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1 Introduction

Modern mathematics takes sets as universal data structure and represents all math-

ematical objects (e.g., numbers, relations, functions) as sets. Sets and their proper-

ties are made precise by means of an axiomatisation. It suffices to consider pure

sets whose elements are sets.

We study a basic axiomatic set theory in constructive type theory assuming ex-

cluded middle. There are only few direct uses of excluded middle, but results de-

rived with excluded middle are essential when reasoning about infinite sets.

Constructive type theory is surprisingly well-suited for the development of ax-

iomatic set theory. Important classes of sets such as (hereditarily) finite sets, well-

founded sets, ordinals, and the stages of the cumulative hierarchy can be captured

naturally with inductive predicates providing useful induction principles. We de-

part substantially from conventional developments of set theory, where inductive

characterisations and inductive proof methods are rarely used.

There is an accompanying Coq development following the mathematical presen-

tation in the notes. It turns out that axiomatic set theory is an excellent case study

for the use of interactive theorem provers. We have written the formal proofs in the

Coq development so that they are close to the informal proofs in the notes. Often,

the Coq proofs are shorter than the informal proofs.

Our development of axiomatic set theory in type theory should provide a quick

start into the foundations of mathematics for both computer scientists and mathe-

maticians. In contrast to a traditional mathematical introduction, our presentation

has the substantial advantage that the underlying logic providing for the axiomati-

sation and the theorems is explicit and computer-implemented.

The standard axiomatic set theory is known as ZFC (for Zermelo, Fraenkel, and

axiom of choice). ZFC is usually presented in first-order logic where only sets are

first-class objects (i.e., quantification is restricted to sets). The first-order presen-

tation is unfortunate in that it forces a low-level coding of important set-theoretic

ideas that can be expressed naturally in a higher-order type theory with inductive

predicates.

2 Sets and Classes

The basic setup of our axiomatic set theories is straightforward: We assume a type

set and a binary predicate ∈ on set modelling set membership:

set : Type

∈ : set→ set→ P
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Note that the type of the membership predicate ensures that the elements of sets

are sets. The letters x, y , z, a, b, c will range over sets in the following.

A class (of sets) is a unary predicate on sets. The letters p and q will range

over classes. A set x agrees with a class p if the elements of x are exactly the sets

satisfying p:

agree x p := ∀z. z ∈ x ↔ pz

We call a class small if it agrees with some set, and large if it is not small. There is

a wellknown large class discovered by Bertrand Russell [10].

Fact 1 (Russell) λx.x∉x is large.

Proof Suppose λx.x∉x agrees with y . T hen y ∈ y ↔ y ∉ y . Contradiction. �

We can reformulate Russel’s fact such that it doesn’t use the notion of a class.

Fact 2 (Russell)

There is no set containing exactly those sets that do not contain themselves.

Russell’s fact is known as Russell’s paradox. Russell’s paradox made it clear

that Cantor’s naive set theory, which did not make rigorous assumptions about the

existence of sets, needed a proper mathematic foundation.

We define set inclusion as follows:

x ⊆ y := ∀z. z ∈ x → x ∈ y

Following the usual convention, we call x a subset of y and y a superset of x if

x ⊆ y . We also introduce a notation for proper subsets:

x ⊂ y := x ⊆ y ∧ x ≠ y

A basic assumption of set theory is extensionality: Two sets are identical if they

have the same elements. We assume extensionality with the following axiom:

Ext : ∀xy. x ⊆ y → y ⊆ x → x = y

Extensionality says that inclusion is antisymmetric. Since inclusion is reflexive and

transitive by definition, inclusion is a partial order on sets. The inclusion ordering

of sets is an essential notion in set theory.

Fact 3 Set inclusion is a partial order on sets.

Recall that in a partial order we can talk about least and greatest elements sat-

isfying a certain property. Given a property, there is at most one least and at most

one greatest element satisfying the property.

Exercise 4 Show that a class agrees with at most one set.
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3 Empty Set

We need axioms to establish the existence of sets. With the assumptions so far,

we cannot prove that a set exists. Given Russel’s paradox, we need to be careful

when we assume the existence of sets. Axiomatic set theory asserts the existence

of certain sets with carefully chosen axioms.

We start with two axioms saying that an empty set exists.

� : set

Eset : ∀x. x ∉ �

Fact 5 (Uniqueness) � is the only set containing no elements.

Proof Follows with extensionality. �

The precise formulation of the uniqueness fact is ∀x. (∀z. z ∉ x) → x = �.

Make sure that you can switch between informal and formal formulations easily.

Full proofs work on formal formulations. Informal formulations matter for humans

since they make it possible to ignore details and concentrate on essential aspects.

Clearly, the empty set is the least set (with respect to inclusion).

Fact 6 � ⊆ x. Thus x ⊆ �→ x = �.

A set is inhabited if it has an element.

inhab x := ∃z. z ∈ x

Fact 7 A set x is not inhabited if and only if x = �.

That a set is inhabited if it is different from � can be shown if we assume ex-

cluded middle. For now, we will not assume excluded middle.

4 Adjunction

We now assume an operation x.y called adjunction that yields the least superset

of y containing x. If x ∈ y , then x.y = x. Otherwise, x.y is the set obtained

from y by adding the additional element x. The axioms for adjunction are straight-

forward:

_._ : set→ set→ set

Adj : ∀xyz. z ∈ x.y ↔ z = x ∨ z ∈ y
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We adopt the convention that a.b.x is read as a.(b.x). We can now define the usual

notation for finite sets:

{x1, . . . , xn} := x1. . . . .xn.�

With � and adjunction we can represent every finite set whose elements are finite

sets. This informal observation will be made precise latter.

There is a certain similarity between finite sets and lists. We may say that ad-

junction takes the role of cons, and that the empty set takes the role of the empty

list.

We list some prominent facts about adjunction. All of them have straightforward

proofs. Some of them will be used frequently in further proofs, often tacitly.

Fact 8 (Cancel and Swap) a.a.x = a.x and a.b.x = b.a.x.

Fact 9 (Discrimination) a.x ≠ � and a.x 6⊆ �.

Fact 10 (Membership) z ∈ x ↔ z.x = x.

Fact 11 (Injectivity) a.x = b.y → a = b ∨ a ∈ y .

Fact 12 (Inclusion) a.x ⊆ y ↔ a ∈ y ∧ x ⊆ y .

Note that Fact 10 characterises membership with equality and adjunction.

A set containing exactly one element is called a singleton.

Fact 13 (Singletons)

1. a ∈ {b} → a = b.

2. {a} = {b} → a = b.

3. x = {a} → a ∈ x.

4. {a,b} = {c} → a = c ∧ b = c.

Fact 14 (Injectivity of unordered pairs)

{x,y} = {a,b} → x = a∧y = b ∨ x = b ∧y = a.

Proof The assumption entails x = a ∨ x = b for x and similar disjunctions for y ,

a, and b. This yields 16 trivial cases. �

Ordered pairs 〈x,y〉 consisting of two sets x and y can be represented as sets.

This matters since set theory represents functions and relations as sets of ordered

pairs. Following Kuratowski [8], we represent ordered pairs as follows:

〈x, y〉 := {{x}, {x,y}}

This representation makes sense since it is injective, that is, different pairs are

represented as different sets.
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Fact 15 (Injectivity of ordered pairs)

If 〈x,y〉 = 〈a,b〉, then x = a and y = b.

Proof Follows with the injectivity laws for singletons and unordered pairs. �

5 Numerals

The set theory we have axiomatised so far can represent natural numbers. The

standard representation is due to John von Neumann [9] and represents a number

as the set of all smaller number. Following this idea, zero must be represented as

the empty set. We call the sets representing the numbers numerals. Here are the

first four numerals:

�

{�}
{{�}, �}
{{{�}, �}, {�}, �}

The successor function generating the numerals starting from � is self-adjunction:

σx := x.x

We define the class Num of numerals inductively:

Num�

Numx

Num (σx)

Fact 16 (Closedness) Every element of a numeral is a numeral.

Proof By numeral induction. �

There is the difficulty that we cannot show that the successor function is injective

on all sets, given the axioms assumed so far. However, the successor function is

injective on a superclass of Num, the class of transitive sets. A set x is transitive if

every element of x is a subset of x (i.e., y ⊆ x for every y ∈ x). Note that a set x is

transitive if and only if every element of every element of x is an element of x. The

name transitive set is maybe best explained with the equivalence

transitive z ↔ ∀xy. x ∈ y → y ∈ z → x ∈ z

Fact 17 (Transitivity)

1. � is transitive.
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2. σx is transitive if x is transitive.

3. Every numeral is transitive.

Fact 18 (Injectivity)

1. Let y be transitive and σx ⊆ σy . Then x ⊆ y .

2. Let x and y be transitive and σx = σy . Then x = y .

Proof Let x and y be transitive sets and σx = σy . Because of extensionality and

symmetry it suffices to show σx ⊆ σy . This follows with the injectivity property

for adjunction (Fact 11). �

We now know that the class of numerals satisfies the Peano axioms.1 Next we

explore the canonical ordering of numerals. The construction of numerals suggests

that x ∈ y corresponds to m < n and x ⊆ y corresponds to x ≤ y .

Fact 19 (Strictness) Let x be a numeral. Then x ∉ x.

Proof By numeral induction using Fact 17. �

Fact 20 (Zero) Let x be a numeral. Then x = �∨ � ∈ x.

Proof By numeral induction on x. �

Fact 21 (Monotonicity) Let y be a numeral and x ∈ y . Then σx ∈ σy .

Proof By numeral induction on y . �

Fact 22 (Trichotomy) Let x and y be numerals. Then x ∈ y ∨ x = y ∨y ∈ x.

Proof By numeral induction on x using Facts 20 and 21. �

Fact 23 (Linearity) Let x and y be numerals. Then:

1. x ⊆ y or σy ⊆ x.

2. x ⊆ y or y ∈ x.

3. x ⊆ y or y ⊆ x.

Proof Follows with trichotomy and transitivity. �

Fact 24 (Cumulativity) Let x and y be numerals. Then x ∈ y ↔ x ⊆ y ∧ x ≠ y .

Proof Follows with linearity, transitivity, and strictness. �

1There are three Peano axioms: injective successor function, all successors disjoint from zero, and
the induction principle.
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Fact 25 (Monotonicity) Let y be a numeral and x ⊆ y . Then σx ⊆ σy .

Proof Follows with Facts 24 and 19. �

Exercise 26 Show that no numeral agrees with the class of numerals.

Exercise 27 Let x ∈ y and let either x or y be a numeral. Show y ∉ x.

Exercise 28 Singleton numerals are defined as follows: 0̃ := �, S̃n := {ñ}. Show

that ñ is injective. Zermelo represented numbers as singleton numerals [13].

Exercise 29 We map numbers to numerals as follows:

n := σn �

Prove the following statements.

a) A set x is a numeral if and only if there is a number n such that x = n.

b) If m < n, then m ∈ n.

c) If x ∈ n, then x =m for some m < n.

d) m = n if and only if m = n.

e) m < n if and only if m ∈ n.

f) m ≤ n if and only if m ⊆ n.

6 Finite Sets

We define the class Fin of finite sets inductively:

Fin �

Finy

Fin (x.y)

We call a set infinite if it is not finite.

Fact 30 Every numeral is a finite set.

Fact 31 Every finite set is either empty or inhabited.

A chain is a set x such that for all a,b ∈ x either a ⊆ b or b ⊆ a. A set u is a

greatest element of a set x if u ∈ x and y ⊆ u for every y ∈ x.

Fact 32 Every inhabited finite chain has a greatest element.

Proof Let x be an inhabited finite chain. The existence of a greatest element follows

by Fin induction on x. �

Exercise 33 Show that every set that agrees with Num is infinite.
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7 Hereditarily Finite Sets

Given an infinite set x, the set {x} is finite. Thus the class of finite sets is not closed

in a set theory with infinite sets. We now define a maximal closed class of finite sets.

We define the class HF of hereditarily finite sets inductively:

HF�

HFx HFy

HF (x.y)

Fact 34 (Closedness) Every element of an HF set is an HF set.

Proof Let x ∈ y and y be an HF set. That x is an HF set follows by HF induction

on y . �

Fact 35 HF sets are finite sets.

Fact 36 Numerals are HF sets.

A proposition P is propositionally decidable if P ∨ ¬P . Assuming excluded

middle amounts to assuming that every proposition is propositionally decidable.

Interestingly, one can show that membership, inclusion, and equality of HF sets are

propositionally decidable without assuming excluded middle. The proof is a bit

involved. We will use the notation xmP := P ∨¬P .

Lemma 37

1. xm (z = a)→ xm (z ∈ x)→ xm (z ∈ a.x).
2. xm (a ∈ y)→ xm (x ⊆ y)→ xm (a.x ⊆ y).
3. xm (x ⊆ y)→ xm (y ⊆ x)→ xm (x = y).

Lemma 38 HFx → xm (� ∈ x).

Lemma 39 HFx → HFy → xm (x ∈ y)∧ xm (y ∈ x)∧ xm (x ⊆ y)∧ xm (y ⊆ x).

Proof By nested induction on HFx and HFy using the two preceding lemmas. For

the induction to go through, it is essential that the four claims are shown together.�

Theorem 40 Membership, inclusion, and equality of HF sets are propositionally

decidable.

Is HF small? Our axioms so far do not decide this question. We could have the

axiom that every set is an HF set, which gives us a finite set theory where HF is large.

ZFC goes the other way and has axioms that ensure HF is small.
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Exercise 41 Show that HF sets are closed under taking ordered pairs.

Exercise 42 Let pz be propositionally decidable for every HF set z. Prove that the

propositions ∀z ∈ x. pz and ∃z ∈ x. pz are propositionally decidable for every HF

set x.

Exercise 43 Prove the following.

a) For every HF set x there exists a list A of HF sets such that z ∈ x ↔ z ∈ A for

every set z.

b) For every list A of HF sets there exists an HF set x such that z ∈ x ↔ z ∈ A for

every set z.

8 Well-Founded Sets

Given a set, one can descent to an element of the set. A recursive descent terminates

once the empty set is reached.

� = xn ∈ · · · ∈ x1 ∈ x0

Sets for which recursive descent always terminates are called well-founded. A set

containing itself as element is clearly not well-founded. Given the inductive defini-

tion of HF sets, it is clear that every HF set is well-founded. With the usual axioms

of set theory it is not possible to prove the existence of a non-wellfounded set. In

fact, ZFC has an axiom saying that every set is well-founded (regularity axiom).

We shall use the notation

x ⊆ p := ∀z. z ∈ x → px

We define the class WF of well-founded sets inductively with a single rule:

x ⊆ WF

WFx

It says that every set of well-founded sets is well-founded.

Fact 44 A set is well-founded if and only if each of its elements is well-founded.

Fact 45 Every subset of a well-founded set is well-founded.

Fact 46 The empty set is well-founded. Moreover, the class of well-founded sets is

closed under adjunction. Thus every HF set is well-founded.
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The inductive predicate WF provides an induction principle that will be useful:

To show that every well-founded set satisfies a property p, it suffices to show that

a set of well-founded sets satisfies p if all its elements satisfy p. WF induction is

known as epsilon induction in set theory.

Fact 47 (Absence of Loops) Let x be well-founded. Then:

1. x ∉ x.

2. If y ∈ x, then x ∉ y .

3. If z ∈ y and y ∈ x, then x ∉ z.

Proof Each claim follows by WF induction on x. We show the first claim. Let x be

well-founded. We show x ∉ x by WF induction on x. The inductive hypothesis gives

us y ∉ y for every y ∈ x. The claim follows. �

Fact 48 The class of well-founded sets is large.

Proof Suppose the set x agrees with the class of well-founded sets. The x is well-

founded since every element of x is wellfounded. Hence x ∈ x, which is contradic-

tory. �

Fact 49 (Injectivity)

1. Let y be well-founded and σx ⊆ σy . Then x ⊆ y .

2. Let x and y be well-founded and σx = σy . Then x = y .

Proof Let y be well-founded and σx ⊆ σy . We show x ⊆ y . We have x = y or

x ∈ y since x ∈ σy . Let x ∈ y and z ∈ x. We show z ∈ y . We have z = y or

z ∈ y since z ∈ σy . The case z = y is contradictory since x ∈ y and z ∈ x and y
is well-founded (Fact 47).

The second claim follows from the first claim with extensionality. �

Fact 50 If x is well-founded, then σx ∉ x and σx ≠ x.

Proof Follows from the absence of loops since x ∈ σx. �

Exercise 51 Let x ∈ y and x be well-founded. Prove y ∉ σx.

Exercise 52 Show that no HF set agrees with HF.

Exercise 53 Show that HF is large if every set is an HF set.

Exercise 54 (Minimal Element) Let p be an inhabited class of well-founded sets.

Show that there is some x in p such that x contains no element of p. Use excluded

middle.
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9 HFT Characterisation of Numerals

An HFT set is a transitive HF set whose elements are transitive:

HFTx := HFx ∧ transx ∧ x ⊆ trans

Clearly, every numeral is an HFT set. We now show that every HFT set is a numeral.

The HFT characterisation makes it clear that numerals are intimately linked with

the notion of transitive sets. We start with the key lemma.

Lemma 55 Let u be the greatest element of a transitive set x of numerals. Then

x = σu. Thus x is a numeral.

Proof We show x = σu with extensionality. The direction σu ⊆ x follows with the

transitivity of x. For the other direction, assume y ∈ x. We show y ∈ σu by by

trichotomy for y and u. The cases y ∈ u and y = u are obvious. The case u ∈ y
is contradictory since y ⊆ u (u is greatest element of x) and thus u ∈ u. �

Fact 56 Every transitive and finite set of numerals is a numeral.

Proof Let x be a transitive and finite set of numerals. By Facts 23 and 32 we know

that x has a greatest element. Thus x is a numeral by Lemma 55. �

Fact 57 HFT is closed.

Theorem 58 A set is an HFT set if and only if it is a numeral.

Proof The direction from right to left follows with Facts 17, 16, and 36. For the

other direction let x be an HFT set. Then x is well-founded. We show by WF induc-

tion on x that x is a numeral. By the inductive hypothesis and Fact 57 we know that

every element of x is a numeral. Thus x is a numeral by Fact 56. �

Note the use of WF induction in the proof of the theorem. It seems that HF

induction does not suffice for a proof of the theorem.

10 Union

We now assume an operation
⋃
x called union that yields the least set containing

all elements of the elements of x.⋃
: set→ set

Union : ∀xz. z ∈
⋃
x ↔ ∃y ∈ x. z ∈ y

It will be convenient to use an upper bound characterisation of unions. A set u is

an upper bound of a set x if every element of x is a subset of u. An upper bound u
of x is a least upper bound (lub) of x if u is a subset of every upper bound of x.

Because set inclusion is a partial order, a set has at most one least upper bound.
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Fact 59 (Lub Characterisation)
⋃
x is the least upper bound of x.

Fact 59 is very useful for proofs:

1. u ⊆
⋃
x if u ∈ x.

2.
⋃
x ⊆ u if u is an upper bound of x.

3.
⋃
x = u if u is a least upper bound of x.

Fact 60 (Greatest Elements)

1. If u is the greatest element of x, then u =
⋃
x.

2. If
⋃
x ∈ x, the

⋃
x is the greatest element of x.

Fact 61
⋃
� = � and

⋃
{x} = x.

Fact 62
⋃
x ⊆ x iff x is transitive.

Fact 63 (Predecessor)
⋃
(σx) = x if x is transitive.

Fact 64
⋃
x is transitive if every element of x is transitive.

Fact 65
⋃
x is well-founded if x is well-founded.

Fact 66 (Adjunction)

1.
⋃
(�.x) =

⋃
x and

⋃
((a.x).y) = a.

⋃
(x.y).

2.
⋃
(x.y) =

⋃
y if x ⊆

⋃
y .

3.
⋃
(x.y) =

⋃
x if

⋃
y ⊆ x.

Fact 67
⋃
x is HF if x is HF.

Proof By HF induction on x. The case x = � follows with Fact 61. Let x = y.x.

We show
⋃
(y.x) is HF by nested HF induction on y . The case y = � follows with

Fact 66 and the inductive hypothesis for x. Let y = a.y . The claim that
⋃
((a.y).x)

is HF follows with Fact 66 and the inductive hypothesis for y . �

Fact 68 (Monotonicity) If x ⊆ y , then
⋃
x ⊆

⋃
y .

Exercise 69 Show that
⋃
x is the greatest element of x if x is an inhabited finite

chain.
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11 Replacement, Separation, Description

An important axiom in set theory is replacement, which ensures the existence of

functional images. With replacement we can define intersections of sets with classes

and intersections of sets with sets.

We assume an operation R@x called replacement that yields the image of a set x
under a functional predicate R:

_@_ : (set→ set→ P)→ set→ set

Rep : functional R → ∀xz. z ∈ R@x ↔ ∃y ∈ x. Ryz

The restriction that the set R@x is determined as image of x only if R is functional

is essential. Dropping this restriction leads to inconsistency. The functionality

restriction ensures that the image R@x is at most as large as x. We may see the

image R@x as the set obtained from x be deleting all elements of x not in the

domain of R and replacing all elements of x that are in the domain of R.

An important operation we can define with replacement is separation:

x ∩ p := (λab.pa∧ a = b)@x

Fact 70 z ∈ x ∩ p ↔ z ∈ x ∧ pz.

As the notation suggests, we may see x ∩ p as the intersection of x and p. In

mathematics, the notation {a ∈ x | pa } is used for a separation x ∩ p. We define

binary intersection of sets:

x ∩y := {z ∈ x | z ∈ y }

With separation we can show that the notion of small and large classes are com-

patible with the inclusion ordering.

Fact 71 Every subclass of a small class is small. Hence every superclass of a large

class is large.

Fact 72 (External Subset) Every set has a subset that is not an element of the set.

Proof Let x be set. Let u := {z ∈ x | z ∉ z }. We have u ⊆ x. Suppose u ∈ x. Then

u ∈ u↔ u ∉ u, which is contradictory. �

A class p is called unique if it has at most one element. Note that a binary

predicate R on sets is functional iff the class Rx is unique for every set x.

An inhabited and unique class is called a singleton class. We define a descrip-

tion operator δp that yields the element of a singleton class:

δp :=
⋃
((λab.pb)@{�})
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Fact 73 Let p be a unique class containing x. Then δp = x.

With description we can define projections for ordered pairs.

π1u := δ(λx. {x} ∈ u)
π2u := δ(λy. u = 〈π1u,y〉)

Fact 74 (Projections) π1〈x,y〉 = x and π2〈x,y〉 = y .

For convenience, we define replacement for functions f : set→ set:

f@x := (λab.fa = b)@x

Fact 75 z ∈ f@x ↔ ∃a ∈ x. fa = z.

In mathematics, the notation {fa | a ∈ x } is used for f@x.

Finally, we define cartesian products:

x ×y :=
⋃
({ { 〈a,b〉 | b ∈ y } | a ∈ x })

Fact 76 z ∈ x ×y ↔ ∃a ∈ x ∃b ∈ y. z = 〈a,b〉.

Exercise 77 (Large Classes) Prove the following:

1. The class of all sets is large.

2. The class of all finite sets is large.

3. Every subset-closed class is large.

A class p is subset-closed if ∀xy. px → y ∈ x → py .

Exercise 78 Show that Num is small if HF is small.

Exercise 79 Show that δ(λz. agree z Num) agrees with Num if HF is small.

Exercise 80 (Functions as Sets) Given a function f : set → set and a set u, we can

represent the restriction of f to u as the set { 〈x, fx〉 | x ∈ u }. This fact makes it

possible to develop set theory in a first-order logic not providing for functions. In

fact, in Mathematics functions are typically defined as sets of pairs.

Define and verify two functions ↓ : (set→ set)→ set→ set and ↑ : set→ set→ set

such that (f ↓ u) ↑ x = fx for every x ∈ u.

Exercise 81 The replacement operator ensures that functional images of sets are

sets. Assuming the existence of nonfunctional images would result in inconsistency.

Give a predicate R and a set x such that the class λb.∃a ∈ x. Rab is large.
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Exercise 82 Together, replacement with functions, description, and separation can

express general replacement. Assume a functional predicate R and prove

R@x = (λa. δ(Ra))@ (x ∩ (λa. ∃b.Rab))

Exercise 83 Let x be a set and f be a function from sets to sets. Prove that there

exists a set u ⊆ x such that u ∉ f@x. Hint: The claim to be shown is a variant of

Cantor’s Theorem and generalizes Fact 72 (take the identity function for f ).

Exercise 84 (Subsets and XM) You may have noticed that proving that subsets of

finite sets are finite requires excluded middle. With separation we can show that

the assumption that subsets of finite sets are finite entails excluded middle.

Let τP := {�} ∩ (λx.P). Note that τ is a function mapping propositions to sets.

Prove the following:

a) τP is inhabited iff P holds.

b) Excluded middle holds for all propositions if every subset of {�} is finite.

12 Diaconescu’s Theorem

Diaconescu’s Theorem [4] says that a set theory with a choice function

γ : set→ set

Choice : ∀x. inhab x → γx ∈ x

which for every inhabited set yields an element of the set entails excluded middle.

Thus the standard set theory ZFC is inherently classical.

Theorem 85 (Diaconescu)

The presence of a choice function entails excluded middle.

Proof Let P be a proposition. We define fx := {z ∈ σ(σ�) | z = x ∨ P }. Let γ be

a choice function. Then γ(f�) ∈ f� and γ(f(σ�)) ∈ f(σ�). By the definition of f
we have either P or γ(f�) = � and γ(f(σ�)) = σ�. In the first case we are done. In

the second case we show ¬P . Assume P . Then f� = f(σ�) by extensionality. Thus

� = σ�. Contradiction. �

Note that the proof uses all axioms introduced so far except for union.

13 Power

We now assume an operation Px that yields the power set of x:

P : set→ set

Power : ∀xz. z ∈ Px ↔ z ⊆ x
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The axiom Power specifies Px as the set of all subsets of x.

Fact 86

1. x ∈ Px.

2. P preserves transitivity: Px transitive if x is transitive.

3. P preserves well-foundedness: Px well-founded if x is well-founded.

4. P is monotone: Px ⊆ Py if x ⊆ y .

5. Union undoes power:
⋃
(Px) = x.

6. P is injective: x = y if Px = Py .

7. x is transitive if and only if x ⊆ Px.

8. Px = x ∪Px if x is transitive.

Exercise 87 Prove Px 6⊆ x.

14 Subsets of Finite Sets

We now show that every subset of a finite set is a finite set, and that the power set

of an HF set is an HF set. Both results require excluded middle. So far we have not

used excluded middle in our development.

The use of excluded middle can be packaged into a disjunctive result for subsets

of adjunctions.

Lemma 88 Let x ⊆ a.y . Then either x ⊆ y or x = a.x′ for some x′ ⊆ y .

Proof Case analysis using excluded middle.

Let a ∈ y . Then x ⊆ y .

Let a ∉ y and a ∈ x. Then x = a.{z ∈ x | z ≠ a }.
Let a ∉ y and a ∉ x. Then x ⊆ y . �

Fact 89 Every subset of a finite set is a finite set.

Proof Let x be a finite set. We prove by Fin induction on x that every finite subset

of x is finite.

Let x = �. Then � is the only subset of x and the claim follows.

Let x = a.x′ and y ⊆ a.x′. Case analysis by Lemma 88. If y ⊆ x′, the claim

follows with the inductive hypothesis. Otherwise, let y = a.x′′ for some x′′ ⊆ x′.
By the inductive hypothesis we know that x′′ is finite. Hence y is finite. �

Next we show that HF sets are closed under taking power sets. The proof is by

HF induction and verifies a recursive function computing power sets. For this, two

simpler recursive functions for HF sets are needed, one computing binary unions
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and one computing replacements. There are similar functions for lists known as

append and map. The verification of the power set function requires excluded

middle as packaged by Lemma 88.

Lemma 90

1. �∪y = y and (a.x)∪y = a.(x ∪y).
2. f@� = � and f@(a.x) = fa.(f@x).

3. P� = {�} and P(a.x) = Px ∪ ((λz.(a.z))@(Px)).

Proof All equations are verified using extensionality. The proofs are routine except

for the direction from left to right of the adjoin equation for power, which assumes

y ⊆ a.x. Using Lemma 88, the proof considers two easy cases. �

Fact 91

1. HF is closed under binary union.

2. HF is closed under replacement with λz.(a.z).

3. HF is closed under power.

Proof Each claim follows by HF induction using the appropriate equations from

Lemma 90. Because of the second equation closure under power requires closure

under binary union and replacement. �

15 Ordinals

The idea that a number is the set of all smaller numbers allows for more numbers

than just the numerals. Suppose ω is a set agreeing with the class Num of nu-

merals.2 By extensionality we know that ω is the only such set. We may accept ω
as a number given that it is the set of all smaller numbers (membership serves as

smaller relation). Once we have accepted ω as a number, iterating the successor

function on ω provides us with further numbers:

� ∈ σ� ∈ σ 2� ∈ · · · ∈ ω ∈ σω ∈ σ 2ω ∈ · · ·

One often refers to ω and its successors as transfinite numbers, and to � and its

successors as finite numbers.

We formalize the idea of transfinite numbers with an inductive class O whose

members we call ordinals:

Ox
O (σx)

x ⊆ O
O (
⋃
x)

2ZFC ensures the existence of ω.
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Since
⋃
� = �, we know by the union rule that � is an ordinal. With the successor

rule we can obtain all further numerals.

Fact 92 Every numeral is an ordinal.

Fact 93 (Closedness) Every element of an ordinal is an ordinal.

Proof By ordinal induction. �

Fact 94 Every ordinal is transitive and well-founded.

Proof By ordinal induction. Both union and successor preserve transitivity and

well-foundedness (Facts 64, 17, 65, and 46). �

Since σ is injective on well-founded sets (Fact 49), σ is injective on ordinals.

Fact 95 (Strictness) If x is an ordinal, then x ∉ x.

Fact 96 (Largeness) If x ⊆ O, then σ(
⋃
x) ∉ x. Thus O is large.

Proof Let x ⊆ O and σ(
⋃
x) ∈ x. Then

⋃
x ∈

⋃
x. Contradiction since

⋃
x is an

ordinal and ordinals are well-founded. �

Fact 97 Suppose ω agrees with Num. Then:

1. ω is not a numeral.

2.
⋃
ω =ω

3. ω is an ordinal.

Closing ordinals under union ensures that ω (if it exists) is an ordinal and that

the class of ordinals is maximal (in contrast to the class of numerals, which can

be extended to the class of ordinals). We still have to show that the closure under

union doesn’t introduce unwanted ordinals. We start by showing that the class of

ordinals is successor linear (i.e., either x ⊆ y or σy ⊆ x for all ordinals x and y).

We prove successor linearity with the so-called double induction principle. This

yields an elegant proof that generalizes to related problems. We establish the dou-

ble induction principle with an inductive predicate:

Ox Dxy Dyx
D(σx)y

∀z. z ∈ x →Dzy
D(
⋃
x)y

Lemma 98 (Double Induction) Dxy holds for all ordinals x and y .

Proof Let x be an ordinal. We proof ∀y. Oy →Dxy by ordinal induction on x.
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1. Let Ox and Oy . We prove D(σx)y . By unfolding of D it suffices to prove Dxy
and Dyx. Dxy follows with the inductive hypothesis for x. We show Dyx by

ordinal induction on y .

a) Let Oy . We prove D(σy)x. By unfolding of D it suffices to prove Dyx
and Dxy , which follow by the inductive hypothesis for y and the inductive

hypothesis for x.

b) Let y ⊆ O. We prove D(
⋃
y)x. By unfolding of D it suffices to prove Dzx

for all z ∈ y , which holds by the inductive hypothesis for y .

2. Let x ⊆ O. We prove D(
⋃
x)y . By unfolding of D it suffices to prove Dzy for

all z ∈ x, which holds by the inductive hypothesis for x. �

We can now prove successor linearity if we assume excluded middle. A proof

not using excluded middle is not known.

Theorem 99 (Successor Linearity)

Let x and y be ordinals. Then either x ⊆ y or σy ⊆ x.

Proof By Lemma 98 we have Dxy . We prove the claim by induction on Dxy .

1. Let x be an ordinal, x ⊆ y ∨ σy ⊆ x, and y ⊆ x ∨ σx ⊆ y . We show σx ⊆ y ∨
σy ⊆ σx. All four cases are obvious.

2. Let z ⊆ y ∨ σy ⊆ z for all z ∈ x. We show
⋃
x ⊆ y ∨ σy ⊆

⋃
x. By excluded

middle we have two cases.

a) y is an upper bound of x. Then
⋃
x ⊆ y .

b) There is z ∈ x such that z 6⊆ y . We show σy ⊆
⋃
x. By assumption we have

either z ⊆ y or σy ⊆ z. The first case is contradictory since z 6⊆ y . Let

σy ⊆ z. It suffices to show z ⊆
⋃
x, which holds since z ∈ x. �

Corollary 100 (Epsilon Linearity)

Let x and y be ordinals. Then either x ⊆ y or y ∈ x.

Proof By successor linearity we have either x ⊆ y or σy ⊆ x. The claim follows

since y ∈ σy . �

Corollary 101 (Linearity) Let x and y be ordinals. Then either x ⊆ y or y ⊆ x.

Proof Follows from epsilon linearity since x is transitive. �

Fact 102 (Trichotomy)

Let x and y be ordinals. Then either x ∈ y or x = y or y ∈ x.

Proof Follows with strict linearity (twice) and extensionality. �
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Fact 103 (Cumulativity) Let x and y be ordinals. Then x ∈ y ↔ x ⊆ y ∧ x ≠ y .

Proof The direction from left to right follows with transitivity and strictness. The

other direction follows with strict linearity and extensionality. �

Fact 104 (Monotonicity) Let x and y be ordinals. Then:

1. If x ⊆ y , then σx ⊆ σy .

2. If x ∈ y , then σx ∈ σy .

Proof Let x ⊆ y . We show σx ⊆ σy . By successor linearity we have either y ⊆ x
or σx ⊆ y . If y ⊆ x, we have x = y by extensionality and the claim is trivial. If

σx ⊆ y , the claim follows with y ⊆ σy .

Let x ∈ y . We show σx ∈ σy . Strict linearity yields either the claim or the

assumption σy ⊆ σx. By x ∈ y and transitivity of y we have x ⊆ y . Thus

σx ⊆ σy by (1) and σx = σy by extensionality. Thus x = y by injectivity of σ .

Thus x ∈ x contradicting strictness. �

We distinguish between successor and limit ordinals. A successor ordinal is an

ordinal that can be obtained as successor of some ordinal, and a limit ordinal is

an ordinal that is a fixed point of union. It turns out that every ordinal is either a

successor or a limit ordinal, but not both.

Fact 105 (Successor-Limit Distinction)

Let x be an ordinal. Then either x = σ(
⋃
x) or x =

⋃
x.

Proof By closedness we know that
⋃
x is an ordinal. Thus σ(

⋃
x) is an ordinal. We

prove the claim by case analysis using trichotomy for x and σ(
⋃
x).

Let x ∈ σ(
⋃
x). Then x =

⋃
x or x ∈

⋃
x. Let x ∈

⋃
x. We have

⋃
x ⊆ x

since x is transitive. Thus x ∈ x contradicting strictness.

Let x = σ(
⋃
x). The claim follows.

Let σ(
⋃
x) ∈ x. Then σ(

⋃
x) ⊆

⋃
x. Thus

⋃
x ∈

⋃
x contradicting strictness. �

Fact 106 (Least Ordinals) Every class containing an ordinal contains a least ordinal.

Proof Let p be a class and x be an ordinal satisfying p. We prove by WF induction

on x that there is an ordinal u satisfying p such that u ⊆ z for every ordinal

z satisfying p. Case analysis using excluded middle on ∃y ∈ x. Oy ∧ py . In

the positive case, the inductive hypothesis yields the claim. In the negative case,

we show that x is the least ordinal satisfying p. Let y be a ordinal satisfying p.

We show x ⊆ y . Case analysis by epsilon linearity. The nontrivial case y ∈ x
contradicts the outer assumption ¬∃y ∈ x. py . �
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The same proof works for numerals. One can show that the existence of least

numerals entails excluded middle.

Note that there were only two direct uses of excluded middle in this section

(proof of successor linearity, Theorem 99, and existence of least ordinals, Fact 106).

Exercise 107 Assume excluded middle and show that either u is an upper bound

of x or there is some y ∈ x such that y 6⊆ u.

Exercise 108 Letω be the set of all numerals. Show thatω is the least limit ordinal.

16 WFT Characterisation of Ordinals

Fact 109 Every transitive set of ordinals is an ordinal.

Proof Let x be a transitive set of ordinals. Let y be the least ordinal such that

y ∉ x (exists by Facts 96 and 106). We show x = y by extensionality.

Let z ∈ x. We show z ∈ y . Case analysis by trichotomy for z in y . For the

two nontrivial cases we show y ∈ x, which contradicts y ∉ x. If z = y , y ∈ x is

immediate. If y ∈ z, we have y ∈ x since x is transitive.

Let z ∈ y . We show z ∈ x by contradiction using excluded middle. Let z ∉ x.

Since z is an ordinal by closedness, we have y ⊆ z since y is the least ordinal that

is not in x. Thus z ∈ z contradicting strictness. �

Theorem 110 A set is an ordinal if and only if it is well-founded, transitive, and all

its elements are transitive.

Proof The direction from left to right follows with closedness since every ordinal is

transitive and well-founded. For the other direction, let x be a transitive and well-

founded set such that every element of x is transitive. We show by WF induction

on x that x is an ordinal. By Fact 109 it suffices to show that x is a transitive set

of ordinals. Since x is transitive by assumption, it remains to show that x is a set

of ordinals. This follows with the inductive hypothesis since every element of x is

a transitive set of transitive sets. �

Exercise 111 A WFT set is a transitive and well-founded set containing only transi-

tive elements. Show that every element of a WFT set is a WFT set.

17 Finite Ordinals

We know that every numeral is a finite ordinal. We now show that every finite

ordinal is a numeral.
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Fact 112 (Infinity) Every set containing all numerals is infinite.

Proof Let x be a set containing all numerals. Suppose x is finite. Then x ∩Num is

an inhabited finite chain (Facts 89 and 23). Let a be the greatest element of x∩Num

(exists by Fact 32). Then σa is a numeral and thus σa ∈ x. Hence σa ⊆ a and thus

a ∈ a. Contradiction by Fact 19. �

Fact 113 (Tightness) An ordinal is a numeral if it is a subset of a numeral.

Proof Let x be an ordinal and y be a numeral such that x ⊆ y . We prove by

numeral induction on y that x is a numeral.

If y = �, then x = � and thus x is a numeral.

Let y = σy ′. Case analysis using successor linearity for x and y ′. If x ⊆ y ′, the

claim follows by the inductive hypothesis. If σy ′ ⊆ x, x is a numeral since x = y
by extensionality. �

Fact 114 (Finite Ordinals) Every finite ordinal is a numeral.

Proof Let x be a finite ordinal. Then x does not contain all numerals (Fact 112). By

excluded middle there exists a numeral a ∉ x. We have x ⊆ a by epsilon linearity

for ordinals (Corollary 100). Hence x is a numeral by Fact 113. �

18 Cumulative Hierarchy

We define an inductive class S whose elements we call stages:

Sx
S (Px)

x ⊆ S
S (
⋃
x)

The definition of stages mimics the definition of ordinals by replacing the successor

function with the power function. It turns out that stages enjoy the same order

properties as ordinals. The difference between ordinals and stages is that σx only

adds x to x, while Px adds all subsets of x to x (provided x is transitive). It will

turn out that every well-founded set appears as element of some stage. This means

that power and union generate exactly the well-founded sets.

The class of stages is known as cumulative hierarchy.

Fact 115 Every stage is transitive and well-founded. Thus x ∉ x if x is a stage.

Fact 116 (Largeness) If x ⊆ S, then P(
⋃
x) ∉ x. Thus S is large.

Proof Let x ⊆ S and P(
⋃
x) ∈ x. Then

⋃
x ∈ x and thus

⋃
x ∈

⋃
x. Contradiction

since
⋃
x is a stage and stages are well-founded. �
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Theorem 117 (Successor Linearity)

Let x and y be stages. Then either x ⊆ y or Py ⊆ x.

Proof The proof is identical to the proof of successor linearity for ordinals (Theo-

rem 99). One first proves a double induction lemma. �

We call a set reachable if it is the element of a stage. We wil show that every

well-founded set is reachable. To do so, we define the rank predicate:

ρax := Sx ∧ a ⊆ x ∧ a ∉ x

We will show that the rank predicate is functional on all sets and total on well-

founded sets. Totality of ρ implies that all well-founded sets are reachable. Func-

tionality of ρ justifies that we speak of the rank of a set.

Fact 118 Let ρax. Then x is the least stage such that a ⊆ x.

Proof Let y be a stage such that a ⊆ y and a ∉ y . We show x ⊆ y by successor

linearity for the stages x and y . Let Py ⊆ x. Since a ⊆ y , we have a ∈ x,

contradicting the assumption ρax. �

Fact 119 ρ is functional.

Lemma 120 Every reachable set has a rank.

Proof Let x be a stage and a ∈ x. We show by stage induction on x that a has a

rank.

Let x = Py for some stage y . Then a ⊆ y since a ∈ x. Case analysis on a ∈ y
using excluded middle. In the positive case, the claim follows with the inductive

hypothesis. In the negative case, we have ρay .

Let x =
⋃
u for some set u of stages. Then a ∈ y ∈ u for some stage y . The

claim follows with the inductive hypothesis. �

Lemma 121 Every set of reachable sets is reachable.

Proof Let every element of x be reachable. We show x ∈ P(P(
⋃
(ρ@x))). This

yields the claim since ρ@x is a set of stages since ρ is functional. It suffices to

show x ⊆ P(
⋃
(ρ@x)). Let y ∈ x. We show y ⊆

⋃
(ρ@x). We have ρya for

some a since x contains only reachable sets and every reachable set has a rank

(Lemma 120). The claim follows since y ⊆ a and a ∈ ρ@x. �

Lemma 122 Every well-founded set is reachable.
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Proof Let x be a well-founded set. We prove by WF induction on x that x is reach-

able. The claim follows by Lemma 121 and the inductive hypothesis. �

Theorem 123 Let x be a set. The following properties are equivalent:

1. x is well-founded.

2. x is an element of a stage.

3. x has a rank.

Proof Follows with Lemmas 122 and 120 and Fact 115 �

Exercise 124 (Least Stages) Let x be a stage and p be a class such that px. Show

that there exists a stage y in p such that y ⊆ z for every stage z in p. You may use

excluded middle.

Exercise 125 (Successor-Limit Distinction)

Let x be a stage. Prove that either x = σ(
⋃
(x ∩ S)) or x =

⋃
(x ∩ S).

19 Finite Cumulative Stages

We identify the basic stages of the cumulative hierarchy with an inductive predi-

cate BS:

BS�

BSx

BS (Px)

We will show that the basic stages are exactly the finite stages. We will also show

that the HF sets are exactly the sets appearing as elements of the basic stages.

Fact 126 (BS⊆ S) Every basic stage is a stage.

Thus every basic stage is transitive and well-founded.

Fact 127 (BS⊆ HF) Every basic stage is an HF set.

Proof Follows with Fact 91. �

Fact 128 (Infinity) Every set containing all basic stages is infinite.

Proof Analogous to Fact 112. �

Fact 129 (Infinity) Every set containing all HF sets is infinite.

Proof Follows with Facts 128 and 127. �
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Fact 130 (Tightness) Every stage that is a subset of a basic stage is basic.

Proof Analogous to Fact 113. �

Fact 131 (Finite Stages) Every finite stage is basic.

Proof Analogous to Fact 114. �

Theorem 132 A stage is finite if and only if it is basic.

Proof Follows with Facts 131 and 127. �

We now know that the finite stages are exactly the basic stages. We also know

that every basic stage is an HF set. It remains to show that every HF set appears as

an element of a basic stage.

Fact 133 Every HF set is an element of a basic stage.

Proof Let x be an HF set. We prove by HF induction on x that there exists a basic

stage y such that x ∈ y .

Let x = �. Then x is an element of P�.

Let x = a.y . By the inductive hypothesis we have basic stages u and v such that

a ∈ u and y ∈ v . Case analysis by stage linearity for u and v .

Let u ⊆ v . Then a.y ∈ Pv since v is transitive.

Let v ⊆ u. Then a.y ∈ Pu since u is transitive. �

Theorem 134 A set is in HF if and only if it is an element of some basic stage.

Proof Follows with Facts 133 and 127. �

Corollary 135 Let x agree with BS. Then
⋃
x is a stage agreeing HF.

20 Towers

We generalise the definition of the inductive classes for ordinals and stages using

some function g : set→ set:

T x
T (gx)

x ⊆ T
T (

⋃
x)

We call the inductive class T the tower for g and the elements of T the stages

for g. We refer to g as the generator of the tower. If we take σ as generator,

we get the class of ordinals, and if we take P as generator, we get the stages of

the cumulative hierarchy. If the generator satisfies certain properties, the stages of

the corresponding tower will satisfy the properties we have seen for ordinals and

cumulative stages.
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Fact 136 If g preserves well-foundedness, then every stage of T is well-founded.

Fact 137 If g preserves transitivity, then every stage of T is transitive.

We call g increasing on T if x ⊆ gx for all stages x of T .

Fact 138 (Successor Linearity) Let g be increasing on T and let x and y be stages

of T . Then either x ⊆ y or gy ⊆ x.

Corollary 139 (Linearity) Let g be increasing on T and let x and y be stages of T .

Then either x ⊆ y or y ⊆ x.

We call g eager if x ∈ gx for every set x.

Fact 140 T is large if g is eager and preserves well-foundedness.

Fact 141 If g is eager and preserves transitivity, then g is increasing on T .

Fact 142 If g is eager and preserves transitivity and well-foundedness, and x and y
are stages, then x ∈ y if and only if x ⊂ y .

We define an inductive class T0 of basic stages:

T0 �

T0 x

T0 (gx)

We have T0 ⊆ T .

Fact 143 Let g be increasing on T . Then every stage that is a subset of a basic

stage is basic.

Fact 144 Let g be eager, increasing on T , and preserve well-foundedness. Then

there are infinitely many basic stages and every finite stage is basic.

The towers for ordinals and cumulative stages have the least element property

(Fact 106 for ordinals and Exercise 124 for cumulative stages). In both cases the

proof is by WF induction exploiting that ordinals and cumulative stages are well-

founded sets. It turns out that least elements exist for all towers obtained with

increasing generators. In the general setting we do not know whether the stages

are well-founded and hence cannot use WF induction. However, we can establish an

induction principle similar to WF induction for the stages of every tower obtained

with an increasing generator. We will need the general result for a tower we will use

for the proof of the well-ordering theorem (Theorem 163).
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We define an inductive classA of accessible sets:

∀y. T y → y ⊂ x →Ay
Ax

Informally, a set x is accessible if there exists no infinite descending chain of stages

issuing from x. For accessible sets we have an induction principle called complete

induction that is similar to WF induction.3 Complete induction says that when we

prove that an accessible set x satisfies a property p, we can assume (as inductive

hypothesis) that every stage that is a proper subset of x satisfies p.

Fact 145 (Complete Induction) Let g be increasing on T . Then T ⊆A.

Proof We show ∀x. T x → ∀y. y ⊆ x →Ay by induction on T x. It is essential to

show this generalized claim.

Let T x and y ⊂ gx. We show Ay . Unfolding the definition of A, we assume

T z and z ⊂ y and show Az. By successor linearity we have z ⊆ x. Hence Az by

the inductive hypothesis for x.

Let x ⊆ T and y ⊆
⋃
x. We showAy . Unfolding the definition ofA, we assume

T z and z ⊂ y and showAz. We observe that z is not an upper bound of x (if it was,

we have y ⊂
⋃
x ⊆ z ⊂ y). Hence a 6⊆ z for some a ∈ x by excluded middle. Thus

z ⊂ a by successor linearity. HenceAz by the inductive hypothesis for a ∈ x. �

Fact 146 (Least Stages) Let g be increasing on T . Then every class containing a

stage of T contains a least such stage.

Proof Let px and T x. We show by complete induction on x (using Fact 145) that

there is a least y such that py and T y . If x has this property we are done. Oth-

erwise, by excluded middle, we have an x′ such that px′, T x′, and x 6⊆ x′. By

successor linearity we have x′ ⊂ x. Now the claim follows by the inductive hypoth-

esis for x′. �

Exercise 147 Prove that g is injective on T if g is eager, increasing on T , and

preserves well-foundedness.

Exercise 148 (Constructive Proofs for Basic Stages) Show successor linearity and

accessibility for basic stages not using excluded middle. Hint: Define a suitable

double induction predicate for basic stages.

3We speak of complete induction because there is a similarity with complete induction for natural
numbers.
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21 Closures and Infinity Axiom

With the assumptions made so far, we cannot prove that an infinite set exists. We

change this situation by assuming the infinity axiom:

Inf : ∃x. 0 ∈ x ∧∀z. z ∈ x → σz ∈ x

The infinity axiom asserts the existence of a set containing all numerals. By Fact 112

we know that such a set is infinite.

Let o be a set and f be a function mapping sets to sets. We say that a set x is

closed under o and f if o ∈ x and fy ∈ x whenever y ∈ x. Note that the infinity

axiom asserts the existence of a set closed under � and σ .

We say that a set is the closure of o and f if it is the least set closed under o
and f . We will show that the closure of o and f always exists. We will also show

that the closure of � and σ is the set of all numerals, and that the closure of � and P
is the set of all basic stages. By Theorem 134 we then know that the union of the

closure of � and P is the set of all HF sets.

Lemma 149 (Conditional Existence)

The closure of o and f exists if a set closed under o and f exists.

Proof Let u be closed under o and f . With the separation we obtain the subset

v ⊆ u containing all elements of u that are in every set closed under o and f . It is

easy to see that v is the least set closed under o and f . �

Fact 150 (Closure Induction) Let x be the closure of o and f and p be a class. Then

x ⊆ p if po and p(fx) whenever px.

Proof Let po and p(fx) whenever px. Then x ∩ p is closed under o and f . Thus

x ⊆ x ∩ p since x is the least such set. Hence x ⊆ p. �

We define a closure operator C : set→ (set→ set)→ set as follows:

C[o, f ] := δ(λx. x is the closure of o and f)

Lemma 151 C[o, f ] is the closure of o and f if a set closed under o and f exists.

Proof Follows with Fact 73, Lemma 149, and the uniqueness of closed sets. �

Fact 152 C[�,σ] is the closure of � and σ .

Proof Follows with Lemma 151 and the infinity axiom. �
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We can now define the set

ω := C[�,σ]

containing exactly the numerals.

Fact 153 (Omega) ω contains exactly the numerals.

Proof By Fact 152 we know that C[�,σ] is the closure of � and σ . By numeral

induction it follows that every numeral is in ω, and by closure induction (Fact 150)

it follows that every element of ω is a numeral. �

We still have to show that all closures exist. Given o and f , we will define a

functional predicate Rof mapping the numerals to the sets o, fo, f(fo)), . . . . The

image Rof@ω will then give us the closure of o and f .

Given o and f , we define an inductive predicate Rof :

Rof � o

Rof x y

Rof (σx) (fy)

Lemma 154 If Rof x y , then x is a numeral.

Proof By Rof induction. �

Lemma 155 Rof is functional.

Proof We write R for Rof . Let Rxy . We prove by Rof induction that Rxz implies

z = y . The base case is straightforward. In the successor case we have x = σx′,
y = fy ′, Rx′y ′, and R(σx′)z. We show z = fy ′. By inversion of R(σx′)z we

obtain x′′ and z′ such that σx′ = σx′′, z = fz′ and Rx′′z′. By the inductive

hypothesis it suffices to show x′ = x′′, which follows by injectivity of σ on numerals

and Lemma 154. �

Lemma 156 Rof @ω is closed under o and f .

Proof Straightforward consequence of Lemma 155. �

Theorem 157 C[o, f ] is the closure of o and f .

Proof Follows with Lemmas 151 and 156. �

Fact 158 C[�,P] is the set of all basic stages.

Proof Follows with Theorem 157, closure induction, and BS induction. �
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Fact 159
⋃
(C[�,P]) is the set of all HF sets.

Proof Follows with Theorem 134 and Fact 158. �

Fact 160 (Transitive Closure)

Let x be a set. Then tcx :=
⋃
(C[x,∪]) is the least transitive superset of x.

Proof We have x ⊆ tcx since x ∈ C[x,∪].
We show that tcx is transitive. Let z ∈ y ∈ C[x,∪]. We show z ⊆ tcx. It suffices

to show
⋃
y ∈ C[x,∪], which holds since y ∈ C[x,∪].

Let x ⊆ y and y be transitive. We show tcx ⊆ y . It suffices to show that

∀z ∈ C[x,∪]. z ⊆ y . We show this by closure induction. For z = x, we have x ⊆ y
by assumption. For z =

⋃
z′, we have z′ ⊆ y by the inductive hypothesis and need

to show
⋃
z′ ⊆ y . Holds since y is an upper bound for z′ since y is transitive. �

Exercise 161 Prove that a set is well-founded if and only if its transitive closure is

well-founded.

Exercise 162 Prove that the classes Num, HF, and BS are all small if one of them is

small. Do the proof without using the infinity axiom and its consequences.

22 Review

We review the axioms and the most important definitions of the set theory pre-

sented so far.

Constants

set : Type

_ ∈ _ : set→ set→ P membership

� : set empty set

_ . _ : set→ set→ set adjunction⋃
: set→ set union

_ @ _ : (set→ set→ P)→ set→ set replacement

P : set→ set power

Variables

x,y, z,a, b, c, o : set set

p,q : set→ P class

R : set→ set→ P relation

f : set→ set
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Definitions

x ⊆ y := ∀z ∈ x. z ∈ y inclusion

x ⊆ p := ∀z ∈ x. pz inclusion

σx := x.x successor

x ∩ p := (λab. a = b ∧ pa)@x separation

x ∩y := x ∩ (λz. z ∈ y) intersection

f@x := (λab. fa = b)@x replacement

δp :=
⋃
((λa.p)@σ�) description

transitive x := ∀y ∈ x. y ⊆ x
unique p := ∀xy. px → py → x = y

functional R := ∀x. unique (Rx)

least p x := px ∧∀z. pz → x ⊆ z
closed o f x := o ∈ x ∧∀z. z ∈ x → fz ∈ x

C[o, f ] := δ(least (closed o f) closure

ω := C[�,σ]

tcx :=
⋃
(C[x,∪]) transitive closure

Axioms

x ⊆ y → y ⊆ x → x = y extensionality

z ∉ � empty set

z ∈ x.y ↔ z = x ∨ z ∈ y adjunction

z ∈
⋃
x ↔ ∃y ∈ x. z ∈ y union

z ∈ R@x ↔ ∃y ∈ x. Ryz if functional R replacement

z ∈ Px ↔ z ⊆ x power

∃x. � ∈ x ∧∀z ∈ x. σz ∈ x infinity

Notations and Ordered Pairs

{x1, . . . , xn} := x1. · · · . xn . �
{z ∈ x | pz } := z ∩ p
{fz | z ∈ x } := f@x

〈x,y〉 := {{x}, {x,y}}
x ×y :=

⋃
{ { 〈a,b〉 | b ∈ y } | a ∈ x }
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Inductive Classes

Fin �

Finy

Fin (x.y) HF�

HFx HFy

HF (x.y)

x ⊆ WF

WFx

Num�

Numx

Num (σx)

Ox
O (σx)

x ⊆ O
O (
⋃
x)

BS�

BSx

BS (Px)
Sx
S (Px)

x ⊆ S
S (
⋃
x)

T0 �

T0 x

T0 (gx)

T x
T (gx)

x ⊆ T
T (

⋃
x)

∀y. T y → y ⊂ x →Ay
Ax

The classes Num, BS, and HF are small. The corresponding sets can be obtained as

C[�,σ], C[�,P], and
⋃
(C[�,P]). The classes Fin, WF, O, and S are large. Num is a

subclass of O and HF, BS is a subclass of S and HF, and HF, O, and S are subclasses

of WF. Moreover, T0 ⊆ T ⊆A.

23 Well-Ordering Theorem and Axiom of Choice

The axiom of choice asserts the existence of a choice function

γ : set→ set

Choice : ∀x. inhab x → γx ∈ x

which for every inhabited set yields an element of the set. The axiom of choice

has surprising consequences. One consequence is excluded middle (Diaconescu’s

Theorem 85). Another consequence is the existence of a well-ordering for every

set. Zermelo [14] showed this result first in 1904, before he started axiomatic set

theory, assuming a choice function tacitly. Since the real numbers do not have a

natural well-ordering, Zermelo’s well-ordering theorem was quite a surprise when it

was discovered. To provide evidence for his controversial result, Zermelo [15] came

up axiomatic set theory to make explicit the assumptions his result relies on.

There are many different formulations of the axiom of choice in the literature.

They should all be equivalent. Our formulation is particularly simple.

In the 1908 paper starting axiomatic set theory, Zermelo [15] gave a second proof

of the well-ordering theorem that simpler than his first proof from 1904. In contrast

to the first proof, the second proof makes the assumptions used for sets explicit.

We will prove the well-ordering theorem in the following. Like Zermelo, we will

not assume the axiom of choice but prove a conditional result saying that every set
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with a choice function can be well-ordered. Our proof is similar to Zermelo’s second

proof.

Let u be a set. A well-ordering of u is a linear ordering such that every class

containing an element of u contains a least element that is in u. Formally, a well-

ordering of u is a binary predicate a ≤ b on sets such that the following conditions

are satisfied (transitivity, antisymmetry, linearity, existence of least elements).

1. ∀abc. a ∈ u→ b ∈ u→ c ∈ u→ a ≤ b → b ≤ c → a ≤ c.
2. ∀ab. a ∈ u→ b ∈ u→ a ≤ b → b ≤ a→ a = b.

3. ∀ab. a ∈ u→ b ∈ u→ a ≤ b ∨ b ≤ a.

4. ∀ap. a ∈ u→ pa→ ∃b. b ∈ u∧ pb ∧∀c. c ∈ u→ pc → b ≤ c.
We have already seen some well-orderings. For instance, the inclusion ordering

on sets is a well-ordering of every set of ordinals and of every set of stages.

Theorem 163 (Well-Ordering) Let u be a set and γ be a function such that γx ∈ x
for every inhabited x ⊆ u. Then one can construct a well-ordering for u.

The proof is interesting. It uses a tower similar to the towers we have seen for

the ordinals and the cumulative stages.

Let u be a set and γ be a function such that γx ∈ x for every inhabited x ⊆ u. We

refer to γ as choice function. We define complements as Cx := {y ∈ u | y ∉ x }
and an extension function

x+ := {z ∈ u | z ∈ x ∨ z = γ(Cx) }

If x is a proper subset of u, x+ contains an additional element from u determined

by the the choice function γ. We shall rely on the tower Z generated by x+:

Zx
Z (x+)

x ⊆ Z
Z (
⋃
x)

It is easy to see that all stages are subsets of u, and that the generator x+ is in-

creasing. Thus we have successor linearity and least elements for the stages of Z
(Facts 138 and 146). Thus set inclusion is a well-ordering of Z.

We define an embedding function

a :=
⋃
{x ∈ Pu | Zx ∧ a ∉ x }

mapping every set a to the greatest stage not containing a. Using the embedding,

we define a binary predicate

a ≤ b := a ⊆ b

for which we will show that it is a well-ordering of u.

34



Fact 164 (Transitivity and Linearity) a ≤ b is a transitive and linear on u.

Fact 165 (Least Elements)

Every class containing an element of u contains a least such element (wrt a ≤ b).

Proof Let a ∈ u and pa. Define qx := ∃b. b ∈ u ∧ pb ∧ b = x. We have q(a).
By Fact 146 we have some b ∈ u such that pb and b is the least element of Z
satisfying q. It follows that b is the least element of u satisfying p. �

It remains to show that a ≤ b is antisymmetric on u. For this it suffices to show

that the tower embedding λa.a is injective on u. We establish the injectivity of the

embedding by identifying λx. γ(Cx) as the inverse of the embedding. The proof

of this fact is the first and last time we will use the assumption that γ is a choice

function for u.

Fact 166 (Inversion) Let a ∈ u. Then γ(C(a)) = a.

Proof By contradiction using excluded middle. Let a∈u and suppose γ(C(a)) ≠ a.

We have a ∉ a. Thus γ(C(a)) ∈ u and γ(C(a)) ∉ a by the assumption that γ is

a choice function for u (this is the first and last time we use this assumption). We

have γ(C(a)) ∈ a+. We also have a+ ⊆ a since a+ is a stage not containing a.

Contradiction since γ(C(a)) ∈ a and γ(C(a)) ∉ a. �

Fact 167 (Antisymmetry) a ≤ b is antisymmetric on u.

Proof Let a,b ∈ u, a ≤ b and b ≤ a. By extensionality a = b. Thus a = b by

Fact 166. �

Exercise 168 Let a well-ordering for a set u be given. Construct a choice function

for u (as specified by Theorem 163).

24 Regularity Axiom

ZFC admits only well-founded sets. This is done with the regularity axiom. Given

our development, we could impose the axiom ∀x. WFx using the inductive predi-

cate WF. In the usual first-order setting for ZFC inductive predicates are not avail-

able. However, there is a simple first-order formulation of the regularity axiom that

works provided the infinity axiom is imposed.

A set x is regular if in case x is inhabited x has an element y such that x and y
have no element in common:

regular x := inhab x → ∃y ∈ x ∀z ∈ y. z ∉ x
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Fact 169 Every well-founded set is regular.

Proof Follows with Exercise 54 and pz := z ∈ x. �

A set x is serial if it is inhabited and for every element y ∈ x there exists an

element z ∈ y such that z ∈ x.

Fact 170 A set is serial iff it is not regular.

Proof Follows with excluded middle. �

Fact 171 Let x be a transitive and non-well-founded set. Then {y ∈ x | ¬WF y } is

a serial set.

Proof It suffices to show that every non-well-founded set has a non-wellfounded

element. This follows with excluded middle. �

Fact 172 There exists a serial set if a non-well-founded exists.

Proof Let x be a non-well-founded set. By Fact 160 we can assume without loss of

generality that x is transitive. Thus we have a serial set by Fact 171. �

Note that the above proof uses the existence of a transitive closure (Fact 160),

which in turn relies on the infinity axiom.

Fact 173 Every set is well-founded if and only if every set is regular.

Proof Follows with excluded middle and Facts 169, 172, and 170. �

ZFC’s regularity axiom now simply says that every set is regular. We will not

impose the regularity axiom since we don’t need it.

Exercise 174 (First-Order Characterisation of Ordinals) A set x is subset regular

if every subset of x is regular. A set x is linear if for all a,b ∈ x either a ∈ b or

a = b or b ∈ a. Prove the following:

a) Every well-founded set is subset regular.

b) Every transitive and subset regular set is well-founded.

c) A set is well-founded iff its transitive closure is subset regular.

d) A set is an ordinal if and only if it is linear, subset regular, and transitive.
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25 Appendix: Accessibility and Least Numbers

The bestknown well-ordering is the ordering of the natural numbers, which may be

characterised as x ≤ y ↔ ∃z. x + z = y . We will establish accessibility, complete

induction, and existence of least elements for this ordering. This is instructive since

the notions can be analysed in the familiar setting of numbers and the proofs can

be carried out such that they anticipate the general proofs for towers. As it turns

out, many of the key ideas of the general proofs appear already in the simplified

setting of numbers.

In the following, the letters x, y , z will range over numbers (i.e., elements of the

inductive type N) and the letters p, q will range over classes of numbers (i.e., unary

predicates on numbers).

Complete induction says that we can prove px by assuming py for all y < x.

Using complete induction is simpler than using natural induction (the induction

principle coming with the inductive definition of N) since the proof goal remains

unchanged except for the addition of the inductive hypothesis. Formally, complete

induction can be described with the following proposition:

∀p. (∀x. (∀y. y < x → py)→ px)→ ∀x.px

In type theory, we can capture an induction principle with an inductive predicate

we call an accessibility predicate. The accessibility predicate for complete induction

for N is

∀y. y < x →Ay
Ax

We call a number x accessible ifAx. For every accessible number complete induc-

tion is obtained asA-induction. We show that every number is accessible.

Fact 175 (Complete Induction) ∀x : N.Ax.

Proof We show ∀y. y ≤ x →Ay by natural induction on x. It is essential to show

this generalised claim.

In the base case we have y ≤ 0 and need to showAy . Since y = 0, it suffices to

showA0. By unfoldingA0, we have z < 0 and need to showAz. This is easy since

z < 0 is contradictory.

In the successor case, we have y ≤ Sx and need to showAy . By unfoldingAy ,

we have z < y and need to showAz. We have z ≤ x. Now the claim follows by the

inductive hypothesis for x. �

Fact 176 (Least Elements)

Every inhabited class of numbers contains a least element.
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Proof Let px. We show ∃y. py ∧∀z. pz → y ≤ z by complete induction on x (i.e.,

by induction onAx). Note that the claim does not depend on x.

Case analysis using excluded middle. If x satisfies ∀z. pz → x ≤ z, we have

a least element. Otherwise, by excluded middle, we have some z such that pz
and x 6≤ z. By linearity we have z < x. Now the claim follows by the inductive

hypothesis for z. �

26 Appendix: Well-Orderings

We may characterise a well-ordering as a linear ordering supporting complete in-

duction. With excluded middle, support of complete induction turns out to be

equivalent to the existence of least elements. In the mathematical literature, the

characterisation with least elements is used for the definition of a well-ordering.

Constructively, the characterisation with complete induction is necessary. As we

have just seen, complete induction for numbers can be established constructively

and has many constructive applications, while existence of least elements requires

excluded middle.

In the following, we explore the two characterisations of a well-ordering for a

given binary predicate x ≤ y on a type X.

We call x ≤ y a linear ordering if it satisfies transitivity, antisymmetry, and

linearity:

1. If x ≤ y and y ≤ z, then x ≤ z.

2. If x ≤ y and y ≤ x, then x = y .

3. Forall x and y , either x ≤ y or y ≤ x.

Note that linearity implies reflexivity.

We say that x ≤ y has least elements if every inhabited class has a least element:

∀p. exp → ∃x. px ∧∀z. pz → x ≤ z.

We define the notation x < y := x ≤ y ∧ x ≠ y and the accessibility predicate:

∀y. y < x →Ay
Ax

We say that x is accessible ifAx. We say that x ≤ y supports complete induction

if every element is accessible.

Fact 177 If x is inaccessible, then there exists an inaccessible y such that y < x.

Proof Let x be inaccessible. We show the claim by contradiction using excluded

middle. Suppose there does not exist an inaccessible y such that y < x. Then,

using excluded middle, all y < x are accessible. Hence x is accessible. Contradic-

tion. �
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Fact 178 A linear ordering supports complete induction if and only if it has least

elements.

Proof The direction from complete induction to least elements follows with the

argument we have used before for numbers (Fact 176). The argument uses excluded

middle and linearity.

Let a linear ordering with least elements be given. We prove that every element

is accessible. Using excluded middle, we obtain an inaccessible element and need

to exhibit a contradiction. Since the ordering has least elements, there exists a least

inaccessible element. This yields a contradiction with Fact 177 and antisymmetry.�

Note that the proof does not use transitivity of the given linear ordering.

27 Appendix: Well-Founded Relations

Informally, a relation x < y is well-founded if it does not admit an infinite descend-

ing chain · · · < x2 < x1 < x0. The most prominent well-founded relation is the

orderingm < n of the natural numbers. In contrast to well-orderings, well-founded

relations are not required to be transitive or antisymmetric. It will turn out that a

linear ordering x ≤ y is a well-ordering if and only if the strict companion x < y is

a well-founded relation.

Well-founded relations appear prominently in set theory. If we impose the regu-

larity axiom, the membership relation is well-founded on all sets. Without the reg-

ularity axiom, the membership relation is still well-founded on well-founded sets.

In fact, the class of well-founded sets is the greatest class of sets on which mem-

bership is well-founded. Strict set inclusion x ⊂ y is well-founded on the class of

ordinals and on the class of cumulative stages. More generally, strict set inclusion

x ⊂ y is well-founded on every tower obtained with an increasing generator.

Well-founded relations are essential in the study of terminating processes and

procedures. If a relation x < y is well-founded, a process recursively descending

from x to some y < x will always terminate. As it comes to termination proofs, the

order of the natural numbers and its lexicographic variants are frequently used.

In the following, we will explore several formal characterisations of well-founded

relations in type theory. We start with a type X and a predicate R : X → X → P. We

call unary predicates on X classes.

A class p is serial if it is inhabited and for every x in p there is a y in p such

that Ryx:

serialp := exp ∧∀x. px → ∃y. Ryx

Serial classes formalize the notion of infinite descending chains. We may define

well-founded relations as relations not admitting serial classes.
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A minimal element of a class p is an x in p such that Ryx for no y in p:

minelpx := px ∧∀y. py → ¬Ryx

We may define well-founded relations as relations such that every inhabited class

has a minimal element. This is the preferred definition in the mathematical litera-

ture.

We call a class p regular if it has a minimal element if it is inhabited:

regularp := exp → ex (minelp)

Fact 179 Every class of X is regular if and only if no class of X is serial.

Proof Suppose every class is regular and p is a serial class. Then it follows con-

structively that p is inhabited and has no minimal element. Contradiction with the

assumption that every class is regular.

Assume no serial class exists. Let p be an inhabited class. We show that p has a

minimal element. By excluded middle we assume that p has no minimal element.

It suffices to show that p is serial. Let px. It suffices to show that Ryx for some

y in p. By excluded middle we assume that there is no such y . Now it suffices to

show that x is a minimal element of p, which is a straightforward consequence of

the assumptions collected so far. �

Well-foundedness of a relation can also be characterised with an induction prin-

ciple known as well-founded induction. It turns out that this characterisation is

most useful constructively. We establish the induction principle with an inductive

classA of accessible elements:

∀y. Ryx →Ay
Ax

It turns out that a relation on X is well-founded if and only if every element of X is

accessible.

Fact 180 If every element of X is accessible, then every class of X is regular.

Proof Let every element of X be accessible and let px. We show by A-induction

on x that p has a minimal element. If x is a minimal element of p, we are done.

Otherwise, by excluded middle, we have a y in p such that Ryx. The claim follows

by the inductive hypothesis for y . �

Fact 181 If no class of X is serial, every element of X is accessible.
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Proof Assume that no class is serial and that there is an inaccessible element. It

suffices to show that the class of inaccessible elements is serial. Let x be an inac-

cessible element. We show that there exists an inaccessible element y such that

Ryx. By excluded middle we assume that no such element exists. It suffices to

show that x is accessible. By unfolding the definition of accessibility, we can as-

sume Ryx and prove that y is accessible. By excluded middle we assume that y
is inaccessible. Contradiction with the assumption introduced by the first use of

excluded middle. �

Well-founded induction can also be captured without the inductive accessibility

predicate. We define the inductive classes of X as follows:

inductive p := (∀x. (∀y. Ryx → py)→ px)→ ∀x. px

Fact 182 Every element of X is accessible if and only if every class of X is inductive.

Proof Straightforward. �

Theorem 183 (Well-founded Relations) The following propositions are equivalent:

1. Every element of X is accessible.

2. Every class of X is inductive.

3. Every inhabited class of X has a minimal element.

4. No class of X is serial.

Proof Follows with Facts 179, 180, 181, and 182. �

There are some tricky uses of excluded middle in this section. The reader may

find peace of mind by browsing through the Coq development where all results have

straightforward proofs.

The results in this section generalize results we have seen before for sets: Exer-

cise 54, Fact 106, Exercise 124, Fact 145, Fact 146, Fact 169, Fact 170, and Fact 172.

For sets, the well-founded relation is typically the strict version of set inclusion,

making it possible to work with least elements rather than minimal elements.

We have formalised infinite descending chains as serial classes. This captures

the intuition behind infinite descending chains in so far that every serial class pro-

vides the elements for an infinite descending chain. A more faithfull formalisation

of infinite descending chains as functions N → X has the problem that obtaining

a descending chain function from a serial set requires a choice function for the

type X.
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28 Notes

There are many textbooks on set theory expressing various viewpoints on the sub-

ject. Halmos [6] explains essential ideas and results of set theory in ordinary mathe-

matical language addressing the working mathematician. Smullyan and Fitting [13]

explain many advanced results of set theory from the perspective of logicians. They

use inductive classes to account for numerals and ordinals. Hrbacek and Jech [7]

give a detailed mathematical introduction to set theory leaving the logical base im-

plicit. Devlin [3] uses first-order logic as basis of set theory and covers non-well-

founded sets.

Set theory originated with the work of Cantor [1, 2] in the 1870s. The first ax-

iomatisation of set theory was given by Zermelo [15, 16] in 1908. Fraenkel [5] con-

tributed the replacement axiom.

Our presentation of the cumulative hierarchy is new in that we define stages

without using ordinals (the standard technique uses transfinite induction). Proving

successor linearity for stages was difficult at first, but became easy once we dis-

covered Smullyan and Fitting’s book [13], which contains a slick successor linearity

proof for superinductive classes using the double induction lemma.

There is much more to set theory than what you have seen here. One can show

that every well-ordered set is order-isomorphic to exactly one ordinal, and that the

class of ordinals and the cumulative hierarchy are order-isomorphic. We recom-

mend Smullyan and Fitting [13] if you would like to know more.

There is a constructive theory of HF sets [12]. One starts from axioms that

are different from the ones ZF suggests and defines union, power, separation and

replacement. Separation and replacement are restricted to decidable predicates. A

model of the axiomatisation can be constructed as a quotient of an inductive type

for binary trees. All models of the axiomatisation are isomorphic.

Some set-theoretic results like Zermelo’s well-ordering theorem and Zorn’s

Lemma carry over to general types [11].
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