, {y | y = 2x } gives us much more information.

We define a certifying function that divides its argument by 2.

always computationally decidable.
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Definition div2_cert (n : nat) : {k | n = 2*k} + {k | n = 2*k + 1}.

induction n.

− left. ∃ 0. reflexivity.

− destruct IHn as [[k A]|[k A]].

+ right. ∃ k. omega.

+ left . ∃ (S k). omega.

Defined.

The result type of div2_cert is obtained with yet another kind of sum type

(needed since both constituents are proper types).

Inductive sum (X Y : Type) :=

| inl : X→ sum X Y

| inr : Y→ sum X Y.

Notation "x + y" := (sum x y) : type_scope.

Note that the definition of the “+” notation for sum is restricted to types. This

way the string 2+ 4 will still elaborate to the term plus 2 4.

Based on the certifying division function div2_cert we define ordinary modulo

and division functions and prove a correctness lemma.

Definition mod2 x := if div2_cert x then 0 else 1.

Definition div2 x := match div2_cert x with

| inl (exist k _) ⇒ k

| inr (exist k _) ⇒ k

end.

Goal ∀ x, x = 2 * div2 x + mod2 x.

Proof.

intros x. unfold div2, mod2.

destruct (div2_cert x) as [[k A]|[k A]] ; omega.

Qed.

Exercise 6.6.1 Prove ∀x. mod2 x ≤ 1.

Exercise 6.6.2 Prove the following fact about Skolem functions and sigma types.

Lemma Sigma_Skolem (X Y : Type) (p : X→ Y→ Prop) :

(∀ x, {y | p x y})→ { f | ∀ x, p x (f x) }.

Exercise 6.6.3 Establish the following goal and explain why the opposite direc-

tion from an existential quantification to a sigma type cannot be established.

Goal ∀ X (p : X→ Prop), {x | p x}→ ∃ x, p x.

Exercise 6.6.4 Prove ∀X : Type ∀p : X→Prop. (∃x.p x)↔ inhabited { x | p x }.
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Exercise 6.6.5 There is a function that for every decidable predicate yields an

equivalent boolean test. Prove the following goal to establish this fact.

Goal ∀ (X : Type) (p : X→ Prop), decidable p→ {f : X→ bool | ∀ x, p x ↔ f x = true}.

Exercise 6.6.6 Write a certifying function that divides its argument by 3.

Definition div3_cert (n : nat) : {k | n = 3*k} + {k | n = 3*k + 1} + {k | n = 3*k + 2}.

6.7 Strong Truth Value Semantics

There is a canonical injective embedding of bool into Prop :

Definition b2P (x : bool) : Prop := if x then ⊤ else ⊥.

Proving the injectivity of b2P is straightforward. If we assume TVS, we can also

prove that b2P is surjective. In Mathematics, an injective and surjective function

f : X → Y always comes with an inverse function g such that g(fx) = x and

f(gy) = y for all x :X and y :Y . So it is natural to ask whether under TVS we

can define the inverse of b2p. The answer is no.

It is, however, consistent to assume strong truth value semantics.

Definition STVS : Type := ∀ X : Prop, {X=⊤} + {X=⊥}.

Assuming STVS means assuming a function that for every proposition X yields

a decision of type {X = True} + {X = False}. Clearly, STVS implies TVS.

Goal STVS→ TVS.

Proof. intros stvs X. destruct (stvs X) ; subst X ; auto. Qed.

If we assume STVS, we can construct an inverse function for b2p.

Section STVS.

Variable stvs : STVS.

Definition P2b (X : Prop) : bool := if stvs X then true else false.

Lemma P2b⊤ : P2b ⊤ = true.

Proof.

unfold P2b. destruct (stvs ⊤) as [A|A].

+ reflexivity .

+ exfalso. rewrite ← A. exact I.

Qed.

Lemma P2b⊥ : P2b ⊥ = false.

Proof.

unfold P2b. destruct (stvs ⊥) as [A|A].

+ exfalso. rewrite A. exact I.

+ reflexivity .

Qed.
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Goal ∀ x : bool, P2b (b2P x) = x.

Proof. intros [|] ; simpl. exact P2b⊤. exact P2b⊥. Qed.

Goal ∀ X : Prop, b2P (P2b X) = X.

Proof.

intros X. destruct (stvs X) ; subst X.

− rewrite P2b⊤. reflexivity.

− rewrite P2b⊥. reflexivity.

Qed.

End STVS.

The names defined in a section remain defined after a section is closed. Their

types are modified such that the variables of the section used in the definitions

are taken as arguments. For instance:

Print P2b.

> fun (stvs : STVS) (X : Prop)⇒ if stvs X then true else false

> : STVS→ Prop→ bool

Exercise 6.7.1 Prove that b2P is injective.

Exercise 6.7.2 Prove that TVS implies that b2P is surjective.

Exercise 6.7.3 Prove that P2b is injective.

Goal ∀ A : STVS, ∀ X Y : Prop, P2b A X = P2b A Y→ X = Y.

Exercise 6.7.4 Show that STVS implies that every proposition is decidable.

Goal STVS→ ∀ X : Prop, dec X.

Exercise 6.7.5 Show that STVS implies that every predicate is decidable.

Goal STVS→ ∀ (X : Type) (p : X→ Prop), decidable p.

Coq Summary

New Tactics

constructor , decide equality.

New Inductive Types from the Standard Library

sumbool, sumor , sum, sig, inhabited.

Applying Tactics to Assumptions

To apply a tactic to an assumption A, end the tactic command with “in A”. See

the definition of le_dec in Section 6.3 for an example.
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An inductive definition introduces a type constructor together with a family of

value constructors. If the type constructor yields a proposition, we speak of an

inductive predicate and of proof constructors. We already know Coq’s inductive

predicates for conjunctions (and), disjunctions (or), and existential quantifica-

tions (ex) (see Chapter 2). Another inductive predicate we have introduced is

inhabited.

In this chapter we will take a closer look at inductive predicates. Coq’s facility

for inductive definitions is extremely powerful and supports many advanced ap-

plications. The idea of inductive definitions originated with Peano’s axioms (i.e.,

the inductive definition of nat with O and S) and developed further with proof

systems for logical systems.

When we define an inductive predicate, we define a family of inductive propo-

sitions by specifying the syntax and the proof rules for the propositions. The

inductive predicates and, or and ex give us a first idea of the flexibility of this

approach. It turns out that we can go much further. Every recursively enumer-

able predicate can be defined as an inductive predicate in Coq. This is in contrast

to computable functions, which are not necessarily definable in Coq.

7.1 Nonparametric Arguments and Linearization

We start our explanation of inductive predicates with an extreme case: A defini-

tion of a predicate on numbers that holds exactly for the number 0.

Inductive zero : nat→ Prop :=

| zeroI : zero 0.

The definition provides exactly one proof zeroI , which proves the proposition

zero 0. The propositions zero 1, zero 2, zero 3, and so forth are all unprovable.

We characterize the inductive predicate zero as follows.

Lemma zero_iff x :

zero x ↔ x = 0.
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Proof.

split ; intros A.

− destruct A. reflexivity.

− subst x. constructor.

Qed.

The interesting step of the proof is destruct A, which does a case analysis on the

proof of zero x. Since there is only a single proof constructor zeroI : zero 0, the

case analysis yields a single subgoal where the variable x is instantiated to 0.

The argument of the inductive predicate zero is called nonparametric since

it is instantiated by the proof constructor zeroI : zero 0. This is the first time we

see an inductive predicate with a nonparametric argument. Check the definitions

of the inductive predicates and, or , ex, and inhabited to see that all arguments

of these predicates are parametric.

There is an important technicality one has to know about nonparametric ar-

guments: When the tactics destruct and induction are applied to an inductive

assumption A : ct1 . . . tn, the terms ti for the nonparametric arguments of c

must be variables not appearing in the other terms. We say that inductive as-

sumptions must be linear when they are used with destruct and induction. Coq

offers the tactic remember to linearize inductive assumptions.

Goal ¬ zero 2.

Proof. intros A. remember 2 as x. destruct A. discriminate Heqx. Qed.

Exercise 7.1.1 Make sure you can prove the propositions zero 0, ¬zero 7 , and

∀x. ¬zero (S x) without using lemmas.

Exercise 7.1.2 Prove that the predicate zero is decidable.

Exercise 7.1.3 Prove the following lemma.

Lemma remember (X : Type) (p : X→ Type) (x : X) :

(∀ y, y = x→ p y)→ p x.

Try to understand why the lemma justifies the tactic remember . Use the lemma

and the tactic pattern to prove the proposition ∀x.¬zero (S x).

Exercise 7.1.4 Prove the following impredicative characterization of zero.

Goal ∀ x, zero x ↔ ∀ p : nat→ Prop, p 0→ p x.

Exercise 7.1.5 Define a boolean test zerob : nat → bool and prove the correct-

ness condition ∀x. zero x ↔ zerob x = true.
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Exercise 7.1.6 Define an inductive predicate leo : nat → Prop with two proof

constructors leo0 : leo 0 and leo1 : leo 1.

a) Prove ∀x, leo x ↔ x ≤ 1.

b) Characterize leo impredicatively and prove the correctness.

c) Characterize leo with a boolean test leob : nat → bool and prove the correct-

ness of the characterization.

7.2 Even

Our next example is an inductive predicate even that holds exactly for the

even numbers. This time we use two proof rules, one for even 0 and one for

even (S (S x)).

even 0

even x

even (S(S x))

The two proof rules can be expressed with two proof constructors:

evenO : even 0

evenS : ∀x : nat. even x → even (S (S x))

From the types of the proof constructors it is clear that the argument of even is

nonparametric. We now introduce the predicate even and the proof constructors

evenO and evenS with a single inductive definition.

Inductive even : nat→ Prop :=

| evenO : even 0

| evenS x : even x→ even (S (S x)).

The type of the constructor evenS is specified with a notational convenience we

have seen before in the statement of lemmas. The convenience makes it possible

to specify argument variables of a constructor without types, leaving it to Coq to

infer the types.

We prove a lemma characterizing even non-inductively.

Lemma even_iff x :

even x ↔ ∃ k, x = 2*k.
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Proof.

split ; intros A.

− induction A.

+ ∃ 0. reflexivity.

+ destruct IHA as [k IHA]. subst x. ∃ (S k). simpl. omega.

− destruct A as [k A]. subst x. induction k ; simpl.

+ constructor.

+ replace (S(k+S(k+0))) with (S (S (2*k))) by omega.

constructor. exact IHk.

Qed.

Both directions of the proof deserve careful study. The direction from left to

right is by induction on the proof A : even x. The induction does a case analysis

for the two proof constructors of even. In each case the nonparametric argu-

ment x is instantiated as specified by the type constructor. For evenS we get

x = S(S x′) and the inductive hypothesis IHA : ∃k. x′ = 2 ∗ k.1

The direction from right to left first eliminates the existential quantification

for k and then proves the so obtained claim by induction on k : nat. The induc-

tion step uses the tactic replace to rewrite with the equation S(k + S(k + 0)) =

S(S(2∗k)), which is established by the tactic omega. This is the first time we use

the tactic replace. If the annotation by omega is omitted, replace will introduce

an extra subgoal to establish the equation.

The next two lemmas prove simple facts about even using case analysis on

proofs of propositions obtained with even. In each case the linearization of the

inductive assumption with the tactic remember is essential.

Goal ¬ even 3.

Proof.

intros A. remember 3 as x. destruct A.

− discriminate Heqx.

− destruct A ; discriminate Heqx.

Qed.

Lemma even_descent x :

even (S (S x)) → even x.

Proof.

intros A. remember (S (S x)) as y.

destruct A as [|y A].

− discriminate Heqy.

− congruence.

Qed.

1 The proof script reuses the variable x for x′. You can get the variable x′ by annotating the

induction command with as [|x′ A′].
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Exercise 7.2.1 Prove even 6 and ¬even 5 without using lemmas.

Exercise 7.2.2 Prove the following goals without using lemmas.

(a) Goal ∀ x y, even x→ even y→ even (x+y).

(b) Goal ∀ x y, even x→ even (x+y)→ even y.

(c) Goal ∀ x, even x→ even (S x)→ ⊥.

Exercise 7.2.3 Prove the so-called inversion lemma for even.

Lemma even_inv x : even x→ x = 0 ∨ ∃ x’, x = S (S x’) ∧ even x’.

Exercise 7.2.4 Prove the following impredicative characterization of evenness.

Goal ∀ x, even x ↔ ∀ p : nat→ Prop, p 0→ (∀ y, p y→ p (S (S y)))→ p x.

Exercise 7.2.5 Some proofs need ideas. Try to prove ∀x, ¬even x → even (S x).

As is, the induction on x : nat will not go through. The problem is that the in-

duction on x :nat takes away a single S while the constructor evenS takes away

two S′s. The standard cure consists in generalizing the claim so that the induc-

tive hypothesis becomes strong enough. Convince yourself that the proof of the

following lemma generalizing the claim is doable.

Lemma even_succ x : (¬ even x→ even (S x)) ∧ (¬ even (S x)→ even x).

Hint: The apply tactic can be used with a proof of a conjunction of implications.

In this case apply attempts to apply one of the implications.

Exercise 7.2.6 Prove ∀x, even x ↔ ¬even (S x). Hint: Use the lemma even_succ

from Exercise 7.2.5.

Exercise 7.2.7 Prove that the predicate even is decidable. Hint: Use the lemma

even_succ from Exercise 7.2.5.

Exercise 7.2.8 Here is an inductive definition of an evenness predicate with a

parametric argument.

Inductive even’ (x : nat) : Prop :=

| even’O : x=0→ even’ x

| even’S y : even’ y→ x = S (S y)→ even’ x.

a) Prove ¬even′ 3.

b) Prove ∀x. even′ x ↔ even x.
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Exercise 7.2.9 Here is a boolean test for evenness.

Fixpoint evenb (x : nat) : bool :=

match x with

| 0⇒ true

| S (S x’) ⇒ evenb x’

| _⇒ false

end.

Try to prove ∀x. even x ↔ evenb x = true. The direction from left to right is a

straightforward induction on a proof of even x. The direction from right to left is

problematic since an induction on x :nat takes away one S while the constructor

evenS takes away two S’s. Proving the following more general claim solves the

problem.

Lemma evenb_even x : (evenb x = true→ even x) ∧ (evenb (S x) = true→ even (S x)).

7.3 Less or Equal

Coq defines the order predicate “≤” for natural numbers inductively based on

the following proof rules.2

x ≤ x

x ≤ y

x ≤ S y

The exact definition is

Inductive le (x : nat) : nat→ Prop :=

| le_n : le x x

| le_S y : le x y→ le x (S y).

Notation "x ≤ y" := (le x y) (at level 70).

Note that the first argument of the inductive predicate le is parametric and that

the second argument is nonparametric. We will always write inductive definitions

such that all parametric arguments appear as parameters in the head of the

inductive definition. Note that le is the first inductive predicate we see having

both parametric and nonparametric arguments.

To get familiar with le, we prove a lemma characterizing le non-inductively.

Lemma le_iff x y :

x ≤ y ↔ ∃ k, k + x = y.

2 Use the commands Locate and Print to see Coq’s definition of “≤” for nat.
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Proof.

split .

− intros A. induction A as [|y A].

+ ∃ 0. reflexivity.

+ destruct IHA as [k B]. ∃ (S k). simpl. congruence.

− intros [k A]. subst y. induction k ; simpl.

+ constructor.

+ constructor. exact IHk.

Qed.

The proof deserves careful study. The direction from left to right is by induction

on a proof of x ≤ y . The other direction is by induction on k.

Next we write an informative test for le. This takes some preparation. We

leave the proofs of the first three lemmas as exercises.

Lemma le_O x : 0 ≤ x.

Lemma le_SS x y : x ≤ y→ S x ≤ S y.

Lemma le_Strans x y : S x ≤ y→ x ≤ y.

Lemma le_zero x :

x ≤ 0→ x = 0.

Proof.

intros A. remember 0 as y. destruct A as [|y A].

− reflexivity.

− discriminate Heqy.

Qed.

Lemma le_SS’ x y :

S x ≤ S y→ x ≤ y.

Proof.

intros A. remember (S y) as y’. induction A as [|y’ A].

− injection Heqy’. intros A. subst y. constructor.

− injection Heqy’. intros B. subst y’. apply le_Strans, A.

Qed.

Definition le_dec x y : dec (x ≤ y).

revert y. induction x ; intros y.

− left. apply le_O.

− destruct y.

+ right. intros A. apply le_zero in A. discriminate A.

+ destruct (IHx y) as [A|A].

* left . apply le_SS, A.

* right. intros B. apply A, le_SS’, B.

Defined.
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Exercise 7.3.1 Prove the lemmas le_O, le_SS, and le_Strans without using omega.

Hints: Lemma le_O follows by induction on x. Lemmas le_SS and le_Strans

follow by induction for le.

Exercise 7.3.2 Prove the inversion lemma for le.

Lemma le_inv x y : x ≤ y→ x = y ∨ ∃ y’, y = S y’ ∧ x ≤ y’.

Exercise 7.3.3 Prove that le is transitive. Do not use omega.

Lemma le_trans x y z : x ≤ y→ y ≤ z→ x ≤ z.

Hint: Do the proof by induction for y ≤ z.

Exercise 7.3.4 Prove the following goal not using omega.

Goal ∀ x y, S x ≤ y→ x ≠ y.

Hint: Proceed by induction on y and use the lemmas le_zero and le_SS′.

Exercise 7.3.5 Prove that le is anti-symmetric. Do not use omega.

Goal ∀ x y, x ≤ y→ y ≤ x→ x=y.

Hint: Proceed by induction on x and use le_zero, le_Strans, and le_SS′.

Exercise 7.3.6 Prove that le and the boolean test leb from the standard library

agree. Do not use omega.

Goal ∀ x y, x ≤ y ↔ leb x y = true.

Hint: For the direction from left to right you will need two straightforward lem-

mas for leb. For the other directions use the lemmas le_O and le_SS.

7.4 Equality

Coq defines equality inductively.

Inductive eq (X : Type) (x : X) : X→ Prop :=

| eq_refl : eq x x.

Notation "x = y" := (eq x y) (at level 70).

Note that the first two arguments of the inductive predicate eq are parametric

and that the third argument is nonparametric. It is easy to establish the Leibniz

characterization of equality.

Lemma Leibniz (X : Type) (x y : X) :

x = y ↔ ∀ p : X→ Prop, p x→ p y.
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Proof.

split ; intros A.

− destruct A. auto.

− apply (A (fun z⇒ x = z)). constructor.

Qed.

7.5 Exceptions to the Elim Restriction

The exceptions to the elim restriction can be stated as follows: If an inductive

predicate has at most one proof constructor and the nonparametric arguments

of the proof constructor are all proofs, then the elim restriction does not apply

to matches for this predicate.

An interesting exception to the elim restriction is the inductive predicate eq

whose single proof constructor

eq_refl : ∀X : Type ∀x :X. eq x x

has only parametric arguments (i.e., arguments fixed in the head of the inductive

definition of eq). Thus the elim restriction does not apply to matches on equality

proofs. This provides for the definition of the following casting function.

Definition cast (X : Type) (x y : X) (f : X→ Type) : x = y→ f x→ f y.

intros A B. destruct A. exact B.

Defined.

The function cast gives us a function that given a proof of x = y converts from

type fx to type fy . Here is an example for the use of cast.

Definition fin (n : nat) : Type := nat_iter n option ⊥.

Goal ∀ n, fin n→ fin (n+0).

Proof. intros n. apply cast. omega. Qed.

Note that the cast is needed since the terms fin n and fin (n+ 0) are not convert-

ible.

Exercise 7.5.1 Prove the following goal. Explain why the elim restriction does

not apply to conjunctions.

Goal ∀ X Y : Prop, X ∧ Y→ prod X Y.

Exercise 7.5.2 Explain why the elim restriction applies to matches for the induc-

tive predicate inhabited.
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Exercise 7.5.3 Complete the following definition. Explain why your definition

exploits an exception to the elim restriction.

Definition exfalso : ⊥ → ∀ X : Type, X := · · ·

Exercise 7.5.4 Prove the following goal.

Goal ∀ (X : Type) (x y : X), (∀ p : X→ Prop, p x→ p y)→ ∀ p : X→ Type, p x→ p y.

Note that goal is formulated without making use of inductive types. Yet it can

only be proven using inductive types.

7.6 Safe and Nonuniform Parameters

Our final example is an inductive predicate safe : (nat → Prop)→ nat → Prop

such that safe p n holds if and only if p holds for some k ≥ n. We base the

inductive definition on the following rules.

pn

safe p n

safe p (S n)

safe p n

Defining safe in Coq is straightforward.

Inductive safe (p : nat→ Prop) (n : nat) : Prop :=

| safeB : p n→ safe p n

| safeS : safe p (S n)→ safe p n.

One reason for considering safe is that it has both a uniform and a nonuniform

parameter.3 The parameter p is uniform since it is not instantiated in the types

of the proof constructors safeB and safeS. The parameter n is nonuniform since

it is instantiated to S n in the type of the constructor safeS. The argument n does

not qualify as a nonparametric argument of safe since the instantiation appears

in argument position rather than in result position. This is the first time we

encounter a type constructor with a nonuniform parameter.

When we use the tactic induction on a proof of a proposition obtained with

an inductive predicate, both the nonuniform parametric arguments and the non-

parametric arguments of the proposition must be linearized. If we use the tactic

destruct, it suffices if the nonparametric arguments are linearized. For instance,

if we have an assumption A : safe p 0, destruct can be applied to A but induction

must not be applied to A.

We prove that safe p is downward closed.

Lemma safe_dclosed k n p :

k ≤ n→ safe p n→ safe p k.

3 A parameter is a parametric argument.
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Proof.

intros A B. induction A as [|n A].

− exact B.

− apply IHA. right. exact B.

Qed.

The proof is by induction on a proof of k ≤ n. Note the use of the tactic right to

apply the second constructor of safe. The tactics left and right can be used with

every type constructor that has two value constructors.

We prove that safe satisfies its specification.

Lemma safe_iff p n :

safe p n ↔ ∃ k, n ≤ k ∧ p k.

Proof.

split ; intros A.

− induction A as [n B|n A].

+ ∃ n. auto.

+ destruct IHA as [k [B C]].

∃ k. split. omega. exact C.

− destruct A as [k [A B]].

apply (safe_dclosed A). left. exact B.

Qed.

The direction from left to right is by induction on a proof of safe p n. From the

destructuring pattern for the induction we learn that a name for the nonuniform

parameter nmust be given for both subgoals. This must be done for nonuniform

parameters in general.

The direction from right to left follows with the lemma safe_dclosed. Using

this lemma is essential since a direct proof of the more specific claim we have at

this point seems impossible.

The predicate safe is different from the other inductive predicates we saw in

this chapter in that it is impossible to express it with a boolean test. This is the

case even if we assume that the argument p is a decidable predicate.4

Exercise 7.6.1 We define a predicate least such that least p n k holds if and only

if k is the least number such that n ≤ k and pk holds.

Inductive least (p : nat→ Prop) (n : nat) : nat→ Prop :=

| leastB : p n→ least p n n

| leastS k : ¬ p n→ least p (S n) k→ least p n k.

Note that the first argument of least is a uniform parameter, the second ar-

gument is a nonuniform parameter, and the third argument is nonparametric.

Prove the following correctness lemmas for least.

4 Think of pn as the statement saying that a particular Turing machine halts on a particular

input in at most n steps.
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Lemma least_correct1 p n k : least p n k→ p k.

Lemma least_correct2 p n k : least p n k→ n ≤ k.

Lemma least_correct3 p n k : least p n k→ ∀ k’, n ≤ k’→ p k’→ k ≤ k’.

Lemma least_correct4 p n k : (∀ x, dec (p x))→ p (n+k)→ ∃ k’, least p n k’.

Lemma least_correct p n k (p_dec : ∀ x, dec (p x)) :

least p n k ↔ p k ∧ n ≤ k ∧ ∀ k’, n ≤ k’→ p k’→ k ≤ k’.

Hint: Use le_lt_eq_dec from the standard library for the proof of least_correct3.

7.7 Constructive Choice for Nat

We will now construct a function

cc_nat : ∀ p : nat→ Prop, (∀ x, dec (p x))→ (∃ x, p x)→ {x | p x}

we call constructive choice for nat. For a decidable predicate p on numbers con-

structive choice yields a function that for every proof of an existential quantifica-

tion ∃x.px yields a value of the sigma type {x | px }. Thus cc_nat bypasses the

elim restriction for existential quantifications of decidable predicates on num-

bers. We will obtain this remarkable result with a new proof technique based on

the inductive predicate safe from the last section.

For convenience, we declare a decidable predicate p in a section.

Section First.

Variable p : nat→ Prop.

Variable p_dec : ∀ n, dec (p n).

We now write a function first that from a proof of safe p n obtains a value of

{k | pk }. The function first is the cornerstone of the construction of cc_nat.

Clearly, first overcomes the elim restriction. We define first by recursion on the

given proof of safe p n.

Fixpoint first (n : nat) (A : safe p n) : {k | p k} :=

match p_dec n with

| left B⇒ exist p n B

| right B⇒ first match A with

| safeB C⇒match B C with end

| safeS A’⇒ A’

end

end.

Given that first computes by recursion on A, one would expect that first first

matches on A. However, this is impossible because of the elim restriction. So

we first match on p_dec n. If we obtain a proof of p n, we are done. Otherwise,

we recurse on a proof of safe p (S n) we obtain by matching on the proof A of
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safe p n. This time the elim restriction does not apply since we are constructing

a proof. We obtain two cases. The case for safeS is straightforward since we get

a proof of safe p (S n) by taking off the constructor. The case for safeB yields

a proof C of pn. Since we have a proof B of ¬pn, we can match on the proof

B C of False. Now we are done since each rule of the match returns a proof of

safe p (S n) that is obtained by taking off a constructor of the proof A (vacuous

reasoning).

The recursion scheme underlying first is nonstandard. The standard recur-

sion scheme would first match on the proof and than recurse. The recursion

scheme we see with first first recurses and only then matches on the proof. This

way the elim restriction can be bypassed. We speak of an eager proof term

recursion.

It is now straightforward to construct the certifying function cc_nat. We ob-

tain the result by applying first to a proof of safe p 0. The proof of safe p 0 we

obtain with the lemma safe_dclosed from a proof of safe p n for some n. The n

and the proof of safe p n we obtain from the given proof of ∃x.px.

Lemma cc_nat : (∃ x, p x)→ {x | p x}.

Proof.

intros A. apply first with (n:=0).

destruct A as [n A].

apply safe_dclosed with (n:=n). omega. left. exact A.

Qed.

Note the “with” annotations used with the tactic apply. They provide a conve-

nient means for specifying implicit arguments of the function being applied.

There is a straightforward algorithmic idea underlying cc_nat we may call

linear search: To find the least k ≥ n such that pn, increment n until pn holds.

What is interesting about linear search from our perspective is that linear search

is not structurally recursive and that it may not always terminate. We can see

first as a logical reformulation of linear search that is structurally recursive.

Exercise 7.7.1 Write a constructive choice function for bool.

Definition cc_bool (p : bool→ Prop) (p_dec : ∀ x, dec (p x)) : (∃ x, p x)→ {x | p x}.

Exercise 7.7.2 Complete the definitions of the following recursive and certify-

ing functions with scripts. Assume a section declaring a decidable predicate p.

Follow the eager proof term recursion scheme from first.

Fixpoint first1 (n : nat) (A : safe p n) : {k | p k ∧ k ≥ n}.

Fixpoint first2 (n : nat) (A : safe p n) : {k | p k ∧ k ≥ n ∧ ∀ k’, n ≤ k’→ p k’→ k ≤ k’}.
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Hint: First redefine first with a script. Check the partial proof terms you obtain

with the command Show Proof . Then refine the script for first to obtain the

script for first1.

Exercise 7.7.3 Write constructive choice functions for the finite types fin n.

Definition cc_fin (n : nat) (p : fin n→ Prop) (p_dec : ∀ x, dec (p x))

: (∃ x, p x)→ {x | p x}.

7.8 Technical Summary

An inductive definition introduces a family of typed names called constructors.

One of the constructors yields types and is called type constructor. The re-

maining constructors are called value constructors and yield the elements of the

types obtainable with the type constructor. An inductive value is a value ob-

tained with a constructor. Thus an inductive predicate is a predicate obtained

with a constructor, a proof constructor is a value constructor yielding a proof,

and inductive proposition is a proposition obtained with a type constructor.

An inductive definition comes with a list of named parameters specified in

the head of the definition. The parameters appear as leading arguments of every

constructor introduced by the inductive definition. We speak of the parametric

arguments of a constructor. The constructors may have additional arguments,

which we call nonparametric arguments. There is the constraint that the result

type of a value constructor must not instantiate parametric arguments of the

type constructor. The parametric arguments of a value constructor do not ap-

pear in matches and the type specification of the constructor in the introducing

inductive definition.

As example we consider the following inductive definition.

Inductive least (p : nat→ Prop) (n : nat) : nat→ Prop :=

| leastB : p n→ least p n n

| leastS k : ¬ p n→ least p (S n) k→ least p n k.

The definition introduces the constructors

least : (nat → Prop)→ nat → nat → Prop

leastB : ∀p : nat → Prop ∀n : nat. p n→ least p n n

leastS : ∀p : nat → Prop ∀n : nat ∀k : nat. ¬p n→ least p (S n) k → least p n k

The leading two arguments of each constructor are parametric, the remaining ar-

guments are nonparametric. The type constructor least and the value construc-

tor leastB have one nonparametric argument each, and the value constructor

leastS has three nonparametric arguments.
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Our inductive definitions will always be such that for every nonparametric

argument of the type constructor there will be at least one value constructor that

instantiates this argument in its result type. Coq does not enforce this condition.

The elim restriction applies to matches on proofs of inductive propositions

where the underlying inductive definition either has more than one proof con-

structor or has a single proof constructor taking a nonparametric argument spec-

ified with a proper type. For instance, the elim restriction applies to matches on

proofs of disjunctions and existential quantifications, but it does not apply to

matches on proofs of equations and conjunctions.

Coq distinguishes between uniform and nonuniform parameters of inductive

definitions. A parameter of an inductive definition is nonuniform if it is instan-

tiated in argument position in the type specification of a value constructor. For

instance, the inductive definition least has the uniform parameter p and the

nonuniform parameter n. The nonuniformity of n is due to the type of the third

nonparametric argument of the value constructor leastS.

When we apply the tactic destruct to a proof A of an inductive proposition

Ct1 . . . tn, all terms ti giving nonparametric arguments must be variables that do

not appear in the other terms. Similarly, when we apply the tactic induction to a

proof A of an inductive proposition Ct1 . . . tn, all terms ti giving nonparametric

or nonuniform parametric arguments must be variables that do not appear in

the other terms. We say that inductive propositions are linear if they satisfy this

condition. Inductive propositions can be linearized with the tactic remember .5

7.9 Induction Lemmas

When we apply the tactic induction to an assumed value of an inductive type,

the induction lemma for the underlying type constructor is applied. To have an

example, we consider the inductive definition of even.

Inductive even : nat→ Prop :=

| evenO : even 0

| evenS x : even x→ even (S (S x)).

5 Unfortunately, the tactics destruct and induction do not give warnings when they are applied

to proofs of nonlinear inductive propositions. Instead, they linearize the proposition auto-

matically and forget the equations relating the fresh variables with the moved away argument

terms. This often leads to unprovable subgoals.
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The type of the induction lemma even_ind Coq derives for even is as follows.

∀p : nat → Prop.

p 0→

(∀x : nat. even x → px → p(S(S x)))→

∀x : nat. even x → px

Note that each constructor contributes a premise of the implication. When we

apply the tactic induction to an assumption A : even x, the goal is rearranged by

moving all assumptions depending on the variable x to the claim. Thus these

assumptions become part of the induction predicate p and hence appear in the

inductive hypothesis px of the premise for the constructor evenS.

Our second example is the inductive definition of le.

Inductive le (x : nat) : nat→ Prop :=

| le_n : le x x

| le_S y : le x y→ le x (S y).

The induction lemma le_ind Coq generates for le quantifies the uniform param-

eter x at the outside.

∀x : nat ∀p : nat → Prop.

p x →

(∀ y : nat. le x y → py → p(S y))→

∀y : nat. le x y → py

If you look at the induction lemma Coq generates for least, you will see that

the nonuniform parameter is treated like the nonparametric argument in that it

appears as an argument of the induction predicate p.

When we work with paper and pencil, doing inductive proofs based on induc-

tive definitions requires considerable training and great care. When we work with

Coq, the tedious details are taken care of automatically and proof correctness is

guaranteed.

Exercise 7.9.1 Complete the following definitions of the induction lemmas for

even and le.

Definition even_ind’ (p : nat→ Prop) (r1 : p 0) (r2 : ∀ x, even x→ p x→ p (S (S x)))

: ∀ x, even x→ p x := · · · .

Definition le_ind’ (x : nat) (p : nat→ Prop) (r1 : p x) (r2 : ∀ y, le x y→ p y→ p (S y))

: ∀ y, le x y→ p y := · · · .
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Coq Summary

New Tactics

remember , replace.

Automation Tactic inversion

The automation tactic inversion subsumes the capabilities of the tactics destruct,

discriminate, and injection. The use of inversion is convenient if it solves the goal.

Otherwise inversion often creates subgoals with many equational assumptions.

We will use inversion only if it solves the goal. Here are two examples.

Goal ¬ even 1. Proof. intros A. inversion A. Qed.

Goal ¬ 7 ≤ 0. Proof. intros A. inversion A. Qed.

With Annotations for apply

With annotations used with the tactic apply are a convenient means for specify-

ing implicit arguments of the function being applied. See the definition of cc_nat

in Section 7.7.
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In this chapter we study lists in constructive type theory. Lists are a basic data

structure providing for the representation of finite sequences and finite sets.

We will consider predicates like list membership, list inclusion, list equivalence,

list disjointness, and duplicate freeness. We will also consider functions for

concatenation, mapping, product, filtering, element removal, length, cardinality,

and power lists.

Decidability issues play an important role for data structures in general and

lists in particular. For instance, if the base type comes with decidable equality,

membership as well as inclusion, equivalence, and equality of lists are decidable.

Moreover, quantification over the elements of a list preserves decidability. Fi-

nally, list functions like cardinality and element removal require a decider for

base type equality.

Lists and decidability play a major role in many formal developments we are

interested in. As is, Coq’s library does not provide adequate support for lists and

decidability. Thus we provide a base library Base.v realizing the infrastructure

for lists and decidability introduced in this chapter. The base library comes with

several automation features including an automatic handling of side conditions

for decidability.

In this chapter we explain the infrastructure provided by the base library from

the user’s point of view. We will not say much about the implementation of the

base library, which uses several advanced features of Coq we have not seen so

far. The interested reader may consult the source code of the base library.

From now on we assume that our Coq developments start with the command

Require Export Base.

The command loads the base library designed for this course. The base library

switches Coq into implicit arguments mode and provides Coq’s basic infrastruc-

ture for numbers and setoid rewriting. It also provides the infrastructure for

lists and decidability presented in this chapter. The base library can be made

availably by placing a compiled version of the file Base.v in Coq’s load path (use

the command coqc Base.v for compilation).
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8.1 Constructors and Notations

Lists can be seen as finite sequences [x1 ; . . . ; xn] of values. Formally, lists are

obtained with two constructors nil and cons.

[] ֏ nil

[x] ֏ cons x nil

[x ;y] ֏ cons x (cons y nil)

[x ;y ;z] ֏ cons x (cons y (cons z nil))

The constructor nil provides the empty list. The constructor cons yields for a

value x and a list [x1 ; . . . ; xn] the list [x ;x1 ; . . . ; xn]. Given a list cons x A, we

call x the head and A the tail of the list. Given a list [x1 ; . . . ; xn], we call n the

length of the list and x1, . . . , xn the elements of the list. An element may appear

more than once in a list. For instance, [2 ; 2 ; 3] is a list of length 3 that has 2

elements.

We are now ready for the formal definition of lists:

Inductive list (X : Type) : Type :=

| nil : list X

| cons : X→ list X→ list X.

The definition provides three constructors:

list : Type→ Type

nil : ∀X : Type. list X

cons : ∀X : Type. X → list X → list X

The formal definition of lists ensures that all elements of a list are taken from

the same type. For every type X we obtain a type list X . The elements of list X

are the lists we can obtain with nil and cons from elements of X. We speak of

lists over X.

We arrange things such that the base type X is an implicit argument of the

constructors nil and cons. While X is implicit for cons by default, this arrange-

ment need to be declared explicitly for nil (since nil has no explicit arguments

determining X). For nil the implicit argument X will be determined from the

surrounding context.

For cons we employ a right associative infix notation:

x :: A := cons x A

We can now write x :: y :: A for cons x (cons y A).
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8.2 Recursion and Induction

Like numbers, lists are a recursive data structure. Thus functions on lists are

typically defined by structural recursion on lists, and lemmas about lists are

often shown by structural induction on lists. Recursion and induction on lists

are quite similar to recursion and induction on numbers.

Length

We define the length |A| of a list A as follows:

|nil| := 0

|x :: A| := S|A|

Using bracket notation, we have

|[x1 ; . . . ;xn]| = n

In Coq, we realize |A| with a recursive function

length : ∀ X : Type, list X→ nat

and an accompanying notation.

Concatenation

We define the concatenation A++B of two lists A and B as follows:

nil++B := B

x :: A++B := x :: (A++B)

Using bracket notation, we have

[x1 ; . . . ;xm]++ [y1 ; . . . ;yn] = [x1 ; . . . ;xm ;y1 ; . . . ;yn]

In Coq, we realize A++B with a recursive function

app : ∀ X : Type, list X→ list X→ list X

and an accompanying notation.

Reversal

We define the reversal of a list as follows:

rev nil := nil

rev (x :: A) := rev A++[x]

Using bracket notation, we have

rev [x1 ; . . . ;xn] = [xn ; . . . ;x1]

In Coq, we realize rev A with a recursive function
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rev : ∀ X : Type, list X→ list X

Map

We define the map of a list under a function f as follows:

map f nil := nil

map f (x :: A) := fx :: map f A

Using bracket notation, we have

map f [x1 ; . . . ;xn] = [fx1 ; . . . ;fxn]

In Coq, we realize map f A with a recursive function

map : ∀ X Y : Type, (X→ Y)→ list X→ list Y

Product

The product A × B of two lists A and B is a list containing all pairs (a, b) such

that a is an element of A and b is an element of B:

nil × B := nil

(a :: A)× B :=map (pair a) B++(A× B)

For instance, [1 ; 2]×[5 ; 6 ; 7] = [(1,5) ; (1,6) ; (1,7) ; (2,5) ; (2,6) ; (2,7)]. In Coq,

we realize A× B with a recursive function

list_prod : ∀ X Y : Type, list X→ list Y→ list (X * Y)

Structural Induction

We prove a simple fact about length and concatenation of lists using structural

induction on lists.

Lemma 8.2.1 |A++B| = |A| + |B|

Proof By induction on A.

A = nil. We have |nil++B| = |B| = 0+ |B| = |nil| + |B|.

A = x :: A. We have |(x :: A)++B| = |x :: (A++B)| = S|A++B| =IH S(|A|+|B|) =

S|A| + |B| = |x :: A| + |B|. Note the use of the inductive hypothesis. �

Use Coq to study every detail of this proof.

Simplification Rules and Tactic simpl_list

Figure 8.1 shows simplification rules for list operations the base library provides

under the given names. The rules are registered with the tactic simpl_list, which

will rewrite with these rules as long as this is possible. The rules are applied left

to right except for app_assoc, which is applied from right to left.
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A++nil = A app_nil_r

A++(B++C) = (A++B)++C app_assoc

rev (A++B) = rev B++ rev A rev_app_distr

map f (A++B) =map f A++map f B map_app

|A++B| = |A| + |B| app_length

|rev A| = |A| rev_length

|map f A| = |A| map_length

|A× B| = |A| · |B| prod_length

rev (rev A) = A rev_involutive

rev (A++[x]) = x :: rev A rev_unit

Figure 8.1: Simplification rules registered with simpl_list

Exercise 8.2.2 (Lemma list_cycle) Prove A ≠ x :: A.

Exercise 8.2.3 Prove the simplification rules in Figure 8.1.

Exercise 8.2.4 If you are familiar with functional programming, you will know

that the function rev defined in the previous section takes quadratic time to

reverse a list. This is due to the fact that each recursion step involves an appli-

cation of the function app. One can write a tail-recursive function that reverses

lists in linear time. The trick is to move the elements of the main list to a second

list passed as an additional argument.

revi nil B := B

revi (x :: A) B := revi A (x :: B)

Prove the following correctness properties of revi in Coq.

a) revi A B = rev A++B

b) rev A = revi A nil

Exercise 8.2.5 Define a tail-recursive function lengthi and prove length A =

lengthi A nil.
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x ∈ A++B ↔ x ∈ A∨ x ∈ B in_app_iff

x ∈ rev A ↔ x ∈ A in_rev_iff

x ∈map f A ↔ ∃y. fy = x ∧y ∈ A in_map_iff

(a, b) ∈ A× B ↔ a ∈ A∧ b ∈ B in_prod_iff

Figure 8.2: Membership equivalences for list operations

8.3 Membership

We define list membership x ∈ A as follows:

(x ∈ nil) := ⊥

(x ∈ y :: A) := (x = y ∨ x ∈ A)

Using bracket notation, we have

(x ∈ [x1 ; . . . ;xn]) = (x = x1 ∨ · · · ∨ x = xn ∨⊥)

In Coq, we realize list membership with a recursive predicate

In : ∀ X : Type, X→ list X→ Prop

and an accompanying notation.

List membership is similar to membership in finite sets. We can see lists as

representations of finite sets. This representation ist not unique since different

lists can represent the same set. For instance, [1 ; 2], [2 ; 1], [1 ; 1 ; 2] and [1 ; 2 ; 2]

are different lists all representing the set {1,2}. In contrast to finite sets, lists

are ordered structures providing for multiple occurrences of elements.

Figure 8.2 shows membership equivalences for the list operations we defined

in the last section. To the right of the equivalences appear the names of the

respective lemmas provided by the base library.

Figure 8.3 shows further useful lemmas for list membership the base library

provides. The starred lemmas are registered with auto.

Exercise 8.3.1 Given the lemmas marked with ∗ in Figure 8.3, auto 7 can solve

the goal 3 ∉ nil ∧ 2 ∈ A++(1 :: 2 :: B)++C . Do the proof by hand using the tactic

apply to understand how this works.

Exercise 8.3.2 Prove the lemmas in Figure 8.3 in Coq.

Exercise 8.3.3 Prove the equivalences in Figure 8.2 in Coq.
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x ∈ x :: A ∗in_eq

x ∈ A→ x ∈ y :: A ∗in_cons

x ∈ A∨ x ∈ B → x ∈ A++B ∗in_or_app

x ∉ nil ∗in_nil

x ∈ [y]→ x = y in_sing

x ∈ y :: A→ x ≠ y → x ∈ A in_cons_neq

x ∉ y :: A→ x ≠ y ∧ x ∉ A not_in_cons

Figure 8.3: Membership lemmas

Exercise 8.3.4 Define an inductive predicate con satisfying the equivalence

con A B C ↔ A++B = C .

a) Give the type of con.

b) Define con with rules.

c) Define con with constructors.

d) State the induction lemma for con.

e) Prove con A B C ↔ A++B = C .

8.4 Inclusion and Equivalence

We define list inclusion A ⊆ B and list equivalence A ≡ B as follows:

A ⊆ B := ∀x. x ∈ A→ x ∈ B

A ≡ B := A ⊆ B ∧ B ⊆ A

We say that A is a sublist of B if A ⊆ B. Note that two lists are equivalent if and

only if they contain the same elements.

In Coq, we realize list inclusion and list equivalence with two predicates

incl : ∀ X : Type, list X→ list X→ Prop

equi : ∀ X : Type, list X→ list X→ Prop

and accompanying notations.

Figure 8.4 shows some inclusion lemmas the base library registers with auto.

With these lemmas auto 6 can, for instance, solve the goal

∀A B C. A ⊆ B → 2 :: A++3 :: A ⊆ C ++3 :: 2 :: B

The base library also registers the constant equiv with auto so that it can be

unfolded automatically.
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A ⊆ A ∗incl_refl

A ⊆ B → A ⊆ x :: B ∗incl_tl

x ∈ B → A ⊆ B → x :: A ⊆ B ∗incl_cons

A ⊆ B → A ⊆ B++C ∗incl_appl

A ⊆ C → A ⊆ B++C ∗incl_appr

A ⊆ C → B ⊆ C → A++B ⊆ C ∗incl_app

nil ⊆ A ∗incl_nil

Figure 8.4: Inclusion lemmas registered with auto

A ⊆ nil → A = nil incl_nil_eq

A ⊆ B → x :: A ⊆ x :: B incl_shift

x :: A ⊆ B ↔ x ∈ B ∧A ⊆ B incl_lcons

x :: A ⊆ [y]→ x = y ∧A ⊆ [y] incl_sing

x :: A ⊆ x :: B → x ∉ A→ A ⊆ B incl_lrcons

A++B ⊆ C → A ⊆ C ∧ B ⊆ C incl_app_left

A ⊆ B →map f A ⊆map f B incl_map

Figure 8.5: More inclusion lemmas

Figures 8.5 and 8.6 show further lemmas the base library provides for list

inclusion and list equivalence.

The base library registers list equivalence with setoid rewriting so that the

basic equality tactics1 become available for list equivalences. In addition, the

following morphism laws are registered with setoid rewriting to provide for deep

rewriting with list equivalences.

A ≡ A′

x :: A ≡ x :: A′

A ≡ A′ B ≡ B′

A++B ≡ A′++B′

A ≡ A′

x ∈ A↔ x ∈ A′

A ≡ A′ B ≡ B′

A ⊆ B ↔ A′ ⊆ B′

Here is a proof rewriting with two equivalences from Figure 8.6.

Goal ∀ X (x y : X) A B, x::A ++ [y] ++ A ++ B ≡ A ++ [y;x] ++ A ++ B.

Proof.

intros X x y A B. simpl. rewrite equi_swap. rewrite equi_shift at 1. reflexivity.

Qed.

1 rewrite, reflexivity, symmetry, transitivity.
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x ∈ A→ A ≡ x :: A equi_push

x :: A ≡ x :: x :: A equi_dup

x :: y :: A ≡ y :: x :: A equi_swap

x :: A++B ≡ A++x :: B equi_shift

x :: A ≡ A++[x] equi_rotate

Figure 8.6: Equivalence lemmas

The base library registers list inclusion as a preorder (i.e., a reflexive and

transitive relation) with setoid rewriting. This makes it possible to use the tactics

reflexivity and transitivity for list inclusions. Moreover, list inclusions can be

rewritten with list inclusions.

Goal ∀ A B C D : list nat, A ⊆ B→ B ⊆ C→ C ⊆ D→ A ⊆ D.

Proof.

intros A B C D F G H. rewrite F. rewrite G. exact H.

Qed.

The base library registers the following morphism laws with setoid rewriting

to provide for deep rewriting with list inclusions:

A ⊆ A′

x :: A ⊆ x :: A′

A ⊆ A′ B ⊆ B′

A++B ⊆ A′++B′

A ⊆ A′

x ∈ A→ x ∈ A′

Exercise 8.4.1 Decide for each of the following propositions whether it can be

shown with the lemmas registered with auto (Figures 8.3 and 8.4).

a) A ⊆ B → x :: A ⊆ x :: B

b) x ∈ B → x ∈ y :: (A++B)

c) x ∈ y :: A→ x ∈ y :: (A++B)

d) x ∈ A++(y :: x :: B)

e) A++[x] ⊆ x :: A

f) (A++B)++C ≡ C ++(B++A)

g) [x;z] ⊆ [y ;x;z]

Exercise 8.4.2 Prove the lemmas in Figures 8.4, 8.5, and 8.6

Exercise 8.4.3 Prove that set inclusion is a preorder and that list equivalence is

an equivalence relation.

Exercise 8.4.4 Prove the morphism laws for set equivalence.
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A ‖ B ↔ ∀x. x ∈ A→ x ∉ B disjoint_forall

A ‖ B → B ‖ A disjoint_symm

B′⊆ B → A ‖ B → A ‖ B′ disjoint_incl

nil ‖ B ∗disjoint_nil

A ‖ nil ∗disjoint_nil’

x :: A ‖ B ↔ x ∉ B ∧A ‖ B disjoint_cons

A++B ‖ C ↔ A ‖ C ∧ B ‖ C disjoint_app

Figure 8.7: Disjointness lemmas

Exercise 8.4.5 Define an inductive predicate mem satisfying mem x A↔ x ∈ A.

a) Give the type of mem.

b) Define mem with rules.

c) Define mem with constructors.

d) State the induction lemma for mem.

e) Prove mem x A↔ x ∈ A.

8.5 Disjointness

Two lists are disjoint if they don’t have a common element.

A ‖ B := ¬∃x. x ∈ A∧ x ∈ B

The base library provides the lemmas shown in Figure 8.7. The starred lemmas

are registered with auto.

Exercise 8.5.1 Prove the lemmas in Figure 8.7.

8.6 Decidability

Figure 8.8 shows four basic decidability laws for lists.2 We may paraphrase the

laws as follows:

1. A list type has decidable equality if the base type has decidable equality.

2. List membership is decidable if the base type has decidable equality.

3. Universal quantification over the members of a list preserves decidability.

2 The notation s = t :>T says that both sides of the equation have type T .

128 2014-7-16



8.6 Decidability

eq_dec X

eq_dec (list X)
∗list_eq_dec

A : list X eq_dec (list X)

dec (x ∈ A)
∗list_in_dec

∀x. dec (p x)

dec (∀x. x ∈ A→ p x)
∗list_forall_dec

∀x. dec (p x)

dec (∃x. x ∈ A∧ p x)
∗list_exists_dec

eq_dec X := ∀xy :X. dec (x = y)

Figure 8.8: Decidability laws for lists

4. Existential quantification over the members of a list preserves decidability.

Note that the laws for the quantifiers do not require that the base type of the list

has decidable equality. All four laws follow by induction on the list A.

The base library provides the laws in Figure 8.8 as lemmas with the names

given at the right. For the purpose of proof automation, the base library registers

the function dec as a so-called type class, for which in turn the decidability laws

in Figure 8.8 are registered as so-called instance rules. The base library also

registers instance rules for the logical connectives:

dec X dec Y

dec (X → Y )

dec X dec Y

dec (X ∧ Y )

dec X dec Y

dec (X ∨ Y )

dec X

dec (¬X )

The resulting infrastructure provides for the automation of many decidability

proofs.

Goal ∀ X A B (p : X→ Prop),

eq_dec X→ (∀ x, dec (p x))→ dec (A=B ∨ ∀ x, x ∈ A→ ∃ y, y ∈ B ∧ (y ∈ A ∨ ¬ p x)).

Proof. auto. Qed.

Additional instance rules for dec (or other registered type classes) can be

registered with the command

Existing Instance L.
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∀x. dec (p x)

{x | x ∈ A∧ px } + {∀x. x ∈ A→ ¬px}
list_sigma_forall

∀x. dec (p x) ¬∀x. x ∈ A→ ¬px

∃x. x ∈ A∧ px
list_exists_DM

eq_dec X A 6⊆ B

∃x. x ∈ A∧ x ∉ B
list_exists_not_incl

∀x. dec (p x) ∃x. x ∈ A∧ px

{x | x ∈ A∧ px }
list_cc

Figure 8.9: Quantifier laws for lists and decidable predicates

where L is the lemma formalizing the rule. It is possible to combine the definition

of L with the registration of L by writing the keyword Instance rather than the

keyword Lemma.

Instance iff_dec (X Y : Prop) :

dec X→ dec Y→ dec (X ↔ Y).

Proof. unfold dec; τto. Qed.

Figure 8.9 shows three quantifier laws for lists exploiting decidability assump-

tions. The second law is a de Morgan-style law for existential list quantification,

and the third law is a constructive choice principle for lists. The first law in Fig-

ure 8.9 is a basic decision principle for lists from which the other two laws in

Figure 8.9 as well as the decidability laws for list quantification in Figure 8.8 can

be obtained.

Exercise 8.6.1 Explain why auto can prove

Goal ∀ X (A B : list X), eq_dec X→ dec (A ≡ B)

Do the proof not using auto.

Exercise 8.6.2 Prove the goal given below not using auto. Use the lemmas in

Figure 8.8 and the lemmas or_dec and not_dec from the base library.

Goal ∀ X A B (p : X→ Prop),

eq_dec X→ (∀ x, dec (p x))→ dec (A=B ∨ ∀ x, x ∈ A→ ∃ y, y ∈ B ∧ (y ∈ A ∨ ¬ p x)).
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Exercise 8.6.3 Prove the decidability laws for lists shown in Figure 8.8. All four

laws can be shown by induction on A. Some of the laws require further case

analysis. Use the tactics auto, eauto, tauto, inv, and discriminate.

Exercise 8.6.4 Prove the quantifier laws for lists shown in Figure 8.9. The first

law follows by induction on the list A. The other two laws follow from the first

law.

8.7 Filtering

The base library provides a function filter that for a decidable predicate and a

list yields the sublist containing all elements satisfying the predicate.

filter p nil := nil

filter p (x :: A) := if [px\ then x :: filter p A else filter p A

The notation [px\ stands for a decision for the proposition px. The type of

filter is

∀X : Type. (X → Prop)→ (∀x. dec (px))→ list X → list X

where the first and the third argument are implicit. Coq will attempt to derive

the third argument (a decider for p) using the instance rules registered for dec.

Here is an example:

Compute filter (fun x⇒ 3 ≤ x ≤ 7) [1;2;3;4;5;6;7;8;9].

% [3; 4; 5; 6; 7]

The implicit argument of filter is determined as

λx. and_dec (le_dec 3 x) (le_dec x 7)

The base library realizes the notation [X\ with an application decision X

where decision is an identity function for decisions:

Definition decision (X : Prop) (D : dec X) : dec X := D.

Arguments decision X {D}.

By default, X would be the implicit and D be the explicit argument of decision.

The default is overwritten with the command Arguments. There is a fair chance

Coq can derive D since dec is a type class with instance rules. Using decision,

filter is defined as follows:
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x ∈ filter p A ↔ x ∈ A∧ px in_filter_iff

filter p A ⊆ A filter_incl

A ⊆ B → filter p A ⊆ filter p B filter_mono

(∀x. x ∈ A→ px → qx)→ filter p A ⊆ filter q A filter_pq_mono

(∀x. x ∈ A→ (px ↔ qx))→ filter p A = filter q A filter_pq_eq

(∀x. x ∈ A→ px)→ filter p A = A filter_id

filter p (filter q A) = filter (λx. px ∧ qx) A filter_and

filter p (filter q A) = filter q (filter p A) filter_comm

filter p (A++B) = filter p A++filter p B filter_app

px → filter p (x :: A) = x :: filter p A filter_fst

¬px → filter p (x :: A) = filter p A filter_fst’

Figure 8.10: Lemmas for filter

Definition filter (X : Type) (p : X→ Prop) (p_dec : ∀ x, dec (p x)) : list X→ list X :=

fix f A := match A with

| nil ⇒ nil

| x::A’⇒ if decision (p x) then x :: f A’ else f A’

end.

Arguments filter {X} p {p_dec} A.

The implicit argument of decision is determined as p_dec x.

Figure 8.10 shows lemmas for filter the standard library provides.

We discuss the definition of in_filter_iff .

Lemma in_filter_iff X (p : X→ Prop) {p_dec : ∀ x, dec (p x)} x A :

x ∈ filter p A ↔ x ∈ A ∧ p x.

Proof.

induction A as [|y A]; simpl.

− τto.

− decide (p y) as [B|B]; simpl;

rewrite IHA; intuition; subst; τto.

Qed.

Note that the argument p_dec is declared with curly braces. This enforces

that p_dec is an implicit argument of the lemma. The proof is by induc-

tion on A. The induction step does a case analysis on decision (px) : dec (px)
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using the tactic decide. The tactic decide is defined in the base library as

decide X := destruct (decision X ).

Exercise 8.7.1 Prove the lemmas in Figure 8.10.

Exercise 8.7.2 (Intersection) Define an intersection function inter for lists and

prove x ∈ inter A B ↔ x ∈ A∧ x ∈ B.

8.8 Element Removal

We use the notation A\x for the sublist of A obtained by deleting all occurrences

of x. Formally, we define element removal A \ x using filter :

A \ x := filter (λy.y ≠ x) A

The base library realizes element removal with a function

rem : ∀X : Type. eq_dec X → list X → X → list X

whose first and second argument are implicit. The second argument provides a

decider for equality on X. The notation eq_dec X was defined in Figure 8.8.

Figure 8.11 shows lemmas the base library provides for list removal.

Exercise 8.8.1 Prove the lemmas in Figure 8.11.

8.9 Cardinality

The cardinality card A of a list A is the number of different elements in A. For

instance,

card [1; 2] = 2

card [1; 2; 1; 2; 3] = 3

Formally, we define cardinality of lists with a recursive function:

card nil = 0

card (x :: A) = if [x ∈ A\ then card A else 1+ card A

Intuitively, we may say that the function card counts only the last occurrence of

an element. The base library accommodates cardinality as a function

card : ∀X : Type. eq_dec X → list X → N
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x ∈ A \y ↔ x ∈ A∧ x ≠ y in_rem_iff

x = y ∨ x ∉ A→ x ∉ A \y ∗rem_not_in

A \ x ⊆ A ∗rem_incl

A ⊆ B → A \ x ⊆ B ∗rem_mono

A ⊆ B → x ∉ A→ A ⊆ B \ x ∗rem_inclr

A ⊆ B → (x :: A) \ x ⊆ B ∗rem_cons

x ∈ B → A \y ⊆ B → (x :: A) \y ⊆ B ∗rem_cons’

x ∈ A→ B ⊆ A++(B \ x) ∗rem_app

A \ x ⊆ C → B \ x ⊆ C → (A++B) \ x ⊆ C ∗rem_app’

x ∈ A \y → x ∈ A ∗rem_in

x ≠ y → x ∈ A→ x ∈ A \y ∗rem_neq

x :: A ≡ x :: (A \ x) rem_equi

x ∈ A→ A ≡ x :: (A \ x) rem_reorder

(A \ x) \y = (A \y) \ x rem_comm

(x :: A) \ x = A \ x rem_fst

x ≠ y → (x :: A) \y = x :: (A \y) rem_fst’

x ∉ A→ A \ x = A rem_id

Figure 8.11: Lemmas for element removal

whose first and second argument are implicit.

Figure 8.11 shows basic cardinality laws the base library provides. The car-

dinality laws for lists are similar to cardinality laws for finite sets. The laws are

useful for proofs that employ size induction based on list cardinality.

Lemma card_eq is registered as a morphism law with setoid rewriting.

Exercise 8.9.1 Why do the equations

card nil = 0

card (x :: A) = 1+ card (A \ x)

not provide for a recursive definition of the cardinality function in Coq?
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x ∈ A→ card A = 1+ card (A \ x) card_in_rem

x ∉ A→ card A = card (A \ x) card_not_in_rem

A ⊆ B → card A ≤ card B card_le

A ≡ B → card A = card B card_eq

A ⊆ B → card A = card B → A ≡ B card_equi

card A < card B → ∃x. x ∈ B ∧ x ∉ A card_ex

A ⊆ B → x ∈ B → x ∉ A→ card A < card B card_lt

A ⊆ B → A ≡ B ∨ card A < card B card_or

card (x :: A) = 1+ card (A \ x) card_cons_rem

card A = 0→ A = nil card_0

Figure 8.12: Cardinality laws for lists

Exercise 8.9.2 Prove the lemma card_in_rem. Hint: Use induction on A and the

lemmas in_rem_iff and rem_id.

Exercise 8.9.3 Prove the lemma card_le. Use induction on A and the lemmas

incl_lcons and card_in_rem.

8.10 Duplicate-Freeness

A list is duplicate-free if it contains no element twice. Formally, we define

duplicate-free lists with an inductive predicate:

dupfree : ∀X : Type. list X → Prop

dupfree nil

x ∉ A dupfree A

dupfree (x :: A)

The inductive definition of dupfree gives us a convenient induction principle for

duplicate-free lists. Duplicate-free lists have two important properties:

• The cardinality of a duplicate-free list is the length of the list.

• For every list there exists an equivalent duplicate-free list.
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dec (dupfree A) dupfree_dec

dupfree A→ card A = |A| dupfree_card

dupfree (x :: A) ↔ x ∉ A∧ dupfree A dupfree_cons

A ‖ B → dupfree A→ dupfree B → dupfree (A++B) dupfree_app

dupfree A→ f injective on A→ dupfree (map f A) dupfree_map

dupfree A→ dupfree (filter p A) dupfree_filter

dupfree (undup A) dupfree_undup

undup A ≡ A undup_id_equi

A ≡ B ↔ undup A ≡ undup B undup_equi

A ⊆ B ↔ undup A ⊆ undup B undup_incl

dupfree A→ undup A = A undup_id

undup (undup A) = undup A undup_idempotent

Figure 8.13: Lemmas for duplicate-free lists

We define a function undup mapping lists to equivalent duplicate-free lists:

undup nil := nil

undup (x :: A) := if [x ∈ A\ then undup A else x :: undup A

The base library accommodates undup as a function

undup : ∀X : Type. eq_dec X → list X → list X

whose first and second argument are implicit. Figure 8.13 shows lemmas the

base library provides for undup and duplicate-free lists.

Exercise 8.10.1 Assume the base type has decidable equality.

a) Prove the lemma dupfree_card.

b) Prove the lemma dupfree_dec.

c) Prove the lemma dupfree_undup.

d) Prove the lemma undup_id_equi.

Hint: Use induction on the derivation of dupfree A where possible. Otherwise

use induction on A.

Exercise 8.10.2 Prove the lemmas dupfree_app, dupfree_map, and

dupfree_filter . Hint: Use induction on the derivation of dupfree A.
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Exercise 8.10.3 Prove that the existence of an undup function implies that base

type equality is decidable:

∀X. (∀A : list X. {B | dupfree B ∧A ≡ B })→ eq_dec X

Hint: Use the lemmas incl_sing, incl_nil_eq, equi_dup, and dupfree_cons. First

prove a lemma x :: y :: A ⊆ [z]→ x = y .

8.11 Power Lists

For every list U we will define a list PU satisfying the following conditions:

1. Every element of PU is a sublist of U .

2. Every sublist of U is equivalent to an element of PU .

3. If U is duplicate-free, then every element of PU is duplicate-free and every

sublist of U is equivalent to exactly one element PU .

We define the power list PU as follows:

P nil := [nil]

P (x :: A) := PA++map (cons x) (PA)

The base library accommodates power lists with a function

power : ∀X : Type. list X → list (list X )

We also define a representation function

[A\U := filter (λx.x ∈ A) U

satisfying the [A\U ∈ PU and [A\U ≡ A whenever A ⊆ U . The base library

accommodates [A\U with a function

rep : ∀X : Type. eq_dec X → list X → list X → list X

whose first and second argument are implicit.

Figure 8.14 shows the lemmas the base library provides for power lists and

the accompanying representation function.

Exercise 8.11.1 Prove the lemmas for power lists shown in Figure 8.14.
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A ∈ PU → A ⊆ U power_incl

nil ∈ PU power_nil

[A\U ∈ PU rep_power

[A\U ⊆ U rep_incl

A ⊆ U → x ∈ A→ x ∈ [A\U rep_in

A ⊆ U → [A\U ≡ A rep_equi

A ⊆ B → [A\U ⊆ [B\U rep_mono

A ≡ B → [A\U = [B\U rep_eq

A ⊆ U → B ⊆ U → [A\U = [B\U → A ≡ B rep_injective

[[A\U\U = [A\U rep_idempotent

dupfree U → dupfree (PU) dupfree_power

A ∈ PU → dupfree U → dupfree A dupfree_in_power

dupfree U → A ∈ PU → [A\U = A rep_dupfree

dupfree U → A ∈ PU → B ∈ PU → A ≡ B → A = B power_extensional

Figure 8.14: Lemmas for power lists
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We consider a basic problem in computational logic known as syntactic unifi-

cation: Given two terms, find variable instantiations making the terms syntacti-

cally equal. Algorithms for syntactic unification are employed for type inference

in Coq and in functional programming languages. Syntactic unification is also

used by Coq’s tactic interpreter to find instantiations for universally quantified

variables of lemmas to be applied with the tactics apply and rewrite.

We formalize the syntactic unification problem and verify a unification algo-

rithm. Syntactic unification serves us as a basic syntactic theory where we can

study the formalization of terms and substitutions. Syntactic unification also

provides us with an example of a nontrivial algorithm that in its natural formu-

lation is not structurally recursive. Given that in Coq all recursion is structural,

this looks like a problem at first. However, there is a standard technique known

as bounded recursion that transforms general recursion to structural recursion

on a numeric bound provided termination of the general recursion follows with

a numeric size function.

9.1 Terms, Substitutions, and Unifiers

We start with an informal discussion of the syntactic unification problem. We

consider a minimal version of the problem where terms are obtained with vari-

ables and a single binary operation called dot:

s, t ::= x | s · t

Thus a term is either a variable or an ordered pair of two terms. Two terms are

unifiable if there are instantiations for the variables in the terms such that the

terms become equal:

• x and y are unifiable with x ≐ y .

• x · (z · x) and (z · z) ·y are unifiable with x ≐ z · z and y ≐ z · (z · z).

• x and x ·y are not unifiable.

A unifier of two terms is a list of variable instantiations making the terms equal.

A unifier of two terms is principal if the variable instantiations do not involve
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unnecessary commitments. The unifiers given above are principal for the respec-

tive terms. Given the terms x and y , the instantiation list [x ≐ z; y ≐ z] is a

non-principal unifier. Our goal is a unification algorithm that given two terms

decides whether the terms are unifiable and returns a principal unifier if the

terms are unifiable.

There is the complication that two terms may have more than one principal

unifier. For instance, the terms x and y have two principal unifiers, x ≐ y

and y ≐ x. The ambiguity can be eliminated by insisting that principal uni-

fiers replace larger variables with smaller variables. We will not impose such a

constraint.

It is helpful to see unification as a special form of equation solving: Given an

equation s ≐ t between two terms, we are looking for variable instantiations that

solve the equation. It will also be helpful to consider list of equations rather than

single equations. Under this view, unifiers appear as solutions of equation lists.

We now give formal definitions of terms, equations, and (principal) unifiers in

Coq. We start with the definition of variables, terms, and equations.

Definition var := nat.

Inductive ter : Type :=

| V : var→ ter

| T : ter→ ter→ ter.

Definition eqn := prod ter ter.

The Coq definitions make the informal definitions precise: Variables are num-

bers, terms are binary trees whose leaves are labelled with variables, and equa-

tions are pairs of terms.

Terms are a recursive data structure. Numbers and lists are recursive data

structures we are already familiar with. While numbers and lists are obtained

with linear recursion, terms are obtained with binary recursion. Inductions on

terms will involve two inductive hypotheses, one for each component of a pair.

It is common mathematical practice to always use the same letters for the

same type of objects. This way the type of an object is clear from the letter used

to denote it. Coq supports this mathematical convention with a command that

declares implicit types for identifiers:

Implicit Types x y z : var.

Implicit Types s t u v : ter.

Implicit Type e : eqn.

Implicit Types A B C : list eqn.

Implicit Types σ τ : ter→ ter.

Implicit Types m n k : nat.

The declarations will spare us many type declarations in lemmas and definitions.

The conventions automatically extend to variations of the letters like x′ or s2.
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When an identifier is used without type declaration, Coq will automatically give

it the declared implicit type. Implicit type declarations also make Coq’s output

more readable since the types of identifiers with implicit types are omitted.

In mathematical mode, we use x to denote both the variable x and the

term Vx. Formally, x and V x are quite different: While x is a variable, V x

is a term. Coq will not allow us to write an equation x = V x.

Next we come to the formal definition of unifiers. The basic idea is that a

unifier is a substitution making two terms equal. A substitution can be seen as

a function that maps variables to terms. For the purposes of unification finite

substitutions that can be represented as equation lists [x1 ≐ s1, . . . , xn ≐ sn]

suffice.

There are different possibilities for the formal representation of substitutions

and it will be necessary to work with more than one representation. For the

official definition we need to fix one representation. Which representation we

choose for the definition will matter a lot for the Coq development. It turns out

that an abstract functional representation is most convenient.

We define substitutions as functions σ : ter → ter that distribute over dot:

Definition subst σ : Prop :=

∀ s t, σ (T s t) = T (σ s) (σ t).

The distribution property ensures that σs can be obtained from s by replacing

every variable x in s with σx.

Exercises 9.6.1 and 9.6.2 are concerned with alternative representations of

substitutions.

A substitution σ unifies an equation s ≐ t if σs = σt. A unifier of an equation

list is a substitution that unifies every equation in the list:

Definition unif σ A : Prop :=

subst σ ∧

∀ s t, (s,t) ∈ A→ σ s = σ t.

An equation list is unifiable if it has a unifier:

Definition unifiable A : Prop :=

∃ σ , unif σ A.

A principal unifier of an equation list is a unifier of the list that is subsumed

by every unifier of the list:

Definition principal_unifier σ A : Prop :=

unif σ A ∧

∀ τ, unif τ A→ ∀ s, τ (σ s) = τ s.

Exercise 9.1.1 Show that two substitutions agree on all terms if they agree on

all variables.
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Exercise 9.1.2 A function f : X → X is idempotent if f(fx) = fx for every x

in X. Show that every principal unifier is idempotent.

Exercise 9.1.3 Prove the following facts about unification:

a) unif σ (y ≐ s :: A) ↔ σ s = σ t ∧ unif σ A

b) unif σ (A++B) ↔ unif σ A∧ unif σ B

Exercise 9.1.4 Prove that an equation list is non-unifiable if some sublist is non-

unifiable.

9.2 Solved Equation Lists

A list of equations may be solved by transforming it to a solved form using

unifier-preserving rules. An equation list is solved if it has the form

x1 ≐ s1, . . . , xn ≐ sn

where the variables x1, . . . , xn are distinct and, for all i ∈ {1, . . . , n}, the vari-

able xi does not appear in s1, . . . , si. Here is an example of a solved equation

list:

[x1 ≐ x0 · x0; x2 ≐ x1 · x1; x3 ≐ x2 · x2]

For a solved list we can always obtain a principal unifier. The above list has a

unique principal unifier σ , which satisfies the equations

σx1 = x0 · x0

σx2 = σx1 · σx1

σx3 = σx2 · σx2

σx = x if x ∉ {x1, x2, x3}

The formal definition of solved equation lists requires a number of auxiliary

definitions. We start with the notations V s and VA, which stand for lists con-

taining exactly the variables occurring in s and A, respectively. We realize the

notations with two recursive functions:

Vx := [x] V nil := nil

V (s · t) := V s++V t V (s ≐ t :: A) := V s++V t++VA

For the definition of solved equation lists, we also need the domain DA of an

equation list A. If A = [x1 ≐ t1; . . . ; xn ≐ tn], then DA = [x1; . . . ; xn]. If A is
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of a different form, we do not care about DA. Formally, we define DA for all

equation lists A. We use the following definition:

Dnil := nil

D (x ≐ t :: A) := x ::DA

D (s ≐ t :: A) := nil if s is not a variable

We can now define solved equation lists with an inductive predicate solved:

solved nil

x ∉ V s x ∉DA V s ‖ DA solved A

solved (x ≐ s :: A)

Next we need an operation s xt that in a term s replaces every occurrence of the

variable x with a term t. We speak of variable replacement. We will also need

variable replacement for lists. Formally, we define s xt and Axt with two recursive

functions:

y x
t := if y = x then t else y nilxt := nil

(s1 · s2)
x
t := s1

x
t · s2

x
t (u ≐ v :: A)xt := uxt ≐ v

x
t :: Axt

Next we define a function ϕ that yields a principal unifier for every solved

equation list A. Formally, we define ϕ on all equation lists:

ϕ nil s := s

ϕ (x ≐ t :: A) s := (ϕ A s)xt

ϕ (u ≐ v :: A) s := s if u is not a variable

Lemma 9.2.1 Let A be solved. Then ϕA is a principal unifier of A.

A bad equation is an equation of the form x ≐ s where x ≠ s and x ∈ V s.

Lemma 9.2.2 No equation list containing a bad equation is unifiable.

We leave the proofs of the lemmas as exercises.

Exercise 9.2.3 Prove the following facts about variable replacement.

a) If x ∉ V s, then s xt = s.

b) If x ∉ VA, then Axt = A.

c) If x ∉DA, then D(Axt ) = DA.

d) If σ is a substitution such that σx = σt, then σ(s xt ) = σs.

e) λs. s xt is a substitution.
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Exercise 9.2.4 Prove the following facts about ϕ :

a) ϕA is a substitution.

b) If DA ‖ V s, then ϕAs = s.

c) If A is solved, then ϕA is a unifier of A.

d) If σ is a unifier of A, then σ (ϕAs) = σs.

e) If A is solved, then ϕA is a principal unifier of A.

Exercise 9.2.5 Prove the bad equation lemma 9.2.2. Hint: Define a function

size : ter → N such that size s < size (s · t) and proceed by proving the following

facts:

a) If x ∈ V s and σ is a substitution, then size (σx) ≤ size (σs).

b) No bad equation is unifiable.

Exercise 9.2.6 Prove the following facts about variables:

a) DA ⊆A

b) V (A++B) = VA++VB

c) s ≐ t ∈ A→ V s ⊆ VA∧V t ⊆ VA

d) A ⊆ B → VA ⊆ VB

Exercise 9.2.7 Write a function gen : N→ ter for which you can prove that genm

and gen n are non-unifiable if m and n are different.

Exercise 9.2.8 Prove that the concatenation A++B of two solved lists A and B is

solved if VA and DB are disjoint.

9.3 Unification Rules

Every unifiable equation list can be transformed with the so-called unification

rules to a solved equation list having the same unifiers as the initial list. We

prepare this result with the definitions of an equivalence relation A ≈ B (unifier

equivalence) and a preorder A⊲ B (refinement):

A ≈ B := ∀σ. unif σ A↔ unif σ B

A⊲ B := VB ⊆ VA∧A ≈ B

We say that B is a refinement of A if A⊲ B.

Lemma 9.3.1 Refinement of equation lists is a preorder compatible with cons,

concatenation, and unification.
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1. A⊲A.

2. If A⊲ B and B ⊲ C , then A⊲C .

3. If A⊲A′, then x :: A⊲x :: A′.

4. If A⊲A′ and B ⊲ B′, then A++B ⊲A′++B′.

5. If A⊲ B, then unif σ A ↔ unif σ B.

Lemma 9.3.2 (Unification Rules)

1. Deletion [s ≐ s] ⊲ nil.

2. Swap [s ≐ t] ⊲ [t ≐ s].

3. Decomposition [s1 · s2 ≐ t1 · t2] ⊲ [s1 ≐ t1; s2 ≐ t2].

4. Replacement x ≐ t :: A ⊲ x ≐ t :: Axt .

The unification rules are obtained as the operational readings of the facts

about refinement stated in Lemma 9.3.2:

1. Trivial equations may be deleted.

2. The two sides of an equation may be swapped.

3. An equation s1 · s2 ≐ t1 · t2 may be replaced by s1 ≐ t1 and s2 ≐ t2.

4. Given an equation x ≐ s, the variable x may be replaced with s in other

equations.

We say that a solved equation list B is a solved form for an equation list A

if A ⊲ B. We will show that the unification rules suffice to refine every unifiable

equation list into a solved form. We will also show that the unification rules are

strong enough to refine every non-unifiable equation list into a list containing a

bad equation.

Exercise 9.3.3 Prove the facts stated by Lemma 9.3.1.

Exercise 9.3.4 Prove the correctness of the deletion, swap, and decomposition

rule (i.e., the first three facts stated by Lemma 9.3.2).

Exercise 9.3.5 Prove the correctness of the replacement rule (i.e., the last fact

stated by Lemma 9.3.2). Proceed by proving the following facts in the order

stated.

a) If σ is a substitution such that σx = σt, then σ(s xt ) = σs.

b) If σx = σt, then unif σ A ↔ unif σ (Axt ).

c) x ≐ t :: A ≈ x ≐ t :: Axt

d) V (s xt ) ⊆ V s++V t

e) V (Axt ) ⊆ VA++V t

2014-7-16 145



9 Syntactic Unification

f) x ≐ t :: A ⊲ x ≐ t :: Axt

Exercise 9.3.6 Prove the following fact about principal unifiers: If A ≈ B and σ

is a principal unifier of A, then σ is a principal unifier of B.

Exercise 9.3.7 Give a solved equation list that has more than one principal uni-

fier.

Exercise 9.3.8 (Confrontation Rule)

Prove [x ≐ s1 · s2; x ≐ t1 · t2] ⊲ [x ≐ s1 · s2; s1 ≐ t1; s2 ≐ t2]. The operational

reading of this fact yields the so-called confrontation rule. The confrontation

rule can often be used in place of the replacement rule when an equation list is

transformed to solved form. In contrast to the replacement rule it has the virtue

that it introduces only terms that are subterms of the original terms. This fact

matters for efficient unification algorithms.

9.4 Presolved Equation Lists

An equation list A is presolved if it is either empty or starts with an equation of

the form x ≐ s where x ≠ s. Every equation list can be refined into a presolved

equation list using the unification rules for deletion, swapping, and decomposi-

tion of equations. The refinement can be realized with two recursive functions:

pre′ s t := if s = t then nil else

match s, t with

| x, _ ⇒ [s ≐ t]

| _, x ⇒ [t ≐ s]

| s1 · s2, t1 · t2 ⇒ pre′ s1 t1++pre′ s2 t2

pre nil := nil

pre (s ≐ t :: A) := pre′ s t++pre A

Lemma 9.4.1

1. [s ≐ t] ⊲ pre′ s t and pre′ s t is presolved.

2. A ⊲ pre A and pre A is presolved.

Exercise 9.4.2 Prove Lemma 9.4.1.

9.5 Unification Algorithm

Our goal is a function solve satisfying the following specification:
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Theorem solve_correct C :

match solve C with

| Some A⇒ C ⊲ A ∧ solved A

| None⇒ ¬ unifiable C

end

Our starting point is the presolver from the previous section. We distinguish

three cases:

1. pre C is empty. Then nil is a solved form for C and we are done.

2. pre C starts with a bad equation. Then C is not unifiable and we are done.

3. pre C = x ≐ t :: D and x ∉ V t. In this case we collect x ≐ t as first equation

of a possible solved form for C . The correctness of pre and the replacement

rule give us

C ⊲ x ≐ t :: D ⊲ x ≐ t :: Dx
t

Note that the list Dx
t contains one variable less than D since the variable

replacement eliminates the variable x. We speak of an elimination step.

We continue recursively by eliminating variables as long as this is possible.

Things can be arranged such that the equations x ≐ t used for variable elimi-

nation yield a solved form (see Exercise 9.2.8).

The outlined idea can be realized with a function solveE satisfying the follow-

ing specification:1

Lemma solveE_correct A B C :

C ⊲ A ++ B→

solved A→

DA ‖ V B→

match solveE A B with

| Some D⇒ C ⊲ D ∧ solved D

| None⇒ ¬ unifiable C

end

Note that the lemma lists the necessary preconditions for solveE . Given solveE ,

we define

solve C := solveE nil C

and prove solve_correct using solveE_correct.

The obvious way to write the function solveE is by size recursion on the cardi-

nality of VB. However, Coq admits only structural recursion. The trick now is to

1 You may wonder why the correctness lemma is not formulated more compactly without the

variable C and the accompanying precondition. The reason is that the presence of C simplifies

the inductive proof. See Exercise 9.5.4 for a discussion of the issue.
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introduce an additional argument n serving as a bound for the recursion depth.

The recursion can then be realized as structural recursion on the bound n. One

speaks of bounded recursion. We realize the idea with a function solveN satis-

fying the following specification:

Lemma solveN_correct A B C n :

C ⊲ A ++ B→

solved A→

DA ‖ V B→

card (V B) < n→

match solveN n A B with

| Some D⇒ C ⊲ D ∧ solved D

| None⇒ ¬ unifiable C

end

Note that the precondition card(VB) < n requires that the bound n is larger

than the recursion depth needed for B. Given solveN , we define

solveE A B := solveE (1+ card(VB)) A B

and prove solveE_correct using solveN_correct.

It remains to define solveN and prove solveN_correct. We define solveN refin-

ing the initial idea for solve with bounded recursion.

Fixpoint solveN n A B : option (list eqn) :=

match n, pre B with

| O, _ ⇒ None

| S n’, x ≐ t :: C ⇒ if [x ∈ V t\ then None else solveN n’ (x ≐ t :: A) (C xt )

| S n’, _ ⇒ Some A

end

The proof of solveN_correct is pleasant and leads to subgoals expressing

proof obligations one would expect from an informal correctness argument for

solve. One first reverts A and B and then continues by induction on n. The base

case is trivial. For the inductive case one simulates the case analysis of the func-

tion solveN . For the recursion step one applies the inductive hypothesis, which

produces subgoals for the preconditions.

Exercise 9.5.1 Define the functions solveE and solve and prove their correctness

lemmas (based on solveN and solveN_correct).

Exercise 9.5.2 Prove that an equation list either has a solved form or is non-

unifiable.

Exercise 9.5.3 Prove that an equation list either has a principal unifier or is non-

unifiable.
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Exercise 9.5.4 If you look at the correctness lemmas for solveE and solveN , you

may notice that the lemmas can be formulated without the list C and the precon-

dition for C . The alternative formulation of the correctness lemma for solveN

looks as follows:

Lemma solveN_correct’ A B n :

solved A→

DA ‖ V B→

card (V B) < n→

match solveN n A B with

| Some D⇒ A ++ B ⊲ D ∧ solved D

| None⇒ ¬ unifiable (A ++ B)

end

We have chosen the less compact formulation of the correctness lemma with

the variable C since the presence of C considerably simplifies the proof. In the

formulation with C the inductive hypothesis applies directly to the claim for

the recursive call and yields subgoals for the preconditions. In the formulation

without C , the inductive hypothesis does not apply directly and needs to be

transformed using forward reasoning.

Try to prove the lemma solveN_correct′ to understand the issue.

Exercise 9.5.5 From the correctness theorem for the function solve it follows

that every unifiable equation list has a solved form. Try to prove this fact without

using the function solve and its variants (using the function pre is fine, however).

Hint: Use size induction to prove a lemma compensating for solveN_correct.

Much of the proof script for solveN_correct can be reused.

Mathematically, one may argue that there is no need for an explicit function

solveN since the proof of the desired existence lemma (unifiable equation lists

have solved forms) can be carried out with size induction. One may also argue

that defining the function solveN explicitly makes the proof more transparent.

Exercise 9.5.6 Extend the Coq development of syntactic unification to terms

with constants.

9.6 Alternative Representations

In this section we explore alternative representations for substitutions and a

more explicit solved form.

Exercise 9.6.1 (Representing Substitutions as Functions var → ter)

It is natural to see substitutions as functions from variables to terms. In fact,

2014-7-16 149



9 Syntactic Unification

every function from variables to terms represents a substitution, and every sub-

stitution can be represented as a function from variables to terms. Our represen-

tation of substitutions as functions from terms to terms is less direct since the

functions representing substitutions need to be filtered out with the predicate

subst.

Define a function hat : (var → ter)→ ter → ter for which you can prove the

following statements.

a) subst (hat f )

b) hat f x = fx

c) hat (λx.x) s = s

d) subst σ → hat (λx.σx) s = σs

e) s xt = hat (λz. if [z = x\ then t else z) s

Exercise 9.6.2 (Representing Substitutions as Lists)

We are mostly interested in finite substitutions σ that can be represented with

an equation list A = [x1 ≐ s1; . . . ; xn ≐ sn] such that

σx =







s if x ≐ s ∈ A

x otherwise

Define a function sub : list eqn→ var → ter for which you can prove the follow-

ing:

a) sub (x ≐ s :: A) x = s

b) sub (x ≐ s :: A) y = sub A y if x ≠ y

c) sub A x = x if x ∉DA

d) hat (sub (x ≐ s :: A)) t = hat (sub A) t if x ≠ V t

e) hat (sub A) s = s if DA ‖ V s

f) s xt = hat (sub [x ≐ t]) s

Exercise 9.6.3 (Fully Solved Equation Lists)

Consider the following inductive definition of fully solved equation lists:

fsolved nil

x ∉ V s x ∉ VA V s ‖ DA fsolved A

fsolved (x ≐ s :: A)

a) Show that every fully solved equation list is solved.

b) Give a solved equation list that is not fully solved.

c) Convince yourself that every fully solved refinement of the solved list

An = [x1 ≐ x0 · x0; x2 ≐ x1 · x1; . . . ; xn+1 ≐ xn · xn]

is exponentially larger than An.
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d) Let A be fully solved. Prove that hat (sub A) is a principal unifier of A.

e) Let A be fully solved and x ≐ s ∈ A. Prove that DA and V s are disjoint.

f) Define a function unfold that refines solved lists into fully solved lists. Prove

the following for your function unfold:

i) If A is solved, then A⊲ unfold A.

ii) If A is solved, then D(unfold A) = DA.

iii) If A is fully solved, x ∉DA, and DA ‖ V s, then Axs is fully solved.

iv) If A is solved, then unfold A is fully solved.

Exercise 9.6.4 (Exponential Running Time)

Consider the solved equation list An from Exercise 9.6.3. Convince yourself that

the function solve from the previous section yields a fully solved refinement

of An that is exponentially larger than An. This suggests that solve has exponen-

tial running time.

Exercise 9.6.5 (Extensional Representation of Finite Substitutions)

Two equation lists A and B are substitution equivalent if sub A x = sub B x

for every variable x. Define a predicate fsubst on equation lists that fixes unique

normal forms for substitution equivalence.

a) Prove that two equation lists satisfying fsubst are equal if they are substitu-

tion equivalent.

b) Define a function that for every equation list yields a substitution equivalent

equation list satisfying fsubst.

The proofs for this exercise require considerable effort and provide for an inter-

esting project. Auxiliary lemmas will be needed.

9.7 Notes

Syntactic unification was identified by Robinson [17] in 1965 as base algorithm

of his resolution calculus designed for automated theorem proving. Syntactic

unification was rediscovered several times for other applications, for instance by

Knuth and Bendix [11] for critical pair analysis of term rewriting systems, and by

Milner [14] for polymorphic type inference. The unification rules and the view

of syntactic unification as equation solving appear in the work of Martelli and

Montanari [13].

Papers on syntactic unification include Martelli and Montanari [13], Baader

and Snyder [1], Jaffar and Lassez [12], and Eder [2]. Baader and Snyder [1] also

cover unification modulo equational theories.
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Robinson’s initial unification algorithm [17] has exponential runtime (as does

the naive algorithm developed in this chapter). Martelli and Montanari [13]

present a quasi-linear unification algorithm. Unifiability can be decided in lin-

ear time [15].

Paulson [16] reports about an early formal verification of the unification al-

gorithm in LCF. Ruiz-Reina et al [18] have formally verified an efficient quadratic

unfication algorithm in ACL2.
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Propositional logic is a logical system for propositional formulas. Propositional

formulas consist of atomic propositions (e.g., propositional variables, ⊥ and ⊤)

and are closed under logical connectives (e.g., implication, conjunction and dis-

junction). In this chapter we will restrict ourselves to propositional logic with

propositional variables and ⊥ and closed under implication. The systems and re-

sults can be extended to include other connectives, but we leave such extensions

to exercises.

We will first study the type of propositional formulas. Next we consider the

general notion of an entailment relation and properties an entailment relation

may have. We then define a particular entailment relation by giving a natural

deduction style proof system for intuitionistic propositional logic. The natural

deduction system will correspond closely to the proof system in Coq. We next

consider a classical natural deduction style proof system. We will prove a result

of Glivenko: a propositional formula is classically provable if and only if its

double negation is intuitionistically provable. We will finally consider a Hilbert

style proof system and prove the equivalence of the natural deduction system

and the Hilbert system.1

10.1 Propositional Formulas

We now define (propositional) formulas given by the following grammar where

x ranges over variables and s and t range over propositional formulas.

s, t ::= x | ⊥ | s → t

We would like to have infinitely many variables. In addition, we would like equal-

ity of variables to be decidable. A natural way to ensure both is to use natural

numbers to represent variables. We use var be the type of variables (which is

defined to be nat). After fixing the representation of variables, we can represent

propositional formulas in Coq using an inductive type in the usual way. Essen-

tially formulas are binary trees where each node with children is an implication

s → t (with a child for s and a child for t) and each leaf is either ⊥ or a variable x.

1 Proof systems are often called “calculi.” In this context, “calculus” is a synonym for “system.”
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Just as in Coq, we consider ¬s as meaning s → ⊥. Note that equality of formulas

is decidable.

We can compute a list of the variables which occur in a formula as follows.

The function is defined by recursion over formulas. Note that when computing

the variables in s → t we make two recursive calls: one for s and one for t. We

done the list of variables of a formula s by V s.

We can map formulas to booleans in an obvious way. To handle variables we

need assignments. An assignment is a function from var to bool. We define when

an assignment ϕ satisfies a formula s by recursion on s as follows:

1. ϕ satisfies x if ϕx = true.

2. ϕ satisfies s1 → s2 if ϕ satisfies s1 implies ϕ satisfies s2.

3. No assignment satisfies ⊥.

The satisfies predicate can be easily proven decidable by induction on the for-

mula.

Exercise 10.1.1 Prove the following goal.

Goal ∃ f: assn, satis f (Not (Imp (Var 0) (Var 1))).

Exercise 10.1.2 Prove the following goal.

Goal ∀ f: assn, ∀ s:form, satis f (Imp (Not (Not s)) s).

Exercise 10.1.3 Prove the following goal.

Goal ∀ f: assn, ∀ s t:form, satis f (Imp (Imp (Imp s t) s) s).

10.2 Structural Properties of Entailment Relations

In this section we will consider the general notion of an entailment relation and

define structural properties an entailment relation may satisfy. When an en-

tailment relation holds for a list A of assumed formulas and a formula s, the

intention is that the formula s is a logical consequence of the assumptions in A.

For the entailment relations considered in this section, we need not commit to

propositional formulas, but can work with a general type F instead of the type

of propositional formulas.

Suppose F is a type. An entailment relation for F is a predicate of type

list F → F → Prop. Suppose E is an entailment relation for F . We write

A ⊢ s when a given entailment relation holds between a list A of formulas and a

formula s. The symbol ⊢ is a “turnstile.” We write A 6⊢ s to mean the negation of

A ⊢ s. When A is empty, we may write ⊢ s.
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Several properties of an entailment relation can be stated without using spe-

cial properties of the type F of formulas. These are called structural properties.

We define four structural properties in this section.

We say an entailment relation is monotone if A′ ⊢ s holds whenever A ⊢ s

holds and A ⊆ A′. That is, if s is a logical consequence of the assumptions in A,

then it remains a logical consequence if we add more assumptions to A.

We say the entailment relation is reflexive if A ⊢ s whenever s ∈ A. That is,

each assumed formula in A is a logical consequence of A.

We say the entailment relation satisfies cut if A ⊢ s and A, s ⊢ t imply A ⊢ t.

That is, if we extend A with logical consequences of A, then we do not obtain

new logical consequences.

Finally, we say the entailment relation is consistent if there is some s such

that 6⊢ s.

We give one simple example of an entailment relation. The exercises at the

end of this section give a few more examples.

We will define an entailment relation for Prop. That is, we will give a predicate

of type list Prop → Prop → Prop. We start by recursively defining a function

which forms a conjunction from a list of propositions.

Fixpoint andlist (A:list Prop) : Prop :=

match A with

| P::A’⇒ P ∧ andlist A’

| nil ⇒ ⊤

end.

The following property can easily be proven by induction on the list A.

Lemma andlistEq (A:list Prop) : andlist A ↔ ∀ s, s ∈ A→ s.

Consider the entailment relation A ⊢ s for Prop defined by andlist A → s. The

four structural properties can be easily verified using the lemma.

The only entailment relations we will consider after the exercises below will

be for propositional formulas. That is, after this section we will only consider

entailment relations for the type form.

Exercise 10.2.1 Consider the entailment relation A ⊢ s for bool which holds if s

either s is true or if false ∈ A. Prove the four structural properties hold.

Goal

let E : list bool→ bool→ Prop := fun A s⇒ if s then ⊤ else false ∈ A in

Reflexivity E ∧ Monotonicity E ∧ Cut E ∧ Consistency E.

Exercise 10.2.2 Let X be an inhabited type. Consider the entailment relation

A ⊢ s for X → Prop defined by ∀x : X, (∀P, P ∈ A → Px) → sx. Prove the four

structural properties hold.

2014-7-16 155



10 Propositional Entailment

Goal ∀ X:Type, inhabited X→

let E : list (X→ Prop)→ (X→ Prop)→ Prop

:= fun A s⇒ forall x:X, (∀ P, P ∈ A→ P x)→ s x in

Reflexivity E ∧ Monotonicity E ∧ Cut E ∧ Consistency E.

Exercise 10.2.3 Consider the entailment relation A ⊢ s for nat defined by

∃n.n ∈ A∧ s ≤ n. Prove the four structural properties hold.

Goal

let E : list nat→ nat→ Prop := fun A s⇒ exists n, n ∈ A ∧ s ≤ n in

Reflexivity E ∧ Monotonicity E ∧ Cut E ∧ Consistency E.

Exercise 10.2.4 Let F be a type. Consider the entailment relation defined by

list membership. Without extra assumptions, only three of the four structural

properties hold. Determine which of the three hold and prove them. For the one

which cannot be proven, choose a type F and prove the property fails for list

membership on your chosen type F .

10.3 Logical Properties of Entailment Relations

A context is a list of formulas.

Definition context := list form.

An entailment relation for formulas is a predicate of type context → form →

Prop. For entailment relations for formulas we can now define the following

logical properties. The reader should compare these to the structural properties

defined for generic entailment relations in the previous section. From now on

when we refer to an entailment relation, we will be referring to an entailment

relation for formulas.

We say an entailment relation satisfies the characteristic property of → if

A ⊢ s → t is equivalent to A, s ⊢ t.

We say an entailment relation satisfies the characteristic property of ⊥ if

A ⊢ ⊥ is equivalent to forall s, A ⊢ s.

Suppose we are working with a reflexive entailment relation which satisfies

the characteristic properties of → and ⊥. Let s and t be formulas. We can prove

⊢ s → ¬s → t as follows. First, using the characteristic property of → twice it is

enough to prove s,¬s ⊢ t. Using the characteristic property of ⊥ it is enough to

prove s,¬s ⊢ ⊥. Using the characteristic property of → in the other direction it

is enough to prove ¬s ⊢ s → ⊥. We know ¬s ⊢ s → ⊥ by reflexivity.

We can use boolean assignments to define the following entailment relation

which we call boolean semantic consequence: A ⊨ s holds if for every assign-

ment ϕ, if ϕ satisfies every element of A, then ϕ satisfies s.
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Exercise 10.3.1 Prove ⊨ (boolean semantic consequence) satisfies all the struc-

tural properties defined in the previous section and the two logical properties

defined in this section.

Exercise 10.3.2 Prove that if E satisfies the characteristic properties of → and ⊥

also satisfies the following characteristic property of ¬.

Goal ∀ E, CharImp E→ CharFal E→ ∀ A s, E A (Not s) ↔ ∀ t, E (s::A) t.

Exercise 10.3.3 Prove the following.

Goal ∀ E, Cut E→ CharImp E→ ∀ A s t, E A (Imp s t)→ E A s→ E A t.

Exercise 10.3.4 Prove that if an entailment relation is reflexive and satisfies the

characteristic property of →, then it is nonempty. In particular, prove there is a

formula s such that ⊢ s.

Lemma Reflexivity_CharImp_nonempty E :

Reflexivity E→ CharImp E→ ∃ s, E nil s.

Exercise 10.3.5 We say a formula is closed if it contains no variables. We can

define this in Coq as follows.

Inductive closed : form→ Prop :=

| closedFal : closed Fal

| closedImp s t : closed s→ closed t→ closed (Imp s t).

Suppose ⊢ is a reflexive entailment relation satisfying cut and the characteristic

properties of → and ⊥. Prove for all closed formulas s we either have A ⊢ s (for

every context A) or A ⊢ ¬s (for every context A).

Lemma ReflexivityCutChar_closed_or E s :

Reflexivity E→ Cut E→ CharImp E→ CharFal E→

closed s→ (∀ A, E A s) ∨ (∀ A, E A (Not s)).

10.4 Variables and Substitutions

Variables are intended to be placeholders which can, for example, be substituted

with arbitrary formulas. A substitution is a mapping σ from variables to formu-

las. By recursion on formulas we can define a substitution operation lifting the

action of σ on variables to all formulas.

Fixpoint subst (σ : var→ form) (s : form) : form :=

match s with

| Var x⇒ σ x
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| Imp s t⇒ Imp (subst σ s) (subst σ t)

| Fal⇒ Fal

end.

We will write σs for subst σ s.

We say an entailment relation respects substitution if σA ⊢ σs whenever

A ⊢ s.

Exercise 10.4.1 Prove that if two substitutions σ1 and σ2 agree on the variables

which occur in s, then σ1s = σ2s.

Exercise 10.4.2 Consider the following function emb from form to Prop.

Fixpoint emb (s : form) : Prop :=

match s with

| Var x⇒ ⊥

| Imp s1 s2⇒ emb s1→ emb s2

| Fal⇒ ⊥

end.

Prove the entailment relation λAs.(∀t.t ∈ A → emb t) → emb t has all the

properties except that it does not respect substitution.

Goal

let E : list form→ form→ Prop := fun A s⇒ (∀ t, t ∈ A→ emb t)→ emb s in

Reflexivity E ∧ Monotonicity E ∧ Cut E ∧ Consistency E

∧ CharImp E ∧ CharFal E

∧ ¬ Substitution E.

Exercise 10.4.3 Prove that if two entailment relations are extensionally the same

and one satisfies all the properties, then so does the other.

Lemma EntailRelAllProps_ext E E’ :

EntailRelAllProps E→ (∀ A s, E A s ↔ E’ A s)→ EntailRelAllProps E’.

10.5 Natural Deduction System

In this section we consider our first proof system for propositional formulas.

A proof system defines when a formula s is provable from a context A. We

write A ⊢ s to mean s is provable from A in the particular proof system under

discussion. Note that ⊢ is an entailment relation on A and s and we will prove

it has all the properties discussed in the previous sections. In fact, it will be the

least relation satisfying those properties.

Deduction rules for logical connectives were given in Figure 2.1. The intro-

duction and elimination rules for → together with the elimination rule for ⊥
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A
A ⊢ s

s ∈ A II
A, s ⊢ t

A ⊢ s → t
IE
A ⊢ s → t A ⊢ s

A ⊢ t
E
A ⊢ ⊥

A ⊢ s

Figure 10.1: Natural Deduction Rules

essentially give a proof system for propositional formulas. We use contexts (lists

of formulas) to represent the collection of assumptions. Note that the introduc-

tion rule for → changes the assumptions and this corresponds to changing the

context. We can check if a formula is an assumption in the context using an

assumption rule to check if the formula is an element of the list. These rules are

given in Figure 10.1.

The rules in Figure 10.1 define when A ⊢ s in the systemN . That is, the rules

define when s is provable from A in N . One can use the rules in Figure 10.1 to

justify A ⊢ s.

Consider the following example.

Example 10.5.1 Let A be a context and s and t be formulas. We can use the rules

ofN to derive A ⊢ s → ¬s → t as follows:

II

II

E

IE

A
A, s,¬s ⊢ s → ⊥

A
A, s,¬s ⊢ s

A, s,¬s ⊢ ⊥

A, s,¬s ⊢ t

A, s ⊢ ¬s → t

A ⊢ s → ¬s → t

We can represent the natural deduction system N in Coq as an inductive

predicate nd. The proposition nd A s is provable precisely when A ⊢ s. Note

that A is a nonuniform parametric argument of nd and s is a nonparametric

argument of nd.

Inductive nd : context→ form→ Prop :=

| ndA A s : s ∈ A→ nd A s

| ndII A s t : nd (s::A) t → nd A (Imp s t)

| ndIE A s t : nd A (Imp s t)→ nd A s→ nd A t

| ndE A s : nd A Fal→ nd A s.

We can now reconsider Example 10.5.1 as a proof in Coq. Compare the Coq

proof script with the diagram in Example 10.5.1.

Goal ∀ A s t, nd A (Imp s (Imp (Not s) t)).
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app
A ⊢ s

A ⊢ u
s → u ∈ A weak

A ⊢ s

A′ ⊢ s
A ⊆ A′ W

A ⊢ s

A, t ⊢ s

IEweak
B ⊢ s → t B ⊆ A A ⊢ s

A ⊢ t
DN

A ⊢ s

A ⊢ ¬¬s

Figure 10.2: Some Admissible Rules

Proof.

intros A s t. apply ndII, ndII. apply ndE. apply ndIE with (s := s).

− apply ndA. left. reflexivity.

− apply ndA. right. left. reflexivity.

Qed.

From now on we will tend to work at the mathematical level and leave the reader

to examine the available Coq version.

A rule is admissible in a proof system if adding the rule to the proof system

does not change what is provable in the system. This is equivalent to saying that

the conclusion of the rule is provable whenever the premises are provable. We

prove all the rules in Figure 10.5 are admissible inN .

We begin this process by proving admissibility of app. This rule allows us to

simulate Coq’s apply tactic. If an implication s → t is in the context A and we

want to prove A ⊢ t, then it is enough to prove A ⊢ s. Admissibility of app is

the content of the following lemma whose proof is simply a combination of the

IE and A rules.

A ⊢ s → u A ⊢ s

A ⊢ u

We will often do proofs by induction over A ⊢ s, i.e., over the inductive pred-

icate nd. In the process of doing such an inductive proof we must consider each

of the four rules in Figure 10.1. Each rule has the form

A1 ⊢ s1 · · ·An ⊢ sn

A ⊢ s

for n ∈ {0,1,2}. For such a rule we assume the desired property for Ai and si

as inductive hypotheses and prove the desired property for A and s. In Coq the

induction principle of nd corresponds to the type of nd_ind:
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Check (nd_ind :

∀ p : context→ form→ Prop,

(∀ (A : context) (s : form), s ∈ A→ p A s)→

(∀ (A : context) (s t : form), nd (s :: A) t→ p (s :: A) t→ p A (Imp s t))→

(∀ (A : context) (s t : form), nd A (Imp s t)→ p A (Imp s t)→ nd A s→ p A s→ p A t)→

(∀ (A : context) (s : form), nd A Fal→ p A Fal→ p A s)→

∀ (A : context) (s : form), nd A s→ p A s).

Note that the induction principle makes precise that we must prove a case for

each rule in Figure 10.1 and what inductive hypotheses we obtain in each case.

We can also visualize these four proof obligations in the form of rules.

A
p A s

s ∈ A II

A, s ⊢ t

(IH) p (A, s) t

p A (s → t)
IE

A ⊢ s → t A ⊢ s

(IH) p A (s → t) (IH) p A s

p A t

E

A ⊢ ⊥

(IH) p A ⊥

p A s

In each case we must prove the conclusion using the premises (including the

inductive hypotheses) and the side conditions as assumptions.

Our first such inductive proof will be monotonicity of ⊢: if A ⊆ A′ and A ⊢ s,

then A′ ⊢ s. In other words, we prove the rule weak in Figure 10.5 is admissible.

The rule weak is often called the weakening rule.

Here the desired property of A and s we wish to prove by induction is

∀A′, A ⊆ A′ → A′ ⊢ s. We prove by induction that A and s have this desired

property whenever A ⊢ s.

Lemma nd_weak A A’ s :

A ⊆ A’→ nd A s→ nd A’ s.

Proof We argue by induction on the proof of A ⊢ s and consider each rule care-

fully. Future mathematical proofs will not be given at this level of detail.

Consider the assumption rule A:

A
A ⊢ s

s ∈ A

Note that in this case s ∈ A. We must prove ∀A′, A ⊆ A′ → A′ ⊢ s. Assume

A ⊆ A′. Hence s ∈ A′ and so A′ ⊢ s by the assumption rule.

Consider the introduction rule II for implication:

II
A, s ⊢ t

A ⊢ s → t
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We must prove∀A′, A ⊆ A′ → A′ ⊢ s → t. The inductive hypothesis is∀A′, A, s ⊆

A′ → A′ ⊢ t. Assume A ⊆ A′. Clearly A, s ⊆ A′, s. By the inductive hypothesis we

know A′, s ⊢ t. Hence A′ ⊢ s → t by II.

Consider the elimination rule IE for implication:

IE
A ⊢ s → t A ⊢ s

A ⊢ t

We must prove∀A′, A ⊆ A′ → A′ ⊢ t. Since there are two premises, there are two

inductive hypotheses. The first inductive hypothesis is∀A′, A ⊆ A′ → A′ ⊢ s → t.

The second inductive hypothesis is ∀A′, A ⊆ A′ → A′ ⊢ s. Assume A ⊆ A′. By

the inductive hypotheses we know A′ ⊢ s → t and A′ ⊢ s. Hence A′ ⊢ t by IE.

Consider the elimination rule E for ⊥:

E
A ⊢ ⊥

A ⊢ s

We must prove ∀A′, A ⊆ A′ → A′ ⊢ s. The inductive hypothesis is ∀A′, A ⊆ A′ →

A′ ⊢ ⊥. Assume A ⊆ A′. By the inductive hypotheses we know A′ ⊢ ⊥ and so

A′ ⊢ s by E. �

As an obvious corollary, we know that A, t ⊢ s whenever A ⊢ s. That is, the

following rule is admissible:

W
A ⊢ s

A, t ⊢ s

We could also obtain corollaries which combine weakening with the defining

rules of the calculus. We will only do so for IE: If B ⊢ s → t, B ⊆ A and A ⊢ s,

then A ⊢ t. That is, we have admissibility of the following rule:

IEweak
B ⊢ s → t B ⊆ A A ⊢ s

A ⊢ t

Finally we can use II, app and W to prove that if A ⊢ s, then A ⊢ ¬¬s. That is,

the following rule is admissible. We leave the details to the reader.

DN
A ⊢ s

A ⊢ ¬¬s

It turns out that A ⊢ s is decidable, but we do not yet have the tools to prove

this. The decidability proof will come later.

Exercise 10.5.2 Prove the following goals.
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Goal ∀ A s, nd A (Imp s s).

Goal ∀ A s, nd A (Imp Fal s).

Goal ∀ A s t, nd A (Imp s (Imp t s)).

Goal ∀ A s t, nd A (Imp (Imp s t) (Imp (Not t) (Not s))).

Exercise 10.5.3 Prove that ⊢ respects substitution.

Lemma nd_subst A s σ : nd A s→ nd (map (subst σ ) A) (subst σ s).

Exercise 10.5.4 Prove the following soundness result for N relative to boolean

semantic consequence: If A ⊢ s, then A ⊨ s. Use the result to conclude consis-

tency of ⊢.

Exercise 10.5.5 Prove ⊢ has all the properties of entailment relations defined

earlier.

Lemma nd_EntailRelAllProps : EntailRelAllProps nd.

Exercise 10.5.6 Prove nd is the least reflexive entailment relation satisfying cut

and the characteristic properties of → and ⊥.

Lemma nd_least_EntailRelAllProps (E : context→ form→ Prop) :

Reflexivity E→ Cut E→ CharImp E→ CharFal E→ ∀ A s, nd A s→ E A s.

Exercise 10.5.7 Extend the formulas and natural deduction system to include

conjunction and disjunction.

Exercise 10.5.8 Prove the following two lemmas.

Lemma ndassert (A : context) (s u : form) :

nd A s→ nd (s::A) u→ nd A u.

Lemma ndappbin (A : context) (s t u : form) :

Imp s (Imp t u) ∈ A→ nd A s→ nd A t→ nd A u.

10.6 Classical Natural Deduction

We now consider classical propositional logic. Classical propositional logic can

prove formulas such as instances of double negation ¬¬s → s and instances of

Peirce’s law ((s → t) → s) → s. The propositional formulas provable in classi-

cal propositional logic correspond to those which evaluate to true under every

boolean assignment, if one interprets ⊥ as false and interprets implication by

truth tables (i.e., implb in the Coq library).
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A
A ⊢ s

s ∈ A II
A, s ⊢ t

A ⊢ s → t
IE
A ⊢ s → t A ⊢ s

A ⊢ t
C
A,¬s ⊢ ⊥

A ⊢ s

Figure 10.3: Classical Natural Deduction Rules

The classical natural deduction system NC is defined by the rules in Fig-

ure 10.3. Note that the difference from the previous system is that the elimi-

nation rule E for ⊥ has been replaced by the contradiction rule C. In Coq, the

classical natural deduction system can be defined as an inductive predicate ndc

as usual.

All the rules from Figure 10.5 are admissible in the classical system NC . In

each case admissibility can be proven using the same strategy as admissibility of

the rule inN . We leave the details to the reader.

Since we have omitted the elimination rule for⊥, a natural question is whether

we can infer A ⊢ s from A ⊢ ⊥. That is, one may ask if the E rule (a defining rule

for N ) is admissible in the system NC . We can prove admissibility of E in NC

easily using the contradiction rule and weakening.

A ⊢ ⊥

A,¬s ⊢ ⊥

A ⊢ s

Now we have enough information to know A ⊢ s in N implies A ⊢ s in NC .

The proof is by a simple induction on the proof of A ⊢ s inN .

Theorem 10.6.1 If A ⊢ s inN , then A ⊢ s inNC .

Proof We argue by induction on A ⊢ s. In every case except the explosion rule,

we can directly use the corresponding rule in NC . In the case of the explosion

rule, we can use the fact that the explosion rule is admissible inNC . �

Finally we prove A ⊢ s if and only if A,¬s ⊢ ⊥. That is, in NC it is enough to

consider refutability of contexts.

Theorem 10.6.2 A ⊢ s inNC if and only if A,¬s ⊢ ⊥ inNC .

Proof Suppose A ⊢ s. By weakening know A,¬s ⊢ s. By A we know A,¬s ⊢ ¬s.

By IE we conclude A,¬s ⊢ ⊥ as desired.

For the other direction, suppose A,¬s ⊢ ⊥. We can conclude A ⊢ s simply

using the contradiction rule (C). �
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Exercise 10.6.3 Prove A ⊢ ¬¬s → s.

Goal ∀ A s, ndc A (Imp (Not (Not s)) s).

Exercise 10.6.4 Prove the following lemmas forNC .

Lemma ndcA2 A s t :

ndc (t :: s :: A) s.

Lemma ndcapp A s u :

Imp s u ∈ A→ ndc A s→ ndc A u.

Lemma ndcapp1 A s u :

ndc (Imp s u :: A) s→ ndc (Imp s u :: A) u.

Lemma ndcapp2 A s t u :

ndc (t :: Imp s u :: A) s→ ndc (t :: Imp s u :: A) u.

Lemma ndcapp3 A s t u v :

ndc (t :: v :: Imp s u :: A) s→ ndc (t :: v :: Imp s u :: A) u.

Use the lemmas above to prove A ⊢ ((s → t) → s) → s. That is, prove Peirce’s

Law.

Goal ∀ A s t, ndc A (Imp (Imp (Imp s t) s) s).

Exercise 10.6.5 Prove ⊢ is closed under substitution.

Lemma ndc_subst A s σ : ndc A s→ ndc (map (subst σ ) A) (subst σ s).

Exercise 10.6.6 Prove the following result.

Lemma ndc_eval_xm_sound A s (e:form→ Prop) :

XM→

¬e Fal→ (∀ t u, e (Imp t u) ↔ e t→ e u)→

ndc A s→ (∀ t, t ∈ A→ e t)→ e s.

10.7 Glivenko’s Theorem

Glivenko’s Theorem states that a propositional formula s is classically provable if

and only if its double negation is intuitionistically provable. The most interesting

half of this equivalence is that ¬¬s is intuitionistically provable if s is classically

provable. In particular, if A ⊢ s, then A ⊢ ¬¬s. We prove this implication by

induction on the proof of A ⊢ s. We leave the converse implication as an exercise.

Theorem 10.7.1 (Glivenko) If A ⊢ s inNC , then A ⊢ ¬¬s inN .
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Proof We prove this by induction on the proof of A ⊢ s. We will use the admissi-

ble rules DN, app and IEweak from Figure 10.5 as well as the usual rules defining

N .

For the assumption rule we assume we have s ∈ A and need to prove A ⊢ ¬¬s

inN . We easily have this by the admissible rule DN and the assumption rule.

For implication introduction we know A, s ⊢ ¬¬t in N by the inductive hy-

pothesis. From this we can derive A ⊢ ¬¬(s → t) in N using the admissible

rules app and IEweak (along with the usualN rules) as follows:

IH

A, s ⊢ ¬¬t

A,¬(s → t), s, t, s ⊢ t

A,¬(s → t), s, t ⊢ s → t

A,¬(s → t), s, t ⊢ ⊥

A,¬(s → t), s ⊢ ¬t

A,¬(s → t), s ⊢ ⊥

A,¬(s → t), s ⊢ t

A,¬(s → t) ⊢ s → t

A,¬(s → t) ⊢ ⊥

A ⊢ ¬¬(s → t)

For IE we know A ⊢ ¬¬(s → t) and A ⊢ ¬¬s in N by the inductive hypothe-

ses. From this we can derive A ⊢ ¬¬t using the admissible rules app and IEweak

(along with the usualN rules) as follows:

IH

A ⊢ ¬¬s

IH

A ⊢ ¬¬(s → t)

A,¬t, s, s → t ⊢ s

A,¬t, s, s → t ⊢ t

A,¬t, s, s → t ⊢ ⊥

A,¬t, s ⊢ ¬(s → t)

A,¬t, s ⊢ ⊥

A,¬t ⊢ ¬s

A,¬t ⊢ ⊥

A ⊢ ¬¬t

For the contradiction rule we know A,¬s ⊢ ¬¬⊥ in N by the inductive hy-
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pothesis. From this we can derive A ⊢ ¬¬s inN as follows:

IH

A,¬s ⊢ ¬¬⊥

A,¬s,⊥ ⊢ ⊥

A,¬s ⊢ ¬⊥

A,¬s ⊢ ⊥

A ⊢ ¬¬s

As a consequence of Glivenko’s theorem, we can prove that refutability inN

is equivalent to refutability inNC .

Corollary 10.7.2 A ⊢ ⊥ inN if and only if A ⊢ ⊥ inNC .

Proof We know A ⊢ ⊥ in N implies A ⊢ ⊥ in NC by Theorem 10.6.1. For the

other direction, suppose A ⊢ ⊥ in NC . By Glivenko (Theorem 10.7.1) we know

A ⊢ ¬¬⊥. However, from A ⊢ ¬¬⊥ it is easy to derive A ⊢ ⊥ as follows:

A ⊢ ¬¬⊥

A,⊥ ⊢ ⊥

A ⊢ ¬⊥

A ⊢ ⊥

A further consequence is that A ⊢ s inNC if and only if A,¬s ⊢ ⊥ inN .

Corollary 10.7.3 A ⊢ s inNC if and only if A,¬s ⊢ ⊥ inN .

Proof By Theorem 10.6.2 we know A ⊢ s in NC if and only if A,¬s ⊢ ⊥ in NC .

By Corollary 10.7.2 we know A,¬s ⊢ ⊥ in NC if and only if A,¬s ⊢ ⊥ in N .

Hence we have the desired equivalence. �

Exercise 10.7.4 Prove the easy half of Glivenko’s theorem.

Lemma Glivenko_converse A s :

nd A (Not (Not s))→ ndc A s.

Exercise 10.7.5 Prove the following consequence of Glivenko’s theorem.

Goal ∀ A, ¬ ∃ s, ndc A (Not s) ∧ ¬ nd A (Not s).

Exercise 10.7.6 Prove consistency of ⊢.

Lemma ndc_con : ¬ ndc nil Fal.

Exercise 10.7.7 Prove ndc has all the properties of entailment relations defined

earlier.

Lemma ndc_EntailRelAllProps : EntailRelAllProps ndc.
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A
s
s ∈ A K

s → t → s
S
(s → t → u)→ (s → t)→ s → u

E
⊥ → u

MP
s → t s

t

Figure 10.4: Hilbert Rules for Intuitionistic Propositional Logic

10.8 Hilbert System

The natural deduction systems require assumption management. In particular

the implication introduction rule II changes the assumptions. It turns out that we

can omit the implication introduction rule if we replace it with a number of initial

rules – i.e., rules with no premises. One initial rule states that every formula of

the form s → t → s is provable. We call such a formula a K-formula. Another

initial rule states that every formula (s → t → u) → (s → t) → s → u is provable.

Such formulas are called S-formulas. Doing this would yield a system in which

only two rules have premises: a rule like IE and a rule like E. Indeed we can

define a system in which the only rule with premises is a rule known as modus

ponens which has the same form as IE since we can replace the E rule with an

initial rule stating that every explosion formula (i.e., formula of the form ⊥ → s)

is provable. Such systems are called Hilbert systems. The rules in Figure 10.4

define our Hilbert system for intuitionistic propositional logic, which refer to

by the name H . In particular, we have A ⊢ s in system H when s is derivable

from context A using the rules in Figure 10.4.

We can define this in Coq as an inductive predicate hil in the usual way.

We can easily prove by induction that if A ⊢ s inH , then A ⊢ s inN .

Lemma 10.8.1 If A ⊢ s inH , then A ⊢ s inN .

Proof We argue by induction on the proof of A ⊢ s in H . We must argue a

case for each rule in Figure 10.4. If s ∈ A, then we know A ⊢ s in N by A.

The next three cases involve proving K-formulas, S-formulas and formulas of

the form ⊥ → s inN . Each of these cases is easy. Finally, we consider the modus

ponens case. Assume A ⊢ s → t and A ⊢ s inH . The inductive hypotheses yield

A ⊢ s → t and A ⊢ s inN . We conclude A ⊢ t inN using IE. �

Note that in each case of the inductive proof, we have proven one of the defining

rules ofH is admissible inN .
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The converse also holds: If A ⊢ s in N , then A ⊢ s in H . In order to

prove this, we first prove an important result called the deduction theorem. The

deduction theorem states that if A, s ⊢ t, then A ⊢ s → t. In other words, the

II rule (a defining rule of the system N ) is admissible in H . The proof is by

induction on the proof of A, s ⊢ t using the results above.

Theorem 10.8.2 (Deduction Theorem) If A, s ⊢ t, then A ⊢ s → t.

Proof We prove this by induction on the proof of A, s ⊢ t. There are three

possible cases to consider.

• Suppose t ∈ A, t is a K-formula, t is an S-formula or t is an explosion formula.

In any of these cases A ⊢ t and A ⊢ t → s → t. Hence A ⊢ s → t.

• Suppose t is s. We need to prove A ⊢ s → s. This follows from the fact

that (s → (s → s) → s) → (s → s → s) → s → s is an S-formula while

s → (s → s)→ s and s → s → s are K-formulas.

• Suppose A, s ⊢ u→ t and A, s ⊢ u. By the inductive hypothesis A ⊢ s → u→ t

and A ⊢ s → u. In order to see that A ⊢ s → t it suffices to note that

(s → u→ t)→ (s → u)→ s → t is an S-formula. �

We can now prove A ⊢ s in N implies A ⊢ s in H . The proof is by induction

on the proof of A ⊢ s in N . The deduction theorem is used for the II-case. The

remaining cases are straightforward.

Lemma 10.8.3 If A ⊢ t inN , then A ⊢ t inH .

Proof We must argue a case for each rule in Figure 10.1. For the A case we must

prove A, s ⊢ s in H . We know this by A since s ∈ A, s. For the IE case the

inductive hypotheses give A ⊢ s → t and A ⊢ s in H . We conclude A ⊢ t in H

using MP. For the E case the inductive hypothesis gives A ⊢ ⊥ inH . We conclude

A ⊢ s inH using the following derivation.

MP

E
A ⊢ ⊥ → s A ⊢ ⊥

A ⊢ s

For the II case we use the deduction theorem (Theorem 10.8.2). �

Combining the results we know A ⊢ s inH if and only if A ⊢ s inN .

Theorem hil_iff_nd A s :

hil A s ↔ nd A s.

Exercise 10.8.4 Prove the following form of weakening for the Hilbert calculus.
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A
A ⊢ s

s ∈ A II
A, s ⊢ t

A ⊢ s → t
IE
A ⊢ s → t A ⊢ s

A ⊢ t
E
A ⊢ ⊥

A ⊢ s

WXM
A,¬s ⊢ t A,¬¬s ⊢ t

A ⊢ t

Figure 10.5: ND Rules for a logic with weak excluded middle

Lemma hilW A s t :

hil A t→ hil (s::A) t.

Exercise 10.8.5 Prove the following.

Lemma hilassert A s u :

hil A s→ hil (s::A) u→ hil A u.

Exercise 10.8.6 Prove consistency of hil using the equivalence with nd.

Lemma hil_con : ¬ hil nil Fal.

Exercise 10.8.7 Use nd_hil, hil_nd and Exercise 10.4.3 to prove hil has all the

properties of entailment relations defined earlier.

Lemma hil_EntailRelAllProps : EntailRelAllProps hil.

Exercise 10.8.8 Give a Hilbert calculus for classical propositional logic and de-

fine a corresponding inductive predicate hilc in Coq. Prove the deduction the-

orem for hilc and use the deduction theorem to prove the equivalence between

hilc and ndc.

10.9 Intermediate Logics

An intermediate propositional logic is one that proves more than intuitionistic

propositional logic but less than classical propositional logic. It is not obvious

that such logics exist, but in fact they do. We will consider two examples.

Let ⊢ be the entailment relation defined by the rules in Figure 10.5. The

formula (¬x → y) → (¬¬x → y) → y is not intuitionistically provable. On the

other hand, the rules in Figure 10.5 are enough to prove ⊢ (¬x → y)→ (¬¬x →

y) → y . Furthermore, ⊢ is not full classical logic since we cannot prove double

negation in general: 6⊢ ¬¬x → x.
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A
A ⊢ s

s ∈ A II
A, s ⊢ t

A ⊢ s → t
IE
A ⊢ s → t A ⊢ s

A ⊢ t
E
A ⊢ ⊥

A ⊢ s

GD
A, s → t ⊢ u A, t → s ⊢ u

A ⊢ u

Figure 10.6: ND Rules for Gödel-Dummett Logic

Let ⊢ be the entailment relation defined by the rules in Figure 10.6. The

formula ⊢ ((x → y)→ z)→ ((y → x)→ z)→ z is not intuitionistically provable.

The rules in Figure 10.6 above are enough to prove ⊢ ((x → y) → z) → ((y →

x) → z) → z. Again, we cannot prove double negation in general: 6⊢ ¬¬x →

x. Hence ⊢ is again an entailment relation strictly between intuitionistic and

classical logic.

10.10 Remarks

The first deduction systems developed by Frege in 1879 [3] were in the Hilbert

style. (Hilbert studied and popularized such systems later.) Natural deduction

systems were created independently by Gentzen [4] and Jaśkowski in the 1930s.

The Glivenko result was published in 1929 [8] (before the invention of natural

deduction).
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11 Classical Tableau Method

In this chapter we show that a propositional formula is classically provable if

and only if it is satisfied by all boolean assignments. We obtain this result with a

method known as classical tableau method. Given a formula, the method decides

whether the formula is satisfiable. If the formula is satisfiable, the method yields

a satisfying assignment. If the formula is unsatisfiable, the method yields a proof

of the negation of the formula in a classical calculus.

11.1 Boolean Evaluation and Satisfiability

A boolean assignment is a function that maps every variable to a boolean value.

Given a boolean assignment, we can evaluate every propositional formula to a

boolean value. We will use α and β as names for boolean assignments:

α,β : assn := var → B

We formalize the evaluation of propositional formulas with a function eval :

assn→ form→ B defined by recursion on formulas:

eval α x := αx

eval α (Imp s t) := if eval α s then eval α t else true

eval α Fal := false

Note that the evaluation of an implication is defined with a boolean conditional

such that an implication s → t evaluates to true if and only if either both con-

stituents s and t evaluate to true or s evaluates to false.

We say that an assignment satisfies a formula if the formula evaluates to

true with the assignment. We say that an assignment dissatisfies a formula if it

does not satisfy the formula. An assignment dissatisfies a formula if and only

if the formula evaluates to false with the assignment. Moreover, an assignment

dissatisfies a formula if and only if it satisfies the negation of the formula.

A propositional formula is satisfiable if there is a boolean assignment under

which it evaluates to true. A formula is unsatisfiable if it is not satisfiable.

Formally, we will work with an alternative characterization of boolean satis-

faction, which employs a function ⊨ mapping an assignment α and a formula s
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to a proposition equivalent to eval α s = true.

α ⊨ x := if αx then ⊤ else ⊥

α ⊨ Imp s t := α ⊨ s → α ⊨ t

α ⊨ Fal := ⊥

The symbol ⊨ is pronounced double turnstile. By induction on s it follows that

the function ⊨ captures boolean satisfaction:

Fact 11.1.1 α ⊨ s ↔ eval α s = true.

From the equivalence it follows that α ⊨ s is decidable.

Fact 11.1.2 α ⊨ s is decidable.

Here is the formal definition of satisfiability we will work with:

sat s := ∃α. α ⊨ s

Exercise 11.1.3 Prove Facts 11.1.1 and 11.1.2.

Exercise 11.1.4 Prove that α ⊨ ¬s and α 6⊨ s are definitionally equal.

Exercise 11.1.5 Prove the following:

a) α ⊨ s → t ↔ α 6⊨ s ∨α ⊨ t

b) α ⊨ ¬(s → t) ↔ α ⊨ s ∧α 6⊨ t

c) α ⊨ ¬s ↔ α 6⊨ s

d) α ⊨ x ↔ αx = true

e) α ⊨ ¬x ↔ αx = false

Exercise 11.1.6 The function ⊨ maps implications of formulas to implications

of propositions. This yields the right meaning since α ⊨ s is decidable. You can

gain more insight into this phenomenon by proving the following equivalences

for a decidable proposition X and an arbitrary proposition Y .

a) X → Y ↔ if [X\ then Y else ⊤

b) X ∧ Y ↔ if [X\ then Y else ⊥

c) X ∨ Y ↔ if [X\ then ⊤ else Y

Exercise 11.1.7 Extend the development to formulas with native conjunctions

and disjunctions. Write a function that translates formulas to formulas with-

out conjunctions and disjunctions such that a formula and its translation are

satisfied by the same assignments.
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11.2 Validity and Boolean Entailment

A formula is valid if it is satisfied by every assignment.

Fact 11.2.1 A formula is valid if and only if its negation is unsatisfiable.

The fact is negation happy. If we spell it out, we obtain

(∀α. α ⊨ s) ↔ ¬∃α. α ⊨ s

Now remember that α ⊨ ¬s is definitionally equal to ¬(α ⊨ s). With de Morgan

the right hand side of the equivalence becomes ∀α. ¬¬(α ⊨ s). Since α ⊨ s is

decidable, we can delete the double negation.

Fact 11.2.2 Every classically provable formula is valid.

Proof By induction on the formula using the classical Hilbert system. �

We will eventually show that every valid formula is classically provable.

Using boolean assignments, we can define an entailment predicate we call

boolean entailment. It will turn out that boolean entailment agrees with classical

entailment. An assignment satisfies a list of formulas if it satisfies every formula

of the list:

α ⊨ A := ∀s. s ∈ A→ α ⊨ s

We define boolean entailment as follows:

A ⊨ s := ∀α. α ⊨ A→ α ⊨ s

Note that s is valid if and only if nil ⊨ s.

Fact 11.2.3 If A ⊢ s in the classical ND calculus, then A ⊨ s.

Proof By induction on the derivation A ⊢ s. �

Exercise 11.2.4 Prove Facts 11.2.1, 11.2.2, and 11.2.3.

11.3 Signed Formulas and Clauses

The tableau method works with signed formulas. A signed formula is a pair of

a sign and a formula, where a sign is either positive or negative.

Inductive sform : Type :=

| Pos : form→ sform

| Neg : form→ sform.
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For a positively signed formula we write s+ or simply s, and for a negatively

signed formula we write s−. We will speak of positive and negative formulas.

A clause is a list of signed formulas.

Definition clause := list sform.

An assignment satisfies a clause if it satisfies every positive formula of the

clause and dissatisfies every negative formula of the clause. A clause is satisfi-

able if it is satisfied by at least one assignment.

By our definitions an assignment dissatisfies a formula if and only if it sat-

isfies the negation of the formula. Thus a negative formula s− is semantically

equivalent to the negated formula ¬s. One may see a negative sign as an exter-

nal negation. Similarly, one may see a clause as an external conjunction.

We use C , D, and E as names for clauses and S and T as names for signed

formulas. Formally, we define satisfaction of clauses with a recursive function ⊨:

α ⊨ nil := ⊤

α ⊨ s+ :: C := α ⊨ s ∧α ⊨ C

α ⊨ s− :: C := α 6⊨ s ∧α ⊨ C

A clause C entails a clause D if every assignment satisfying C also satisfies D:

C ⊨ D := ∀α. α ⊨ C → α ⊨ D

Exercise 11.3.1 Prove the following facts about satisfiability and entailment of

clauses:

a) C ⊆ D → α ⊨ D → α ⊨ C

b) C ⊆ D → sat D → sat C

c) s+ ∈ C → s− ∈ C → ¬sat C

d) If C ⊆ D, then D ⊨ C .

e) If C ⊨ D and D ⊨ E, then D ⊨ E.

f) If C ⊨ D and C is satisfiable, then D is satisfiable.

11.4 Solved Clauses

A clause is solved if it contains only signed variables and no conflicting pair x+

and x−. A solved clause can be understood as a partial assignment that fixes

the values of finitely many variables. A solved clause is satisfied by every assign-

ment that respects the constraints imposed by the signed variables of the clause.

Since the signed variables of a solved clause do not clash, every signed clause is

satisfiable.
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We define a function ϕ mapping clauses to assignments:

ϕC x := if [x+ ∈ C\ then true else false

Fact 11.4.1 Let C be a solved clause. Then ϕC ⊨ C .

Exercise 11.4.2 Let C be a solved clause. Prove the following.

a) ϕC ⊨ C .

b) C is satisfiable.

c) If x− ∉ C , then x+ :: C is solved.

d) If x+ ∉ C , then x− :: C is solved.

11.5 Tableau Method

A clause is clashed if it contains either a positive occurrence of ⊥ or a comple-

mentary pair s and s−. Clearly, every clashed clause is unsatisfiable. A clause is

flat if it contains no implication. Clearly, a flat clause is satisfiable if and only if

it is not clashed.

The tableau method decides satisfiability of clauses by reducing clauses to

flat clauses. To reduce a clause to flat clauses, implications appearing in the

clause are eliminated one by one using the following equivalences:

α ⊨ s → t+ :: C ↔ α ⊨ s− :: C ∨ α ⊨ t+ :: C

α ⊨ s → t− :: C ↔ α ⊨ s+ :: t− :: C

When we apply the tableau method by hand, we do the bookkeeping with

a tree-structured table called a tableau (hence the name tableau method). Fig-

ure 11.1 shows a complete tableau for a clause consisting of a negative instance

of Peirce’s law. We start by writing the signed formulas of the initial clause in

separate rows of the tableau. Then implications appearing in the tableau are

eliminated by applying the above equivalences from left to right. When we elim-

inate an implication, we mark it with a number and extend the tableau with the

additional signed formulas specified by the equivalence.1 For negative implica-

tions we add two signed formulas:

s → t−

s

t−

1 Since eliminated implications stay on the tableau, it is maybe more appropriate to say that

implications are decomposed.
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((x → y)→ x)→ x− 1

(x → y)→ x 2

x−

x → y− 3 x

x ⊗

y−

⊗

Figure 11.1: Complete tableau for the clause [((x → y)→ x)→ x−]

For positive implications we branch to represent the two clauses obtained with

the equivalence:

s → t

s− | t

The expansion process yields a tree-structured table where each branch repre-

sents a clause.

We stop the exploration of a branch if it represents a clashed or a solved

clause. If a tableau contains a solved branch, the initial clause is satisfiable since

it is entailed by the solved clause represented by the branch. If all branches of a

tableau are clashed, the initial clause is unsatisfiable.

A tableau is complete if every branch is either clashed or solved. An assign-

ment satisfies the initial clause of a complete tableau if and only if the tableau

contains a solved branch whose clause is satisfied by the assignment.

Figure 11.2 shows a complete tableau for the clause [¬¬x → ¬(x → ¬y)−].

The tableau has 4 branches, three of them clashed and one of them solved. Thus

an assignment satisfies the initial clause if and only if it satisfies the solved

clause [x,y−] represented by the solved branch.

Exercise 11.5.1 For each of the following formulas s give a complete tableau

for the clause [s−]. Then say whether the formula is valid. If the formula is

not valid, give a solved clause such that every assignment satisfying the solved

clause dissatisfies the formula.

a) x → y → x

b) (x → y → z)→ (x → y)→ x → z

c) (x → ¬y → ⊥)→ ¬¬(x → y)

d) ¬¬x → ¬y → ¬(x → y)

e) (x → y)→ (y → x)→ z
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11.6 DNF Procedure

¬¬x → ¬(x → ¬y)− 1

¬¬x 3

¬(x → ¬y)− 2

x → ¬y 5

⊥−

¬x− 4 ⊥

x ⊗

⊥−

x− ¬y 6

⊗
y− ⊥

solved ⊗

Figure 11.2: Complete tableau for the clause [¬¬x → ¬(x → ¬y)−]

Hint: Recall Fact 11.2.1.

Exercise 11.5.2 The tableau procedure can be optimized by adding further elim-

ination rules. For negations we may add the following rules:

α ⊨ ¬s+ :: C ↔ α ⊨ s− :: C

α ⊨ ¬s− :: C ↔ α ⊨ s+ :: C

Prove the correctness of the rules and redo some of the examples of Exer-

cise 11.5.1 using the rules.

Exercise 11.5.3 Assume that the formulas are extended with conjunctions and

disjunctions. Give equivalences providing for the elimination of conjunctions

and disjunctions.

11.6 DNF Procedure

A list ∆ of solved clauses is a DNF (disjunctive normal form) for a clause C if the

following conditions are satisfied:

1. Ever assignment satisfying a clause in ∆ satisfies C .

2. Every assignment satisfying C satisfies some clause in ∆.

Informally, we can say that a DNF for a clause represents the clause as a disjunc-

tion of solved clauses.

Lemma 11.6.1 Let ∆ be a DNF for C . Then C is satisfiable if and only if ∆ is

nonempty.
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dnf C nil = [C]

dnf C (x+ :: D) = if x− ∈ C then nil else dnf (x+ :: C) D

dnf C (x− :: D) = if x+ ∈ C then nil else dnf (x− :: C) D

dnf C ((s → t)+ :: D) = dnf C (s− :: D)++dnf C (t+ :: D)

dnf C ((s → t)− :: D) = dnf C (s+ :: t− :: D)

dnf C (⊥+ :: D) = nil

dnf C (⊥− :: D) = dnf C D

Figure 11.3: Operational specification of the DNF procedure

We can compute a DNF for a clause C by computing a complete tableau

for C and collecting the solved clauses obtained from the solved branches of

the tableau. Note that a DNF obtained with a complete tableau for a clause C

contains only subformulas of formulas in C . We speak of the subformula prop-

erty.

We will now specify a recursive procedure that computes DNFs for clauses.

We call the procedure DNF procedure. The procedure works with two clauses C

and D called accumulator and agenda. When the procedure starts, the accumu-

lator is empty and the agenda is the initial clause. The procedure uses the agenda

as a stack, and in each step processes the topmost formula of the agenda. The

procedure collects the signed variables it has seen so far in the accumulator,

provided there is no clash. Hence the accumulator is always a solved clause. If a

clash is discovered, the procedure yields the empty DNF. If the agenda is empty,

the procedure yields the singleton DNF just consisting of the accumulator.

Here is the declarative specification of the DNF procedure dnf :

∀C D. solved C → dnf C D is a DNF for C ++D

The operational specification shown in Figure 11.3 specifies the DNF procedure

algorithmically. Note that to every pair C , D of arguments exactly on equation

applies. The recursion steps are such that the size of the agenda is decreased.

Thus the procedure terminates. The size of the agenda is the sum of the sizes of

the formulas on the agenda.

size x := 1 size nil := 0

size (s → t) := 1+ size s + size t size (s+ :: C) := size s + size C

size ⊥ := 1 size (s− :: C) := size s + size C
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Given the operational specification, we can realize the DNF procedure in a

programming language. A direct realization of the DNF procedure in Coq is not

possible since the recursion is not structural. However, a bounded variant of the

DNF procedure can be realized in Coq using the technique of bounded recursion

we have used before for the unification procedure.

Exercise 11.6.2 (Challenge) Write a bounded version of the DNF procedure and

prove the following in Coq:

∀C D n. solved C → size D < n→ dnfN n C D is a DNF for C ++D

11.7 Recursion Trees

We have considered the DNF procedure to better understand the computational

aspects of the tableau method. Since the DNF procedure terminates for all

clauses C and D, it gives us a recursion tree for all clauses C and D. The recur-

sion tree for C and D represents the recursive calls the DNF procedure performs

for C and D. The recursion tree for C and D can also be seen as a transcript of

a process that derived a complete tableau for the initial clause C ++D. It turns

out that there is a straightforward formalization of recursion trees that is inde-

pendent from the DNF procedure. The proof of our main result will be based on

recursion trees.

We formalize recursion trees with an inductive type constructor

rec : clause→ clause→ Type

such that the elements of rec C D are the recursion tree for C and D. The re-

cursion rules in Figure 11.4 describe the value constructors for rec. At first

view it may be easier to understand rec as an inductive predicate and view the

derivations of rec C D as recursion tree for C and D.

If you look at the recursion rules, it is clear that a type rec C D has essentially

a single member. Irrelevant differences may appear in the proofs of the side

conditions for the variable rules.

Using size induction and a script, it is straightforward to construct a function

provider : ∀C D. rec C D

that yields a recursion tree for all clauses C and D.
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rec C nil rec C (⊥ :: D)

rec C D

rec C (⊥− :: D)

rec C (x :: D)
x−∈ C

rec (x :: C) D

rec C (x :: D)
x−∉ C

rec C (x− :: D)
x ∈ C

rec (x− :: C) D

rec C (x− :: D)
x ∉ C

rec C (s− :: D) rec C (t :: D)

rec C (s → t :: D)

rec C (s :: t− :: D)

rec C (s → t− :: D)

Figure 11.4: Recursion rules

11.8 Assisted Decider for Satisfiability

We can now write functions that recurse on recursion trees. For instance, we can

construct a function

rec_sat_dec : ∀C D. solved C → rec C D → dec (sat (C ++D))

that decides the satisfiability of C ++D given a recursion tree for C ++D. We

construct this assisted decider with a script using induction on the recursion

tree. We speak of an assisted decider since the function is given a recursion

tree. We obtain an unassisted decider ∀C. dec (sat C) by combining the assisted

decider with the provider.

Lemma 11.8.1 Satisfiability of clauses is decidable.

11.9 Main Results

We shall use the notation C ⊢ s for the proposition saying that s is provable in

the classical ND calculus in the context representing the clause C (obtained by

erasing positive signs and replacing negative signs with negation).

With the assisted decider from the last section we can prove

{sat C} + {¬sat C}

for every clause C . It turns out that the assisted decider can be modified such

that we obtain a proof of

{sat C} + {C ⊢ ⊥} (11.1)
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Since we already know

C ⊢ ⊥ → ¬sat C

we obtain the equivalence

C ⊢ ⊥ ↔ ¬sat C

Since on both sides entailment can be equivalently expressed as refutation

C ⊢ s ↔ ¬s :: C ⊢ ⊥

C ⊨ s ↔ ¬sat (s− :: C)

we obtain the equivalence

C ⊢ s ↔ C ⊨ s

which is a main result of this chapter. It also follows that boolean and classical

entailment are decidable.

If you examine the above reasoning, you will see that the decidability of sat-

isfiability is not needed. In fact, the decidability of satisfiability follows from the

other facts. The key lemma of the reasoning is (11.1).

Lemma 11.9.1 Classical entailment agrees with boolean entailment.

Lemma 11.9.2 Classical entailment is decidable.

11.10 Refutation Lemma

The proof of the key lemma (11.1) hinges on an assisted decider

∀C D. solved C → rec C D → {sat (C ++D)} + {C ++D ⊢ ⊥}

for classical refutability. We said before that this decider can be obtained by

modifying the construction of the assisted decider for satisfiability:

∀C D. solved C → rec C D → {sat (C ++D)} + {¬sat (C ++D)}

It turns out that the construction underlying these deciders can be generalized

so that one obtains a decider

∀C D. solved C → rec C D → {sat (C ++D)} + {ρ (C ++D)}

for every abstract refutation predicate ρ satisfying certain properties. Unsatis-

fiability and classical refutability are two concreted examples for a refutation

predicate.

A refutation predicate is a predicate ρ on clauses satisfying the refutation

properties specified in Figure 11.5. It is not difficult to show that unsatisfiability

and classical ND refutability are refutation predicates.
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⊥+∈ C → ρ C ref_False

x+∈ C → x−∈ C → ρ C ref_clash

ρ (s− :: C)→ ρ (t+ :: C)→ ρ (s → t+ :: C) ref_pos_imp

ρ (s+ :: t− :: C)→ ρ (s → t− :: C) ref_neg_imp

C ⊆ D → ρ C → ρ D ref_weak

ρ C → ¬sat C ref_sound

Figure 11.5: Refutation properties

Lemma 11.10.1 λC. ¬sat C is a refutation predicate.

Lemma 11.10.2 λC. C ⊢ ⊥ is a refutation predicate.

Lemma 11.10.3 (Refutation) Let ρ be a refutation predicate. Then we can con-

struct a function ∀C. {sat C} + {ρC}.

We remark that the soundness property is not needed for the proof of the

refutation lemma. It is however essential for the following two lemmas.

Lemma 11.10.4 Every refutation predicate agress with unsatisfiability.

Lemma 11.10.5 Every refutation predicate is decidable.

In Coq we define a predicate

ref _pred : (clause→ Prop)→ Prop

characterizing refutation predicates. We use the record command to carry out

the definition so that we obtain named projections for the various refutation

properties.
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In this chapter we prove two results about the intuitionistic entailment relation:

• Intuitionistic entailment is decidable.

• Intuitionistic entailment is weaker than classical entailment.

Both results are obtained with an analytic proof system. In an analytic proof

system, derivations of a goal employ only subformulas of formulas appearing in

the goal. Analytic proof systems were invented in the early 1930’s by Gerhard

Gentzen.

Recall that N refers to the intuitionistic natural deduction calculus defined

in Section 10.5. In this chapter we will use ⊢ exclusively for the intuitionistic

entailment relation given byN .

12.1 Gentzen System GS

We define an inductive predicate A⇒ s with four proof rules:

A⇒ x
x ∈ A

A⇒ u
⊥ ∈ A

A, s ⇒ t

A⇒ s → t

A⇒ s A, t ⇒ u

A⇒ u
s → t ∈ A

We refer to the rules as variable rule, explosion rule, right implication rule, and

left implication rule. We refer to the proof system given by the rules as GS or

as intuitionistic Gentzen system. The main difference between N and GS are

the variable rule and the left implication rule. The left implication rule applies

implications appearing in the context of the conclusion. Such an application can

be seen as a decomposition of an implication appearing in the context.

We will show that N and GS are equivalent. Proving that GS is sound for N

is straightforward. Proving that GS is complete forN takes more effort and will

be postponed to the next section.

Fact 12.1.1 (Soundness) If A⇒ s, then A ⊢ s.

Proof By induction on the derivation of A⇒ s. �

The most remarkable property of the proof system GS is the fact that it is

analytic. A proof system is analytic if each of its rules is analytic, and a rule is

185



12 Intuitionistic Gentzen System

analytic if the premises of the rule contain only subformulas of formulas in the

conclusion of the rule. One also speaks of the subformula property. Clearly,

every rule of GS is analytic. In contrast, N is not analytic since the implication

elimination rule ofN

A ⊢ s → t A ⊢ s

A ⊢ t

violates the subformula property. The explosion rule of N also violates the

subformula property.

If a proof system is analytic, then every derivation of a goal contains only

subformulas of formulas appearing in the goal.

GS provides for systematic proof search. By proof search we mean a process

that given a goal tries to construct in a backward fashion a derivation of the

goal. If the variable rule or the explosion rule apply to the current goal, the

search ends. Otherwise, the two implication rules of GS provide only finitely

many possibilities for reducing the current goal to subgoals. That there are only

finitely many possibilities for subgoal reduction is the key difference toN , where

the implication elimination rule offers possibly infinitely many possibilities for

subgoal reduction (through the choice of the formula s).

Note that every rule of GS is cumulative in the sense that the contexts of the

premises extend the context of the conclusion. Also note that the rules of GS ex-

press constraints on the context of the conclusion exclusively with membership.

Both properties also hold for N . Together, the two properties ensure that GS

andN admit weakening.

Fact 12.1.2 (Weakening) If A⇒ s and A ⊆ B, then B ⇒ s.

Proof Follows by induction on the derivation of A⇒ s. �

The implication rules of GS decompose implications into their constituents

when applied backwards. While the right implication rule decomposes claimed

implications, the left implication rule decomposes assumed implications. The

two implication rules complement each other such that the variable rule suffices

as assumption rule for GS. The fact that GS is defined with an assumption rule

restricted to variables simplifies some of the proofs in this chapter.

Example 12.1.3 SinceN is defined with an assumption rule, there is a one step

derivation of x → y ⊢ x → y . In contrast, there is no one step derivation of

x → y ⇒ x → y in GS. Consider the following derivation of x → y ⇒ x → y
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using both implication rules and the variable rule.

x → y,x ⇒ x x → y,x,y ⇒ y

x → y,x ⇒ y

x → y ⇒ x → y

The technique in Example 12.1.3 generalizes so that a general assumption

rule is admissible.

Fact 12.1.4 (Assumption) If s ∈ A, then A⇒ s.

Proof Follows by induction on s. �

The consistency of GS can be easily verified by just looking at the four proof

rules. This in contrast to N , where such a verification fails for the non-analytic

rules.

Fact 12.1.5 (Consistency) 0 6⇒ ⊥.

We now show ¬¬x 6⇒ x. Once we have established the equivalence of GS and

N , we can conclude from this result that intuitionistic entailment is weaker than

classical entailment. To show ¬¬x 6⇒ x, we analyse an assumed derivation of

¬¬x ⇒ x in backward direction and observe that the initial claim reoccurs up to

weakening. The situation can be captured with the following lemma.

Lemma 12.1.6 If A ⊆ [x,¬¬x] and A⇒ s, then s is neither ⊥ nor ¬x.

Proof By induction on the derivation of A⇒ s. �

Lemma 12.1.7 ¬¬x 6⇒ x.

Proof Let ¬¬x ⇒ x. This judgment can only be obtained with the left implica-

tion rule. Hence ¬¬x ⇒ ¬x. Contradiction by Lemma 12.1.6. �

Exercise 12.1.8 Give a GS derivation of ¬x ⇒ x → y using only the four rules

defining GS.

Exercise 12.1.9 Let A be x → y, y → z. Give a GS derivation of A⇒ x → z using

only the four rules defining GS.

Exercise 12.1.10 In this exercise we consider why the explosion rule is necessary

for GS to be complete. Give an example of an A and s such that A ⇒ s in GS and

every derivation of A ⇒ s makes use of the explosion rule. Hint: Consider a

variant of GS defined without the explosion rule.
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12.2 Completeness of GS

We now show that GS is complete forN . For this we have to show that every rule

of N is admissible for GS. We have already shown that the assumption rule is

admissible for GS. The admissibility of the implication introduction rule is triv-

ial since it agrees with the right implication rule of GS. The admissibility of the

explosion rule and the implication elimination rule ofN follows with the admis-

sibility of cut and weakening for GS. We have already shown that weakening is

admissible for GS. So it remains to show that the cut rule

A⇒ s A, s ⇒ u

A⇒ u

is admissible for GS. We call the formula s in such a cut rule the cut formula.

Showing the admissibility of the cut rule is the heart of the completeness

proof for GS. Since a direct inductive proof of the admissibility of the cut rule

does not go through, we follow Gentzen and generalize the cut rule as follows.

A⇒ s B ⇒ u

A++(B \ s)⇒ u

Recall that A++(B \ s) is the concatenation of the lists A and B \ s, and that the

list B \ s is obtained from B by removing all occurrences of s. The cut rule can be

obtained from the generalized cut rule with B = A, s and weakening.

Lemma 12.2.1 (Generalized Cut) If A⇒ s and B ⇒ u, then A++(B \ s)⇒ u.

Proof By induction on the cut formula s (first) and the derivation of A ⇒ s

(second). This yields two cases for s = ⊥, three cases for s = x and three cases

for s = s1 → s2. All the cases are easy except for the case with s = s1 → s2 and the

right implication rule. For the interesting case we have A, s1 ⇒ s2 and B ⇒ u and

we need to prove A++(B \ s) ⇒ u (where s = s1 → s2). We will use the following

inductive hypotheses for s1 and s2:

• For all A, B and u, if A⇒ s1 and B ⇒ u, then A, (B \ s1)⇒ u.

• For all A, B and u, if A⇒ s2 and B ⇒ u, then A, (B \ s2)⇒ u.

We will not need the inductive hypothesis for A, s1 ⇒ s2.

We will prove for all B and u, if B ⇒ u, then A++(B \ s) ⇒ u This yields one

case for every rule of GS. All the cases are easy except for the case with the left

implication rule. For the interesting case, we distinguish two subcases.

Suppose the left implication rule is of the form

B ⇒ t1 B, t2 ⇒ u

B ⇒ u
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where t1 → t2 ∈ B is not s. The inductive hypotheses for B ⇒ t1 and B, t2 ⇒ u

give A++(B \ s) ⇒ t1 and A++((B, t2) \ s) ⇒ u. Since t1 → t2 is not s, it is in

A++(B\s). Hence we can complete derive A++(B\s)⇒ u using the left implication

rule and weakening as follows:

A++(B \ s)⇒ t1

A++((B, t2) \ s)⇒ u

A++(B \ s), t2 ⇒ u

A++(B \ s)⇒ u

Finally suppose s1 → s2 ∈ B and the left implication rule is of the form

B ⇒ s1 B, s2 ⇒ u

B ⇒ u

The inductive hypotheses for B ⇒ s1 and B, s2 ⇒ u give A++(B \ s) ⇒ s1 and

A++((B, s2) \ s) ⇒ u. Recall that A, s1 ⇒ s2. Using the inductive hypothesis for

s1 with A++(B \ s)⇒ s1 and A, s1 ⇒ s2 we obtain (A++(B \ s))++((A, s1) \ s1)⇒ s2

and then A++(B \ s) ⇒ s2 by weakening. Using the inductive hypothesis for s2

with A++(B \ s)⇒ s2 and A++((B, s2) \ s)⇒ u we obtain

(A++(B \ s))++((A++((B, s2) \ s)) \ s2)⇒ u.

A final application of weakening yields A++(B \ s)⇒ u as desired. �

Lemma 12.2.2 (Cut) If A⇒ s and A, s ⇒ u, then A⇒ u.

Proof Follows with Lemma 12.2.1. �

Theorem 12.2.3 (Completeness) If A ⊢ s, then A⇒ s.

Proof By induction on the derivation of A ⊢ s. The cases for the assumption rule

and the right implication rule are straightforward. The case for the explosion

rule follows with the cut rule. The case for the left implication rule is most

interesting. We have to show that A⇒ t follows from A⇒ s → t and A⇒ s. Here

is a derivation using cut with s → t, left implication, weakening and assumption:

A⇒ s → t

A⇒ s

A, s → t ⇒ s A, s → t, t ⇒ t

A, s → t ⇒ t

A⇒ t

Corollary 12.2.4
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1. A ⊢ s if and only if A⇒ s.

2. ¬¬x 6⊢ x.

Exercise 12.2.5 Suppose A ⇒ ¬s and A,¬s ⇒ s. Using only the cut rule and the

four rules defining GS derive A⇒ u.

Exercise 12.2.6 Determine which of the following rules are admissible for GS.

Justify your answers.

A⇒ s B ⇒ u

A++(B \ t)⇒ u

A⇒ s A, t ⇒ u

A, s → t ⇒ u

A, s ⇒ u A,¬s ⇒ u

A⇒ u

A, s ⇒ u

A⇒ u
¬¬s ∈ A

12.3 Decidability

Every rule of GS has the property that the premises of the rule contain only

subformulas of formulas in the conclusion of the rule. This property is known as

the subformula property. The subformula property of GS has the consequence

that every derivation of a judgement A ⇒ s contains only formulas that are

subformulas of formulas in A ⇒ s. Based on the subformula property we will

show that every judgement A⇒ s is decidable.

A list U of formulas is subformula-closed if for every implication s → t ∈ U

the constituents s and t are both in U . In the following U will always denote a

subformula-closed list of formulas.

A goal is a pair (A, s). A goal (A, s) is derivable if the judgement A ⇒ s is

derivable. A goal (A, s) is a U -goal if A ⊆ U and s ∈ U .

Fact 12.3.1 For every goal one can compute a subformula-closed list U such that

the goal is a U -goal.

Let PU be the power list of U and Γ := PU ×U . Every goal in Γ is a U -goal. We

will write the list [A\U without the subscript U .

Fact 12.3.2 Let (A, s) be a U -goal. Then:

1. ([A\, s) ∈ Γ .

2. A⇒ s iff [A\⇒ s.

Now we construct with an iterative procedure a list Λ ⊆ Γ containing all deriv-

able goals in Γ . The procedure starts with Λ = 0 and one by one adds goals

from Γ to Λ following up to list equivalence with a single rule application from

the goals already in Λ.
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Lemma 12.3.3 One can construct a list Λ ⊆ Γ such that:

1. If (A, s) ∈ Λ, then A⇒ s.

2. Λ contains every goal (A,u) ∈ Γ satisfying one of the following conditions:

a) ⊥ ∈ A.

b) u ∈ A and u is a variable.

c) There exist s and t such that u = s → t and ([A, s\, t) ∈ Λ.

d) There exists s → t ∈ A such that both (A, s) and ([A, t\, u) are in Λ.

Proof We construct Λ by iteration. We start with Λ = 0 and add goals in Γ to Λ if

this is required by (2). The so obtained list Λ satisfies (1) since every addition of a

goal is justified by a rule of GS and weakening. The formalization and verification

of this algorithm will be the subject of the next section. �

Let Λ ⊆ Γ be a list as specified by Lemma 12.3.3. We show that Λ contains the

U -representations of all derivable U -goals.

Lemma 12.3.4 If (A,u) is a derivable U -goal, then ([A\, u) ∈ Λ.

Proof By induction on the derivation of A ⇒ u. We consider the case where

A⇒ u is obtained with the left implication rule. Here we are given an implication

s → t ∈ A and smaller derivations for A ⇒ s and A, t ⇒ u and need to show the

memberships ([A\, s) ∈ Λ and ([[A\, t\, u) ∈ Λ. By the inductive hypotheses we

have ([A\, s) ∈ Λ and ([A, t\, u) ∈ Λ. Thus we have the first membership. The

second membership follows since [[A\, t\ = [[A\, t\ since [A\, t ≡ A, t. �

Theorem 12.3.5 A ⊢ s is decidable.

Proof Let A and s be given. By Corollary 12.2.4 it suffices to show that A ⇒ s is

decidable. We construct a subformula-closed list U such that (A, s) is a U -goal.

We also obtain Γ and Λ is described above. By weakening it suffices to show that

[A\⇒ s is decidable. Case analysis.

1. ([A\, s) ∈ Λ. Then [A\⇒ s by Lemma 12.3.3 (1).

2. ([A\, s) ∉ Λ. To show [A\ 6⇒ s, we assume [A\ ⇒ s. By weakening we have

A⇒ s. By Lemma 12.3.4 we have ([A\, s) ∈ Λ. Contradiction. �

Exercise 12.3.6 Let x be a variable.

a) Give a subformula-closed U such that ¬x ∈ U .

b) Give a subformula-closed U such that [¬¬x;x] ⊆ U .

Exercise 12.3.7 Let x be a variable and U be [x;x → x].

2014-7-16 191



12 Intuitionistic Gentzen System

a) Verify that U is subformula-closed.

b) Verify that the power list PU of U is [nil; [x → x]; [x]; [x;x → x]].

c) Let Γ be PU ×U and write down the eight U -goals in Γ .

d) Construct the corresponding Λ as described in Lemma 12.3.3.

12.4 Finite Closure Iteration

The formalization and verification of the iteration algorithm underlying

Lemma 12.3.3 takes considerable effort. We structure the effort with two

reusable abstractions.

The first abstraction concerns functional fixed points that can be computed

with functional iteration. Recall that a fixed point of a function f is an argu-

ment x such that fx = x.

Lemma 12.4.1 (Finite Fixed Point Iteration) Let f : X → X be a function. Then:

1. Induction. Let p : X → Prop and x ∈ X such that px and ∀z. pz → p(fz).

Then p(fnx) for every number n.

2. Fixed Point. Let σ : X → N and x ∈ X such that for every number n either

σ(fnx) > σ(fn+1x) or fnx is a fixed point of f . Then fσxx is a fixed point

of f .

Proof Claim (1) follows by induction on n. For claim (2) one shows by induc-

tion on n that either σx ≥ n + σ(fnx) or fnx is a fixed point of f . Thus

σ(fσxx) = 0. By the assumption on σ and x it follows that fσxx is a fixed

point of f . �

The second abstraction concerns a predicate step : list X → X → Prop and

yields for every list V a minimal list C ⊆ V closed under step.

Lemma 12.4.2 (Finite Closure Iteration) Let X be a type with decidable equality,

step : list X → X → Prop be a decidable predicate, and V be a list over X. Then one

can construct a list C ⊆ V such that:

1. Closure. If step C x and x ∈ V , then x ∈ C .

2. Induction. Let p : X → Prop such that step A x → px for all A ⊆ p and x ∈ V .

Then C ⊆ p.

Proof We construct C by iteration. We start with C = 0 and add x ∈ V if step C x.

Formally, we define a function F : list X → list X such that for every list A:

• If there exists an x ∈ V such that x ∉ A and step A x, then FA = A,x for one

such x. Otherwise, FA = A.
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We now define C := Fv 0 where v := card V . We use Lemma 12.4.1 to prove the

claims about C .

a) Fn 0 ⊆ V . Follows by Lemma 12.4.1 (1).

b) C ⊆ V . Follows with (a).

c) Claim (2). Follows by Lemma 12.4.1 (1).

d) FC = C . Follows by Lemma 12.4.1 (2) with σA := card V − card A and (a).

e) Claim (1). Follows with (d). �

We now come to the formal proof of Lemma 12.3.3. We obtain Λ with

Lemma 12.4.2 where V := Γ and step formalizes the closure conditions of

claim (2) of Lemma 12.3.3. Claim (1) of Lemma 12.3.3 now follows with

Lemma 12.4.2 (2). Claim (2) of Lemma 12.3.3 follows with Lemma 12.4.2 (1).

12.5 Realization in Coq

The most interesting issues concerning the Coq realization of this chapter are

related to the abstraction for finite closure iteration. The abstraction is provided

by the base library since it will be reused for other purposes.

Extensive use of base library

The Coq realization of this chapter uses almost every feature of the base library.

• The inversion tactic inv is essential for Fact 12.1.5 and lemmas 12.1.6

and 12.1.7.

• The type class-based automation for decidability is essential.

• The hint-based automation for list membership and list inclusion is essential.

• Setoid rewriting is used with list equivalences.

• List removal is essential for generalized cut lemma.

• Finite closure iteration is used with power lists.

• Finite closure iteration is realized with list cardinality.

Finite closure iteration abstraction realized with module

The finite closure iteration abstraction is defined in the base library using a mod-

ule FCI providing a local name space. This way short names like C can be used in

the module. The list Λ and the accompanying lemmas for this chapter are then

established as follows:

Definition Λ : list goal :=

FCI.C (step := step) Γ .

Lemma lambda_closure γ :

γ ∈ Γ → step Λ γ → γ ∈ Λ.
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Proof. apply FCI.closure. Qed.

Lemma lambda_ind (p : goal→ Prop) :

(∀ Delta γ, inclp Delta p→ γ ∈ Γ → step Delta γ → p γ)→ inclp Λ p.

Proof. apply FCI.ind. Qed.

The localized lemmas lambda_closure and lambda_ind provide short names for

the instantiations of the corresponding lemmas in FCI . More importantly, the

localized lemmas do not unfold the defined name Λ when they are applied.

Definition of step function for finite fixed point iteration

Based on the given predicate step, module FCI defines a step function F to be

used with the fixed point iteration. The definition of F is based on a function

pick defined as a Lemma.

Lemma pick (A : list X) :

{ x | x ∈ V ∧ step A x ∧ ¬ x ∈ A } + { ∀ x, x ∈ V→ step A x→ x ∈ A }.

Definition F (A : list X) : list X.

destruct (pick A) as [[x _]|_]. exact (x::A). exact A.

Defined.

There is an interesting interplay between the functions pick and F . While pick

comes with an informative type and an opaque definition, F comes with a trans-

parent definition based on pick. The informative type of pick is designed to

facilitate proofs about F . That the definition of F is carried out with a script is a

matter of taste.

Step predicate defined with matches

The proof of Lemma 12.3.3 with finite closure iteration is interesting. The step

predicate is defined such that decidability of the predicate is easy to prove and

inversion of the predicate is feasible (for inversion inductive definitions are most

convenient).

Definition step (Delta : list goal) (γ : goal) : Prop :=

let (A,u) := γ in

match u with

| Var _⇒ u ∈ A

| Imp s t⇒ (rep (s::A) U, t) ∈ Delta

| _⇒ ⊥

end

∨

∃ v, v ∈ A ∧

match v with

| Fal⇒ ⊤

| Imp s t⇒ (A, s) ∈ Delta ∧ (rep (t::A) U, u) ∈ Delta

| _⇒ ⊥

end
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The matches avoid existential quantifications for the constituents of implica-

tions. Such quantifications would have to be guarded with membership in U to

facilitate a decidability proof for step. A similar use of match is found in the

definition of the predicate for subformula closedness.

Definition sf_closed (A : list form) : Prop :=

∀ u, u ∈ A→ match u with

| Imp s t⇒ s ∈ A ∧ t ∈ A

| _⇒ ⊤

end.

12.6 Notes

Analytic proof systems were invented by Gerhard Gentzen [5, 6] in the early

1930’s. Gentzen developed analytic proof systems for intuitionistic and clas-

sical logic covering the connectives ∧, ∨, ¬, and → and the first-order quanti-

fiers ∀ and ∃. Gentzen-style systems are called Gentzen systems, sequent sys-

tems, analytic systems, or cut-free systems in the literature. The word sequent is

Kleene’s [10] translation of the German word “Sequenz” Gentzen used for lists

of formulas.

It is an interesting exercise to add proof rules for conjunctions and disjunc-

tions to GS. This can be done such that all essential properties of GS are pre-

served. The completeness for a correspondingly extended N system can be

shown by extending the proofs of the existing cut lemmas.

Based on his analytic proof system for intuitionistic logic, Gentzen [5, 6]

gave the first proof of the decidability of intuitionist propositional entailment.

Gentzen [5, 6] also shows non-derivability of excluded middle.

Many different variants of Gentzen systems are studied in the literature. Our

system is closest to the system GKi of Troelstra and Schwichtenberg [19]. GKi

is different from GS in that it employs multisets of formulas rather than lists of

formulas.

Gentzen [5, 6] starts with a sequent calculus including the cut rule. Gentzen’s

celebrated cut elimination theorem then shows that the uses of the cut rule can

be eliminated from the derivation, thus yielding a derivation in an analytic sub-

system.

Gentzen’s [5, 6] sequent systems come with structural and logical rules.

Gentzen’s structural rules include weakening and cut. Our system GS has no

structural rules. The reason GS is complete without structural rules is the cumu-

lative format of the rules and the use of membership constraints for contexts.

Reading Gentzen’s [5, 6] very clear papers gives a good idea of how proof

systems were studied in the 1930’s. At this time the now standard notions of
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lists, abstract syntax, and inductive definitions were unknown. Gentzen did in-

ductions on derivations as inductions on the size of derivations.

Troelstra and Schwichtenberg’s [19] text contains an extensive study of var-

ious Gentzen systems. Girard et al. [7] is an advanced text developing the con-

nection between Gentzen systems and typed lambda calculi. Kleene’s [10] intro-

duction to logic and computation covers Gentzen systems and the decidability

of intuitionistic entailment.
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