
Spaces and Search
Constraint Programming, Lecture 6

Marco Kuhlmann, Guido Tack

The story so far

• modelling constraint satisfaction problems
using GeCoDE and Alice

• formal model for solving
constraint satisfaction problems

• implementing the propagation rule
(propagation loop, propagator properties)

Propagation

hX [fx W Dg I C [fC gi d 2 D

sat.C / \ f ˛ 2 ass.X / j ˛x D d g D ;

hX [fx W D ! fdgg I C [fC gi

hX [fx W ;g I Ci

fail

Today

• an architecture for search

• writing simple search engines

• limited discrepancy search

• branch & bound search

Search trees

The Branching Rule

hX [fx W Dg I Ci jDj > 1 D D D1] ! ! !] Dk

hX [fx W D1g I Ci j ! ! ! j hX [fx W Dkg I Ci

Search tree

The Branching Rule

hX [fx W Dg I Ci jDj > 1 D D D1] ! ! !] Dk

hX [fx W D1g I Ci j ! ! ! j hX [fx W Dkg I Ci

indeterministic
choice

• How to branch?

• branching strategy (naive, first-fail, …)

• determines the shape of the search tree

• How to make the choice operation deterministic?

• search strategy (depth-first, b & b, …)

• determines the order in which
the nodes of the search tree are visited

Two questions

Backtracking

• no way to predict whether a choice is good

• consequence: choices need to be undone

• choice may not have lead to any solution

• choice may not have yielded all solutions

• backtracking = undoing choices

Backtracking strategies

• copying:
backup the state of the system
before making a choice

• trailing:
remember an undo action for the choice

• recomputation:
recompute the state of the system
before the choice was made

next lecture

Terminology

• search strategy:
how to explore the search tree

• search engine:
implements a search strategy, but
may provide additional functionality:
one or all solutions, user interaction, …

An architecture
for search

Design decisions

• Prolog

• first system to do computation by search

• one single opaque search strategy

• Mozart (Oz) and GeCoDE

• more than one search strategy

• architecture for writing new search engines

Depth-First Exploration

Operations on spaces

• status : space -> status
determines the status of a space

• clone : space -> space
returns a backup clone of a space

• commit : space * int -> unit
commit a space to one of its alternatives

Status messages

• failed –
the variable domains are inconsistent

• solved –
the variable domains form an assignment

• branch –
the variable domains require branching

Status messages

branch

failed

solved

Implementing DFS

fun dfs (s) =
 case status s of
 FAILED => nil
 | SOLVED => [s]
 | BRANCH =>
 let val c = clone s in
 commit (s, 1);
 commit (c, 2);
 dfs s @ dfs c
 end

all solutions

One-solution search
exception Solved of space

fun dfs (s) =
 case status s of
 FAILED => ()
 | SOLVED => raise Solved(s)
 | BRANCH =>
 let val c = clone s in
 commit (s, 1); dfs s;
 commit (c, 2); dfs c
 end

Explicit agenda
fun dfs nil = ()
 | dfs s::ss =
 case status s of
 FAILED => dfs ss
 | SOLVED => raise Solved(s)
 | BRANCH =>
 let val c = clone s in
 commit (s, 1);
 commit (c, 2);
 dfs s::c::ss
 end

fun gs a =
 if empty a then () else
 let val s = get a in
 case status s of
 FAILED => gs a
 | SOLVED => raise Solved(s)
 | BRANCH =>
 let val c = clone s in
 commit (s, 1);
 commit (c, 2);
 gs (put [s, c] a)
 end
 end

Generic search

• depth-first search:
agenda is a list

• breadth-first depth:
agenda is a queue

• best-first search:
agenda is a priority queue

Limited Discrepancy
Search (LDS)

Motivation

• Branching strategies are often designed
to put good alternatives first.

• But sometimes violating this heuristic pays off.

• Limited discrepancy search
is a search strategy that allows a limited
number of violations of the heuristic,
discrepancies.

Example

Example

Example

discrepancy

Probing

0 discrepancies 1 discrepancy

fun probe (s, d) =
 case status s of
 FAILED => ()
 | SOLVED => raise Solved(s)
 | BRANCH =>
 if d > 0 then
 let val c = Space.clone s in
 commit (s, 2); probe (s, d-1);
 commit (c, 1); probe (c, d)
 end
 else
 commit (s, 1); probe (s, 0)

LDS as
best-solution search

• the less discrepancies, the better the solution

• LDS finds solutions with
fewer discrepancies first: best solution search

• example: allocating students to tutorials

Branch & Bound Search

Motivation

• optimisation problems are ubiquitous

• not feasible to explore the
complete tree and look for optimal solution

• idea: use previously found solutions
to prune the search tree

Remember: SMM+

fun constrain (s, r) =
 let
 val rmoney = Reflect.value (r, money)
 in
 post (s, FD(money) `> `rmoney, FD.BND)
 end

needs to be a
solution

fun babs (s, best) =
 case status s of
 FAILED => best
 | SOLVED => s
 | BRANCH =>
 let
 val c = clone s
 in
 commit (s, 1);
 commit (c, 2);
 let
 val better = babs (s, best)
 in
 constrain (c, better);
 babs (c, better)
 end
 end

Summary

• separate propagation and branching
from search

• components of the architecture interact

• spaces provide an architecture for writing
search engines

• simple primitives, complex search engines

