
Constraint Programming
Marco Kuhlmann & Guido Tack

Lecture 1

Welcome!

Where am I?

• Constraint Programming

• advanced course in Computer Science

• 6 credit points

• lecture (2 hours) + lab (2 hours)

• http://www.ps.uni-sb.de/courses/cp-ss07/

http://www.ps.uni-sb.de
http://www.ps.uni-sb.de

This lecture

• constraint programming

• what it is – fundamental concepts

• why it matters – applications

• how it works – showcase examples

• organization

Constraint Programming

Sudoku

数字は独身に限る

Sudoku

Generate & Test

• generate
all possible 9 x 9 grids
that satisfy the constraints

• test
for each grid generated,
whether it extends the partially completed grid

Generate & Test

• generate
all possible 9 x 9 grids
that satisfy the constraints

• test
for each grid generated,
whether it extends the partially completed grid

NOT VERY SMART™

Specialized solvers

• advantages

• may be highly efficient

• offer deep insights into the problem

• disadvantages

• may take years to develop

• cannot be easily adapted

Specialized solvers

• advantages

• may be highly efficient

• offer deep insights into the problem

• disadvantages

• may take years to develop

• cannot be easily adapted

Scalability

Scalability

Scalability

Enter Constraint Programming

Constraint Programming
is a problem-solving technique
for combinatorial problems
that works by incorporating constraints
into a programming environment.

(after Apt 2003)

Constraint Programming
is a problem-solving technique
for combinatorial problems
that works by incorporating constraints
into a programming environment.

(after Apt 2003)

Combinatorial problems

• combinatorial structures

• finite set of variables

• finite set of possible values for each variable

• combinatorial problems

• input: a class C and a description of a subset S of C

• decide emptyness or membership; enumerate S

Example: Sudoku

• combinatorial structures

• 9 x 9 variables, each takes as its value a digit from 1 to 9

• every row, column, square contains all digits from 1 to 9

• combinatorial problem

• description of S = partially completed grid

• find at least one element of S

Example: Sequences of primes

• combinatorial structures

• sequences of length n

• each seq[i] contains a prime between 1 to 10

• combinatorial problems

• enumerate all sequences where seq[0] > seq[1]

• enumerate all sequences where seq[0] + seq[1] = seq[2]

Subsets & constraints

Subsets & constraints

Subsets & constraints

seq[0] > seq[1]

Subsets & constraints

seq[0] > seq[1]

seq[0] + seq[1] = seq[2]

Constraint Satisfaction Problems (CSPs)

simple formal model for combinatorial problems

CSPs: Ingredients

• finite set of problem variables, x

• associated domains dom(x)

• finite set of constraints

CSPs: Ingredients

• finite set of problem variables, x

• associated domains dom(x)

• finite set of constraints

intensional or
extensional

CSPs: Terminology

• variable assignment:
total function that maps
each x to an element in dom(x)

• solution to a CSP:
variable assignment
such that all constraints are satisfied

• problem variables:
x, y

• domains:
dom(x) = {3, 4, 5}
dom(y) = {3, 4, 5}

• constraints:
x >= y
y > 3

Example

x = 4, y = 4

x = 5, y = 4

x = 5, y = 5

• problem variables:
x, y

• domains:
dom(x) = {3, 4, 5}
dom(y) = {3, 4, 5}

• constraints:
x >= y
y > 3

Example

x = 4, y = 4

x = 5, y = 4

x = 5, y = 5

finite sets of integers

• problem variables:
x, y

• domains:
dom(x) = {3, 4, 5}
dom(y) = {3, 4, 5}

• constraints:
x >= y
y > 3

Example

x = 4, y = 4

x = 5, y = 4

x = 5, y = 5

Meet Gecode/J

• The Gecode library
is the GEneric COnstraint Development Environment,
the cutting edge of research in constraint systems:
http://www.gecode.org/

• Gecode/J
is the Java interface for Gecode
that we will use for this course

http://www.ps.uni-sb.de/alice/
http://www.ps.uni-sb.de/alice/

Demo

Constraint Propagation

distinguish two sorts of constraints:
basic constraints and non-basic constraints

x ! {3,4,5} y ! {3,4,5}

Constraint Store

x ! {3,4,5} y ! {3,4,5}

Constraint Store

basic constraints

Propagators

• implement non-basic constraints

• translate into basic constraints

• subscribe to variables in the store

• get notified about changes

Propagators

y ! {3,4,5}x ! {3,4,5}

Propagators

y > 3x ! y

y ! {3,4,5}x ! {3,4,5}

Propagators

y > 3x ! y

amplify store

x ! {3,4,5} y ! {4,5}

Propagators

x ! y

x ! {3,4,5} y ! {4,5}

Propagators

x ! y

y ! {4,5}x ! {4,5}

Computation Space

constraint store with connected propagators

x ! {3,4,5} y ! {3,4,5}

x ! y y > 3

Computation Space

constraint store with connected propagators

Important concepts

• constraint store
stores basic constraints

• propagator
implements non-basic constraint

• computation space
constraint store + propagators

Branching

Bad news

x ! {4,5} y ! {4,5}

x ! y

Bad news

propagation
is not enough!

Stable spaces

• solution
for each x, dom(x) is a singleton

• failure
there is at least one x with dom(x) empty

• choice

Branching

x ! {4,5} y ! {4,5}

x ! y

Branching

stable space

x ! {4,5} y ! {4,5}

x ! y

x ! {4} x " {4}

x ! {4} x ! {5} y ! {4,5}

x ! yx ! y

y ! {4,5}

Branching

domain split

x ! {4,5} y ! {4,5}

x ! y

x ! {4} x " {4}

x ! {4} x ! {5} y ! {4,5}

x ! yx ! y

y ! {4}

Branching

x ! {4,5} y ! {4,5}

x ! y

x ! {4} x " {4}

x ! {4} x ! {5} y ! {4,5}

x ! y

y ! {4}

Branching

Search tree

Search tree

choice

solution

Branching heuristics

• naive heuristic

• pick some x with dom(x) > 1

• pick value k from dom(x)

• branch with x ∈ {n} and x ∉ {n}

• first-fail heuristic:
pick x with dom(x) minimal

Branching strategy

• variable selection

• any variable

• minimal/maximal current domain

• value selection (for the left branch)

• maximal/minimal/medial element

• lower half/upper half of the domain

Search

Search

• propagation and branching induce a search tree

• In what order are the nodes of that tree constructed?

• different problems require different search strategies

Static search strategies

Static search strategies

• explore the search tree

• standard search strategies

• depth-first search

• iterative deepening

• A* search

Dynamic search

Dynamic search

• add new constraints during search

• dynamic search strategies

• iterative best-solution search

• branch-and-bound search

best solution
search

Best Solution Search

• class of combinatorial structures C

• objective function obj : C → N

• find a structure s such that obj(s) is
optimal among all structures in C

Best Solution Search

• naive approach:
compute all solutions and choose the best one

• branch-and-bound approach:

• compute a first solution s

• add ‘better-than-s’ constraint

• compute the next solution, and iterate

Best Solution Search

• naive approach:
compute all solutions and choose the best one

• branch-and-bound approach:

• compute a first solution s

• add ‘better-than-s’ constraint

• compute the next solution, and iterate

prunes the
search tree

S E N D

M O S T+

M O N E Y

Send Most Money

S E N D

M O S T+

M O N E Y

Send Most Money

MONEY
should be
maximal

SMM+ – B & B

SMM+ – B & B
unexplored

subtree

SMM+ – B & B

first solution

SMM+ – B & B

SMM+ – B & B

SMM+ – B & B

best solution

What this course will be about

Architecture

• propagation:
prune impossible values

• branching:
divide the problem into smaller parts

• search:
interleave propagation and branching to find solutions

What you will learn

• how to model combinatorial problems

• how to solve them using CP

• how to write new propagators

• how to program new search strategies

• how to apply CP to practical problems

Applications

• timetabling

• crew rostering

• gate allocation at airports

• sports league scheduling

• natural language processing

Scheduling resources

• tasks
duration, used resources

• precedence constraints
task a must precede task b

• resource constraints
at most one task per resource

First lab

• install the tools: http://www.gecode.org/

• compile the examples, and play with Gist

• implement a solver for Sudoku

http://www.ps.uni-sb.de/alice/
http://www.ps.uni-sb.de/alice/

Constraint Programming

• can be used to tackle hard combinatorial problems

• combines various interesting methodologies and techniques

• applications are ubiquitous

Constraint Programming

• can be used to tackle hard combinatorial problems

• combines various interesting methodologies and techniques

• applications are ubiquitous

knowledgeable
people are not!

Constraint Programming

• compute with possible values
lower bound, upper bound

• prune inconsistent values
guessing as last resort

• factorize the problem
inferences + heuristics + search

What CP is not

• no efficiency miracle:
hard problems remain hard problems

• no replacement for specialized algorithms

• no replacement for other programming paradigms

What you should bring

• broad interest in computer science

• theory and formal models

• practice and programming

• proactive style of learning

• try! explore! do!

• ask questions, and answer them

Caveat

Caveat

• CP is well-established …

• international conferences

• many results & applications

Caveat

• CP is well-established …

• international conferences

• many results & applications

• … but not all of our tools are (yet).

• some tools might not work (as expected)

• some tools might be uncomfortable to work with

Organization

Literature

Literature

• Francesca Rossi, Peter van Beek, Toby Walsh (Eds.):
Handbook of Constraint Programming, Elsevier 2006

Literature

• Francesca Rossi, Peter van Beek, Toby Walsh (Eds.):
Handbook of Constraint Programming, Elsevier 2006

• Krzysztof R. Apt:
Principles of Constraint Programming, CUP, 2003

Literature

• Francesca Rossi, Peter van Beek, Toby Walsh (Eds.):
Handbook of Constraint Programming, Elsevier 2006

• Krzysztof R. Apt:
Principles of Constraint Programming, CUP, 2003

• Christian Schulte:
Programming Constraint Services, Springer-Verlag, 2002

Lectures

• 12 lectures in total (6 on foundations, 6 on advanced topics)

• last lecture on July 9

• no lecture on May 20 (Pentecost)

Tutorials

• time to ask questions about the lecture and the labs

• time to discuss advanced topics

• first meeting: Thursday, 16:00, room E1.3.528

• time slots for next meetings subject to negotiation

Labs

• explorative labs

• get familiar with the concepts

• get familiar with the tools

• graded labs

• four medium-sized projects

• determine 40% of your final grade

Exam

• 90 minutes, written, closed-book

• July 16 (last week of term)

• no re-exam

Grading

• need to pass the exam in order to pass the course

• calculation of the final score

• points you reached in the exam (60%)

• points you reached in the graded labs (40%)

• pass with 50% of all possible points

Registration

• email with name + matriculation to tack@ps.uni-sb.de

• registration during the first three weeks of term

• deregistration during the first three weeks of term

mailto:tack@ps.uni-sb.de
mailto:tack@ps.uni-sb.de

Contact & Support

• mailing list
subscribe on web site

• office hours
Wednesdays, 14–15, room E1.3.517

• during & after the lectures

Announcements

• all important announcements on the mailing list

• subscribe!

• or check the online archives regularly

Constraint Programming

Constraint Programming

• problem-solving technique

Constraint Programming

• problem-solving technique

• interleaves inferences & heuristics

Constraint Programming

• problem-solving technique

• interleaves inferences & heuristics

• combines various methodologies

Constraint Programming

• problem-solving technique

• interleaves inferences & heuristics

• combines various methodologies

• is fun!

Thanks for your attention!

