
Propagation Algorithms
CP course, lecture 5



Recapitulation
• Propagators: S→S 

(mapping constraint stores to constraint stores)

• Implement constraints

• Must be contracting, monotonic, correct, 
checking

• Can be idempotent, subsumed

• Can be bounds, domain consistent



Recapitulation

• Global constraints: exploit global view on 
variables

a+b=c, c+d=e is weaker than a+b+d=e

x≠y, y≠z, x≠z is weaker than distinct(x,y,z)



Recap: Consistency

• Consider 2x=z

with x∈{1,3}, z∈{1,...,7}
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Domain consistency

x ! {1,3}

2x=z

z ! {2,6}



Recap: Consistency

• Consider 2x=z
with x∈{1,3}, z∈{1,...,7}

• Domain consistency:
Stronger propagation, more complex 
algorithms

• Bounds consistency:
Weaker propagation, simpler algorithms



Linear equations

• Propagator for 

∑aixi=c

• How can bounds information be 
propagated efficiently?

• Example:

ax + by = c



Propagating bounds

• Rewrite:

ax + by = c                   ax = c - by

                                     x = (c-by)/a

• Propagate

x ≤ ⎣ max{ (c-bn)/a) | n∈s(y) } ⎦

x ≥ ⎡ min{ (c-bn)/a | n∈s(y) } ⎤



Propagating bounds

• m = max{ (c-bn)/a) | n∈s(y) }

• a > 0:

m = max{ (c-bn) | n∈s(y) } / a

• a < 0:

m = min{ (c-bn) | n∈s(y) } / a



Propagating bounds

• For a>0:

m = max{ (c-bn) | n∈s(y) } / a

    = (c- min {bn | n∈s(y)}) / a

• For b>0:

m = (c - b ⋅ min s(y)) / a

• For b<0:

m = (c - b ⋅ max s(y)) / a



General Case

• Repeat until fixpoint, for each variable xi

• Improvement: Compute

• Reuse by removing term for xi in each 
iteration

u = max

{
d−

n

∑
i=1

aini | ni ∈ s(xi)

}

l = min

{
d−

n

∑
i=1

aini | ni ∈ s(xi)

}



Questions

• Is it necessary to iterate?

Yes, otherwise not idempotent

• What level of consistency does the 
propagator achieve?



Consistency

• This propagator is not bounds consistent:

x = 3y + 5z with should be 6

x∈{2,...,7}, y∈{0,1,2}, z∈{-1,0,1,2}

• Propagator will compute

x∈{2,...,7}, y∈{0,1,2}, z∈{0,1}

should be 6



Consistency

• Algorithm considers real-valued solutions:

x=7, y=2/3, z=1      ⇒     7=3⋅2/3 + 5⋅1

• New notion: R-bounds consistency

(allow solutions over the reals)

• Even bounds consistency cannot be 
achieved efficiently for some propagators!



Propagator Properties

• A domain consistent propagator is 
idempotent

• A bounds consistent propagator is 
idempotent

• Proof: Exercise



All-distinct

• Naive:

• check that no two determined variables 
have the same value

• remove values of determined variables 
from domains of undetermined variables

• Advantage: simple implementation, avoid   
O(n2) propagators

• Disadvantage: not very strong



All-distinct

• Is there an efficient bounds or domain 
consistent propagator?

• Puget: bounds consistent, O(n log n)

Régin: domain consistent, O(n2.5)



Régin’s algorithm

• Construct a variable-value graph
bipartite, variable node → value node

• Characterize solutions in the graph
maximal matchings

• Use matching theory
one matching describes all matchings

• Remove edges not taking part in any 
solution



Variable-value Graph
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Matching

• Compute union of all 
maximal matchings
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Matching

• Compute union of all 
maximal matchings

• Delete unmatched 
edges
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Compute new domains
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Failure

• If no maximal 
matching covering all 
variable nodes exists, 
we have detected 
failure
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Notions

• For a given matching, we say that

• an edge is matching if it belongs to the 
matching, otherwise it is free

• a node is matched if incident to a 
matching edge, otherwise free



Maximal matching

• Can be computed in time O(mn0.5), where m is the 
size of the union of the domains

(Hopcroft & Karp, 1973)

• Theorem:

If M is some maximal matching in G, an edge 
belongs to any maximal matching in G iff it belongs 
to M, or to an M-alternating cycle, or to an even M-
alternating path starting at an M-free node.



Maximal matching
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Maximal matching

• An even M-
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Maximal matching
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Maximal matching
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Maximal matching

• Reverse unmatched 
edges

• Compute strongly 
connected 
components (SCCs)
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Maximal matching

• Reverse unmatched 
edges

• Compute strongly 
connected 
components

• Edges in one SCC are 
on an M-alt. circuit
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Maximal matching

• Edges on a directed 
path starting at a free 
vertex

1

2

3

4

5

6

x1

x2

x3

x4



Maximal matching

• Edges on a directed 
path starting at a free 
vertex

• Breadth-first search
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Compute new domains
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Complete algorithm

• Construct the variable-value graph

• Compute maximal matching

• Orient the graph

• Find M-alternating cycles (SCCs)

• Find even M-alternating paths (graph 
search)

• Remove edges + narrow domains



Runtime

• Construction: O(n+m)

• Matching: O(mn0.5)

• SCC: O(n+m) (Tarjan, 1972)

• Directed path: O(m)

• This gives overall complexity

O(mn0.5) = O(n2.5)



Optimizations

• Consider not only consistent and 
inconsistent edges, but also vital edges

• A vital edge is one that is contained in all 
matchings

• Vital edge between x and j means x must be 
assigned to j



Optimization: 
Incrementality

• Keep the variable-value graph between 
invocations

• When the propagator is run again, update 
the matching accordingly



Bounds consistency

• Efficient algorithms

• based on Hall intervals O(n log n)

(Puget, 1998) (Lopez-Ortiz & Quimper & al., 2003)

• based on graphs & matchings O(n)

(Mehlhorn & Thiel, 2000)



Bounds vs. domain 
consistency

• Bounds: only consider endpoints

• Domain: consider whole domains

Often a difference of O(m) if m is the size 
of the domains!



Extension: 
Global Cardinality

• For each value, give lower and upper bound 
on how often it may be taken by the 
variables.

• distinct(x1,...,xn) = gcc(x1,...,xn,0,...,0,1,...,1)

(all values at least 0 times and at most once)

• Algorithm by Régin (very similar to distinct)



Does it pay off?

• In most cases, domain consistent distinct 
leads to considerably smaller search trees 
than naive version

• In some cases, bounds consistent distinct is 
“just as strong”

(Schulte, Stuckey, 2001)

• Try it out! (exercise)



Summary

• Hard problems require strong propagators

• Domain consistency is feasible for some 
constraints

• Global propagation algorithms require 
insight into structure of the constraint



This week’s exercises

• Implement propagators in Alice!

• You will use ECoDE, the educational 
constraint development environment



ECoDE

• Implemented in Alice

• You can look at the main loop, branchings, 
and propagators

• 500 loc

• Same interface as Gecode, so you can use 
the explorer



ECoDE: propagators
y ≥ min(x)+1

scope

status

less: space * var * var → unit



Exercise

• Implement linear equations

• Implement distinct (naive and domain 
consistent)

• Graded exercises, submit by June 2

Have fun!



Outlook

We know how to propagate, so how 
does search work?

spaces, search engines, recomputation, 
explorer


