
A formal model

for Constraint Programming

Marco Kuhlmann

3rd May 2007

The purpose of this document is to outline a formal model for constraint programming.

It draws heavily from course slides made available by Christian Schulte.

Preliminaries We write N for the set of (positive) natural numbers. Given n ∈ N, we

write [n] for the set of all positive natural numbers up to and including n.

1 Constraint satisfaction problems

We start with a formal definition of constraint satisfaction problems. Remember that

informally, we introduced it as being specified by three components: a set of variables,

for each variable a sets of possible values for that variable, and a set of constraints.

Definition 1 Let n ∈ N. A constraint satisfaction problem with n variables is a pair

P = (D,C), where D is a finite set of values, called the domain of P , and C is a finite

collection of n-ary relations over D , called the constraints of P . �

Given a constraint satisfaction problem P = (D,C), we write dom(P) to refer to D ,

con(P) to refer to C , and var(P) to refer to the set {xi | i ∈ [n] } of problem variables,

where n is the arity of the relations in C . Note that problem variables are implicit in our

formalization of constraint satisfaction problems; this is to keep things simple.

Definition 2 Let P be a constraint satisfaction problem. An assignment for P is a

function α : var(P)→ dom(P). An assignment α is called a solution, if α ∈
⋂
C∈con(P) C .�

Note that assignments and solutions for P can also be seen as |var(P)|-tuples over

dom(P). We freely switch between the two views. We write ass(P) for the set of all

assignments and sol(P) for the set of all solutions of a constraint satisfaction problem P .

1

Example 1 Consider the problem P1 = ([3], {C1, C2}), where

C1 = {(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)} and

C2 = {(1,1), (2,1), (3,1), (2,2), (3,2), (3,3)} .

This problem has two problem variables, x1 and x2 . We can understand C1 as the con-

straint x1 ≤ x2 , and C2 as the constraint x2 ≤ x1 . There are nine possible assignments

for P1 ; each variable can take values from [3]. There are three solutions: (1,1), (2,2),
(3,3). We can understand the set of solutions as the equality constraint x1 = x2 . �

Constraint satisfaction problems provide a formal model for constraint programming,

but they only say what the problem and its solutions are, not how to compute them. In

the remainder of this document, we develop a more implementation-orientated model

for constraint programming.

2 Constraint stores

The first ingredient in our formal model is the constraint store. Informally, a con-

straint store represents our ‘current knowledge’ about a constraint satisfaction problem.

Formally, a store maps each problem variable to a set of possible values for that vari-

able. In contrast to a constraints satisfaction problem, this mapping can be efficiently

implemented—for example, by using lists of integer intervals for integer variables, and

lower bound and upper bound representations for set variables.

Definition 3 Let P be a constraint satisfaction problem. A constraint store for P is a

function s : var(P)→ P(dom(P)). �

We write S(P) for the set of all stores for a constraint satisfaction problem P . A

constraint store can be understood as a compact description of a set of assignments.

Definition 4 Let s be a constraint store for P . The set of assignments licensed by s is

defined as ass(s) := {α ∈ ass(P) | ∀x ∈ var(P). α(x) ∈ s(x) }. �

By their ability to represent sets of assignments, constraints stores can approximate

solutions of constraint satisfaction problems. But not every set of solutions can be

represented as the set of assignments licensed by a constraint store:

Example 2 Consider the constraint satisfaction problem P2 = ([2] ; {(1,2), (2,1)}). The

(single) constraint of this problem cannot be represented as the set of assignments of

any store. In fact, every store s for which sol(P) ⊆ ass(s) should hold needs to represent

the set of all assignments for P , ass(P) = {(1,1), (1,2), (2,1), (2,2)}. �

2

Note that every single assignment can be represented as the set of assignments licensed

by a constraint store. This in particular means that a constraint store can represent a

single solution of a constraint satisfaction problem.

Strengths of stores The cardinality of the set of assignments licensed by a store is a

measure for how much we know about the constraint satisfaction problem associated to

it: the fewer the number of licensed assignments, the fewer the uncertainty about the

possible values for the problem variables. To model this formally, we impose a partial

order on the set of all stores:

Definition 5 Let P be a constraint satisfaction problem. Given two constraint stores s1
and s2 for P , we say that s1 is stronger than s2 , and write s1 ≤ s2 , if s1(xi) ⊆ s2(xi)
holds for all variables xi ∈ var(P). �

The weakest store in this order is the store that maps every variable to the full domain;

in this case, ass(s) = ass(P). The basic idea behind our formal model of constraint

programming is to develop a way in which the weakest store can be successively strength-

ened to either a store that licenses a single solution of the original problem, or to a store

that does not license any solutions at all (a failure).

3 Propagators

The task of a propagator is to strengthen constraint stores by excluding impossible

values from the domains of one or more variables. Informally, propagators implement

constraints. Formally, a propagator for a constraint satisfaction problem P is a function

p : S(P)→ S(P) with two additional properties. These properties mirror two intuitions

about inferential processes.

Contracting A constraint store reflects our ‘current knowledge’ about a constraint

satisfaction problem. The first property of propagators says that applying a propagator

(an inference) should at most increase this knowledge.

Definition 6 Let P be a constraint satisfaction problem. A function p : S(P)→ S(P) is

called contracting, if p(s) ≤ s holds for all stores s ∈ S(P). �

Monotonicity The second property of propagators says that once ensured information

should always be accessible in the remainder of the inferential process—if we have

derived A∧ B , we should still be able to use implications A⇒ C and B ⇒ C .

3

Example 3 Consider the stores s1 = {x , {1,2}} and s2 = {x , {1}} and the propagator

p(s) = if s(x) = {1,2} then x , � else s . Then s1 > s2 , but p(s1) < p(s2). Arguably,

this is counter-intuitive. It is also problematic on a practical level, as it makes the result

of propagation dependent on the order in which propagators are executed. �

Definition 7 Let P be a constraint satisfaction problem. A function p : S(P)→ S(P) is

called monotonic, if s1 ≤ s2 implies that p(s1) ≤ p(s2), for all stores s1, s2 ∈ S(P). �

Definition 8 Let P be a constraint satisfaction problem. A propagator for P is a function

p : S(P)→ S(P) that is both contracting and monotonic. �

4

