Propagation Algorithms

CP course, lecture 5

Recapitulation

Propagators: S—S

(mapping constraint stores to constraint stores)

Implement constraints

Must be contracting, monotonic, correct,
checking

Can be idempotent, subsumed

Can be bounds, domain consistent

Recapitulation

® Global constraints: exploit global view on
variables

atb=c, ctd=e is weaker than atb+d=e

X7y, Y#z, x#Z is weaker than distinct(x,y,z)

Recap: Consistency

® Consider 2x=z

with x&{l,3}, ze{l,...,7}

Bounds consistency

xE{1,3) ze{l,..,7)

Bounds consistency

xE{1,3) ze{l,..,7)

Bounds consistency

xE{1,3) zeE(2,..,7)

Bounds consistency

xe{l,3} ze€{],...,7}

Bounds consistency

xe{l,3} ze€{],..0]

Bounds consistency

xe{l,3} ze{l,..06}

Domain consistency

xE{1,3) ze{l,..,7)

Domain consistency

A
{1,275,4,576,7}

x e {1,3)}

Domain consistency

A
{ 1,278,4,576,7}

x e {1,3)}

Domain consistency

xE{1,3) z€E{26)

Recap: Consistency

® Consider 2x=z
with x€{l,3}, ze{l,...,7}

® Domain consistency:
Stronger propagation, more complex
algorithms

® Bounds consistency:
Weaker propagation, simpler algorithms

Linear equations

® Propagator for
ZaiXFC

® How can bounds information be
propagated efficiently?

® Example:

ax + by = ¢

Propagating bounds

® Rewrite:
ax + by = c ax = ¢ - by
X = (c-by)/a
® Propagate

x< | max{ (c-bn)/a) | nEs(y) } |

x 2 | min{ (c-bn)/a | n€s(y) } |

Propagating bounds

® m = max{ (c-bn)/a) | nEs(y) }
® a2>0:

m = max{ (c-bn) | nEs(y) } / a
® a<Q:

m = min{ (c-bn) | n€s(y) } / a

Propagating bounds

® For a>0:;

m = max{ (c-bn) | nEs(y) } / a

= (c- min {bn | n€s(y)}) / a
® For b>0:

m=(c-b - mins(y))/a
® For b<O:

m=(c-b - maxs(y))/a

General Case

® Repeat until fixpoint, for each variable x;

® |mprovement: Compute

U = max{dZaini | n; € S(Xi)}
i—1
[= min {d Za,-n,- | n; € s(xi)}

=1

® Reuse by removing term for x; in each
iteration

Questions

® |s it necessary to iterate!
Yes, otherwise not idempotent

® What level of consistency does the
propagator achieve!

Consistency

® This propagator is not bounds consistent:
x = 3y + 5z with
x€{2,...,7}, ye{0,1,2}, z{-1,0,1,2}

® Propagator will compute

x€{2,...,7}, ye{0, 1,2}, z&{0, | }

should be 6

Consistency

® Algorithm considers real-valued solutions:
x=7,y=2/3, z=1| = 7/=3-2/3+ 51

® New notion: R-bounds consistency
(allow solutions over the reals)

® Even bounds consistency cannot be
achieved efficiently for some propagators!

Propagator Properties

® A domain consistent propagator is
idempotent

® A bounds consistent propagator is
idempotent

® Proof: Exercise

All-distinct

® Naive:

® check that no two determined variables
have the same value

® remove values of determined variables
from domains of undetermined variables

® Advantage: simple implementation, avoid
O(n?) propagators

® Disadvantage: not very strong

All-distinct

® |s there an efficient bounds or domain
consistent propagator?

® Puget: bounds consistent, O(n log n)

Régin: domain consistent, O(n?*>)

Regin’s algorithm

Construct a variable-value graph

bipartite, variable node — value node

Characterize solutions in the graph

maximal matchings

Use matching theory

one matching describes all matchings

Remove edges not taking part in any
solution

Variable-value Graph

xle{l,3} @
x2€{1,3} X2 e

x3€{1,3,4,5 X3

@
x4€{3,5,6} @’e
(6

Matching

® subset of edges s.th.
no two edges share a

vertex
: : X2
® maximal: maximum
cardinality
X3

Matching

® subset of edges s.th.
no two edges share a

vertex
: : X2
® maximal: maximum
cardinality
X3
x4

POOLE

Matching

® subset of edges s.th.
no two edges share a
vertex

® maximal: maximum
cardinality

Matching

® subset of edges s.th.
no two edges share a

vertex
: : X2
® maximal: maximum
cardinality
X3

Matching

® Compute union of all

maximal matchings @(/

Matching

® Compute union of all
maximal matchings

® Delete unmatched
edges

Compute new domains

xle{l,3}

x2€{1,3}

x3€{4,5}

x4€{5,6}

Failure

® |[f no maximal
matching covering all
variable nodes exists,
we have detected

failure

Notions

® For a given matching, we say that

® an edge is matching if it belongs to the
matching, otherwise it is free

® a node is matched if incident to a
matching edge, otherwise free

Maximal matching

® Can be computed in time O(mn°®°), where m is the
size of the union of the domains

(Hopcroft & Karp, 1973)

® [heorem:

If M is some maximal matching in G, an edge
belongs to any maximal matching in G iff it belongs
to M, or to an M-alternating cycle, or to an even M-
alternating path starting at an M-free node.

Maximal matching

® An M-alternating

cycle @
X2 (3)

. ~(4)

” O

(&)

Maximal matching

® An M-alternating M
cycle @

3 ~(4)

x4 (3

Maximal matching

® An M-alternating
cycle

Maximal matching

® An even M-

alternating path @
X2 (3)
. ~(4)
x4 (3,

Maximal matching

® An even M-

alternating path @
X2 (3)
x3 e @
x4 (3,

Maximal matching

® An even M-
alternating path

X2

X3 —

x4

clofoRelc

Maximal matching

® Reverse unmatched

edges <:>

X2 e
X3 @
x4 *

Maximal matching

® Reverse unmatched
edges

Maximal matching

® Reverse unmatched

edges Q

® Compute strongly
connected
components (SCCs)

X2

X3

maximal set of
nodes where <4

each node is
reachable from
any other node

a@é@c&@

Maximal matching

® Reverse unmatched
edges

® Compute strongly
connhected
components

® Edges in one SCC are
> =(5)
on an M-alt. circuit x4

Maximal matching

® Edges on a directed
path starting at a free
vertex

Maximal matching

® Edges on a directed Q (L
path starting at a free (// @

verteXx

® Breadth-first search X2 e
X3 7 ~(4)

=06
x4

Maximal matching

® Edges on a directed
path starting at a free
vertex

® Breadth-first search

Compute new domains

xle{l,3}

x2€{1,3}

x3€{4,5}

x4€{5,6}

Complete algorithm

Construct the variable-value graph
Compute maximal matching
Orient the graph

Find M-alternating cycles (SCCs)

Find even M-alternating paths (graph
search)

Remove edges + narrow domains

Runtime

Construction: O(n+m)
Matching: O(mn°>)

SCC: O(n+m) (Tarjan, 1972)
Directed path: O(m)

This gives overall complexity
O(mnO.S) — O(n2.5)

Optimizations

® Consider not only consistent and
inconsistent edges, but also vital edges

® A vital edge is one that is contained in all
matchings

® Vital edge between x and j means x must be
assigned to j

Optimization:
Incrementality

® Keep the variable-value graph between
Invocations

® When the propagator is run again, update
the matching accordingly

Bounds consistency

e Efficient algorithms

® based on Hall intervals O(n log n)

(Puget, 1998) (Lopez-Ortiz & Quimper & al., 2003)

® based on graphs & matchings O(n)

(Mehlhorn & Thiel, 2000)

Bounds vs. domain
consistency

® Bounds: only consider endpoints

® Domain: consider whole domains

Often a difference of O(m) if m is the size
of the domains!

Extension:
Global Cardinality

® For each value, give lower and upper bound
on how often it may be taken by the
variables.

® distinct(xl,...,.xn) = gcc(xl,...,xn,0,...,0,1,..., 1)
(all values at least O times and at most once)

® Algorithm by Regin (very similar to distinct)

Does it pay off!

® |nh most cases, domain consistent distinct
leads to considerably smaller search trees
than naive version

® |n some cases, bounds consistent distinct is
“just as strong”

(Schulte, Stuckey, 2001)

® Try it out! (exercise)

Summary

® Hard problems require strong propagators

® Domain consistency is feasible for some
constraints

® Global propagation algorithms require
insight into structure of the constraint

This weel’s exercises

® |Implement propagators in Alice!

® You will use ECoDE, the educational
constraint develobment environment

ECoDE

Implemented in Alice

You can look at the main loop, branchings,
and propagators

500 loc

Same interface as Gecode, so you can use
the explorer

ECoDE: propagators

fun less(s, X, y) = w
let

fun f s = 1if adjmin(s, y, min(s,x)+1) andalso
adjmax(s, x, max(s,y)-1) then
it max(s,x)<min(s,y)
then PS _SUBSUMED [x,y]

else PS_NOFIX
else PS FAILED

Space.addPropagator(s, [x,y], "less", fT)

less: space * var * var — unit

1N

Exercise

® |mplement linear equations

® |mplement distinct (naive and domain
consistent)

® Graded exercises, submit by June 2

Have fun!

Outlook

We know how to propagate, so how
does search work!?

spaces, search engines, recomputation,
explorer

