Propagation Algorithms

CP course, lecture 5

Recapitulation

Propagators: S→S

(mapping constraint stores to constraint stores)

- Implement constraints
- Must be contracting, monotonic, correct, checking
- Can be idempotent, subsumed
- Can be bounds, domain consistent

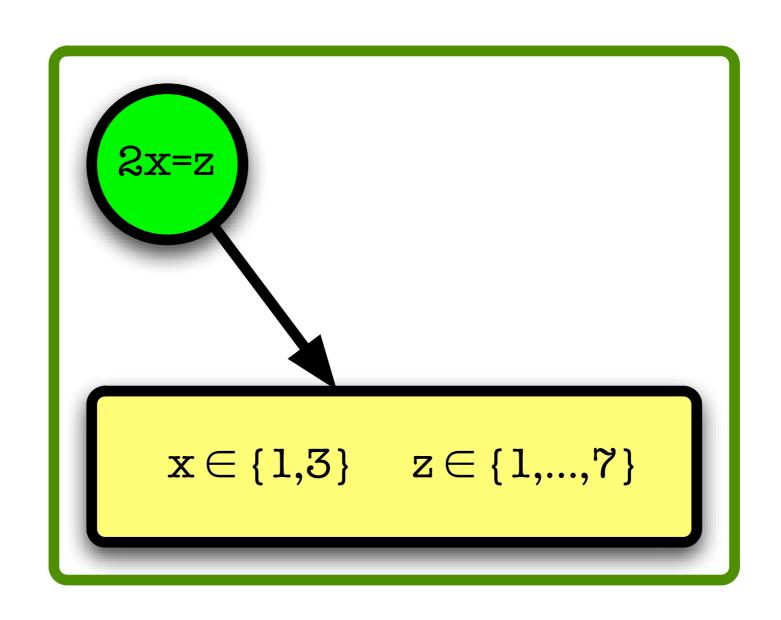
Recapitulation

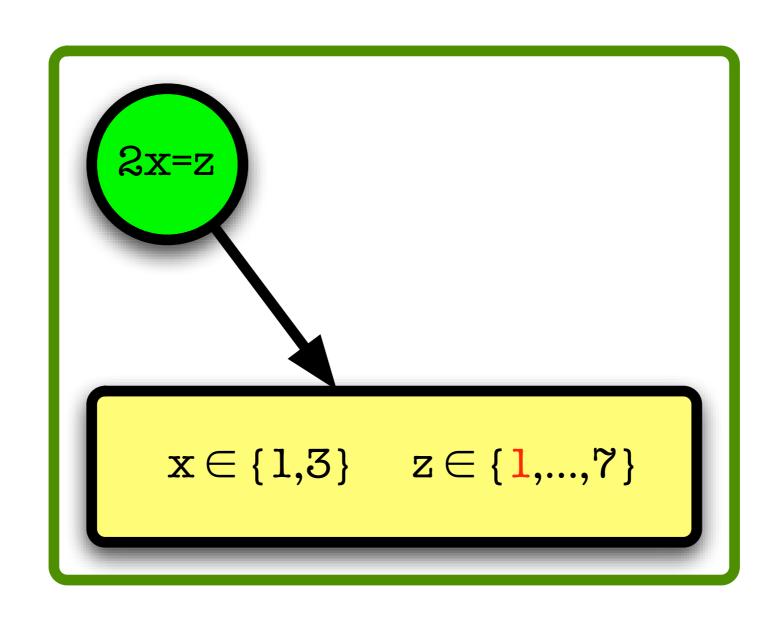
Global constraints: exploit global view on variables

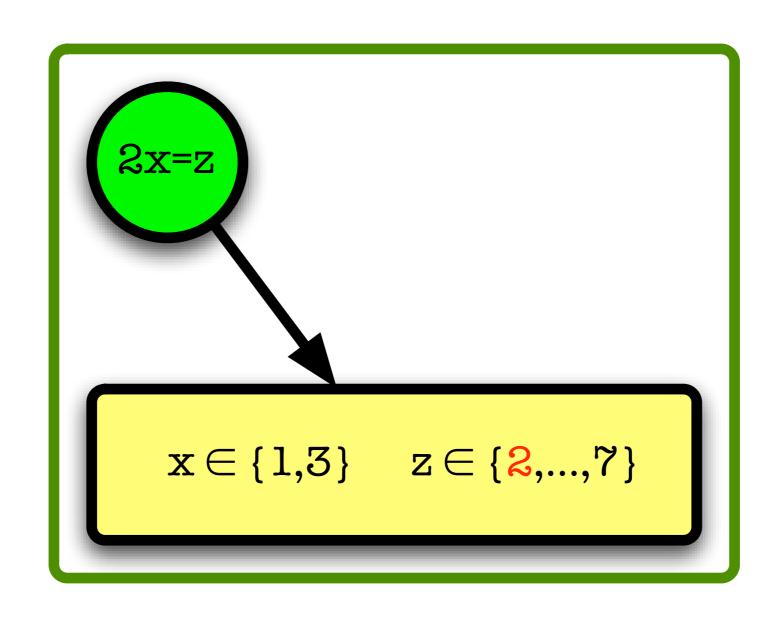
a+b=c, c+d=e is weaker than a+b+d=e $x\neq y$, $y\neq z$, $x\neq z$ is weaker than distinct(x,y,z)

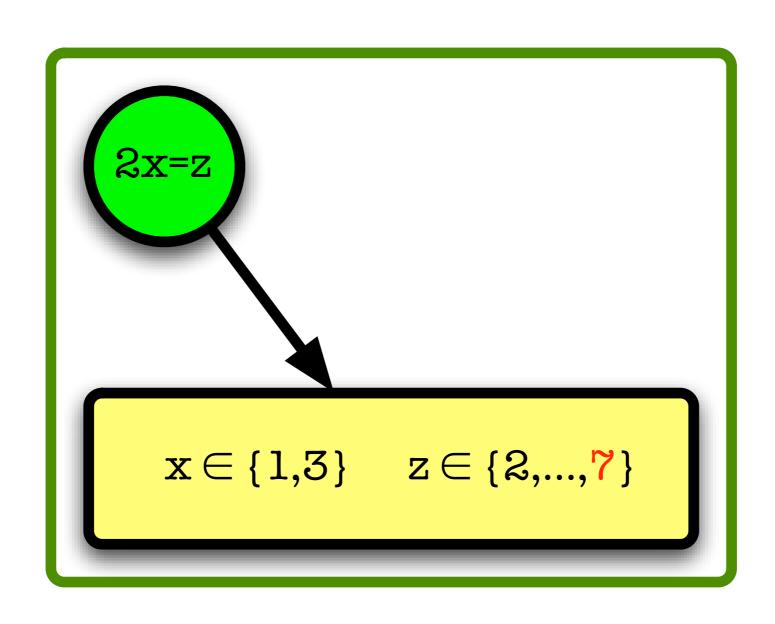
Recap: Consistency

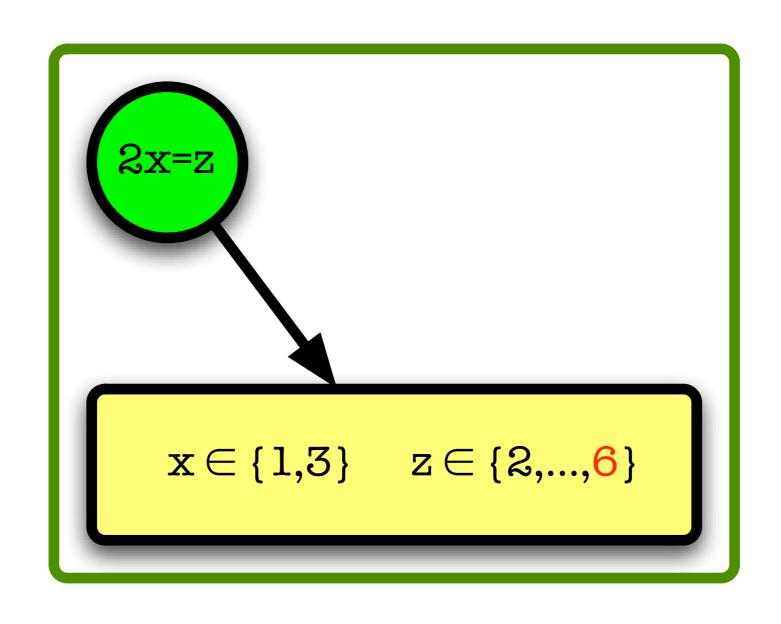
• Consider 2x=zwith $x \in \{1,3\}, z \in \{1,...,7\}$

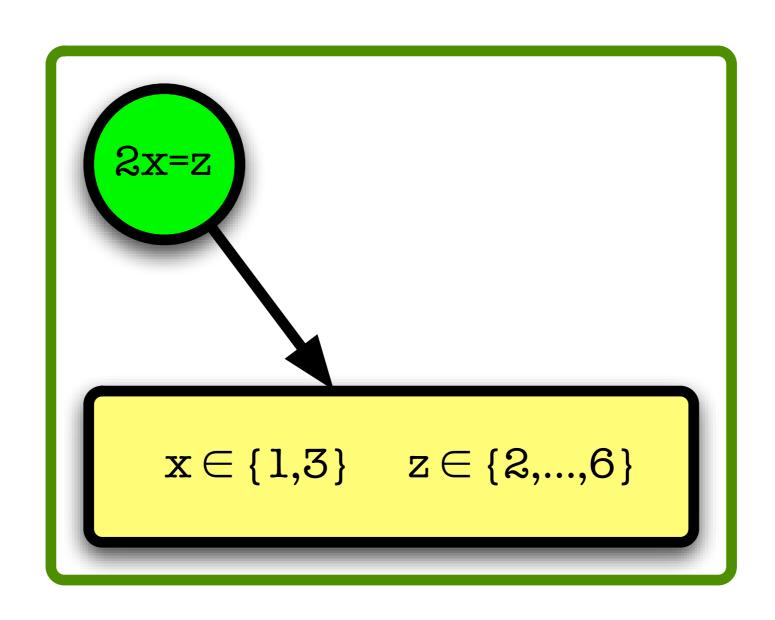


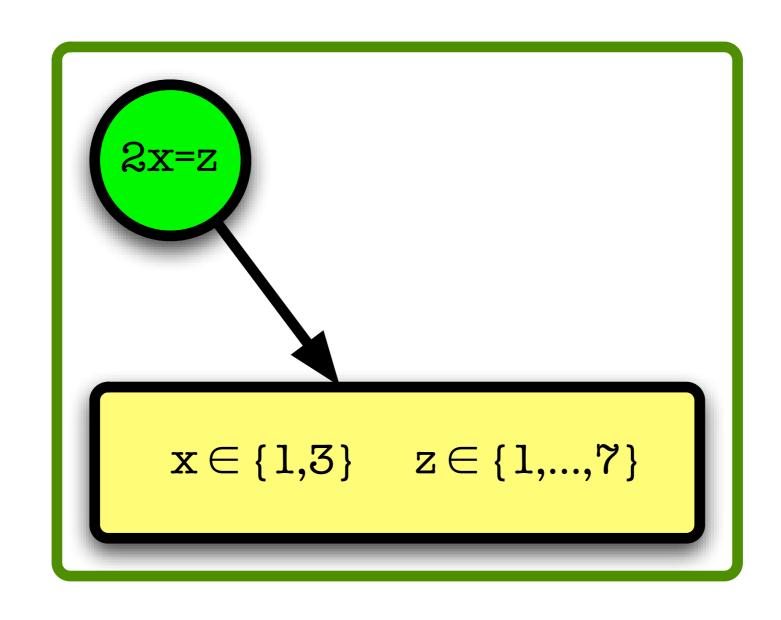


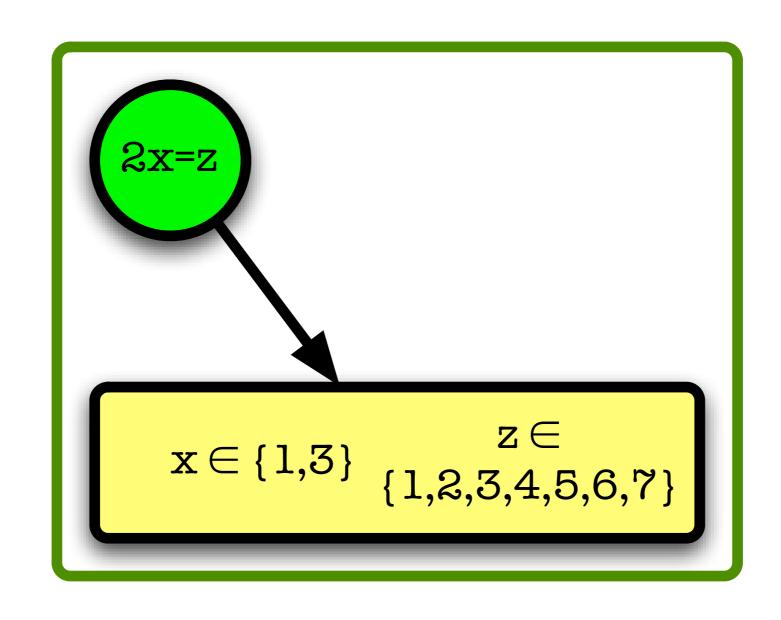


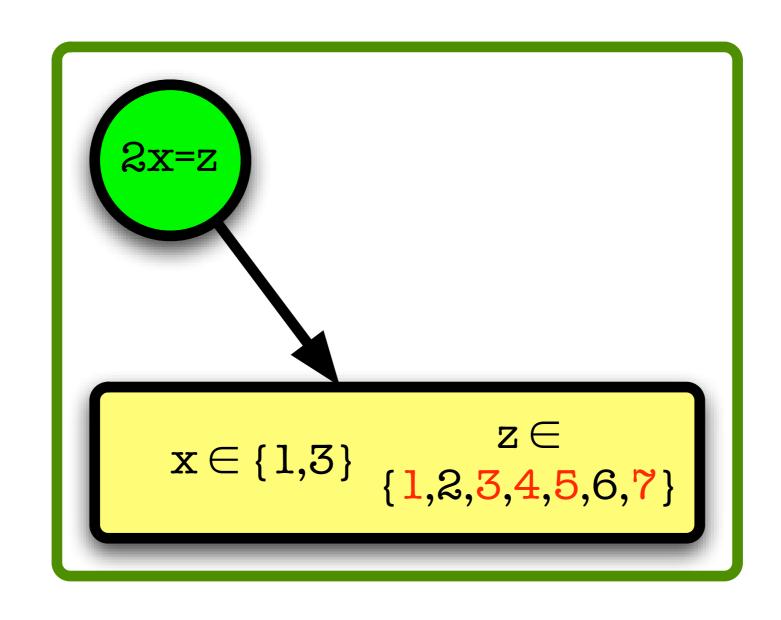


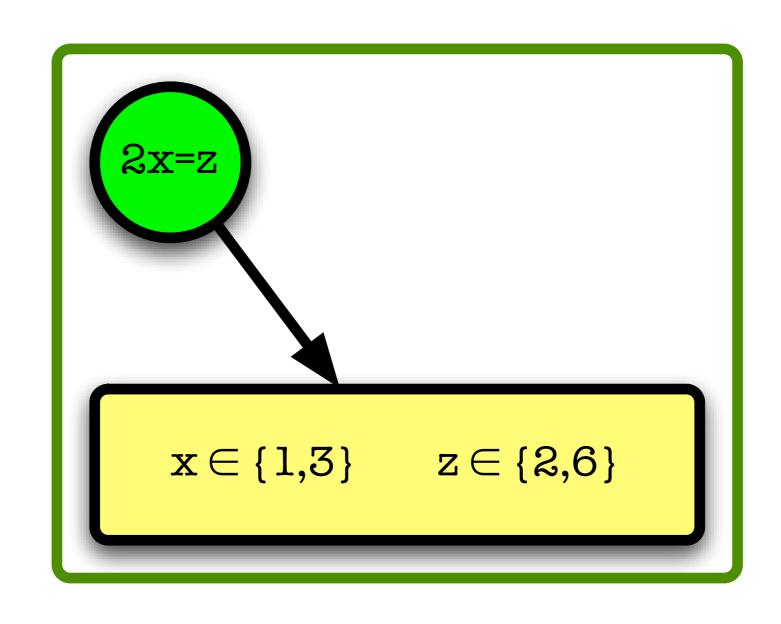












Recap: Consistency

- Consider 2x=z
 with x∈{1,3}, z∈{1,...,7}
- Domain consistency:
 Stronger propagation, more complex algorithms
- Bounds consistency:
 Weaker propagation, simpler algorithms

Linear equations

Propagator for

$$\sum a_i x_i = c$$

- How can bounds information be propagated efficiently?
- Example:

$$ax + by = c$$

Propagating bounds

• Rewrite:

$$ax + by = c$$
 $ax = c - by$ $x = (c-by)/a$

Propagate

```
x \le \lfloor \max\{ (c-bn)/a \} \mid n \in s(y) \} \rfloor
x \ge \lceil \min\{ (c-bn)/a \mid n \in s(y) \} \rceil
```

Propagating bounds

```
• m = max\{ (c-bn)/a) \mid n \in s(y) \}
```

```
• a > 0:
```

```
m = \max\{ (c-bn) \mid n \in s(y) \} / a
```

• a < 0:

```
m = \min\{ (c-bn) \mid n \in s(y) \} / a
```

Propagating bounds

• For a>0:

```
m = max{ (c-bn) | n∈s(y) } / a
= (c- min {bn | n∈s(y)}) / a
```

• For b>0:

```
m = (c - b \cdot min s(y)) / a
```

• For b<0:

```
m = (c - b \cdot max s(y)) / a
```

General Case

- Repeat until fixpoint, for each variable xi
- Improvement: Compute

$$u = \max \left\{ d - \sum_{i=1}^{n} a_i n_i \mid n_i \in s(x_i) \right\}$$

$$l = \min \left\{ d - \sum_{i=1}^{n} a_i n_i \mid n_i \in s(x_i) \right\}$$

Reuse by removing term for x_i in each iteration

Questions

- Is it necessary to iterate?
 Yes, otherwise not idempotent
- What level of consistency does the propagator achieve?

Consistency

This propagator is not bounds consistent:

$$x = 3y + 5z$$
 with
 $x \in \{2,...,7\}, y \in \{0,1,2\}, z \in \{-1,0,1,2\}$

Propagator will compute

$$x \in \{2,...,7\}, y \in \{0,1,2\}, z \in \{0,1\}$$
should be 6

Consistency

Algorithm considers real-valued solutions:

$$x=7, y=2/3, z=1 \Rightarrow 7=3\cdot 2/3 + 5\cdot 1$$

- New notion: R-bounds consistency (allow solutions over the reals)
- Even bounds consistency cannot be achieved efficiently for some propagators!

Propagator Properties

- A domain consistent propagator is idempotent
- A bounds consistent propagator is idempotent
- Proof: Exercise

All-distinct

- Naive:
 - check that no two determined variables have the same value
 - remove values of determined variables from domains of undetermined variables
- Advantage: simple implementation, avoid
 O(n²) propagators
- Disadvantage: not very strong

All-distinct

- Is there an efficient bounds or domain consistent propagator?
- Puget: bounds consistent, O(n log n)

Régin: domain consistent, O(n^{2.5})

Régin's algorithm

- Construct a variable-value graph
 bipartite, variable node → value node
- Characterize solutions in the graph maximal matchings
- Use matching theory
 one matching describes all matchings
- Remove edges not taking part in any solution

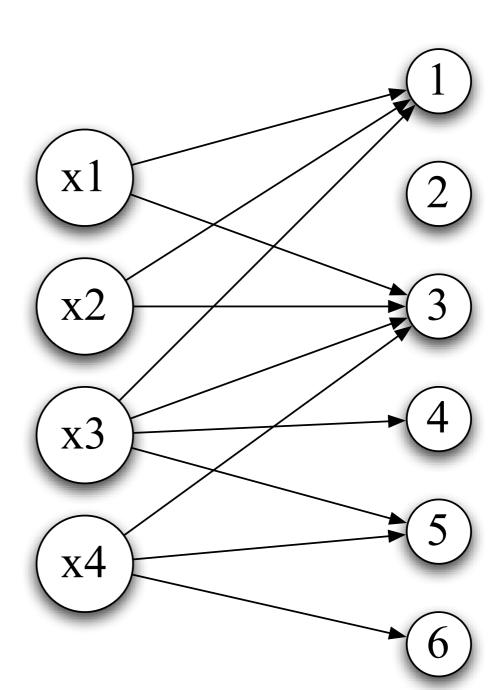
Variable-value Graph

 $x1 \in \{1,3\}$

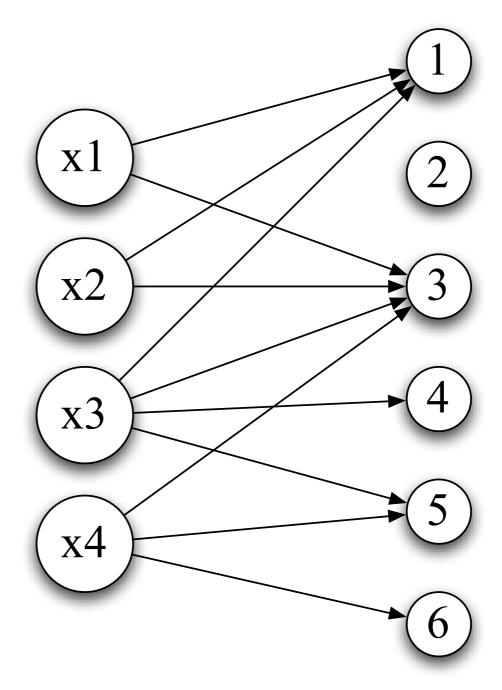
 $x2 \in \{1,3\}$

 $x3 \in \{1,3,4,5\}$

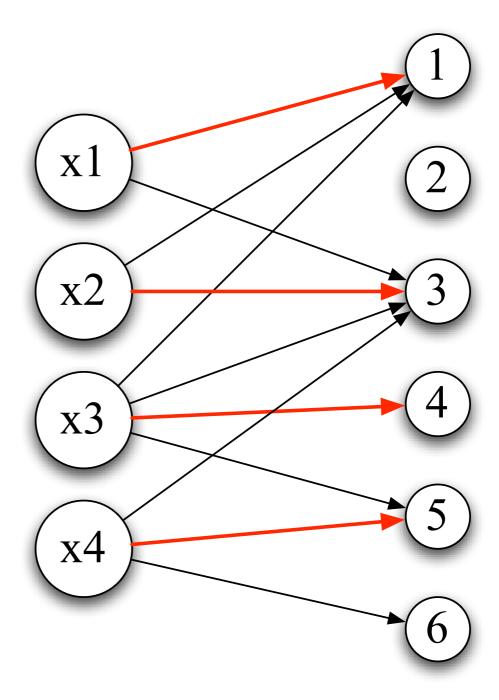
 $x4 \in \{3,5,6\}$



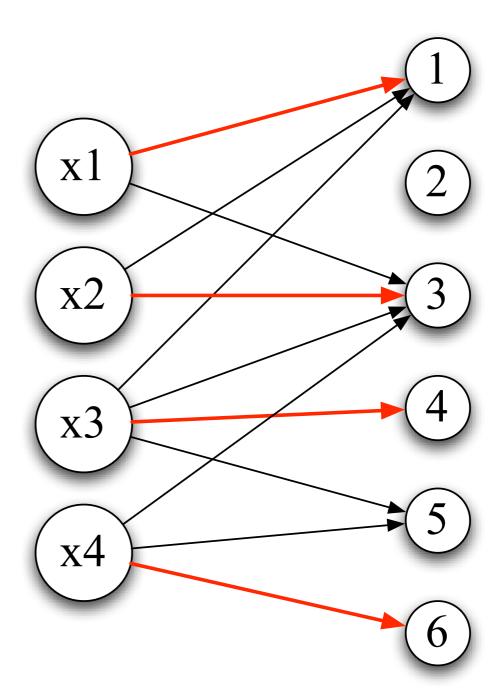
- subset of edges s.th.
 no two edges share a vertex
- maximal: maximum cardinality



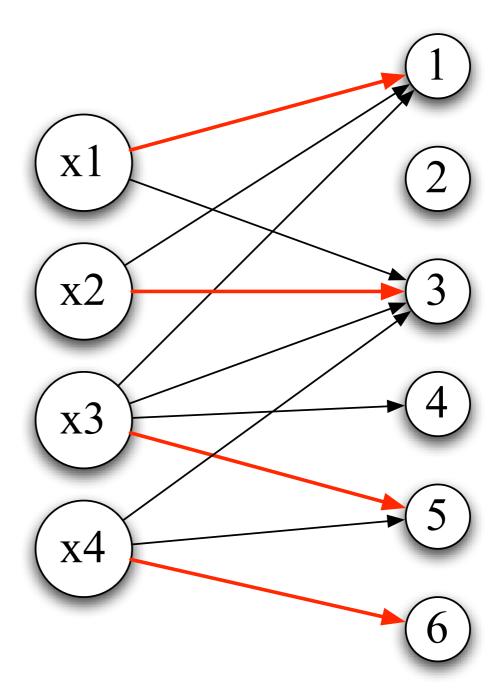
- subset of edges s.th.
 no two edges share a vertex
- maximal: maximum cardinality



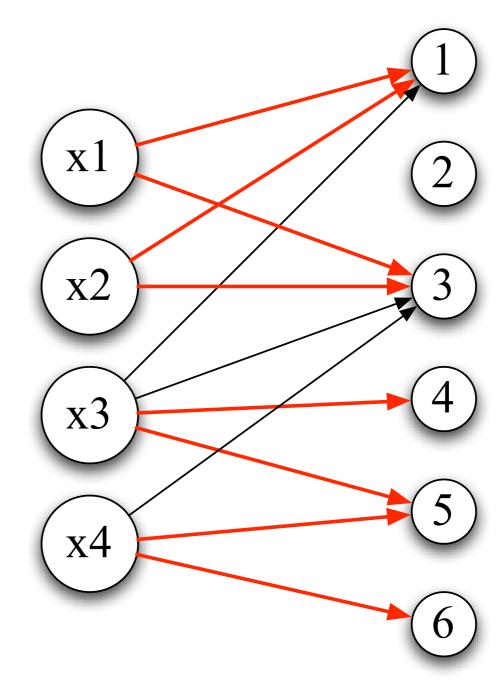
- subset of edges s.th.
 no two edges share a vertex
- maximal: maximum cardinality



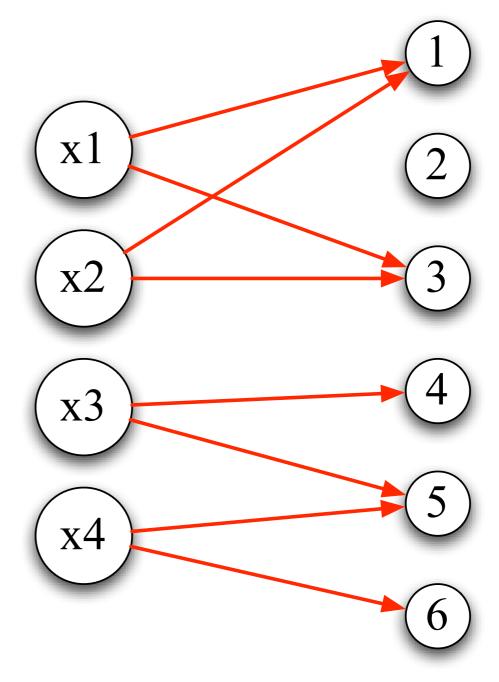
- subset of edges s.th.
 no two edges share a vertex
- maximal: maximum cardinality



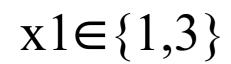
Compute union of all maximal matchings



- Compute union of all maximal matchings
- Delete unmatched edges



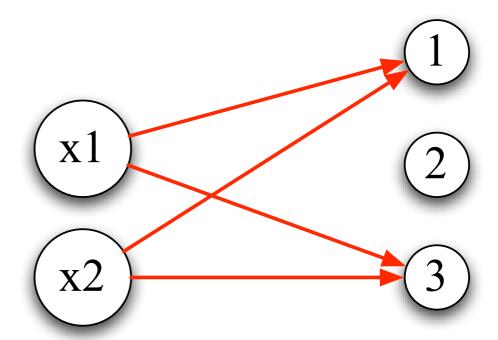
Compute new domains

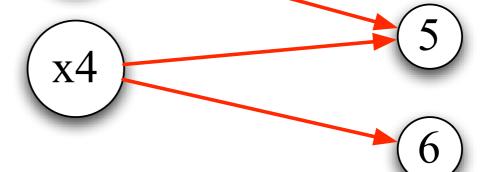


$$x2 \in \{1,3\}$$

$$x3 \in \{4,5\}$$

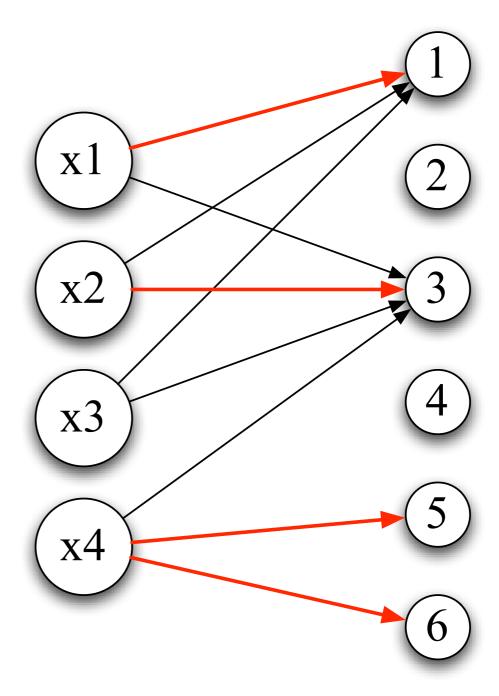
$$x4 \in \{5,6\}$$





Failure

 If no maximal matching covering all variable nodes exists, we have detected failure



Notions

- For a given matching, we say that
 - an edge is matching if it belongs to the matching, otherwise it is free
 - a node is matched if incident to a matching edge, otherwise free

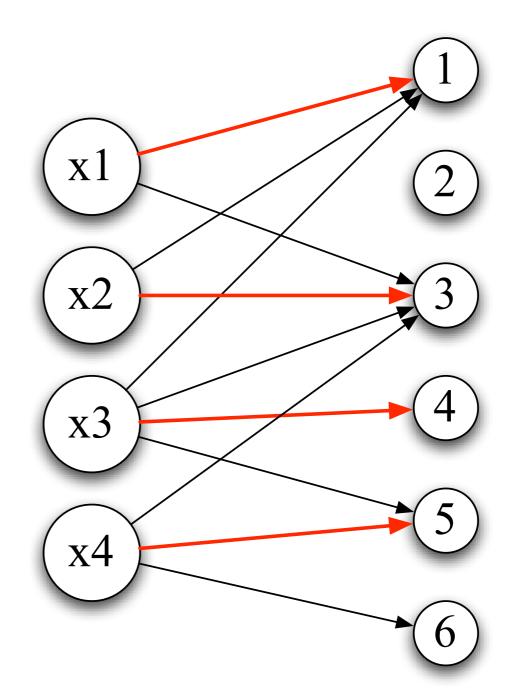
 Can be computed in time O(mn^{0.5}), where m is the size of the union of the domains

(Hopcroft & Karp, 1973)

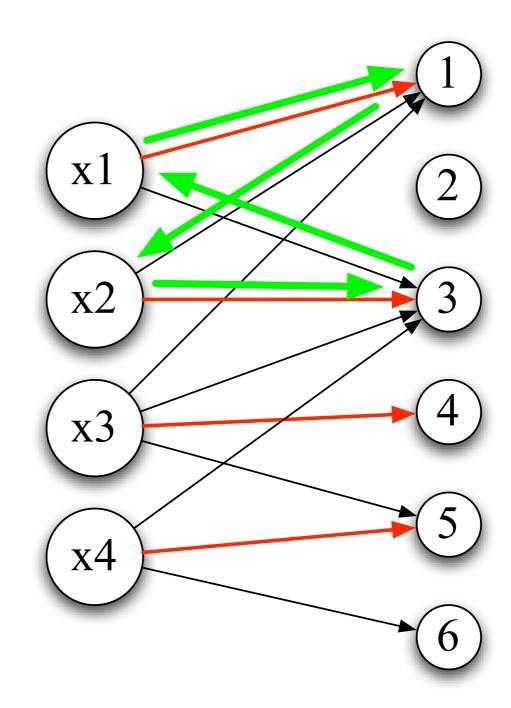
• Theorem:

If M is some maximal matching in G, an edge belongs to any maximal matching in G iff it belongs to M, or to an M-alternating cycle, or to an even M-alternating path starting at an M-free node.

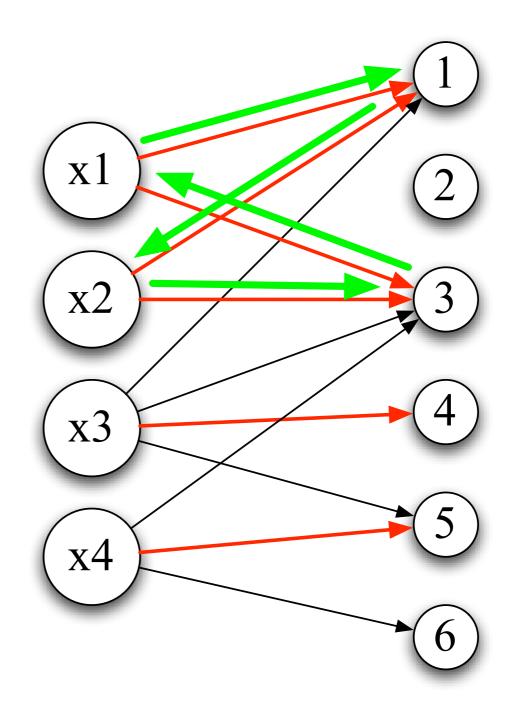
An M-alternating cycle



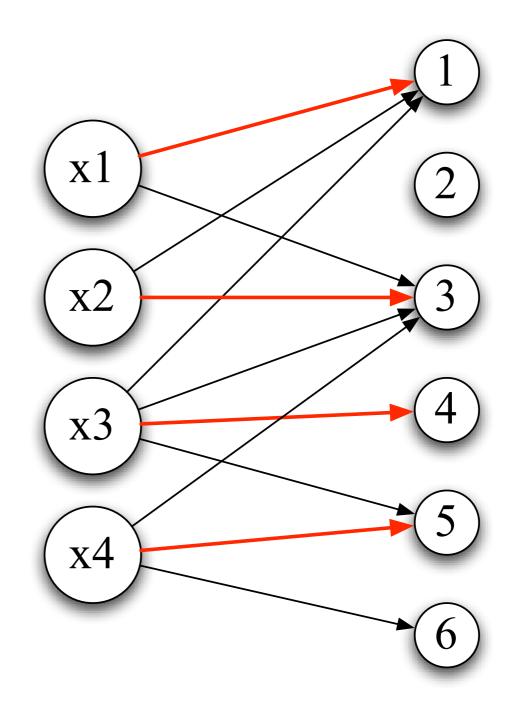
An M-alternating cycle



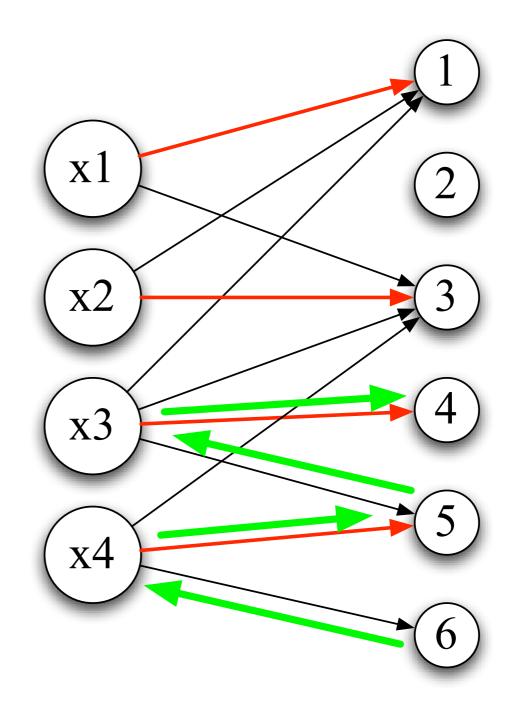
An M-alternating cycle



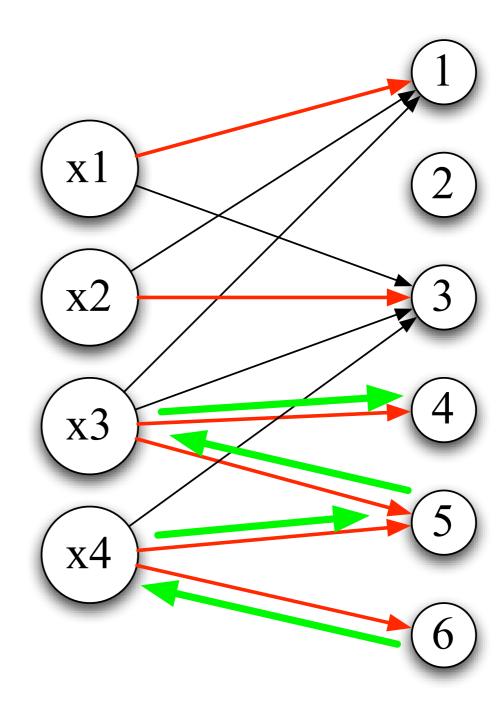
 An even Malternating path



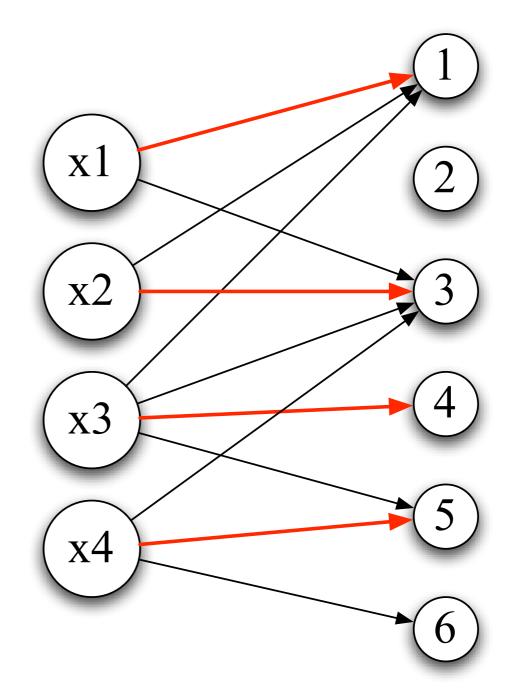
 An even Malternating path



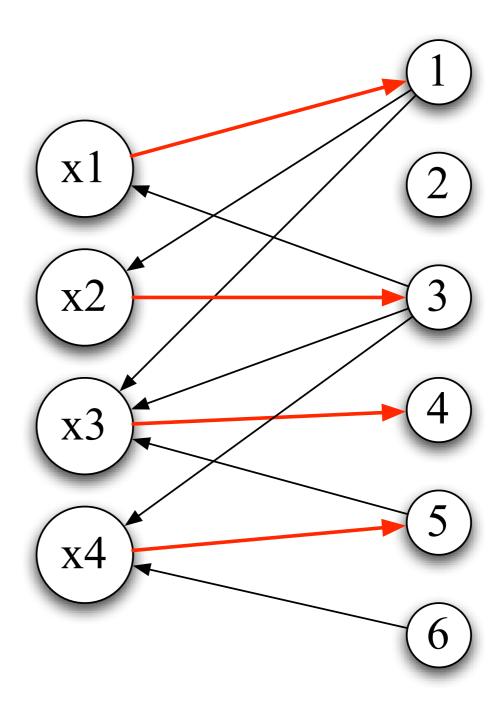
 An even Malternating path



 Reverse unmatched edges

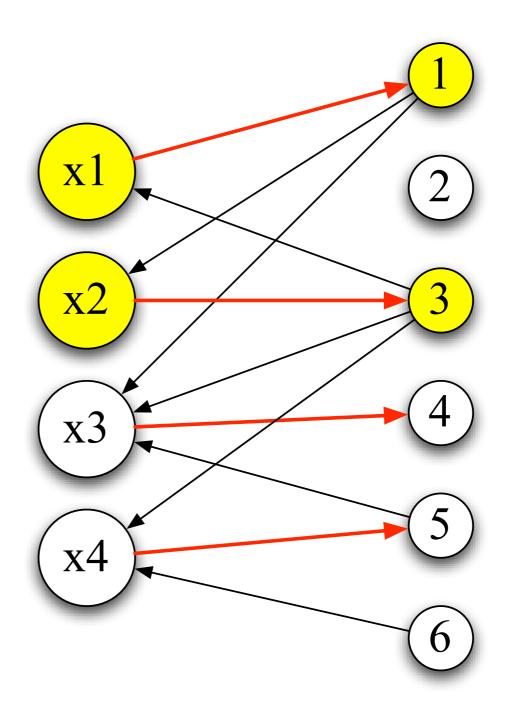


 Reverse unmatched edges

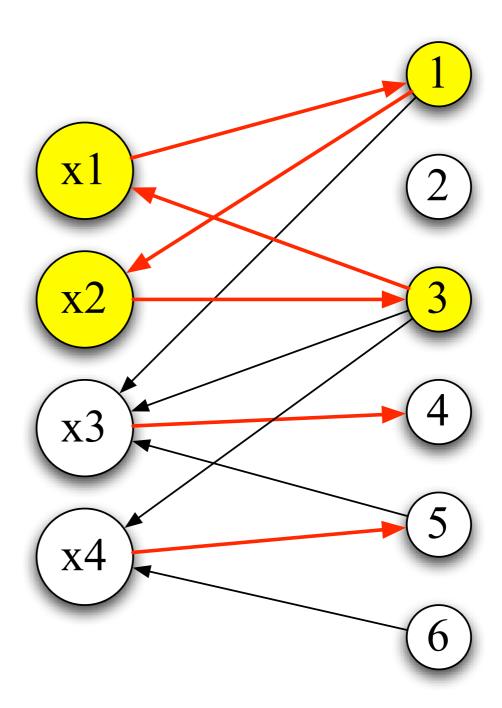


- Reverse unmatched edges
- Compute strongly connected components (SCCs)

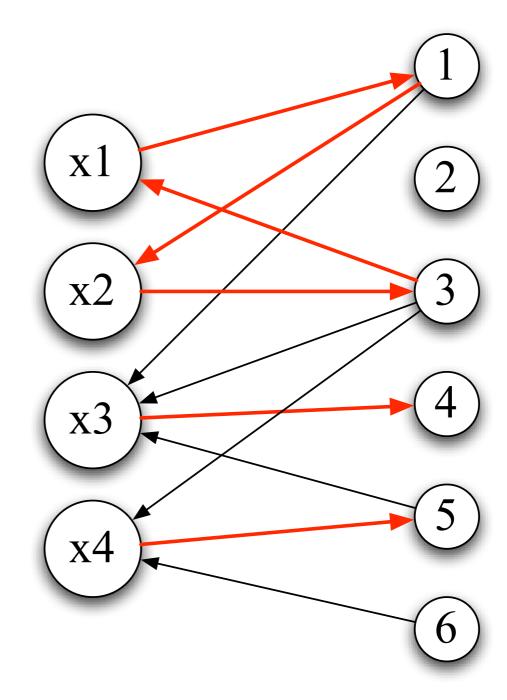
maximal set of nodes where each node is reachable from any other node



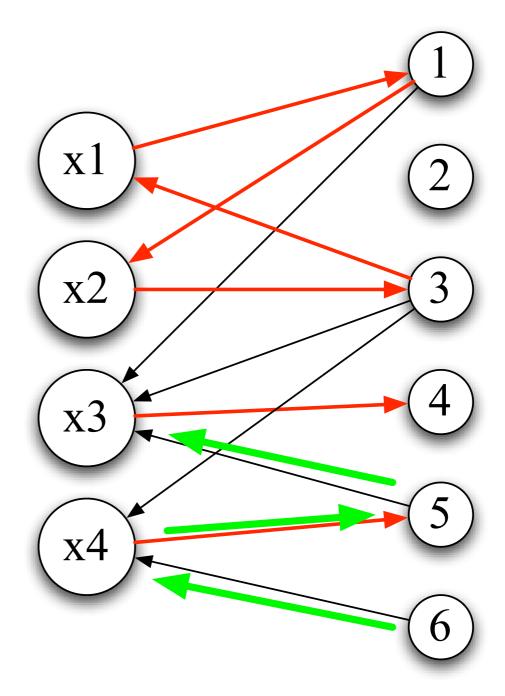
- Reverse unmatched edges
- Compute strongly connected components
- Edges in one SCC are on an M-alt. circuit



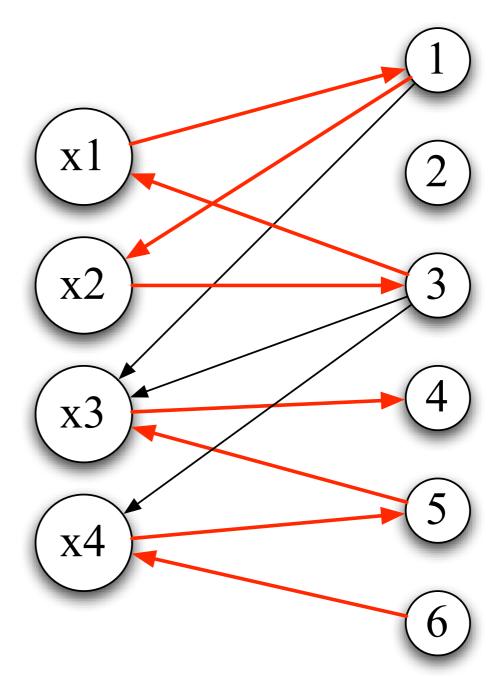
 Edges on a directed path starting at a free vertex



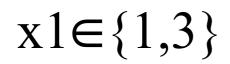
- Edges on a directed path starting at a free vertex
- Breadth-first search



- Edges on a directed path starting at a free vertex
- Breadth-first search



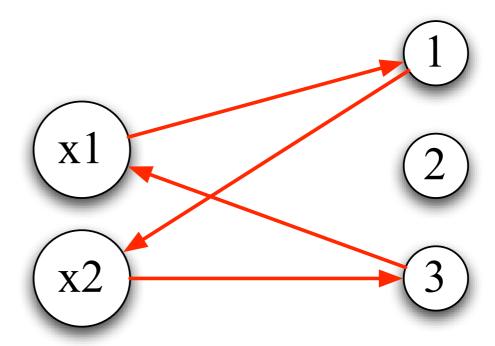
Compute new domains

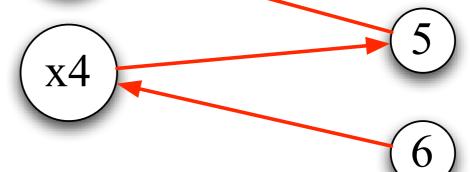


$$x2 \in \{1,3\}$$

$$x3 \in \{4,5\}$$

$$x4 \in \{5,6\}$$





Complete algorithm

- Construct the variable-value graph
- Compute maximal matching
- Orient the graph
- Find M-alternating cycles (SCCs)
- Find even M-alternating paths (graph search)
- Remove edges + narrow domains

Runtime

- Construction: O(n+m)
- Matching: O(mn^{0.5})
- SCC: O(n+m) (Tarjan, 1972)
- Directed path: O(m)

• This gives overall complexity $O(mn^{0.5}) = O(n^{2.5})$

Optimizations

- Consider not only consistent and inconsistent edges, but also vital edges
- A vital edge is one that is contained in all matchings
- Vital edge between x and j means x must be assigned to j

Optimization: Incrementality

- Keep the variable-value graph between invocations
- When the propagator is run again, update the matching accordingly

Bounds consistency

- Efficient algorithms
 - based on Hall intervals O(n log n)
 (Puget, 1998) (Lopez-Ortiz & Quimper & al., 2003)
 - based on graphs & matchings O(n)
 (Mehlhorn & Thiel, 2000)

Bounds vs. domain consistency

- Bounds: only consider endpoints
- Domain: consider whole domains

Often a difference of O(m) if m is the size of the domains!

Extension: Global Cardinality

- For each value, give lower and upper bound on how often it may be taken by the variables.
- distinct(x I,...,xn) = gcc(x I,...,xn,0,...,0, I,..., I)
 (all values at least 0 times and at most once)
- Algorithm by Régin (very similar to distinct)

Does it pay off?

- In most cases, domain consistent distinct leads to considerably smaller search trees than naive version
- In some cases, bounds consistent distinct is "just as strong"
 - (Schulte, Stuckey, 2001)
- Try it out! (exercise)

Summary

- Hard problems require strong propagators
- Domain consistency is feasible for some constraints
- Global propagation algorithms require insight into structure of the constraint

This week's exercises

- Implement propagators in Alice!
- You will use ECoDE, the educational constraint development environment

ECoDE

- Implemented in Alice
- You can look at the main loop, branchings, and propagators
- 500 loc
- Same interface as Gecode, so you can use the explorer

ECoDE: propagators

```
fun less(s, x, y) =
                            y \ge \min(x) + 1
    let
        fun f s = if adjmin(s, y, min(s,x)+1) andalso
                      adjmax(s, x, max(s,y)-1) then
                       if max(s,x)<min(s,y)</pre>
                       then PS SUBSUMED [x,y]
                       else PS NOFIX
                   else PS FAILED
                                        status
    in
        Space.addPropagator(s, [x,y], "less", f)
    end
                                      scope
```

less: space * var * var → unit

Exercise

- Implement linear equations
- Implement distinct (naive and domain consistent)
- Graded exercises, submit by June 2

Have fun!

Outlook

We know how to propagate, so how does search work?

spaces, search engines, recomputation, explorer