
Boolean Logic

Lecture Notes

Gert Smolka

Saarland University

November 29, 2014

1 Introduction

Boolean logic is the most straightforward logic there is. It has important practi-

cal applications and a rich structure providing for the exposition of many logical

ideas. There are different interpretations of boolean logic. The canonical in-

terpretation is concerned with operations on a two-valued set. The algebraic

interpretation relates boolean logic with operations on power sets.

We will focus on semantic equivalence of boolean expressions and study de-

cision procedures and equational proof systems. Our decision procedures will

be based on the prime tree normal form used with reduced and ordered BDDs.

Completeness and decidability of an equational proof system for boolean algebra

will be shown using the results developed for prime trees.

We will show that the equational proof system is sound and complete for

every boolean algebra. This result will turn out to be a straightforward conse-

quence of the results for two-valued semantic equivalence.

The foundational basis for our development of boolean logic is constructive

type theory. The text is high-level and assumes that the reader is familiar with

constructive type theory and the proof assistant Coq. Our definitions and results

are presented informally but with constructive type theory and Coq in mind. We

expect that the reader carries out in Coq substantial parts of the mathematical

development presented in this text.

Our treatment of boolean logic brings together different aspects of computa-

tional logic: equational proof systems, unique normal forms, concrete and ab-

stract semantics, and decision procedures. Constructive type theory provides us

with a foundation elegantly accommodating all these aspects. Our development

fully exploits that constructive type theory gives us a unified framework for al-

gorithms, proofs, and verification of algorithms. Constable [4] emphasizes this

1

distinguished aspect of constructive type theory by speaking of computational

type theory.

2 Boolean Operations

We start with a type bool consisting of two elements true and false:

B ::= > | ⊥

We call the elements of B booleans.

We define operations on B known as negation, conjunction, disjunction, and

conditional.

¬> := ⊥ >∧ b := b >∨ b := > C>bc := b
¬⊥ := > ⊥∧ b := ⊥ ⊥∨ b := b C⊥bc := c

Conditionals will play an important role in the following. They express a boolean

case analysis reminiscent of an if-then-else expression in functional program-

ming languages.

An identity is a provable equation. The following identities say that condi-

tional can express negation, conjunction, and disjunction.

¬a = Ca⊥> a∧ b = Cab⊥ a∨ b = Ca>b

Together, conjunction and negation can express disjunction and conditional.

a∨ b = ¬(¬a∧¬b) Cabc = a∧ b ∨¬a∧ c

Proving the above identities is straightforward: Case analysis on the boolean

variables and definitional equality will do the job.

Incidentally, boolean implication is defined as follows:

> → b := b
⊥ → b := >

We have s → t = Cst> and s → t = ¬s ∨ t.
In Coq one may use the predefined type bool for B. The library Bool provides

negation (negb), conjunction (andb), conjunction (orb), conditional (ifb), and im-

plication (implb).

2

3 Conditional Expressions

We now define a class of syntactic expressions. We choose to work with con-

ditional as the single operation. This design decision comes without loss of

generality since conditional can express the other operations. Expressions with

conditionals will be convenient since they can represent decision trees without

coding.

We define a type of conditional expressions as follows:

s, t,u, v ::= > | ⊥ | x | Cstu (x ∈ N)

Expressions of the form x are called variables. By definition there is a variable

for every number. We will call numbers variables when we use them to obtain

expressions.

Note that we use overloaded notation. For instance, ⊥ denotes either a

boolean or an expression, and x denotes either a number or an expression.

Overloading is common in mathematical presentations. The accompanying Coq

development does not use overloading.

An assignment is a function from variables to booleans. The letter α will

be reserved for assignments. Note that an assignment fixes a value for every

variable. Given an assignment, we can evaluate an expression to a boolean as

one would expect:

eva α > := >
eva α ⊥ := ⊥
eva α x := αx

eva α (Cstu) := C (eva α s) (eva α t) (eva α u)

We will use the notation α̂s := eva α s.
An expression is satisfiable if there is an assignment under which it evaluates

to true. An expression is valid if it evaluates to true under all assignments.

Two expressions are semantically equivalent if they evaluate to the same

boolean under every assignment:

s ≈ t := ∀α. α̂s = α̂t

Two expression are semantically separable if there exists an assignment under

which they evaluate to different booleans. We speak of a separating assignment.

We have already seen that conditional can express negation, conjunction, and

disjunction. Based on the respective identities we define abbreviation functions

for expressions (note the overloading).

¬s := Cs⊥> s ∧ t := Cst⊥ s ∨ t := Cs>t

3

Fact 1 α̂(¬s) = ¬(α̂s), α̂(s ∧ t) = α̂s ∧ α̂t, α̂(s ∨ t) = α̂s ∨ α̂t.

Fact 2 Cstu ≈ s ∧ t ∨¬s ∧u, ¬s ≈ Cs⊥>, s ∧ t ≈ Cst⊥, s ∨ t ≈ Cs>t.

Fact 3 ¬¬s ≈ s and ¬Cstu ≈ Cs(¬t)(¬u).

Fact 4 (Reductions)

1. s is valid if and only if ¬s is unsatisfiable.

2. s is unsatisfiable if and only if ¬s is valid.

3. s ≈ t if and only if Cst(¬t) is valid.

4. s is valid if and only if s ≈ >.

5. s is unsatisfiable if and only if s ≈ ⊥.

6. s and t are separable if and only if Cs(¬t)t is satisfiable.

7. s is satisfiable if and only if s and ⊥ are separable.

Fact 5 With excluded middle, the following equivalences can be shown.

1. s is satisfiable if and only if ¬s is not valid.

2. s and t are separable if and only if s 6≈ t.

Note that only the directions from right to left need excluded middle. More-

over, it suffices to assume excluded middle for satisfiability. We will prove that

satisfiability is computationally decidable. Thus the equivalences of Fact 5 can

be shown without assumptions.

Fact 6 Semantic equivalence is an equivalence relation compatible with C :

s ≈ s′ t ≈ t′ u ≈ u′

Cstu ≈ Cs′t′u′

The above fact says that semantic equivalence is an abstract equality relation.

This fact is useful for proofs. On paper one uses the equivalence properties

automatically when one sees an abstract equality notation like s ≈ t. In Coq one

may register semantic equivalence with setoid rewriting so that one can use the

equality tactics (i.e., rewrite) for semantic equivalence.

Exercise 7 Define the abbreviation functions ¬s, s∧t, and s∨t in Coq and prove

the above facts.

A useful intuition says that two expressions are equivalent if they denote (i.e.,

describe) the same boolean function (Bryant [3], Whitesitt [7]). We can make this

intuition precise by taking the function λα.α̂s as the boolean function described

by the expression s. This will work in type theory if we assume that functions

4

are extensional (as in set theory). If instead of infinitely many variables we work

with finitely many variables, we can model boolean functions simply as functions

Bn → B where n is the number of different variables.

Exercise 8 Design and verify a function σ that for two expressions s and t yields

an expression σst such that an assignment α separates s and t if and only if it

satisfies σst.

4 Basic Decision Procedure

We now construct an informative decision procedure for satisfiability of expres-

sions that yields a satisfying assignment in the positive case. Given this pro-

cedure, the construction of decision procedures for validity, equivalence and

separation is straightforward (due to Fact 4).

We base the decision procedure for satisfiability on a variable elimination

method sometimes referred to as British Museum method. The idea is to search

for a satisfying assignment by replacing the variables in the expression by either

> or ⊥ and check whether the resulting variable-free instance of the expression

evaluates to >.

The principles behind the decision procedure can be formulated with three

facts.

Fact 9 (Coincidence) α̂s = β̂s if α and β agree on all variables occurring in s.

For the formal statement of the coincidence lemma, we need a function V s
that for an expression s yields a list containing exactly the variables occurring

in s (double occurrences are fine). Such a function can be defined by structural

recursion on s and will be assumed in the following.

We call an expression ground if it contains no variables. The coincidence

lemma tells us that it suffices to evaluate ground expressions with the default as-

signment α⊥ := λx.⊥. We say that a ground expression evaluates to a boolean b
if α̂⊥ s = b.

A ground expression is valid if and only if it is satisfiable if and only if it

evaluates to >. Two ground expressions are semantically equivalent if and only

if they evaluate to the same value.

Fact 10 (Ground Satisfiability) A ground expression is satisfiable if and only if

it is valid if and only if it evaluates to true.

We assume a substitution operation sxt that yields the expression obtained

from an expression s by replacing every occurrence of the variable x with the

expression t.

5

Fact 11 (Variable Elimination) Let s be an expression and x be a variable. Then s
is satisfiable if and only if either sx> or sx⊥ is satisfiable.

The proof of this fact relies on a correspondence between assignments and

substitutions. We use the update notation αxb to denote the assignment that

maps x to b and otherwise agrees with α.

Fact 12 α̂(sxt) = α̂xα̂t s.

Fact 13 sxt = s if x ∉ V s.

We now realize the decision procedure with a function

check : list N→ exp → (N→ B)⊥

satisfying the specification stated by Theorem 14. Note that X⊥ is notation for

the option type for X. We define check by structural recursion on the list argu-

ment.

check nil s := if α̂⊥ s = > then bα⊥c else ⊥
check (x :: A) s := match check A (sx>), check A (sx⊥) with

| bαc, _ =⇒ bαx>c
| _, bαc =⇒ bαx⊥c
| ⊥, ⊥ =⇒ ⊥

Theorem 14 (Correctness) Let V s ⊆ A. Then:

1. If check A s = bαc, then α̂s = >.

2. If check A s = ⊥, then s is unsatisfiable.

Corollary 15 Satisfiability, validity, equivalence, and separability of expressions

are decidable.

Corollary 16

1. s 6≈ t if and only if s and t are separable.

2. s is not valid if and only if ¬s is satisfiable.

5 Prime Tree Procedure

We now improve the basic decision procedure by making it more informative.

Given an expression, the improved procedure will return an equivalent expres-

sion in so-called prime tree normal form. The prime tree normal form of a valid

6

expression is always >, and the prime tree normal form of an unsatisfiable ex-

pressions is always ⊥. Thus an expression is satisfiable if and only if its prime

tree normal form is different from ⊥.

We define prime expressions inductively:

1. ⊥ and > are prime expressions.

2. Cxst is a prime expressions if s and t are different prime expressions and x
is a variable smaller than every variable y occurring in s or t (i.e., x < y).

Prime expressions can be depicted as decision trees. In fact, prime expressions

are ordered and reduced decision trees as they appear with ordered and reduced

binary decision diagrams in Bryant [3]. The word reduced means that the direct

subtrees of a tree must be different. To make the connection with decision trees

explicit, we refer to prime expressions also as prime trees and speak of the

prime tree normal form.

It is not difficult to modify the basic decision procedure so that it returns

equivalent prime trees. The prime tree for an expression mirrors the variable

elimination steps the procedure does for the expression. If we start the basic

procedure with a strictly sorted list of variables, the order constraint for prime

trees will be fulfilled. If in addition when we construct the tree witnessing the

elimination of x check whether the two recursively obtained subtrees u and v
are identical and return just u if they are and Cxuv otherwise, we will obtain

ordered and reduced decision trees. Here are three facts that ensure that the

obtained prime tree is equivalent to the given expression.

Fact 17 (Ground Evaluation) s ≈ α̂ s if s is ground.

Fact 18 (Shannon Expansion) s ≈ Cx(sx>)(sx⊥).

Fact 19 (Reduction) Cstt ≈ t.

We realize the prime tree procedure with a function η satisfying Theorem 23.

We obtain η with a function η′ such that ηs = η′As if A is a strictly sorted list1

of variables containing the variables occurring in s.

ηs := η′ (sort (V s)) s

η′ nil s := α̂⊥ s

η′ (x :: A) s := red x (η′A(sx>)) (η′A(sx⊥))

red x s t := if s = t then s else Cxst

Lemma 20 η′As ≈ s if V s ⊆ A.

1 A list [x1, . . . , xn] is strictly sorted if x1 < · · · < xn.

7

Lemma 21 V (η′As) ⊆ A.

Lemma 22 η′As is prime if A is strictly sorted.

Theorem 23 (Correctness) ηs is prime, ηs ≈ s, and V (ηs) ⊆ V s.

Note that the identities η⊥ = ⊥, η> = >, ηx = Cx>⊥, and η(¬x) = Cx⊥>
hold by definitional equality.

We now show that the prime tree normal form is unique.

Theorem 24 (Separation) Different prime trees are separable.

Proof Let s and t be prime trees. We construct a separating assignment by

nested induction on the primeness of s and t. Case analysis.

1. The prime trees > and ⊥ are separated by every assignment.

2. Consider two prime trees Cxst and u where x does not occur in u. We have

either s ≠ u or t ≠ u. We assume s ≠ u without loss of generality. The

inductive hypothesis gives us an assignment α separating s and u. The claim

follows since αx> separates Cxst and u.

3. Consider two different prime trees Cxst and Cxuv . We have either s ≠ u or

t ≠ v . We assume s ≠ u without loss of generality. The inductive hypothesis

gives us an assignment α separating s and u. The claim follows since αx>
separates Cxst and Cxuv . �

Our proof of the separation theorem omits details that must be filled in a

formal development. The idea is that the reader can fill in the details if he tries

hard enough. Some of the important insights are made precise by the following

lemma.

Lemma 25

1. αx> separates Cxst and u if α separates s and u and x ∉ V s ++Vu.

2. αx⊥ separates Cxst and u if α separates t and u and x ∉ V t ++Vu.

3. αx> separates Cxst and Cxuv if α separates s and u and x ∉ V s ++Vu.

4. αx⊥ separates Cxst and Cxuv if α separates t and v and x ∉ V t ++Vv .

We now know that every expression is equivalent to a unique prime tree and

that η computes this prime tree. We speak of the prime tree for an expression.

Corollary 26 prime trees are equivalent if and only if they are identical.

Theorem 27 (Decidability)

1. ηs = ηt is decidable.

8

2. s ≈ t if and only if ηs = ηt.
3. s and t are separable if and only if ηs ≠ ηt.

4. Equivalence and separability are decidable.

Proof Claim (1) holds since equality of conditional expressions is decidable.

Claim (4) follows from claims (1), (2), and (3).

Let ηs = ηt. Then nontrivial directions of (2) and (3) follow with the correct-

ness theorem.

Let ηs ≠ ηt. Then nontrivial directions of (2) and (3) follow with the separa-

tion and the correctness theorem. �

Corollary 28 Two expressions are separable if and only if they are not semanti-

cally equivalent.

Proof Follows with (2) and (3) of the decidability theorem. �

Corollary 29 If s is prime, then ηs = s.

Proof Let s be prime. Proof by contradiction (equality of expressions is decid-

able). Let ηs ≠ s. We have ηs ≈ s and ηs is prime by the correctness theorem. By

the separation theorem ηs and s are separable. Contradiction. �

Corollary 30 (Idempotence) η(ηs) = ηs

Corollary 31 If s ≈ t and t is prime, then ηs = t.

Corollary 32 s is valid if and only if ηs = >.

Proof Follows with the decidability theorem and (4) of Fact 4 �

Corollary 33 s is unsatisfiable if and only if ηs = ⊥.

Proof Follows with the decidability theorem and (5) of Fact 4 �

We conclude with a few informal remarks. The prime tree for an expression

represents the semantic information contained in the expression and omits all

syntactic information. The prime representation of the semantic information is

unique in that two expressions are semantically equivalent if and only if they

have the same prime tree. We can see the prime tree for s as the semantic object

denoted by s. Under this view semantic equivalence is denotational in that two

expressions are semantically equivalent if and only if they denote the same prime

tree.

We have mentioned boolean functions as an alternative denotational seman-

tics for conditional expressions. The advantage of the prime tree semantics

over the functional semantics is that prime trees are data objects with decid-

able equality while functions are abstract objects with undecidable equality.

9

Fact 34 There is a function that given a prime tree yields a satisfying assignment

if the prime tree is different from ⊥.

Fact 35 (Separation Function) There is a function that given two expressions

constructs a separating assignment if the expressions are different prime trees.

Exercise 36 Design and verify functions as specified by Facts 34 and 35.

Exercise 37 (Strictly Sorted Lists) Recall that two lists are equivalent if they

contain the same elements. There is an interesting parallel between prime trees

and strictly sorted lists of numbers: Every list of numbers is equivalent to exactly

one strictly sorted list. A strict sorting function is thus a function that computes

for every list the unique strictly sorted normal form.

a) Define a predicate strictly sorted for lists of numbers.

b) Define a function sort that yields for every list of numbers a strictly sorted

list that is equivalent.

c) Prove that different strictly sorted lists are not equivalent.

6 Significant Variables

A variable x is significant for an expression s if sx> and sx⊥ are separable. We will

show that a variable is significant for an expression s if and only if it occurs in

the prime tree of the expression.

Fact 38 Every significant variable of an expression occurs in the expression.

Fact 39 Significant variables are stable under semantic equivalence.

Fact 40 Every variable that occurs in a prime tree is significant for the expres-

sion.

Proof Let s be a prime tree and x ∈ V s. We construct by induction on the

primeness of s an assignment α separating sx> and sx⊥. We have s = Cyuv since

x ∈ V s. Case analysis.

x = y . Since u and v are different prime trees, we have a separating assign-

ment α for u and v by the separation theorem. Since x occurs neither in u nor

in v , we have α̂(ux>) ≠ α̂(vx>). The claim follows since α separates sx> and sx⊥.

x ≠ y . We assume x ∈ Vu without loss of generality. By the inductive

hypothesis we have a separating assignment α for ux> and ux⊥. The claim follows

since αy> separates sx> and sx⊥. �

10

C>st ≡ s C⊥st ≡ t s ≡ Cx(sx>)(sx⊥)

s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

s ≡ s′ t ≡ t′ u ≡ u′

Cstu ≡ Cs′t′u′

Figure 1: Proof system for axiomatic equivalence of conditional expressions

Fact 41 The significant variables of an expression are exactly the variables that

appear in the prime tree of the expression.

Exercise 42 Write a function that for an expression yields a list containing ex-

actly the significant variables of the expression. Prove the correctness of the

function.

7 Proof System for Conditional Expressions

Semantic equivalence of conditional expressions can be characterized with an

equational proof system. We consider the proof system shown in Figure 1. In

type theory, the proof system is formalized as an inductive definition of a predi-

cate s ≡ t. We say that s and t are axiomatically equivalent if s ≡ t is provable.

The proof system consists of two evaluation rules for conditionals, a Shannon

expansion rule, and three standard rules for equational deduction (symmetry,

transitivity, congruence). There is no rule for reflexivity since reflexivity is deriv-

able.

Fact 43 (Reflexivity) s ≡ s.

Proof The evaluation rule for > yields C>st ≡ s. The claim s ≡ s folows with

symmetry and transitivity. �

Fact 44 (Soundness) If s ≡ t, then s ≈ t.

Proof By induction on the derivation of s ≡ t. �

Fact 45 (Consistency) > 6≡ ⊥.

Completeness of axiomatic equivalence (the converse of soundness) follows

from the fact that ηs ≡ s. In fact, our proof system for axiomatic equivalence is

designed so that we have ηs ≡ s.

11

Fact 46 (Ground Evaluation) s ≡ α̂ s if s is ground.

Proof By induction on s using the evaluation rules for conditionals. �

Fact 47 red x s t ≡ Cxst if x ∉ V s.

Proof The critical case is s = t. Then red x s s = s ≡ Cx(sx>)(sx⊥) = Cxss since

x ∉ V s. �

Lemma 48 η′As ≡ s if V s ⊆ A.

Proof Follows by induction on s with Facts 46 and 47 and Theorem 23. �

Theorem 49 (Axiomatic Correctness) ηs ≡ s.

Proof Follows with Lemma 48. �

Theorem 50 (Informative Completeness) There is a function that given two

conditional expressions s and t constructs either a derivation of s ≡ t or a sepa-

rating assignment for s and t.

Proof Case analysis on ηs = ηt. If ηs = ηt, then s ≡ t by the equivalence

theorem. If ηs ≠ ηt, then s and t are separable by the correctness of η and the

separation function. �

Corollary 51 (Decidability) Axiomatic equivalence of conditional expressions is

decidable.

Proof Follows with informative completeness and soundness. �

Corollary 52

1. s ≈ t if and only if s ≡ t.
2. s 6≈ t if and only if s 6≡ t.

8 Axiomatic Separation

The proof system for axiomatic equivalence has an important property we call

axiomatic separability. Axiomatic separability says that negated propositions

s 6≡ t have axiomatic proofs based on variable substitution.

We define a substitution operator α̃s that given an assignment α and an

expression s yields the expression obtained from s by replacing every variable

occuring in s according to the assignment α.

α̃> := > α̃⊥ := ⊥ α̃x := αx α̃(Cstu) := C(α̃s)(α̃t)(α̃u)

The substitution operator treats an assignment as a substitution that maps every

variable to either the expression > or the expression ⊥.

12

Fact 53 (Ground Evaluation) α̃s is ground and α̃s ≡ α̂s.

Proof By induction on s using the evaluation rules. �

Fact 54 (Axiomatic Separation) An assignment α separates two conditional ex-

pressions s and t if and only if either α̃s ≡ > and α̃t ≡ ⊥ or α̃s ≡ ⊥ and α̃t ≡ >.

9 Example: Diet Rules

On a TV show a centenarian is asked for the secret of his long life. Oh, he says,

my long life is due to a special diet that I started 60 years ago and follow by every

day. The presenter gets all excited and asks for the diet. Oh, that’s easy, says the

old gentleman, there are only 3 rules you have to follow:

1. If you don’t take beer, you must have fish.

2. If you have both beer and fish, don’t have ice cream.

3. If you have ice cream or don’t have beer, then don’t have fish.

Let’s look at the diet rules from a logical perspective. Obviously, the diet is only

concerned with three boolean properties of a meal: having beer, having fish, and

having ice cream. We can model these properties with three boolean variables b,

f , i and describe the diet with a boolean expression that evaluates to true if and

only if the diet is observed by a meal:

(¬b → f) ∧ (b ∧ f → ¬i) ∧ (i∨¬b → ¬f)

The expression is one possible description of the diet. The prime tree for the

expression is a more explicit description of the diet:

b

f

i

⊥ >

>

⊥

It tells us that the diet is observed if and only if the following rules are observed:

1. Always drink beer.

2. Do not have both fish and ice cream.

Clearly, the prime tree represents the diet more explicitly than the rules given by

the gentleman. From the prime tree we learn that we the diet can be described

compactly with the expression b ∧¬(f ∧ i).

Exercise 55 Four girls agree on some rules for a party:

13

x ∧y = y ∧ x x ∨y = y ∨ x
x ∧> = x x ∨⊥ = x
x ∧¬x = ⊥ x ∨¬x = >

x ∧ (y ∨ z) = (x ∧y)∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨y)∧ (x ∨ z)
> ≠ ⊥

Figure 2: Axioms for boolean algebras

i) Whoever dances which Richard must also dance with Peter and Michael.

ii) Whoever does not dance with Richard is not allowed to dance with Peter and

must dance with Chris.

iii) Whoever does not dance with Peter is not allowed to dance with Chris.

Express these rules as simply as possible.

1. Describe each rule with a boolean formula. Use the variables c (Chris),

p (Peter), m (Michael), and r (Richard).

2. Give the prime tree for the conjunction of the rules. Use the order c < p <
m < r .

10 Boolean Algebra

Boolean algebra is a mathematical theory that originated with the work of George

Boole [2] in 1847. It seems to be the first abstract algebraic theory ever consid-

ered. Another abstract algebraic theory is group theory.

Boolean algebra is centered around the notion of a boolean algebra. A boolean

algebra consists of a set X called carrier and five operations > : X, ⊥ : X,

¬ : X → X, ∧ : X → X → X, and ∨ : X → X → X satisfying the axioms shown in

Figure 2. The constants > and ⊥ are called operations as a matter of convenience.

A prominent example of a boolean algebra is the two-valued algebra T ob-

tained with the two-valued type B and the operations defined in Section 2.

A prominent class of boolean algebras are the power set algebras. The power

set algebra PX for a nonempty set X takes the power set PX as carrier, � as ⊥,

X as >, set complement as ¬, set intersection as ∧, and set union as ∨. It is

straightforward to verify that the axioms for boolean algebras are satisfied by

each power set algebra.

More generally, any subsystem of a power set algebra containing the empty

set and being closed under complement, intersection, and union yields a boolean

algebra.

14

There are different axiomatizations of boolean algebras in the literature [6].

Our axiomatization is a reformulation of the axiomatization used in White-

sitt’s [7] textbook, which in turn is a variant of an axiomatization devised by

Huntington [5] in 1904. Huntington [5] discovered that associativity, which un-

til then appeared as an axiom, can be derived from the other axioms. Boolean

algebra originated with Boole [2] and seems to be the first abstract algebra ever

considered. Boole thought of conjunction as class intersection and of disjunction

as union of disjoint classes [1].

Our main interest in Boolean algebra is to understand which equations one

can prove or disprove in a boolean algebra. The starting point are the axioms for

boolean algebras. Every equation that can be obtained with the basic equational

proof rules from the axioms for boolean algebra must hold for every boolean

algebra. For instance, one can show this way that conjunction and disjunction are

associative in every boolean algebra. A good reason for having boolean algebra

in the mathematical curriculum is that is provides a straightforward playground

for presenting equational deduction and abstract algebraic methods.

It turns out that the boolean axioms are complete for boolean algebras. That

is, given any boolean algebra, an equation formed with the operations of the

algebra holds in the algebra if and only if it can be derived from the axioms

for boolean algebras with the basic equational proof rules. This is a remarkable

result given that there are rather different boolean algebras. It tells us that an

equation holds in a power set algebra if and only if it holds in the two-valued al-

gebra. The reduction to the two-valued algebra gives us a decision algorithm for

equations over arbitrary power set algebras. It also gives us a decision method

for whether or not an equation can be derived from the axioms for boolean alge-

bras with the basic equational proof rules.

Whitesitt [7] gives an elementary mathematical development of Boolean alge-

bra. As is typical for the mathematical literature on boolean algebra, his devel-

opment is rather informal since at no point he introduces expressions as formal

mathematical objects. If we want a formal (i.e., computer-checkable) account

of Whitesitt’s development, we are forced to introduce variables, expressions,

assignments, and evaluation functions as formal objects.

The formal treatment of syntax is standard in computer science. Formal syn-

tax is a prerequisite for the investigation of proof systems. It is also the prereq-

uisite for the theory of computation that originated with Gödel and Turing.

11 Proof System for Boolean Algebra

We now start a formal investigation of boolean algebra. We will focus on the

equational proof system for boolean algebra. Most results for boolean algebra

15

s ∧ t ≡ t ∧ s s ∨ t ≡ t ∨ s
s ∧> ≡ s s ∨⊥ ≡ s
s ∧¬s ≡ ⊥ s ∨¬s ≡ >

s ∧ (t ∨u) ≡ (s ∧ t)∨ (s ∧u) s ∨ (t ∧u) ≡ (s ∨ t)∧ (s ∨u)

s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

s ≡ s′

¬s ≡ ¬s′
s ≡ s′ t ≡ t′

s ∧ t ≡ s′ ∧ t′
s ≡ s′ t ≡ t′

s ∨ t ≡ s′ ∨ t′

Figure 3: Proof system for axiomatic equivalence of boolean expressions

are either results for the proof system or straightforward consequences of re-

sults for the proof system. Our main result will establish the correctness of the

prime tree method for boolean algebra.

We now consider boolean expressions

s, t,u, v ::= > | ⊥ | x | ¬s | s ∧ t | s ∨ t (x ∈ N)

obtained with >, ⊥, variables, negation, conjunction, and disjunction.

We define axiomatic equivalence s ≡ t of boolean expressions with the equa-

tional proof system shown in Figure 3. The lines of the premise-free rules are

omitted. The premise-free rules assert the axioms for boolean algebras (commu-

tativity, identity, negation, and distributivity). The rules with premises provide

the standard machinery of equational deduction (symmetry, transitivity, and

congruence). We will refer to the premise-free rules as axioms and to the rules

with premises as proper rules.

A standard rule for equational deduction is reflexivity. We have omitted re-

flexivity from the proof system since it can be derived with the other rules.

Fact 56 (Reflexivity) s ≡ s.

Proof Follows with identity, symmetry, and transitivity. �

The congruence rules of the proof system make it possible to rewrite with

equivalences. In Coq, one registers axiomatic equivalence as an equivalence re-

lation with setoid rewriting. This takes care of reflexivity, symmetry, and tran-

sitivity and provides for rewriting with equivalences at the top level. One also

registers the congruence rules so that one can rewrite with equivalences below

negations, conjunctions, and disjunctions.

There is a symmetry present in the boolean axioms known as duality. The

symmetry holds for all derivable equivalences. We make the symmetry precise

16

with a dualizing function ŝ that maps a boolean expression to a boolean expres-

sion called its dual.

>̂ := ⊥ x̂ := x Ås ∧ t := ŝ ∨ t̂
⊥̂ := > ¬̂s := ¬ŝ Ås ∨ t := ŝ ∧ t̂

The dualizing function ŝ is self-inverting.

Fact 57 (Involution) ̂̂s = s.
Theorem 58 (Duality) s ≡ t if and only if ŝ ≡ t̂.

Proof Let s ≡ t. We show ŝ ≡ t̂ by induction on the derivation of s ≡ t. The

proof is straightforward. The direction from right to left follows with involution

and the direction already shown. �

The duality theorem tells us that the rule

ŝ ≡ t̂
s ≡ t

duality

is admissible. Admissibility of a rule means that there is a function that con-

structs a derivation of the conclusion given derivations for the premises. Such a

function is constructed in the proof of the duality theorem. The duality rule will

be extremely useful in the following.

Constructing proofs in a formal proof system becomes much easier once the

right admissible rules are established. In general, one wants to define a proof

system with as few rules as possible since every defining rule needs to be ac-

counted for in every admissibility proof. Given that when we construct proofs

we can use admissible rules as if they were defining rules, working with few

defining rules does not result in a loss of convenience.

Fact 59 (Evaluation Laws)

¬> ≡ ⊥ ¬⊥ ≡ > constant negation

s ∧> ≡ s s ∨⊥ ≡ s identity

s ∧⊥ ≡ ⊥ s ∨> ≡ > annulation

Proof By duality it suffices to show the equivalences on the left. The identity law

is an axiom. Here is the proof of constant negation.

¬> ≡ ¬>∧> identity

≡ >∧¬> commutativity

≡ ⊥ negation

17

Note that the rules for symmetry and transitivity are used tacitly. In Coq one can

do the above proof with setoid rewriting. The proof for annulation starts with

⊥ ≡ s ∧¬s ≡ s ∧ (¬s ∨⊥). �

Theorem 60 (Ground Evaluation) If s is ground, then s ≡ > or s ≡ ⊥.

Proof By induction on s using the evaluation laws. �

Fact 61

s ∧ s ≡ s s ∨ s ≡ s idempotence

s ∧ (s ∨ t) ≡ s s ∨ (s ∧ t) ≡ s absorption

Proof By duality it suffices to show the equivalences on the left. The proofs are

straightforward if one knows the trick. Here is the proof of idempotence.

s ≡ s ∧> identity

≡ s ∧ (s ∨¬s) negation

≡ s ∧ s ∨ s ∧¬s distribution

≡ s ∧ s ∨⊥ negation

≡ s ∧ s identity

Note that the rules for symmetry, congruence, reflexivity, and transitivity are

used tacitly. In Coq one can do the above proof with setoid rewriting. �

Fact 62 (Expansion) s ≡ (t ∨ s)∧ (¬t ∨ s) and s ≡ (t ∧ s)∨ (¬t ∧ s).

Fact 63 (Expansion) The following rule is admissible.

u∨ s ≡ u∨ t ¬u∨ s ≡ ¬u∨ t
s ≡ t

Fact 64 (Associativity) s ∧ (t ∧u) ≡ (s ∧ t)∧u and s ∨ (t ∨u) ≡ (s ∨ t)∨u.

Proof By duality it suffices to show the left equivalence. By expansion it suffices

to show the following equivalences:

s ∨ s ∧ (t ∧u) ≡ s ∨ (s ∧ t)∧u
¬s ∨ s ∧ (t ∧u) ≡ ¬s ∨ (s ∧ t)∧u

The first equivalence follows with absorption and distributivity (both sides re-

duce to s). The second equivalence follows with distributivity, negation, and

idenditiy (both sides reduce to (¬s ∨ t)∧ (¬s ∨u)). �

18

Fact 65 (Uniqueness of Complements) The following rule is admissible.

s ∧ t ≡ ⊥ s ∨ t ≡ >
¬s ≡ t

Proof Let s ∧ t ≡ ⊥ and s ∨ t ≡ >. We have ¬s ≡ ¬s ∧ (s ∨ t) ≡ ¬s ∧ s ∨¬s ∧ t ≡
¬s ∧ t and t ≡ t ∧ (s ∨¬s) ≡ t ∧ s ∨ t ∧¬s ≡ t ∧¬s. �

Fact 66 (Double Negation) ¬¬s ≡ s.

Proof Follows with uniqueness of complements and the negation rules. �

Fact 67 (De Morgan) ¬(s ∧ t) ≡ ¬s ∨¬t and ¬(s ∨ t) ≡ ¬s ∧¬t.

Proof The first equivalence follows with uniqueness of complements and asso-

ciativity. The second equivalence follows with duality. �

Exercise 68 Our axioms for boolean algebras (see Figure 2) are not independent.

In November 2014 Fabian Kunze discovered that either of the two identity ax-

ioms can be derived from the other axioms.

a) Prove the annulation law s∨> ≡ > with the commutativity and identity axiom

for conjunctions and the negation and distributivity axiom for disjunctions.

b) Prove the identity law s ∨ ⊥ ≡ s with the annulation law for disjunctions

shown in (a), the identity, negation, and distributivity axiom for conjunctions,

and the commutativity axiom for disjunctions.

12 Shannon Expansion for Boolean Algebra

We now show that Shannon’s expansion law can be shown with the axioms of

boolean algebra.

Lemma 69 (Propagation)

1. u∧¬s ≡ u∧¬(u∧ s)
2. u∧ (s ∧ t) ≡ (u∧ s)∧ (u∧ t)

Proof Follows with de Morgan and associativity. �

We define the substitution operation sxt for boolean expressions as one would

expect from the definition for conditional expressions.

>yu := > xyu := if x=y then u else x (s ∧ t)yu := syu ∧ tyu
⊥yu := ⊥ (¬s)yu := ¬(syu) (s ∨ t)yu := syu ∨ tyu

19

Theorem 70 (Shannon)

1. x ∧ s ≡ x ∧ sx>
2. ¬x ∧ s ≡ ¬x ∧ sx⊥
3. s ≡ x ∧ sx> ∨¬x ∧ sx⊥

Proof

1. Follows by induction on s. The base cases are straightforward. The inductive

cases follow by rewriting with the propagation equivalences (twice, forth and

back) and the inductive hypotheses. Here is the rewrite chain for negation:

x ∧¬s ≡ x ∧¬(x ∧ s) ≡ x ∧¬(x ∧ sx>) ≡ x ∧¬(sx>) ≡ x ∧ (¬s)x>.

2. Similar to (1).

3. Follows with (1) and (2): s ≡ s∧(x∨¬x) ≡ x∧s∨¬x∧s ≡ x∧sx>∨¬x∧sx⊥.�

Exercise 71 (Replacement Rule) Consider the following rule:

s ≡ t
uxs ≡ uxt

replacement

1. Prove that the replacement rule is admissible.

2. Show that the congruence rules can be derived with the replacement rule.

13 Substitutivity for Boolean Algebra

There is a standard rule for equational deduction called substitutivity we have

not mentioned so far. Substitutivity says that from an equivalence s ≡ t one

can derive every instance of s ≡ t, where an instance is obtained by instantiating

the variables with terms. We now show that the rules of our proof system for

boolean algebra can simulate the substitutivity rule.

A substitution is a function θ from variables to expressions. We define a

substitution operation θ̃s that, given a substitution, maps boolean expressions

to boolean expressions.

θ̃> := > θ̃x := θx θ̃(s ∧ t) := θ̃s ∧ θ̃t

θ̃⊥ := ⊥ θ̃(¬s) := ¬(θ̃s) θ̃(s ∨ t) := θ̃s ∨ θ̃t

Fact 72 (Substitutivity) If s ≡ t, then θ̃s ≡ θ̃t.

Proof By induction on the derivation of s ≡ t. Follows from the fact that the

axioms of the proof system are closed under substitution. �

20

We now know that the substitutivity rule is admissible.

s ≡ t
θ̃s ≡ θ̃t

substitutivity

14 Consistency and Separation for Boolean Algebra

Recall that an assignment is a function from variables to booleans. We define an

evaluation function α̂s for assignments and boolean expressions as one would

expect from the definition of the evaluation function for conditional expressions.

α̂> := > α̂x := αx α̂(s ∧ t) := α̂s ∧ α̂t
α̂⊥ := ⊥ α̂(¬s) := ¬(α̂s) α̂(s ∨ t) := α̂s ∨ α̂t

Fact 73 (Soundness) If s ≡ t, then α̂s = α̂t.

Proof By induction on the derivation of s ≡ t. �

Fact 74 (Consistency) > 6≡ ⊥.

An assignment α separates two boolean expressions s and t if α̂s ≠ α̂t. Two

boolean expressions are separable if they are separated by some assignment.

Fact 75 (Disjointness)

Axiomatically equivalent boolean expressions are not separable.

We identify an assignment α with the substitution that maps a variable x to

the expression > or ⊥ if α maps x to the boolean > or ⊥, respectively. In Coq,

we realize the identification with a function that converts assignments into an

substitutions.

Fact 76 (Ground Evaluation) s ≡ α̂s if s is ground.

Proof Follows by induction on s using the evaluation laws (Fact 59). �

Fact 77 (Axiomatic Separation) An assignment α separates two boolean expres-

sions s and t if and only if either α̃s ≡ > and α̃t ≡ ⊥ or α̃s ≡ ⊥ and α̃t ≡ >.

Proof Follows with ground evaluation and consistency. �

21

ηs := η′ (sort (V s)) s

η′ nil s := α̂⊥ s

η′ (x :: A) s := red x (η′A(sx>)) (η′A(sx⊥))

red x s t := if s = t then s else Cxst

Figure 4: Prime tree procedure for boolean expressions

15 Prime Tree Procedure for Boolean Algebra

We now show that the prime tree method yields an informative decision proce-

dure for axiomatic equivalence that in the positive case yields a derivation of

the equivalence and in the negative case yields a separating assignment. There

are only obvious modifications needed to adapt the prime tree procedure η from

conditional expressions to boolean expressions. Figure 4 shows the prime tree

procedure for boolean expressions.

For the correctness proof of the prime tree procedure, we define a translation

function γs from conditional expressions to boolean expressions.

γ> := > γ⊥ := ⊥ γx := x γ(Cstu) := γs ∧ γt ∨¬γs ∧ γu

Fact 78 (Preservation) α̂(γs) = α̂s.

Theorem 79 (Correctness) ηs is prime, γ(ηs) ≡ s, and V (ηs) ⊆ V s.

Proof The proof is very similar to the correctness proofs for conditional expres-

sions (Theorems 23 and 49). The adaptions concern the new lemmas for Shannon

expansion (Theorem 70) and ground evaluation (Fact 76). �

Corollary 80 (Preservation) α̂(ηs) = α̂s.

Proof Follows with soundness, Fact 78 and the correctness theorem. �

Theorem 81 (Informative Completeness) There is a function that given two

boolean expressions s and t constructs either a derivation of s ≡ t or a sepa-

rating assignment for s and t.

Proof By case analysis on ηs = ηt. By the correctness theorem we know that ηs
and ηt are prime and that γ(ηs) ≡ s and γ(ηt) ≡ t.

Let ηs = ηt. Then s ≡ t.
Let ηs ≠ ηt. The separation function gives us a separating assignment α for

ηs and ηt. With preservation it follows that α separates s and t. �

22

Corollary 82 (Agreement) s ≡ t if and only if α̂s = α̂t for every assignment α.

Corollary 83 (Decidability) s ≡ t is decidable.

Corollary 84 Two expressions are separable if and only if they are not axiomat-

ically equivalent.

16 Soundness and Completeness for Boolean Algebras

We now relate the proof system for boolean algebra with abstract boolean alge-

bras. For that we assume a carrier type X, operations >, ⊥, ¬, ∧, and ∨, and

proofs of the axioms for boolean algebras (see Figure 2). In Coq, we use a section

to state the assumptions.

Note that we now have three readings of the symbols ⊥ and >: as booleans,

as expressions, and as abstract values. Formally, of course, we need to have

different names for different objects.

An abstract assignment is a function β mapping variables to values of X.

We define an evaluation operation β̂s that, given an abstract assignment, maps

every expression to a value of X.

β̂> := > β̂x := βx β̂(s ∧ t) := β̂s ∧ β̂t

β̂⊥ := ⊥ β̂(¬s) := ¬(β̂s) β̂(s ∨ t) := β̂s ∨ β̂t

Theorem 85 (Positive Soundness) If s ≡ t, then β̂s = β̂t.

Proof By induction on the derivation of s ≡ t. The proof is straightforward

since the axioms of the proof system mirror the axioms we have assumed for the

underlying algebra. �

The soundness theorem says that axiomatic equivalence implies equality in

the abstract algebra. This means that every equivalence we have shown with the

proof system carries over to the abstract algebra. This is essential for the proof

of the following lemma.

We use α̇ to denote the abstract assignment obtained from an assignment α
by replacing the booleans ⊥ and > with the abstract values ⊥ and >.

Lemma 86 ̂̇αs = α̂s.
Proof By induction on s using soundness and the evaluation laws (Fact 59). �

Theorem 87 (Negative Soundness) If α̂s ≠ α̂t, then ̂̇αs ≠ ̂̇αt.

23

Proof Follows with Lemma 86. �

Theorem 88 (Agreement)

s ≡ t if and only if β̂s = β̂t for every abstract assignment β.

Proof One direction is positive soundness. The other direction follows with in-

formative completeness and negative soundness. �

Exercise 89 Prove that two boolean expressions s and t are separable if and only

if there exists an abstract assignment β such that β̂s ≠ β̂t.

Exercise 90 (Independence of consistency axiom) Give an algebra satisfying

all axioms for boolean algebras but > ≠ ⊥.

Exercise 91 (Independence of negation axioms) Show that the negation axiom

for conjunctions s ∧¬s ≡ ⊥ cannot be derived from the other axioms. To do so,

construct an algebra that dissatisfies the negation axiom for conjunctions but

satisfies all other axioms for boolean algebras. Hint: A two-valued algebra where

only negation deviates from the standard definition suffices.

Exercise 92 (Independence of distributivity axioms) Show that the distributiv-

ity axiom for conjunctions s ∧ (t ∨ u) ≡ s ∧ t ∨ s ∧ u cannot be derived from

the other axioms. To do so, construct a two-valued algebra that dissatisfies the

distributivity axiom for conjunctions but satisfies all other axioms for boolean

algebras. Hint: A two-valued algebra where only conjunction deviates from the

standard definition suffices.

17 Summary: Equational Deduction for Boolean Algebra

It is clear that we can have different equational deduction systems for boolean

algebra. A deduction system must provide for replacement of equals, reflexivity,

symmetry, transitivity, and substitutivity. This can be accomplished following

general principles not specific to boolean algebra. The rules specific for boolean

algebra must provide for ground evaluation (Theorem 60) and Shannon expan-

sion (Theorem 70).

Ground evaluation ensures that the abstract operations agree with the con-

crete boolean operations on > and ⊥. Thus every ground expression is equiv-

alent to either > or ⊥ in accordance with concrete boolean evaluation. With

Shannon expansion and ground evaluation it follows that expressions that have

the same prime tree are equivalent. Expressions that have different prime trees

can be separated with an assignment. By ground evaluation it follows that the

expressions can be separated axiomatically.

24

18 Operations on Prime Trees

We will define operations on expressions that behave semantically like negation

and conjunction and in addition map prime trees to prime trees. The precise

specification of the operations appears in the correctness theorems 94 and 96.

We could define the operations with η, for instance not s = η(¬s), but this

is not what we are interested in. Instead, we will define the operations such

that they correspond to the efficient operations for ordered and reduced BDDs.

The correctness theorems for the operations will confront us with interesting

verification problems.

The idea for the negation operation can be expressed with an obvious identity

for booleans.

Fact 93 ¬Cabc = Ca(¬b)(¬c)

This suggests that we can negate a prime tree by just replacing > and ⊥ with

each other. We define the operation not by structural recursion for all expres-

sions.

not > := ⊥
not ⊥ := >

not (Cstu) := Cs(not t)(not u)

not x := ¬x otherwise

Theorem 94 (Correctness)

1. α̂(not s) = ¬(α̂s).
2. not(not s) = s if s is prime.

3. not s ≠ not t if s ≠ t and s and t are prime.

4. V (not s) ⊆ V s.
5. not s is prime if s is prime.

We now come to the conjunction operation. The interesting case appears

when both sides are prime conditionals. In this case one compares the two head

variables and proceeds according to one the following boolean identities.

Fact 95 Cabc ∧ Cade = Ca(b ∧ d)(c ∧ e) and Cabc ∧ d = Ca(b ∧ d)(c ∧ d).

25

We define the operation and by nested structural recursion as follows:

and > t := t

and ⊥ t := ⊥
and (Cxst) > := Cxst

and (Cxst) ⊥ := ⊥
and (Cxst) (Cyuv) := red x (and s u) (and t v) if x = y
and (Cxst) (Cyuv) := red x (and s (Cyuv)) (and t (Cyuv)) if x < y

and (Cxst) (Cyuv) := red y (and (Cxst) u) (and (Cxst) v) if x > y

and s t := s ∧ t otherwise

Theorem 96 (Correctness)

1. α̂(and s t) = α̂s ∧ α̂t.
2. V (and s t) ⊆ V s ∪V t.
3. and s t is prime if s and t are prime.

Given not and and, we can write another normalizer for expressions.

µ> := >
µ⊥ := ⊥
µx := Cx>⊥

µ(Cstu) := or (and (µs) (µt)) (and (not (µs)) (µu))

or s t := not (and (not s) (not t))

Theorem 97 (Correctness) µs is prime and semantically equivalent to s.

19 Further Reading

Boolean algebra originated with the work of George Boole [2]. Whitesitt [7] gives

an elementary mathematical introduction to boolean algebra. As is common in

mathematics, Whitesitt treats expressions completely informal. That is, expres-

sions do not appear as mathematical objects. Barnett [1] reviews the history of

boolean algebra and its application in circuit design.

There are different axiomatizations of boolean algebras in the literature [5, 6].

We use a variant of Huntington’s [5] axiomatization from 1904, which is also

used in Whitesitt [7]. Huntington [5] shows that the axioms of his axiomatiza-

tions are independent. This is not the case for our axiomatization since either of

the identity axioms is derivable from the other axioms (see Exercise 68). There

26

are straightforward independence proofs for the remaining axioms but commu-

tativity. It seems that Huntington’s axioms are cleverly formulated such that the

independence proofs are easy. Huntington’s axiomatization requires the exis-

tence of neutral elements and negations but does not require fixed constants for

neutral elements and negation.

Ordered and reduced binary decision diagrams were invented by Bryant [3] as

an efficient data structure for boolean functions as used in digital system design.

Our definition of prime trees and the concomitant operations are derived from

Bryant’s work [3].

References

[1] Janet Heine Barnett. Applications of boolean algebra: Claude Shannon and

circuit design. Internet, 2011.

[2] George Boole. An Investigation of the Laws of Thought. Reprinted by Merchant

Books, 2010. Walton, London, 1847.

[3] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. Computers, 35(8):677–691, 1986.

[4] Robert L. Constable. Computational type theory. www.scholarpedia.org,

2009.

[5] Edward V. Huntington. Sets of independent postulates for the algebra of

logic. Transactions of the American Mathematical Society, 5(3):288–309, 1904.

[6] Edward V. Huntington. New sets of independent postulates for the algebra of

logic, with special reference to Whitehead and Russell’s Principia Mathemat-

ica. Trans. Amer. Math. Soc., 35:274–304, 1933.

[7] John Eldon Whitesitt. Boolean Algebra and Its Applications. Reprinted by

Dover, 2010. Addison-Wesley, 1961.

27

	Introduction
	Boolean Operations
	Conditional Expressions
	Basic Decision Procedure
	Prime Tree Procedure
	Significant Variables
	Proof System for Conditional Expressions
	Axiomatic Separation
	Example: Diet Rules
	Boolean Algebra
	Proof System for Boolean Algebra
	Shannon Expansion for Boolean Algebra
	Substitutivity for Boolean Algebra
	Consistency and Separation for Boolean Algebra
	Prime Tree Procedure for Boolean Algebra
	Soundness and Completeness for Boolean Algebras
	Summary: Equational Deduction for Boolean Algebra
	Operations on Prime Trees
	Further Reading

