Constraint Programming

Marco Kuhlmann & Guido Tack
Lecture 1

Where am I?

Constraint Programming

advanced course in Computer Science
6 credit points

lecture (2 hours) + lab (2 hours)

http://www.ps.uni-sb.de/courses/cp-sso7/

http://www.ps.uni-sb.de
http://www.ps.uni-sb.de

This lecture

e constraint programming
e what it is - fundamental concepts
e why it matters — applications
e how it works — showcase examples

e organization

Constraint Programming

Sudoku

3

516 |7
1

1

j

Ly
=
L
o
=)

1

Generate & Test

e generate
all possible 9 x 9 grids
that satisfy the constraints

test
for each grid generated,
whether it extends the partially completed grid

Generate & Test

e generate
all possible 9 x 9 grids

that satisfy the constraints

test
for each grid generated,
whether it extends the partially completed grid

Specialized solvers

e advantages

e may be highly efficient

e offer deep insights into the problem
e disadvantages

e may take years to develop

e cannot be easily adapted

Specialized solvers

e advantages

e may be highly efficient

e offer deep insights into the problem
e disadvantages

e may take years to develop

e cannot be easily adapted

Scalability

Scalability

Scalability

Enter Constraint Programming

Constraint Programming

is a problem-solving technique

for combinatorial problems

that works by incorporating constraints
Into a programming environment.

(after Apt 2003)

Constraint Programming
is a problem-solving technique

for combinatarial problems
that works by incorporating [constraints'
into a programming environment

(after Apt 2003)

Combinatorial problems

e combinatorial structures
e finite set of variables
e finite set of possible values for each variable
e combinatorial problems
e input:aclass C and a description of a subset S of C

e decide emptyness or membership; enumerate S

Example: Sudoku

e combinatorial structures
® 9 x 9 variables, each takes as its value a digit from 1 to 9
® every row, column, square contains all digits from 1 to 9
e combinatorial problem
® description of S = partially completed grid

® find at least one element of S

Example: Sequences of primes

e combinatorial structures

e sequences of length n

e each seq[i] contains a prime between 1 to 10
e combinatorial problems

e enumerate all sequences where seq[o0

e enumerate all sequences where seq[o0

Subsets & constraints

Subsets & constraints

Subsets & constraints

seq[o] > seq[1]

Subsets & constraints

It
seq[o] > seq[1]

seq[o] + seq[1] = seq[2]

Constraint Satisfaction Problems (CSPs)

simple formal model for combinatorial problems

CSPs: Ingredients

e finite set of problem variables, x
e associated domains dom(x)

e finite set of constraints

CSPs: Ingredients

e finite set of problem variables, x
e associated domains dom(x)

e finite set of constraints

intensional or
extensional

CSPs: Terminology

e variable assignment:
total function that maps
each x to an element in dom(x)

solution to a CSP:
variable assignment
such that all constraints are satisfied

Example

e problem variables:

X,y

domains:

dom(x) = {3, 4, 5}
dom(y) = {3, 4, 53

constraints:
X >= y

y>3

Example

e problem variables:

X,y

finite sets of integers
domains:

dom(x) = {3, 4, 5}
dom(y) = {3, 4, 53

constraints:
X >= y

y>3

Example

e problem variables:

X,y

domains:

dom(x) = {3, 4, 5}
dom(y) = {3, 4, 53

constraints:
X >= y

y>3

Meet Gecode/)

e The Gecode library
is the GEneric COnstraint Development Environment,
the cutting edge of research in constraint systems:
http://www.gecode.org/

Gecode/J

is the Java interface for Gecode
that we will use for this course

http://www.ps.uni-sb.de/alice/
http://www.ps.uni-sb.de/alice/

Constraint Propagation

distinguish two sorts of constraints:
basic constraints and non-basic constraints

Constraint Store

xe (34,5} y€{34,5]

Constraint Store

basic constraints

xe (34,5} y€{34,5]

Propagators

implement non-basic constraints
translate into basic constraints
subscribe to variables in the store

get notified about changes

Propagators

x€e {35,495} y€E({35,4,9}

Propagators

x€e {35,495} y€E({35,4,9}

Propagators

amplify store

x€e({3,4,5} yE{45]

Propagators

xe {3,4,5}) ve{4,5}

Propagators

xe{4,5} yeE {45}

Computation Space

constraint store with connected propagators

Computation Space

xe{3,4,9} yeE{354,5]

constraint store with connected propagators

Important concepts

constraint store
stores basic constraints

propagator
implements non-basic constraint

computation space
constraint store + propagators

Branching

Bad news

Bad news

propagation
is not enough!

xe{4,3} y€E({4,9]}

Stable spaces

o < solution
for each x, dom(x) is a singleton

o [failure

there is at least one x with dom(x) empty

° ‘ choice

Branching

Branching

stable space

C\

| x€ (4,8} y€E({4,8} |

Branching

x € {4,858} y€E {4,5} . .
I _l domain split

7

I xE{4) yE{4,5) | I xE€ {8} yE{4,5) |

Branching

I x € {4,5} y € {4,5} \

7 \

x € {4} x & {4}

\

O\

l x € {4} y € {4} \ l x € {5} y € {4,5} \

Branching

I x € {4,5} y € {4,5} \

7 \

x € {4} x & {4}

\

O\

I x € {4} y € {4} \ I x € {5} y € {4,5} \

Search tree

Search tree

Branching heuristics

e naive heuristic

e pick some x with dom(x) > 1

vick value k from dom(x)

oranch with x € §nt and x & §n?

o first-fail heuristic:
pick x with dom(x) minimal

Branching strategy

e variable selection
e any variable
e minimal/maximal current domain
e value selection (for the left branch)
e maximal/minimal/medial element

e lower half/upper half of the domain

Search

e propagation and branching induce a search tree

e In what order are the nodes of that tree constructed?

e different problems require different search strategies

Static search strategies

Static search strategies

e explore the search tree

e standard search strategies
e depth-first search
e iterative deepening

e A~ search

Dynamic search

Dynamic search

e add new constraints during search
e dynamic search strategies
e iterative best-solution search

e branch-and-bound search

best solution
search

Best Solution Search

class of combinatorial structures C
objective function obj: C = N

find a structure s such that obj(s) is
optimal among all structures in C

Best Solution Search

e naive approach:
compute all solutions and choose the best one

e branch-and-bound approach:
e compute a first solution s
e add ‘better-than-s’ constraint

e compute the next solution, and iterate

Best Solution Search

e naive approach:
compute all solutions and choose the best one

e branch-and-bound approach:
prunes the
e compute a first solution s search tree

e add ‘better-than-s’ constraint

e compute the next solution, and iterate

Send Most Money

Send Most Money

MONEY
should be

MEYUNEL

SMM+-B &B

SMM+-B &B

unexplored

subtree

SMM+-B &B

SMM+-B &B

i

SMM+-B &B

o

SMM+-B &B

best solution

What this course will be about

Architecture

propagation:
prune impossible values

branching:
divide the problem into smaller parts

search:
interleave propagation and branching to find solutions

What you will learn

how to model combinatorial problems
how to solve them using CP

how to write new propagators

how to program new search strategies

how to apply CP to practical problems

Applications

timetabling

crew rostering

gate allocation at airports
sports league scheduling

natural language processing

Scheduling resources

tasks
duration, used resources

precedence constraints
task a must precede task b

resource constraints
at most one task per resource

First lab

e install the tools: http://www.gecode.org/

e compile the examples, and play with Gist

e implement a solver for Sudoku

http://www.ps.uni-sb.de/alice/
http://www.ps.uni-sb.de/alice/

Constraint Programming

e can be used to tackle hard combinatorial problems
e combines various interesting methodologies and techniques

e applications are ubiquitous

Constraint Programming

e can be used to tackle hard combinatorial problems
e combines various interesting methodologies and techniques

e applications are ubiquitous

knowledgeable

people are not!

Constraint Programming

compute with possible values
lower bound, upper bound

prune inconsistent values
guessing as last resort

factorize the problem
inferences + heuristics + search

What CP is not

no efficiency miracle:
hard problems remain hard problems

no replacement for specialized algorithms

no replacement for other programming paradigms

What you should bring

e broad interest in computer science
e theory and formal models
e practice and programming

e proactive style of learning
o try! explore! do!

e ask questions, and answer them

Caveat

Caveat

o CP is well-established ...
e international conferences

e many results & applications

Caveat

o CPis well-established ...
e international conferences
e many results & applications
... but not all of our tools are (yet).
some tools might not work (as expected)

some tools might be uncomfortable to work with

Organization

Literature

Literature

e Francesca Rossi, Peter van Beek, Toby Walsh (Eds.):
Handbook of Constraint Programming, Elsevier 2006

Literature

e Francesca Rossi, Peter van Beek, Toby Walsh (Eds.):
Handbook of Constraint Programming, Elsevier 2006

e Krzysztof R. Apt:
Principles of Constraint Programming, CUP, 2003

Literature

e Francesca Rossi, Peter van Beek, Toby Walsh (Eds.):
Handbook of Constraint Programming, Elsevier 2006

e Krzysztof R. Apt:
Principles of Constraint Programming, CUP, 2003

e Christian Schulte:
Programming Constraint Services, Springer-Verlag, 2002

Lectures

e 12 lectures in total (6 on foundations, 6 on advanced topics)
e last lecture on July 9

e no lecture on May 20 (Pentecost)

Tutorials

time to ask questions about the lecture and the labs
time to discuss advanced topics
first meeting: Thursday, 16:00, room E1.3.528

time slots for next meetings subject to negotiation

Labs

e explorative labs
e get familiar with the concepts
e get familiar with the tools

e graded labs
e four medium-sized projects

e determine 40% of your final grade

Exam

e 90 minutes, written, closed-book
e July 16 (last week of term)

® NO re-exam

Grading

® need to pass the exam in order to pass the course
e calculation of the final score

® points you reached in the exam (60%)

® points you reached in the graded labs (40%)

e pass with 50% of all possible points

Registration

e email with name + matriculation to tack@ps.uni-sb.de

® registration during the first three weeks of term

e deregistration during the first three weeks of term

mailto:tack@ps.uni-sb.de
mailto:tack@ps.uni-sb.de

Contact & Support

mailing list
subscribe on web site

office hours
Wednesdays, 14-15, room E1.3.517

during & after the lectures

Announcements

e all important announcements on the mailing list
e subscribe!

® or check the online archives regularly

Constraint Programming

Constraint Programming

e problem-solving technique

Constraint Programming

e problem-solving technique

e interleaves inferences & heuristics

Constraint Programming

e problem-solving technique
e interleaves inferences & heuristics

e combines various methodologies

Constraint Programming

problem-solving technique
interleaves inferences & heuristics
combines various methodologies

is fun!

Thanks for your attention!

