Spaces and Search

Constraint Programming, Lecture 6
Marco Kuhlmann, Guido Tack

The story so far

modelling constraint satisfaction problems
using GeCoDE and Alice

formal model for solving
constraint satisfaction problems

implementing the propagation rule
(propagation loop, propagator properties)

Propagation

(X Ui{x:D}; CU{C}) d e D
sat(C)N{a €ass(X) |ax =d} =0

(X Ux D —1idj;; CULCH)

(X Uix :0};¢)
fail

Today

an architecture for search
writing simple search engines
limited discrepancy search

branch & bound search

Search trees

The Branching Rule

(XU{x:DY:6) |D|>1 D=D W---W Dy

(X Uix Dy} C) |- [(X U{x: Di}: C)

Search tree

The Branching Rule

(XU{x:D):6) |D|>1 D=DW--- Dy

(X Uix Dy} C) |- [(X U{x: Di}: C)

indeterministic
choice

Iwo questions

® How to branch?
® branching strategy (naive, first-fail, ...)
® determines the shape of the search tree

® How to make the choice operation deterministic?
® search strategy (depth-first,b & b, ...)

® determines the order in which
the nodes of the search tree are visited

Backtracking

® no way to predict whether a choice is good
® consequence: choices need to be undone
® choice may not have lead to any solution
® choice may not have yielded all solutions

® backtracking = undoing choices

Backtracking strategies

® copying:
backup the state of the system
before making a choice

@the choice
® recomputation:

recompute the state of the system
before the choice was made

® trailing:
remember an

Terminology

® search strategy:
how to explore the search tree

® search engine:
implements a search strategy, but
may provide additional functionality:

one or all solutions, user interaction, ...

An architecture
for search

Design decisions

® Prolog
® first system to do computation by search
® one single opaque search strategy

® Mozart (Oz) and GeCoDE
® more than one search strategy

® architecture for writing new search engines

Depth-First Exploration

(2
e
() (2
2 H O ()
QX O (J ()
(J (J (J
O (J (J
(J Q © O

Operations on spaces

e status : space -> status
determines the status of a space

e clone : space -> space
returns a backup clone of a space

e commit : space * int -> unit
commit a space to one of its alternatives

Status messages

® failed —
the variable domains are inconsistent

® solved —
the variable domains form an assignment

® branch —
the variable domains require branching

Status messages

branch

o ¢

failed

solved

Implementing DFS

fun dfs (s) =
case status s of
FAILED => nil
| SOLVED => [s]
| BRANCH =>
let val ¢ = clone s 1n
commit (s, 1);
commit (c, 2);
dfs s @ dfs C

end
all solutions

One-solution search

exception Solved of space

fun dfs (s) =
case status s of
FAILED => ()
| SOLVED => raise Solved(s)
| BRANCH =>
let val ¢ = clone s 1n
commit (s, 1); dfs s;
commit (c, 2); dfs C
end

Explicit agenda

fun dfs nil
| dfs s::ss
case status s of
FATLED => dfs ss
SOLVED => raise Solved(s)

()

BRANCH =>
let val ¢ = clone s 1n
commit (s, 1);
commit (c, 2);

dfs s::c::ss
end

fun gs a =
1f empty a then () else
let val s = get a 1n
case status s of
FAILED => gs a
SOLVED => raise Solved(s)
BRANCH =>
let val ¢ = clone s 1n
commit (s, 1);
commit (c, 2);

gs (put [s, c] a)
end

end

Generic search

® depth-first search:
agenda is a list

® breadth-first depth:
agenda is a queue

® best-first search:
agenda is a priority queue

Limited Discrepancy
Search (LDS)

Motivation

® Branching strategies are often designed
to put good alternatives first.

® But sometimes violating this heuristic pays off.

® [imited discrepancy search
is a search strategy that allows a limited

number of violations of the heuristic,
discrepancies.

Example

Example

Example

fun probe (s, d) =
case status s of

FAILED => ()
SOLVED => raise Solved(s)
BRANCH =>

if d > 0 then
let val ¢ = Space.clone s 1n
commit (s, 2); probe (s, d-1);

commit (c, 1); probe (c, d)
end

else
commit (s, 1); probe (s, 0)

LDS as
best-solution search

® the less discrepancies, the better the solution

® | DS finds solutions with
fewer discrepancies first: best solution search

® example: allocating students to tutorials

Branch & Bound Search

Motivation

optimisation problems are ubiquitous

not feasible to explore the
complete tree and look for optimal solution

idea: use previously found solutions
to prune the search tree

Remember: SMM+

needs to be a
solution

fun constrain (s, r) =
let
val rmoney = Reflect.value (r, money)
in
post (s, FD(money) > "rmoney, FD.BND)
end

fun babs (s, best) =

case status s of
FAILED => best

| SOLVED => s
| BRANCH =>
let
val ¢ = clone s
in

commit (s, 1):;
commit (c, 2);
let
val better = babs (s, best)
in
constrain (c, better):
babs (c, better)
end
end

Summary

separate propagation and branching
from search

components of the architecture interact

spaces provide an architecture for writing
search engines

simple primitives, complex search engines

