

Constraint Programming: Assignment no. 3

Marco Kuhlmann, M.Sc., Dipl.-Inform. Guido Tack

http://www.ps.uni-sb.de/courses/cp-ss07/

In the following, let *P* be some fixed constraint satisfaction problem.

Recall that an *assignment* for P is a function $\alpha : \text{var}(P) \to \text{dom}(D)$, and that a *constraint store* for P is a function $s : \text{var}(P) \to \mathfrak{P}(\text{dom}(D))$. We write ass(P) for the set of all assignments for P, and stores(P) for the set of all constraint stores for P.

Exercise 3.1 (Assignments and stores)

Recall that the set of all assignments licensed by a constraint store *s* is defined as

$$ass(s) := \{ \alpha \in ass(P) \mid \forall x \in var(P). \ \alpha(x) \in s(x) \}.$$

For a given assignment α , we define the special store $store(\alpha)$ that licenses exactly the assignment α by putting $store(\alpha) := \{x \mapsto \{\alpha(x)\} \mid x \in var(P)\}$. Show that for all assignments $\alpha \in ass(P)$ and for all stores $s \in stores(P)$,

$$\alpha \in \operatorname{ass}(s) \iff \operatorname{store}(\alpha) \le s$$
 (1)

Exercise 3.2 (Implementation)

Intuitively, propagators should 'implement constraints'. What we want this to mean is that a propagator should never remove a solution of a constraint from a store. In this exercise, we will see that it is sufficient to require a weaker condition. Let us say that a propagator p implements a constraint C, if for all assignments $\alpha \in ass(P)$,

$$\alpha \in C \iff p(\text{store}(\alpha)) = \text{store}(\alpha)$$
.

Show that the following properties hold for all stores $s \in \text{stores}(P)$, all constraints $C \in \text{con}(P)$, and all propagators p that implement C:

$$\alpha \in \operatorname{ass}(s) \land \alpha \in C \implies \alpha \in \operatorname{ass}(p(s))$$
 (2)

$$\alpha \notin C \implies |\operatorname{ass}(p(\operatorname{store}(\alpha)))| = 0$$
 (3)