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Plan for today

finite set variables
propagators for constraints on finite sets
encoding binary relations

encoding finite trees



Finite-set constraints



Finite-set variables

let A be a finite interval of integers
finite domain variables take values in A
finite set variables take values in JO(A)

domain: fixed subset of A



Basic constraints

assighnments to FD variables are approximated
using element constraints:

I €D

assignments to FS variables are approximated
using subset constraints:

DCS$ SCD

together, these form the basic constraints



FD constraint store




FS constraint store
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Non-basic constraints

® express non-basic constraints in terms of
basic constraints, using sets of inference rules

® monotonicity: more specific premises yield
more specific conclusions

® express inferences in terms of the currently
entailed lower and upper bounds
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Subset constraint

$S1€82 = [51]SS A 51 C[S]

basic constraint




Union and intersection
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Cardinality constraint
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Binary relations



The plan

® use FS constraints to encode binary relations
on a fixed (and finite) universe

® express constraints on binary relations as
constraints on FS variables



Encoding

® define the notion of the ‘relational image’
Rx={ye?€| Rxy}

® understand binary relations as total functions
from the carrier to subsets of the carrier

fR={xH—~ Rx|x et}

® represent these functions as vectors
on finite set variables



Union

R1UR> = R;3
Ri{ N Ry = Rj

and intersection
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How would you do
composition!?



Selection constraints

generalisation of binary set operations
participating elements are variable, too
example: union with selection
S=1{)S
i€S’

propagation in all directions



Union with selection
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Composition

R10R2
Rio Ry = Rj3

{(x,z) €€?|qy € €: Rixy A Ryyz}
Rz = (UR2[Ry[1]], ..., UR>[R[n]])



Intersection with
selection

® ntersection with selection
S =nN{S1,....,S,)[S]

® defines a new binary relation
{(x,2) € €*|Vye€: Rixy = Ryyz}

® but what is it good for?



A weird relation

RieR, ={(x,2) € €*|Vye€: Rixy = Ryyz}

® X sees z iff all Rl-successors of x R2-see z

® x sees z if it does not have any R|-successors



Putting the weird
relation to use

® require that the weird relation
contains the identity relation

® the new relation is quite useful:
VXEﬁIXE(RIQRz)X — ngRgl
VX€€IXE(R20R1)X — RzERl_l

® the ‘converse constraint’ on relations



Converse

1€ C =— 1€NnNRi[Ry]i]
1 €e€C — 1€NRyR]i]




Summing up

® used vectors of FS variables
to encode binary relations

® constraints on binary relations
can be stated as constraints on FS variables

® featured on next assignment



Solving tree descriptions



The plan

use binary relations and set variables to
encode various kinds of trees

use FS constraints and constraints on binary
relations to encode constraints on trees



Tree regions




Rooted tree constraint

succ = pred

succ, = Id U succ

SUCC+ = SUCC © SUCCy
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Tree constraints

root(v)
leaf(v)

edge(vq, Vo)
dominates(vq, v;)

pred(v) = 0
succ(v) = @
vy € succ(vg)

Uy € succy(vq)



Fourth graded
assignment

® implement a structure for constraints on
binary relations

® implement solvers for rooted trees:
® unordered trees

® ordered trees



