
Constraint Programming
Marco Kuhlmann & Guido Tack

Lecture 4

Today:
Constraint Propagation

Constraint propagation is a form of inference, not search,
and as such is more "satisfying", both technically and

aesthetically.

E.C. Freuder, 2005.

Brief recap:
A formal model for CP

Several levels

CSP

first-order logic

propagators and stores

Gecode/J programs

Several levels

CSP

propagators and stores

CSP

propagators and stores

CSPs

• A constraint satisfaction problem is a triple (V,D,C) with

• V: a set of variables

• D: a finite domain

• C: a set of constraints over V and D

• A solution of a CSP is a variable assignment that satisfies all
constraints

CSPs

• This representation is big:

• Each constraint is represented in extension

⇒ possibly exponential size

• Conjunction = intersection

⇒ possibly exponential size

From CSPs to Models and
Stores

• CSP:

exponential representation

• good for theoretical
considerations

• not implementable

From CSPs to Models and
Stores

• CSP:

exponential representation

• good for theoretical
considerations

• not implementable

• Model / Store:

exponential computation

• close to an
implementation

• still formal enough to
reason about it

Trading space for time

polynomial space
on one path

Trading space for time

Trading space for time

Trading space for time

exponential time
for complete
exploration

Models

• A model is a tuple (V, D, P, b) with

• V, D: variables and domain as in CSPs

• P: a set of propagators

• b: a branching

• Model is the set of all models

• We know how to implement functions!

Stores

• A store captures basic constraints

• Store = V→2D, mapping from variables to sets of values

• Propagators and branchings operate on stores

• Store ⊆ Con! (slightly abusing notation)

• The only constraints we represent explicitly!

Propagators and branchings

• A propagator is a contracting, monotonic function

p ∈ Store → Store

• A branching is a function

b ∈ Store → Store × Store

such that

b(s).1 < s and b(s).2 < s and

b(s).1 ∪ b(s).2 = s

Solutions of models and stores

The set of solutions is defined as

(all assignments licensed by the store and accepted by all
propagators)

sol((V,D, P, b), s) =
{α | store(α) ⊆ S ∧

∀p ∈ P : p(store(α)) = store(α)}

Generate and test

x, y ∈ {0,1,2}

x = y

Generate and test

x≠0

x=2

y≠0

y=2

x, y ∈ {0,1,2}

x = y

Generate and test
Stores need to

Generate and test

capture failure

capture choicecapture solution

Stores need to

Generate and test

capture solution

capture failure

capture choice

∀v : |s(v)| = 1

∃v : s(v) = ∅

∀v : s(v) = sl(v) ∪ sr(v)
∃v : s(v) = sl(v) $ sr(v)

Generate and test

capture failure
∃v : s(v) = ∅

capture choice
∀v : s(v) = sl(v) ∪ sr(v)
∃v : s(v) = sl(v) $ sr(v)

capture solution

∀v : |s(v)| = 1

Generate and test

capture failure
∃v : s(v) = ∅

capture choice
∀v : s(v) = sl(v) ∪ sr(v)
∃v : s(v) = sl(v) $ sr(v)

capture solution

∀v : |s(v)| = 1

Store = V→2D

expressive enough!

Generate and test

capture failure
∃v : s(v) = ∅

capture choice
∀v : s(v) = sl(v) ∪ sr(v)
∃v : s(v) = sl(v) $ sr(v)

capture solution

∀v : |s(v)| = 1

α ∈ C ⇔ pC(store(α)) = store(α)
pC Cimplements :

b(s) = (sl, sr)
branching:

propagator:

Generate and test

capture failure
∃v : s(v) = ∅

capture choice
∀v : s(v) = sl(v) ∪ sr(v)
∃v : s(v) = sl(v) $ sr(v)

capture solution

∀v : |s(v)| = 1

α ∈ C ⇔ pC(store(α)) = store(α)
pC Cimplements :

b(s) = (sl, sr)
branching:

propagator:

use propagators for checking!

branchings generate assignments!

Generate and test
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

Generate and test
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

use branching
to generate

Generate and test
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

use branching
to generate

search
recursively

Generate and test
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true;

use branching
to generate

use propagators to test

search
recursively

Generate and test
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true;

partition
search space

search
exhaustively

implement constraints

Generate and test
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true;

complete-

ness

correctness

Towards propagation
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true; use propagators to ...use propagators to test

Towards propagation
gt((V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true; use propagators to ...

Towards propagation
gt((V,D,P,b), s)
s' := propagate((V,D,P,b), s)
if s' not singleton
(sl,sr) := b(s')
return gt((V,D,P,b), sl) or
 gt((V,D,P,b), sr)

else
forall p∈P
if s' is failed return false;

return true;

propagate!

Naive constraint propagation

Preliminaries:
Well-founded order

• A strict partial order (S, <) is well-founded iff no infinite
sequence s1,s2,s3,... with si∈S exists s.th. xi+1<xi

• Examples: , and(2X ,⊂)(N, <) (Store, <)

Preliminaries:
Lexicographic order

• For two partial orders (X,≤x) and (Y,≤y), the

lexicographic order (X×Y, ≤lex) is defined as

(x1,y1) ≤lex (x2,y2) ⇔ x1 ≤x x2 and x1≠x2 or

 x1=x2 and y1 ≤y y2

• Well-founded, if (X,≤x) and (Y,≤y) are well-founded

Preliminaries:
Fixpoint

• For a function f ∈ X→X

x∈X is a fixpoint of f iff

 f(x) = x

Naive constraint propagation

• We are looking for a function

propagate: Model × Store → Store

• Starting from an initial store

• Returning store where all possible constraint propagation
has been performed

• For now: focus on the basic idea

Naive propagation function

• Questions:

• Does it terminate?

• What does it compute?

propagate ((V,D,P,b), s)

while p∈P and p(s)≠s do
s := p(s);

return s;

Naive propagation: termination

• Consider store si at iteration i:

 si+1 < si

• As (Store,<) is well-founded, the loop terminates

propagate ((V,D,P,b), s)

while p∈P and p(s)≠s do
s := p(s);

return s;

Naive propagation: result

• For propagate(M,s) = s', we can show

• sol (M, s) = sol (M, s')

• for all p∈prop(M): p(s') = s'

Naive propagation: result

• For propagate(M,s) = s', we can show

• sol (M, s) = sol (M, s')

• for all p∈prop(M): p(s') = s'

no solution
removed

Naive propagation: result

• For propagate(M,s) = s', we can show

• sol (M, s) = sol (M, s')

• for all p∈prop(M): p(s') = s'

largest
simultaneous

fixpoint

no solution
removed

Fixpoint

• Assume propagate((V,D,P,b),s) = s'

Then s' is the largest simultaneos fixpoint of P with s'≤s.
That means:

• for all p∈P: p(s') = s' (clear from termination)

• any other fixpoint is smaller (proof needed!)

Fixpoint

• Assume propagate((V,D,P,b),s) = s'

Then s' is the largest simultaneos fixpoint of P with s'≤s.
That means:

• for all p∈P: p(s') = s' (clear from termination)

• any other fixpoint is smaller (proof needed!)

propagate ((V,D,P,b), s)

while p∈P and p(s)≠s do
s := p(s);

return s;

Fixpoint

• Assume propagate((V,D,P,b),s) = s'

Then s' is the largest simultaneos fixpoint of P with s'≤s.
That means:

• for all p∈P: p(s') = s' (clear from termination)

• any other fixpoint is smaller (proof needed!)

Largest fixpoint

• Let pi be the propagator of the i-th iteration

si := pi (si-1) for i > 0, s0 = s

• Loop terminates after n iterations with sn

• Assume t is simultaneous fixpoint with t ≤ s

• Show t ≤ sn

• Prove by induction over i that t ≤ si

Largest fixpoint

• Let pi be the propagator of the i-th iteration

si := pi (si-1) for i > 0, s0 = s

• Loop terminates after n iterations with sn

• Assume t is simultaneous fixpoint with t ≤ s

• Show t ≤ sn

• Prove by induction over i that t ≤ si

propagate ((V,D,P,b), s)

while p∈P and p(s)≠s do
s := p(s);

return s;

Largest fixpoint

• Let pi be the propagator of the i-th iteration

si := pi (si-1) for i > 0, s0 = s

• Loop terminates after n iterations with sn

• Assume t is simultaneous fixpoint with t ≤ s

• Show t ≤ sn

• Prove by induction over i that t ≤ si

Largest fixpoint: base case

For i=0:

t ≤ s0 because s0=s and we assumed t ≤ s

Largest fixpoint: induction step

From i to i+1:

t ≤ si

⇒ pi+1(t) ≤ pi+1(si) pi+1 monotonic

⇒ t=pi+1(t) ≤ pi+1(si) t is fixpoint of pi+1

⇒ t ≤ pi+1(si)=si+1 definition of si

⇒ t ≤ si+1

What makes this naive?

• Termination relies on strict contraction

• We always have to check all propagators for one that can
strictly contract

Ideas:

• Maintain propagators which are known to be at fixpoint

• Look at the variables that propagators actually compute with

⇒ Dependency-directed propagation

What makes this naive?

• Termination relies on strict contraction

• We always have to check all propagators for one that can
strictly contract

Ideas:

• Maintain propagators which are known to be at fixpoint

• Look at the variables that propagators actually compute with

⇒ Dependency-directed propagation

propagate ((V,D,P,b), s)

while p∈P and p(s)≠s do
s := p(s);

return s;

What makes this naive?

• Termination relies on strict contraction

• We always have to check all propagators for one that can
strictly contract

Ideas:

• Maintain propagators which are known to be at fixpoint

• Look at the variables that propagators actually compute with

⇒ Dependency-directed propagation

Realistic constraint propagation

Ideas for improving propagation

• Propagator narrows only some domains

• re-propagate only propagators that "care about" the
changed variables

• Maintain a set of "dirty" propagators

• dirty = possibly not at fixpoint for current store

• all "clean" propagators known to be at fixpoint

• only propagate dirty propagators

Scope of a propagator

• scope(p): variables that the propagator cares about

• for all variables outside the scope of p:

• p does not consider their domain for propagation

(no input)

• p does not narrow their domain

(no output)

Dependency-directed
propagation

• maintain a set DP of "dirty" propagators

• chose next propagator from DP instead of P

• when run, remove propagator from DP

• compute changed variables CV

• add all p' with scope(p')∩CV ≠ ∅ to DP

• note: this may add p again!

Improved propagation
propagate ((V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
s' := p(s); DP = DP−{p};

MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | ∃x∈var(q): x∈MV };
DP := DP ∪ N;
s := s';

return s;

Improved propagation

• Does it still compute the largest sim. fixpoint?

• Prove using loop invariant

• Does it terminate?

• not trivial any more, as possibly si+1 = si!

Loop invariant

• The loop has the following invariant:

for all p∈P−DP: p(s) = s

• After termination, we have DP=∅, so

for all p∈P: p(s) = s

• Proof obligations:

• invariant holds initially

• invariant is invariant

Loop invariant

• Holds initially, as P−DP=∅ (initialization: DP := P)

• Is invariant:

s' := p(s); DP = DP−{p};
MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | ∃x∈var(q): x∈MV };
DP := DP ∪ N; re-add propagators

with modified
variables

Improved propagation - fixpoint

• Loop invariant guarantees fixpoint

• As for naive propagation, it is the largest simultaneous
fixpoint

• proof for naive version still works here

Improved propagation -
termination

• Insight:

• if MV=∅, then p is removed from DP

• if MV≠∅, then p(s) < s

• Consider pairs (si, DPi) with

• si the store at the i-th iteration

• DPi the set DP at the i-th iteration

• Strictly decreasing w.r.t. well-founded lexicographic order of
(Store,<) and (2P, ⊂)

Further improvements

Using fixpoint knowledge

• Up to now:

to find out whether p is at fixpoint, we have to propagate p!

• Idea:

let the propagator provide information about whether it is at
fixpoint

Subsumed propagators

• A propagator is subsumed by a store s, iff

for all s'≤s: p(s') = s'

• All stronger stores are fixpoints

• (p is entailed by s, s entails p, s subsumes p)

• Remove p from P! Not needed from now on

Subsumed propagator: example

• Consider the propagator p≤ for x≤y:

p≤(s) = { x → { n∈s(x) | n≤max(s(y))},

 y → { n∈s(y) | n≥min(s(x))}}

• p≤ is entailed by s = { x → {1,2,3}, y → {3,4,5} }

Fixpoints

• Let us look at p≤ again

• After executing p≤, we can show that it is at fixpoint!

• But: var(p≤)={x,y}, so we add p≤ to DP

• How can we avoid that?

p≤(s) = { x → { n∈s(x) | n≤max(s(y))},

 y → { n∈s(y) | n≥min(s(x))}}

First idea: idempotent functions

• A function f∈X→X is idempotent iff

for all x∈X: f(f(x)) = f(x)

• For propagators:

• p(p(s)) = p(s), for all stores!

• very strong property!

• (but required in some CP systems, e.g. Mozart)

Better: weak idempotence

• A function f∈X→X is idempotent on x∈X iff

 f(f(x)) = f(x) now for just one element!

• For propagators, this means

if p is idempotent on s, it is not necessarily idempotent on s'
with s'≤s

How to find out?

• Propagator returns status message

p ∈ Store→ SM×Store

with SM = {fix, nofix, subsumed}

• p(s) = (fix, s'): s' is fixpoint for p

• p(s) = (subsumed, s'): s' subsumes p

• p(s) = (nofix, s'): possibly no fixpoint, as before

Extend propagation function
propagate ((V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | ∃x∈var(q): x∈MV };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);

Extend propagation function
propagate ((V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | ∃x∈var(q): x∈MV };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);

Extend propagation function
propagate ((V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | ∃x∈var(q): x∈MV };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);

Extend propagation function
propagate ((V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | ∃x∈var(q): x∈MV };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);

Extend propagation function
propagate ((V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | ∃x∈var(q): x∈MV };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);

Correctness

• We have to check that

• the invariant is still invariant

• all solutions are preserved

• it still computes the largest simultaneous fixpoint

• Argument: fixpoints!

Propagation events

• For many propagators, we can easily decide whether still at
fixpoint when domain changes

• We need to know how the domain changed

• Describe by propagation event (or just event)

Events: example

• Take the propagator p≤ again as an example

p≤(s) = { x → { n∈s(x) | n≤max(s(y))},

 y → { n∈s(y) | n≥min(s(x))}}

• Only propagate if max(s(y)) or min(s(x)) changes!

Events: another example

• Take the propagator p≠ as an example

p≠(s) = { x → s(x) − single(s(y)),
 y → s(y) − single(s(x))}

 where single({n}) = {n}, single(X)=X otherwise

• Only propagate if x or y become assigned!

Events

• Typical events:

• fix(x) x is assigned

• min(x) minimum of x changed

• max(x) maximum of x changed

• any(x) domain of x changed

• Clearly overlap:

• fix(x) implies any(x) and min(x) or max(x)

• min(x) or max(x) imply any(x)

Computing events

• When the store changes, for s'≤s:

• Events are monotonic:

s′′ ≤ s′ ≤ s : events(s, s′′) = events(s, s′) ∪ events(s′, s′′)

events(s, s′) = {any(x) | s′(x) ⊂ s(x)} ∪
{min(x) | min s′(x) > min s(x)} ∪
{max(x) | max s′(x) < max s(x)} ∪
{fix(x) | |s′(x)| = 1 ∧ |s(x)| > 1}

Computing events: example

• Given two stores

• Then

s1 = {x1 !→ {1, 2, 3}, x2 !→ {3, 4, 5, 6}, x3 !→ {0, 1}, x4 !→ {7, 8, 10}}
s2 = {x1 !→ {1, 2}, x2 !→ {3, 5, 6}, x3 !→ {1}, x4 !→ {7, 8, 10}}

events(s1, s2) = {max(x1), any(x1), any(x2),fix(x3),minx3, any(x3)}

Event sets for propagators

• Associate with every propagator p an event set es(p)

• Required properties:

• es(p) must contain some events that occur between stores
s and s', if s'≤s, p(s)=s, p(s')≠s

• if p(p(s))≠p(s), then es(p) must occur some events from
events(s, p(s))

Propagation with events
propagate ((V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N := { q∈P | events(s,s') ∩ es(q) ≠ ∅ };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);

Summary

CSPs, models and stores

• CSPs are abstract, mathematical objects

• good for reasoning and proofs

• not directly implementable

• Stores capture basic constraints

• Models containt propagators and branchings

• propagators implement constraints on stores

• branchings generate all assignments

Constraint propagation

• Propagators are contracting, monotonic functions on stores

• Compute largest simultaneous fixpoint of propagators

• Propagation preserves solutions

• Propagators are strong enough to decide for assignments

Efficient constraint propagation

• Dependency-directed propagation

• only re-run propagators whose variables have changed

• Use fixpoint knowledge to avoid useless re-execution

• idempotence, subsumption, events

• knowledge is provided by the propagator

Pointers

• Finite Domain Constraint Programming Systems, Christian
Schulte, Mats Carlsson. In: Handbook of CP, 2006.

• Efficient Constraint Propagation Engines, Christian Schulte,
Peter J. Stuckey. CoRR entry, 2006.

Thank you for your attention.

