
U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Constraint Programming: Assignment no. 10/11

Marco Kuhlmann, M.Sc., Dipl.-Inform. Guido Tack

http://www.ps.uni-sb.de/courses/cp-ss07/

This week’s assignment is about symmetries and arc consistency.

Exercise 10/11.1 (Symmetric golfers)

Modify the social golfers example (exercise 9.1) such that the symmetry among

groups and the symmetry among weeks is broken (using static lex-leader style

constraints).

Exercise 10/11.2 (Symmetric queens)

In this exercise, you will implement a model for the n-queens problem that contains

symmetry breaking constraints for all the symmetries of a chess board.

Start with the classic n-queens model, using three distinct-constraints. Remember

that there are eight symmetries: the identity, the flip around the x or y axis, the flip

around one of the two diagonals, and rotation of 90, 180, and 270 degrees. We will

use lex-leader constraints for breaking these symmetries statically.

a) Add the dual model to your script: Use a VarMatrix<BoolVar>, where an entry

(i, j) = 1 iff a queen is placed at (i, j). Use reified constraints to connect the dual

and the original model.

b) Implement a method VarMatrix<BoolVar> r90(VarMatrix<BoolVar> q) that

returns a new matrix that contains the variables from q, but rotated by 90 degrees.

c) Implement a method VarMatrix<BoolVar> d1(VarMatrix<BoolVar> q) that

returns a new matrix that contains the variables from q, but flipped around one

diagonal.

d) Use lex-leader constraints (rel) to break all symmetries. Remember that the

symmetry group for a square is generated by r90 and d1.

e) Check that you really break all the symmetries (and don’t exclude too many

solutions) by entering the number of solutions you get for n = 1, . . . ,12 into the

online encyclopedia of integer sequences.

2007–07–03 14:05

Exercise 10/11.3 (Arc consistency)

Recall algorithm AC-3 from Lecture 11.

ac3()

Q := {(i, j) | ci,j}1

while Q not empty do2

remove (k,m) from Q3

if revise(k,m) then4

N := {(i, k) | ci,k, i ≠m}5

Q := Q ∪ N6

end7

end8

revise(i,j)

modified := false1

for x ∈ Di do2

if y ∈ Dj with (x,y) ∈ ci,j then3

Di := Di \ {x}4

modified := true5

end6

end7

return modified8

a) Assume that the constraint network is normalized. This means that between

two variables i and j, there is at most one constraint ci,j , and the constraint cj,i
exists if and only if ci,j exists and is the converse of ci,j . Explain why under this

condition the optimization in line 5 of ac3 is correct, i.e., why the back-edge (m,k)
does not have to be considered for revision.

b) The AC algorithms you have seen so far can only deal with binary constraints.

The generalization to n-ary constraints is called generalized arc consistency (GAC)

or hyperarc consistency. Remember that the scope of a constraint is the set of

variables it deals with. Modify algorithm AC-3 such that it achieves GAC. Instead

of arcs, the set Q should now contain pairs of a variable and a constraint that has

this variable in its scope. The revise procedure gets such a pair as its argument.

c) All AC algorithms presented in the lecture are variable-centered, i.e., they keep

track of which variables were modified, and then propagate all constraints that

belong to these variables. In contrast, the propagation loop as presented in

Lecture 4 is propagator-centered, it keeps track of which propagators are not at

2007–07–03 14:05

fix-point. Now assume that the network is not normalized, i.e., there can be several

constraints between each pair of variables. Explain how the two approaches differ

with respect to fixpoint reasoning and entailment.

2007–07–03 14:05

