
Propagation Algorithms
CP course, lecture 5

Recapitulation
• Propagators: S→S

(mapping constraint stores to constraint stores)

• Implement constraints

• Must be contracting, monotonic, correct,
checking

• Can be idempotent, subsumed

• Can be bounds, domain consistent

Recapitulation

• Global constraints: exploit global view on
variables

a+b=c, c+d=e is weaker than a+b+d=e

x≠y, y≠z, x≠z is weaker than distinct(x,y,z)

Recap: Consistency

• Consider 2x=z

with x∈{1,3}, z∈{1,...,7}

Bounds consistency

x ! {1,3}

2x=z

z ! {1,...,7}

Bounds consistency

x ! {1,3}

2x=z

z ! {1,...,7}

Bounds consistency

x ! {1,3}

2x=z

z ! {2,...,7}

Bounds consistency

x ! {1,3}

2x=z

z ! {2,...,7}

Bounds consistency

x ! {1,3}

2x=z

z ! {2,...,6}

Bounds consistency

x ! {1,3}

2x=z

z ! {2,...,6}

Domain consistency

x ! {1,3}

2x=z

z ! {1,...,7}

Domain consistency

x ! {1,3}

2x=z

z !

{1,2,3,4,5,6,7}

Domain consistency

x ! {1,3}

2x=z

z !

{1,2,3,4,5,6,7}

Domain consistency

x ! {1,3}

2x=z

z ! {2,6}

Recap: Consistency

• Consider 2x=z
with x∈{1,3}, z∈{1,...,7}

• Domain consistency:
Stronger propagation, more complex
algorithms

• Bounds consistency:
Weaker propagation, simpler algorithms

Linear equations

• Propagator for

∑aixi=c

• How can bounds information be
propagated efficiently?

• Example:

ax + by = c

Propagating bounds

• Rewrite:

ax + by = c ax = c - by

 x = (c-by)/a

• Propagate

x ≤ ⎣ max{ (c-bn)/a) | n∈s(y) } ⎦

x ≥ ⎡ min{ (c-bn)/a | n∈s(y) } ⎤

Propagating bounds

• m = max{ (c-bn)/a) | n∈s(y) }

• a > 0:

m = max{ (c-bn) | n∈s(y) } / a

• a < 0:

m = min{ (c-bn) | n∈s(y) } / a

Propagating bounds

• For a>0:

m = max{ (c-bn) | n∈s(y) } / a

 = (c- min {bn | n∈s(y)}) / a

• For b>0:

m = (c - b ⋅ min s(y)) / a

• For b<0:

m = (c - b ⋅ max s(y)) / a

General Case

• Repeat until fixpoint, for each variable xi

• Improvement: Compute

• Reuse by removing term for xi in each
iteration

u = max

{
d−

n

∑
i=1

aini | ni ∈ s(xi)

}

l = min

{
d−

n

∑
i=1

aini | ni ∈ s(xi)

}

Questions

• Is it necessary to iterate?

Yes, otherwise not idempotent

• What level of consistency does the
propagator achieve?

Consistency

• This propagator is not bounds consistent:

x = 3y + 5z with should be 6

x∈{2,...,7}, y∈{0,1,2}, z∈{-1,0,1,2}

• Propagator will compute

x∈{2,...,7}, y∈{0,1,2}, z∈{0,1}

should be 6

Consistency

• Algorithm considers real-valued solutions:

x=7, y=2/3, z=1 ⇒ 7=3⋅2/3 + 5⋅1

• New notion: R-bounds consistency

(allow solutions over the reals)

• Even bounds consistency cannot be
achieved efficiently for some propagators!

Propagator Properties

• A domain consistent propagator is
idempotent

• A bounds consistent propagator is
idempotent

• Proof: Exercise

All-distinct

• Naive:

• check that no two determined variables
have the same value

• remove values of determined variables
from domains of undetermined variables

• Advantage: simple implementation, avoid
O(n2) propagators

• Disadvantage: not very strong

All-distinct

• Is there an efficient bounds or domain
consistent propagator?

• Puget: bounds consistent, O(n log n)

Régin: domain consistent, O(n2.5)

Régin’s algorithm

• Construct a variable-value graph
bipartite, variable node → value node

• Characterize solutions in the graph
maximal matchings

• Use matching theory
one matching describes all matchings

• Remove edges not taking part in any
solution

Variable-value Graph
1

2

3

4

5

6

x1

x2

x3

x4

x1∈{1,3}

x2∈{1,3}

x3∈{1,3,4,5}

x4∈{3,5,6}

Matching
1

2

3

4

5

6

x1

x2

x3

x4

• subset of edges s.th.
no two edges share a
vertex

• maximal: maximum
cardinality

Matching

• subset of edges s.th.
no two edges share a
vertex

• maximal: maximum
cardinality

1

2

3

4

5

6

x1

x2

x3

x4

Matching

• subset of edges s.th.
no two edges share a
vertex

• maximal: maximum
cardinality

1

2

3

4

5

6

x1

x2

x3

x4

Matching

• subset of edges s.th.
no two edges share a
vertex

• maximal: maximum
cardinality

1

2

3

4

5

6

x1

x2

x3

x4

Matching

• Compute union of all
maximal matchings

1

2

3

4

5

6

x1

x2

x3

x4

Matching

• Compute union of all
maximal matchings

• Delete unmatched
edges

1

2

3

4

5

6

x1

x2

x3

x4

Compute new domains

x1∈{1,3}

x2∈{1,3}

x3∈{4,5}

x4∈{5,6}

1

2

3

4

5

6

x1

x2

x3

x4

Failure

• If no maximal
matching covering all
variable nodes exists,
we have detected
failure

1

2

3

4

5

6

x1

x2

x3

x4

Notions

• For a given matching, we say that

• an edge is matching if it belongs to the
matching, otherwise it is free

• a node is matched if incident to a
matching edge, otherwise free

Maximal matching

• Can be computed in time O(mn0.5), where m is the
size of the union of the domains

(Hopcroft & Karp, 1973)

• Theorem:

If M is some maximal matching in G, an edge
belongs to any maximal matching in G iff it belongs
to M, or to an M-alternating cycle, or to an even M-
alternating path starting at an M-free node.

Maximal matching

• An M-alternating
cycle

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• An M-alternating
cycle

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• An M-alternating
cycle

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• An even M-
alternating path

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• An even M-
alternating path

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• An even M-
alternating path

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• Reverse unmatched
edges

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• Reverse unmatched
edges

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• Reverse unmatched
edges

• Compute strongly
connected
components (SCCs)

1

2

3

4

5

6

x1

x2

x3

x4

maximal set of
nodes where
each node is

reachable from
any other node

Maximal matching

• Reverse unmatched
edges

• Compute strongly
connected
components

• Edges in one SCC are
on an M-alt. circuit

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• Edges on a directed
path starting at a free
vertex

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• Edges on a directed
path starting at a free
vertex

• Breadth-first search

1

2

3

4

5

6

x1

x2

x3

x4

Maximal matching

• Edges on a directed
path starting at a free
vertex

• Breadth-first search

1

2

3

4

5

6

x1

x2

x3

x4

Compute new domains

x1∈{1,3}

x2∈{1,3}

x3∈{4,5}

x4∈{5,6}

1

2

3

4

5

6

x1

x2

x3

x4

Complete algorithm

• Construct the variable-value graph

• Compute maximal matching

• Orient the graph

• Find M-alternating cycles (SCCs)

• Find even M-alternating paths (graph
search)

• Remove edges + narrow domains

Runtime

• Construction: O(n+m)

• Matching: O(mn0.5)

• SCC: O(n+m) (Tarjan, 1972)

• Directed path: O(m)

• This gives overall complexity

O(mn0.5) = O(n2.5)

Optimizations

• Consider not only consistent and
inconsistent edges, but also vital edges

• A vital edge is one that is contained in all
matchings

• Vital edge between x and j means x must be
assigned to j

Optimization:
Incrementality

• Keep the variable-value graph between
invocations

• When the propagator is run again, update
the matching accordingly

Bounds consistency

• Efficient algorithms

• based on Hall intervals O(n log n)

(Puget, 1998) (Lopez-Ortiz & Quimper & al., 2003)

• based on graphs & matchings O(n)

(Mehlhorn & Thiel, 2000)

Bounds vs. domain
consistency

• Bounds: only consider endpoints

• Domain: consider whole domains

Often a difference of O(m) if m is the size
of the domains!

Extension:
Global Cardinality

• For each value, give lower and upper bound
on how often it may be taken by the
variables.

• distinct(x1,...,xn) = gcc(x1,...,xn,0,...,0,1,...,1)

(all values at least 0 times and at most once)

• Algorithm by Régin (very similar to distinct)

Does it pay off?

• In most cases, domain consistent distinct
leads to considerably smaller search trees
than naive version

• In some cases, bounds consistent distinct is
“just as strong”

(Schulte, Stuckey, 2001)

• Try it out! (exercise)

Summary

• Hard problems require strong propagators

• Domain consistency is feasible for some
constraints

• Global propagation algorithms require
insight into structure of the constraint

This week’s exercises

• Implement propagators in Alice!

• You will use ECoDE, the educational
constraint development environment

ECoDE

• Implemented in Alice

• You can look at the main loop, branchings,
and propagators

• 500 loc

• Same interface as Gecode, so you can use
the explorer

ECoDE: propagators
y ≥ min(x)+1

scope

status

less: space * var * var → unit

Exercise

• Implement linear equations

• Implement distinct (naive and domain
consistent)

• Graded exercises, submit by June 2

Have fun!

Outlook

We know how to propagate, so how
does search work?

spaces, search engines, recomputation,
explorer

