Constraint Programming

Marco Kuhlmann & Guido Tack Lecture 4

Today: Constraint Propagation

Constraint propagation is a form of inference, not search, and as such is more "satisfying", both technically and aesthetically.

E.C. Freuder, 2005.

Brief recap: A formal model for CP

Several levels

CSP

first-order logic

propagators and stores

Gecode/J programs

Several levels

CSP

propagators and stores

CSPs

- A constraint satisfaction problem is a triple (V,D,C) with
 - V: a set of variables
 - D: a finite domain
 - C: a set of constraints over V and D
- A solution of a CSP is a variable assignment that satisfies all constraints

CSPs

- This representation is big:
 - Each constraint is represented in extension
 - ⇒ possibly exponential size
 - Conjunction = intersection
 - ⇒ possibly exponential size

From CSPs to Models and Stores

• CSP:

exponential representation

- good for theoretical considerations
- not implementable

From CSPs to Models and Stores

• CSP:

exponential representation

- good for theoretical considerations
- not implementable

Model / Store:

exponential computation

- close to an implementation
- still formal enough to reason about it

Models

- A model is a tuple (V, D, P, b) with
 - V, D: variables and domain as in CSPs
 - P: a set of *propagators*
 - b: a branching
- Model is the set of all models
- We know how to implement functions!

Stores

- A **store** captures *basic constraints*
- Store = $V \rightarrow 2^D$, mapping from variables to sets of values
- Propagators and branchings operate on stores
- $Store \subseteq Con!$ (slightly abusing notation)
- The only constraints we represent explicitly!

Propagators and branchings

- A propagator is a contracting, monotonic function
 p ∈ Store → Store
- A branching is a function

 $b \in Store \rightarrow Store \times Store$

such that

b(s).1 < s and b(s).2 < s and

 $b(s).1 \cup b(s).2 = s$

Solutions of models and stores

The **set of solutions** is defined as

$$sol((V, D, P, b), s) =$$

$$\{\alpha \mid store(\alpha) \subseteq S \land \forall p \in P : p(store(\alpha)) = store(\alpha)\}$$

(all assignments licensed by the store and accepted by all propagators)

$$\forall v : |s(v)| = 1$$

capture choice

$$|\forall v : s(v) = s_l(v) \cup s_r(v)|$$

$$\exists v : s(v) = s_l(v) \uplus s_r(v)$$

capture failure

$$\exists v : s(v) = \emptyset$$

capture solution

$$\forall v : |s(v)| = 1$$

capture failure

$$\exists v : s(v) = \emptyset$$

capture choice

$$\forall v : s(v) = s_l(v) \cup s_r(v)$$

$$\exists v : s(v) = s_l(v) \uplus s_r(v)$$

capture solution

$$\forall v : |s(v)| = 1$$

capture failure

$$\exists v : s(v) = \emptyset$$

capture choice

$$\forall v : s(v) = s_l(v) \cup s_r(v)$$

$$\exists v : s(v) = s_l(v) \uplus s_r(v)$$

$Store = V \rightarrow 2^{D}$

expressive enough!

capture solution

$$\forall v : |s(v)| = 1$$

capture failure

$$\exists v : s(v) = \emptyset$$

propagator:

 p_C implements C:

$$\alpha \in C \Leftrightarrow p_C(store(\alpha)) = store(\alpha)$$

capture choice

$$\forall v : s(v) = s_l(v) \cup s_r(v)$$

$$\exists v : s(v) = s_l(v) \uplus s_r(v)$$

branching:

$$b(s) = (s_l, s_r)$$

capture solution

$$\forall v : |s(v)| = 1$$

capture failure

$$\exists v : s(v) = \emptyset$$

propagator:

 p_C implements C:

$$\alpha \in C \Leftrightarrow p_C(store(\alpha)) = store(\alpha)$$

use propagators for checking!

capture choice

$$\forall v : s(v) = s_l(v) \cup s_r(v)$$

$$\exists v : s(v) = s_l(v) \uplus s_r(v)$$

branching:

$$b(s) = (s_l, s_r)$$

branchings generate assignments!

```
gt( (V,D,P,b), s)

if s not singleton
  (s<sub>l</sub>,s<sub>r</sub>) := b(s)
  return gt( (V,D,P,b), s<sub>l</sub>) or
     gt( (V,D,P,b), s<sub>r</sub>)
```

```
gt( (V,D,P,b), s)

use branching

if s not singleton
    (s<sub>l</sub>,s<sub>r</sub>) := b(s)

return gt( (V,D,P,b), s<sub>l</sub>) or
    gt( (V,D,P,b), s<sub>r</sub>)
```

```
gt( (V,D,P,b), s)

use branching
if s not singleton
  (s<sub>l</sub>,s<sub>r</sub>) := b(s)
  return gt( (V,D,P,b), s<sub>l</sub>) or
  gt( (V,D,P,b), s<sub>r</sub>)
recursively
```

```
gt((V,D,P,b), s)
                         use branching
  if s not singleton
                          to generate
    (s_1, s_r) := b(s)
                                           search
    return gt( (V,D,P,b), s<sub>l</sub>) or
                                         recursively
            qt((V,D,P,b), s_r)
  else
    forall p∈P
      if p(s) is failed return false;
    return true;
                          use propagators to test
```

```
gt((V,D,P,b), s)
                            partition
  if s not singleton
                          search space
    (s_1, s_r) := b(s)
                                          search
    return gt( (V,D,P,b), s<sub>l</sub>) or
                                       exhaustively
            gt((V,D,P,b), s_r)
  else
    forall p∈P
      if p(s) is failed return false;
    return true;
                          implement constraints
```

```
gt((V,D,P,b), s)
                           complete-
  if s not singleton
    (s_1, s_r) := b(s)
    return gt( (V,D,P,b), s<sub>l</sub>) or
                                            ness
            gt((V,D,P,b), s_r)
  else
    forall p∈P
      if p(s) is failed return false;
    return true;
                                correctness
```

Towards propagation

```
gt((V,D,P,b), s)
  if s not singleton
    (s_l, s_r) := b(s)
    return gt( (V,D,P,b), s<sub>l</sub>) or
            gt((V,D,P,b), s_r)
  else
    forall p∈P
      if p(s) is failed return false;
    return true;
                          use propagators to test
```

Towards propagation

```
gt((V,D,P,b), s)
  if s not singleton
    (s_l, s_r) := b(s)
    return gt( (V,D,P,b), s<sub>l</sub>) or
            gt((V,D,P,b), s_r)
  else
    forall p∈P
      if p(s) is failed return false;
    return true;
                           use propagators to ...
```

Towards propagation

propagate!

```
gt((V,D,P,b), s)
  s' := propagate( (V,D,P,b), s)
  if s' not singleton
    (s_l, s_r) := b(s')
    return gt( (V,D,P,b), s<sub>l</sub>) or
            gt((V,D,P,b), s_r)
  else
      if s' is failed return false;
    return true;
```

Naive constraint propagation

Preliminaries: Well-founded order

- A strict partial order (S, <) is **well-founded** iff no infinite sequence $s_1, s_2, s_3, ...$ with $s_i \in S$ exists s.th. $x_{i+1} < x_i$
- ullet Examples: $(\mathbb{N},<)$, $(2^X,\subset)$ and $(\mathrm{Store},<)$

Preliminaries: Lexicographic order

• For two partial orders (X, \le_x) and (Y, \le_y) , the lexicographic order $(X \times Y, \le_{lex})$ is defined as $(x_1,y_1) \le_{lex} (x_2,y_2) \Leftrightarrow x_1 \le_x x_2 \text{ and } x_1 \ne x_2 \text{ or } x_1 = x_2 \text{ and } y_1 \le_y y_2$

• Well-founded, if (X, \le_x) and (Y, \le_y) are well-founded

Preliminaries: Fixpoint

• For a function $f \in X \rightarrow X$

 $x \in X$ is a **fixpoint** of f iff

$$f(x) = x$$

Naive constraint propagation

- We are looking for a function
 - propagate: *Model* × *Store* → *Store*
- Starting from an initial store
- Returning store where all possible constraint propagation has been performed
- For now: focus on the basic idea

Naive propagation function

```
propagate ( (V,D,P,b), s)
while p∈P and p(s)≠s do
   s := p(s);
return s;
```

• Questions:

- Does it terminate?
- What does it compute?

Naive propagation: termination

```
propagate ( (V,D,P,b), s)
while p∈P and p(s)≠s do
   s := p(s);
return s;
```

• Consider store s_i at iteration *i*:

```
S_{i+1} < S_i
```

As (Store,<) is well-founded, the loop terminates

Naive propagation: result

For propagate(M,s) = s', we can show

- sol (M, s) = sol (M, s')
- for all $p \in prop(M)$: p(s') = s'

Naive propagation: result

For propagate(M,s) = s', we can show

no solution removed

- sol (M, s) = sol (M, s')
- for all $p \in prop(M)$: p(s') = s'

Naive propagation: result

For propagate(M,s) = s', we can show

no solution removed

- sol (M, s) = sol (M, s')
- for all $p \in prop(M)$: p(s') = s'

largest simultaneous fixpoint

Fixpoint

Assume propagate((V,D,P,b),s) = s'

Then s' is the largest simultaneos fixpoint of P with s'≤s. That means:

- for all $p \in P$: p(s') = s' (clear from termination)
- any other fixpoint is smaller (proof needed!)

```
propagate ( (V,D,P,b), s)
while p∈P and p(s)≠s do
   s := p(s);
return s;
```

Fixpoint

Assume propagate((V,D,P,b),s) = s'

Then s' is the largest simultaneos fixpoint of P with s'≤s. That means:

- for all $p \in P$: p(s') = s' (clear from termination)
- any other fixpoint is smaller (proof needed!)

Fixpoint

Assume propagate((V,D,P,b),s) = s'

Then s' is the largest simultaneos fixpoint of P with s'≤s. That means:

- for all $p \in P$: p(s') = s' (clear from termination)
- any other fixpoint is smaller (proof needed!)

Largest fixpoint

Let p_i be the propagator of the i-th iteration

$$s_i := p_i(s_{i-1})$$
 for $i > 0$, $s_0 = s$

- Loop terminates after n iterations with s_n
- Assume t is simultaneous fixpoint with $t \le s$
- Show $t \leq s_n$
- Prove by induction over i that $t \le s_i$

```
propagate ( (V,D,P,b), s)
while p∈P and p(s)≠s do
   s := p(s);
return s;
```

Largest fixpoint

Let p_i be the propagator of the i-th iteration

$$s_i := p_i(s_{i-1})$$
 for $i > 0$, $s_0 = s$

- Loop terminates after n iterations with s_n
- Assume t is simultaneous fixpoint with $t \le s$
- Show $t \leq s_n$
- Prove by induction over i that $t \le s_i$

Largest fixpoint

Let p_i be the propagator of the i-th iteration

$$s_i := p_i(s_{i-1})$$
 for $i > 0$, $s_0 = s$

- Loop terminates after n iterations with s_n
- Assume t is simultaneous fixpoint with $t \le s$
- Show $t \leq s_n$
- Prove by induction over i that $t \le s_i$

Largest fixpoint: base case

For i=0:

 $t \le s_0$ because s_0 =s and we assumed $t \le s$

Largest fixpoint: induction step

From i to i+1:

$$t \leq s_i$$

$$\Rightarrow p_{i+1}(t) \leq p_{i+1}(s_i)$$

$$\Rightarrow t=p_{i+1}(t) \leq p_{i+1}(s_i)$$

$$\Rightarrow t \leq p_{i+1}(s_i) = s_{i+1}$$

$$\Rightarrow t \leq s_{i+1}$$

p_{i+1} monotonic

t is fixpoint of pi+1

definition of si

What makes this naive?

- Termination relies on strict contraction
- We always have to check all propagators for one that can strictly contract

Ideas:

- Maintain propagators which are known to be at fixpoint
- Look at the variables that propagators actually compute with
 - ⇒ Dependency-directed propagation

```
propagate ( (V,D,P,b), s)
while p∈P and p(s)≠s do
   s := p(s);
return s;
```

What makes this naive?

- Termination relies on strict contraction
- We always have to check all propagators for one that can strictly contract

Ideas:

- Maintain propagators which are known to be at fixpoint
- Look at the variables that propagators actually compute with
 - ⇒ Dependency-directed propagation

What makes this naive?

- Termination relies on strict contraction
- We always have to check all propagators for one that can strictly contract

Ideas:

- Maintain propagators which are known to be at fixpoint
- Look at the variables that propagators actually compute with
 - ⇒ Dependency-directed propagation

Realistic constraint propagation

Ideas for improving propagation

- Propagator narrows only some domains
 - re-propagate only propagators that "care about" the changed variables
- Maintain a set of "dirty" propagators
 - dirty = possibly not at fixpoint for current store
 - all "clean" propagators known to be at fixpoint
 - only propagate dirty propagators

Scope of a propagator

- scope(p): variables that the propagator cares about
- for all variables *outside* the scope of *p*:
 - p does not consider their domain for propagation (no input)
 - p does not narrow their domain (no output)

Dependency-directed propagation

- maintain a set DP of "dirty" propagators
- chose next propagator from DP instead of P
- when run, remove propagator from DP
- compute changed variables CV
- add all p' with $scope(p') \cap CV \neq \emptyset$ to DP
- note: this may add p again!

Improved propagation

```
propagate ((V,D,P,b), s_0)
  s := s_0; DP = P;
  while DP \neq \emptyset do
     choose p∈DP;
    s' := p(s); DP = DP-\{p\};
    MV := \{ x \in V \mid s(x) \neq s'(x) \};
    N := \{ q \in P \mid \exists x \in var(q) : x \in MV \};
    DP := DP \cup N;
    S := S';
  return s;
```

Improved propagation

- Does it still compute the largest sim. fixpoint?
 - Prove using loop invariant
- Does it terminate?
 - not trivial any more, as possibly $s_{i+1} = s_{i!}$

Loop invariant

The loop has the following invariant:

for all
$$p \in P - DP$$
: $p(s) = s$

• After termination, we have $DP=\emptyset$, so

for all
$$p \in P$$
: $p(s) = s$

- Proof obligations:
 - invariant holds initially
 - invariant is invariant

Loop invariant

- Holds initially, as $P-DP=\emptyset$ (initialization: DP := P)
- Is invariant:

Improved propagation - fixpoint

- Loop invariant guarantees fixpoint
- As for naive propagation, it is the largest simultaneous fixpoint
 - proof for naive version still works here

Improved propagation - termination

- Insight:
 - if MV=Ø, then p is removed from DP
 - if $MV \neq \emptyset$, then p(s) < s
- Consider pairs (s_i, DP_i) with
 - s_i the store at the i-th iteration
 - DP_i the set DP at the i-th iteration
- Strictly decreasing w.r.t. well-founded lexicographic order of (Store,<) and $(2^P, \subset)$

Further improvements

Using fixpoint knowledge

• Up to now:

to find out whether p is at fixpoint, we have to propagate p!

Idea:

let the propagator provide information about whether it is at fixpoint

Subsumed propagators

- A propagator is **subsumed** by a store s, iff for all $s' \le s$: p(s') = s'
- All stronger stores are fixpoints
- (p is entailed by s, s entails p, s subsumes p)
- Remove p from P! Not needed from now on

Subsumed propagator: example

Consider the propagator p_≤ for x≤y:

$$p_{\leq}(s) = \{ x \rightarrow \{ n \in s(x) \mid n \leq \max(s(y)) \},$$
$$y \rightarrow \{ n \in s(y) \mid n \geq \min(s(x)) \} \}$$

• p_{\leq} is entailed by $s = \{x \rightarrow \{1,2,3\}, y \rightarrow \{3,4,5\}\}$

$$p_{\leq}(s) = \{ x \to \{ n \in s(x) \mid n \leq max(s(y)) \},\$$

 $y \to \{ n \in s(y) \mid n \geq min(s(x)) \} \}$

Fixpoints

- Let us look at p_≤ again
- After executing p_{\leq} , we can show that it is at fixpoint!
- But: $var(p_{\le})=\{x,y\}$, so we add p_{\le} to DP
- How can we avoid that?

First idea: idempotent functions

• A function $f \in X \rightarrow X$ is **idempotent** iff

for all
$$x \in X$$
: $f(f(x)) = f(x)$

- For propagators:
 - p(p(s)) = p(s), for all stores!
 - very strong property!
 - (but required in some CP systems, e.g. Mozart)

Better: weak idempotence

• A function $f \in X \rightarrow X$ is **idempotent** on $x \in X$ iff

$$f(f(x)) = f(x)$$

now for just one element!

For propagators, this means

if p is idempotent on s, it is not necessarily idempotent on s' with s'≤s

How to find out?

Propagator returns status message

```
p ∈ Store → SM×Store
with SM = {fix, nofix, subsumed}
```

- p(s) = (fix, s'): s' is fixpoint for p
- p(s) = (subsumed, s'): s' subsumes p
- p(s) = (nofix, s'): possibly no fixpoint, as before

```
propagate ((V,D,P,b), s_0)
  s := s_0; DP = P;
  while DP \neq \emptyset do
     choose p∈DP;
     (stat,s') := p(s); DP = DP-\{p\};
     if stat=subsumed then P:=P-{p};
     MV := \{ x \in V \mid s(x) \neq s'(x) \};
     N := \{ q \in P \mid \exists x \in var(q) : x \in MV \};
     if stat=fix then N:=N-{p};
     DP := DP \cup N;
     s := s';
  return (P,s);
```

```
propagate ((V,D,P,b), s_0)
  s := s_0; DP = P;
  while DP \neq \emptyset do
     choose p∈DP;
    (stat,s') := p(s); DP = DP-\{p\};
     if stat=subsumed then P:=P-{p};
     MV := \{ x \in V \mid s(x) \neq s'(x) \};
     N := \{ q \in P \mid \exists x \in var(q) : x \in MV \};
     if stat=fix then N:=N-{p};
     DP := DP \cup N;
     s := s';
  return (P,s);
```

```
propagate ((V,D,P,b), s_0)
  s := s_0; DP = P;
  while DP \neq \emptyset do
     choose p∈DP;
    (stat,s') := p(s); DP = DP-\{p\};
    if stat=subsumed then P:=P-{p};)
     MV := \{ x \in V \mid s(x) \neq s'(x) \};
     N := \{ q \in P \mid \exists x \in var(q) : x \in MV \};
     if stat=fix then N:=N-{p};
     DP := DP \cup N;
     s := s';
  return (P,s);
```

```
propagate ((V,D,P,b), s_0)
  s := s_0; DP = P;
  while DP \neq \emptyset do
     choose p∈DP;
    (stat,s') := p(s); DP = DP-\{p\};
    if stat=subsumed then P:=P-{p};)
     MV := \{ x \in V \mid s(x) \neq s'(x) \};
     N := \{ q \in P \mid \exists x \in var(q) : x \in MV \};
    if stat=fix then N:=N-{p};
     DP := DP \cup N;
     s := s';
  return (P,s);
```

```
propagate ((V,D,P,b), s_0)
  s := s_0; DP = P;
  while DP \neq \emptyset do
     choose p∈DP;
     (stat,s') := p(s); DP = DP-\{p\};
    if stat=subsumed then P:=P-{p};)
     MV := \{ x \in V \mid s(x) \neq s'(x) \};
     N := \{ q \in P \mid \exists x \in var(q) : x \in MV \};
    if stat=fix then N:=N-{p};
     DP := DP \cup N;
     S := S';
  return (P,s);
```

Correctness

- We have to check that
 - the invariant is still invariant
 - all solutions are preserved
 - it still computes the largest simultaneous fixpoint
- Argument: fixpoints!

Propagation events

- For many propagators, we can easily decide whether still at fixpoint when domain changes
- We need to know how the domain changed
- Describe by propagation event (or just event)

Events: example

Take the propagator p_≤ again as an example

$$p_{\leq}(s) = \{ x \rightarrow \{ n \in s(x) \mid n \leq \max(s(y)) \},$$
$$y \rightarrow \{ n \in s(y) \mid n \geq \min(s(x)) \} \}$$

Only propagate if max(s(y)) or min(s(x)) changes!

Events: another example

• Take the propagator p_{\neq} as an example

$$p_{\neq}(s) = \{ x \rightarrow s(x) - single(s(y)), \\ y \rightarrow s(y) - single(s(x)) \}$$

where single(n) = n, single(X) = X otherwise

Only propagate if x or y become assigned!

Events

Typical events:

• fix(x)

• min(x)

• max(x)

• any(x)

x is assigned

minimum of x changed

maximum of x changed

domain of x changed

- Clearly overlap:
 - fix(x) implies any(x) and min(x) or max(x)
 - min(x) or max(x) imply any(x)

Computing events

• When the store changes, for s'≤s:

$$events(s, s') = \{any(x) \mid s'(x) \subset s(x)\} \cup \{min(x) \mid min s'(x) > min s(x)\} \cup \{max(x) \mid max s'(x) < max s(x)\} \cup \{fix(x) \mid |s'(x)| = 1 \land |s(x)| > 1\}$$

• Events are monotonic:

$$s'' \le s' \le s$$
: $events(s, s'') = events(s, s') \cup events(s', s'')$

Computing events: example

Given two stores

$$s_1 = \{x_1 \mapsto \{1, 2, 3\}, x_2 \mapsto \{3, 4, 5, 6\}, x_3 \mapsto \{0, 1\}, x_4 \mapsto \{7, 8, 10\}\}\}$$

$$s_2 = \{x_1 \mapsto \{1, 2\}, x_2 \mapsto \{3, 5, 6\}, x_3 \mapsto \{1\}, x_4 \mapsto \{7, 8, 10\}\}$$

Then

 $events(s_1, s_2) = {\max(x_1), \arg(x_1), \arg(x_2), \gcd(x_3), \min(x_3), \min(x_3)}$

Event sets for propagators

- Associate with every propagator p an event set es(p)
- Required properties:
 - es(p) must contain some events that occur between stores s and s', if $s' \le s$, p(s) = s, $p(s') \ne s$
 - if p(p(s))≠p(s), then es(p) must occur some events from events(s, p(s))

Propagation with events

```
propagate ((V,D,P,b), s_0)
  s := s_0; DP = P;
  while DP \neq \emptyset do
     choose p∈DP;
     (stat,s') := p(s); DP = DP-\{p\};
     if stat=subsumed then P:=P-{p};
    N := { q \in P \mid events(s,s') \cap es(q) \neq \emptyset };
     if stat=fix then N:=N-{p};
     DP := DP \cup N;
     s := s';
  return (P,s);
```

Summary

CSPs, models and stores

- CSPs are abstract, mathematical objects
 - good for reasoning and proofs
 - not directly implementable
- Stores capture basic constraints
- Models containt propagators and branchings
 - propagators implement constraints on stores
 - branchings generate all assignments

Constraint propagation

- Propagators are contracting, monotonic functions on stores
- Compute largest simultaneous fixpoint of propagators
- Propagation preserves solutions
- Propagators are strong enough to decide for assignments

Efficient constraint propagation

- Dependency-directed propagation
 - only re-run propagators whose variables have changed
- Use fixpoint knowledge to avoid useless re-execution
 - idempotence, subsumption, events
 - knowledge is provided by the propagator

Pointers

- Finite Domain Constraint Programming Systems, Christian Schulte, Mats Carlsson. In: Handbook of CP, 2006.
- Efficient Constraint Propagation Engines, Christian Schulte, Peter J. Stuckey. CoRR entry, 2006.

Thank you for your attention.