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Today:
Constraint Propagation



Constraint propagation is a form of inference, not search, 
and as such is more "satisfying", both technically and 

aesthetically.

E.C. Freuder, 2005.



Brief recap:
A formal model for CP



Several levels

CSP

first-order logic

propagators and stores

Gecode/J programs
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CSPs

• A constraint satisfaction problem is a triple (V,D,C) with

• V: a set of variables

• D: a finite domain

• C: a set of constraints over V and D

• A solution of a CSP is a variable assignment that satisfies all 
constraints



CSPs

• This representation is big:

• Each constraint is represented in extension

⇒ possibly exponential size

• Conjunction = intersection

⇒ possibly exponential size



From CSPs to Models and 
Stores

• CSP: 

exponential representation

• good for theoretical 
considerations

• not implementable



From CSPs to Models and 
Stores

• CSP: 

exponential representation

• good for theoretical 
considerations

• not implementable

• Model / Store: 

exponential computation

• close to an 
implementation

• still formal enough to 
reason about it



Trading space for time



polynomial space 
on one path

Trading space for time



Trading space for time



Trading space for time

exponential time 
for complete 
exploration



Models

• A model is a tuple (V, D, P, b) with

• V, D: variables and domain as in CSPs

• P: a set of propagators

• b: a branching

• Model is the set of all models

• We know how to implement functions!



Stores

• A store captures basic constraints

• Store = V→2D, mapping from variables to sets of values

• Propagators and branchings operate on stores

• Store ⊆ Con!         (slightly abusing notation)

• The only constraints we represent explicitly!



Propagators and branchings

• A propagator is a contracting, monotonic function

p ∈ Store → Store

• A branching is a function

b ∈ Store → Store × Store

such that 

b(s).1 < s and b(s).2 < s and

b(s).1 ∪ b(s).2 = s



Solutions of models and stores

The set of solutions is defined as

(all assignments licensed by the store and accepted by all 
propagators)

sol((V,D, P, b), s) =
{α | store(α) ⊆ S ∧

∀p ∈ P : p(store(α)) = store(α)}



Generate and test

x, y ∈ {0,1,2}

x = y
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y=2

x, y ∈ {0,1,2}

x = y



Generate and test
Stores need to
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Generate and test

capture failure
∃v : s(v) = ∅

capture choice
∀v : s(v) = sl(v) ∪ sr(v)
∃v : s(v) = sl(v) $ sr(v)

capture solution

∀v : |s(v)| = 1

Store = V→2D

expressive enough!
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Generate and test

capture failure
∃v : s(v) = ∅

capture choice
∀v : s(v) = sl(v) ∪ sr(v)
∃v : s(v) = sl(v) $ sr(v)

capture solution

∀v : |s(v)| = 1

α ∈ C ⇔ pC(store(α)) = store(α)
pC Cimplements     :

b(s) = (sl, sr)
branching:

propagator:

use propagators for checking!

branchings generate assignments!



Generate and test
gt( (V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt( (V,D,P,b), sl) or
       gt( (V,D,P,b), sr)
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Generate and test
gt( (V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt( (V,D,P,b), sl) or
       gt( (V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true;

use branching 
to generate

use propagators to test

search 
recursively



Generate and test
gt( (V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt( (V,D,P,b), sl) or
       gt( (V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true;

partition 
search space

search 
exhaustively

implement constraints



Generate and test
gt( (V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt( (V,D,P,b), sl) or
       gt( (V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true;

complete-

ness

correctness



Towards propagation
gt( (V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt( (V,D,P,b), sl) or
       gt( (V,D,P,b), sr)

else
forall p∈P
if p(s) is failed return false;

return true; use propagators to ...use propagators to test



Towards propagation
gt( (V,D,P,b), s)

if s not singleton
(sl,sr) := b(s)
return gt( (V,D,P,b), sl) or
       gt( (V,D,P,b), sr)
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forall p∈P
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Towards propagation
gt( (V,D,P,b), s)
s' := propagate( (V,D,P,b), s)
if s' not singleton
(sl,sr) := b(s')
return gt( (V,D,P,b), sl) or
       gt( (V,D,P,b), sr)

else
forall p∈P
if s' is failed return false;

return true;

propagate!



Naive constraint propagation



Preliminaries:
Well-founded order

• A strict partial order (S, <) is well-founded iff no infinite 
sequence s1,s2,s3,... with si∈S exists s.th. xi+1<xi

• Examples:                 ,                  and(2X ,⊂)(N, <) (Store, <)



Preliminaries:
Lexicographic order

• For two partial orders (X,≤x) and (Y,≤y), the

lexicographic order (X×Y, ≤lex) is defined as

(x1,y1) ≤lex (x2,y2)        ⇔           x1 ≤x x2 and x1≠x2   or

                                                   x1=x2 and y1 ≤y y2

• Well-founded, if (X,≤x) and (Y,≤y) are well-founded



Preliminaries:
Fixpoint

• For a function f ∈ X→X

x∈X is a fixpoint of f iff

       f(x) = x



Naive constraint propagation

• We are looking for a function

propagate: Model × Store → Store

• Starting from an initial store

• Returning store where all possible constraint propagation 
has been performed

• For now: focus on the basic idea



Naive propagation function

• Questions:

• Does it terminate?

• What does it compute?

propagate ( (V,D,P,b), s)

while p∈P and p(s)≠s do
s := p(s);

return s;



Naive propagation: termination

• Consider store si at iteration i:

      si+1 < si

• As (Store,<) is well-founded, the loop terminates

propagate ( (V,D,P,b), s)

while p∈P and p(s)≠s do
s := p(s);

return s;



Naive propagation: result

• For propagate(M,s) = s', we can show

• sol (M, s) = sol (M, s' )

• for all p∈prop(M): p(s') = s'
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Naive propagation: result

• For propagate(M,s) = s', we can show

• sol (M, s) = sol (M, s' )

• for all p∈prop(M): p(s') = s'

largest 
simultaneous 

fixpoint

no solution 
removed



Fixpoint

• Assume propagate( (V,D,P,b),s) = s'

Then s' is the largest simultaneos fixpoint of P with s'≤s.  
That means:

• for all p∈P: p(s') = s'                          (clear from termination)

• any other fixpoint is smaller           (proof needed!)
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• Assume propagate( (V,D,P,b),s) = s'
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• any other fixpoint is smaller           (proof needed!)



Largest fixpoint

• Let pi be the propagator of the i-th iteration

si := pi (si-1)                            for i > 0, s0 = s

• Loop terminates after n iterations with sn

• Assume t is simultaneous fixpoint with t ≤ s

• Show t ≤ sn

• Prove by induction over i that t ≤ si
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Largest fixpoint

• Let pi be the propagator of the i-th iteration

si := pi (si-1)                            for i > 0, s0 = s

• Loop terminates after n iterations with sn

• Assume t is simultaneous fixpoint with t ≤ s

• Show t ≤ sn

• Prove by induction over i that t ≤ si



Largest fixpoint: base case

For i=0: 

t ≤ s0   because s0=s and we assumed t ≤ s



Largest fixpoint: induction step

From i to i+1:

t ≤ si

⇒ pi+1(t) ≤ pi+1(si)                                 pi+1 monotonic

⇒ t=pi+1(t) ≤ pi+1(si)                              t is fixpoint of pi+1

⇒ t ≤ pi+1(si)=si+1                                   definition of si

⇒ t ≤ si+1



What makes this naive?

• Termination relies on strict contraction

• We always have to check all propagators for one that can 
strictly contract

Ideas:

• Maintain propagators which are known to be at fixpoint

• Look at the variables that propagators actually compute with

⇒ Dependency-directed propagation
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What makes this naive?

• Termination relies on strict contraction

• We always have to check all propagators for one that can 
strictly contract

Ideas:

• Maintain propagators which are known to be at fixpoint

• Look at the variables that propagators actually compute with

⇒ Dependency-directed propagation



Realistic constraint propagation



Ideas for improving propagation

• Propagator narrows only some domains

• re-propagate only propagators that "care about" the 
changed variables

• Maintain a set of "dirty" propagators

• dirty = possibly not at fixpoint for current store

• all "clean" propagators known to be at fixpoint

• only propagate dirty propagators



Scope of a propagator

• scope(p): variables that the propagator cares about

• for all variables outside the scope of p:

• p does not consider their domain for propagation 

(no input)

• p does not narrow their domain 

(no output)



Dependency-directed 
propagation

• maintain a set DP of "dirty" propagators

• chose next propagator from DP instead of P

• when run, remove propagator from DP

• compute changed variables CV

• add all p' with scope(p')∩CV ≠ ∅ to DP

• note: this may add p again!



Improved propagation
propagate ( (V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
s' := p(s); DP = DP−{p};

MV := { x∈V | s(x)≠s'(x) };
N  := { q∈P | ∃x∈var(q): x∈MV };
DP := DP ∪ N;
s := s';

return s;



Improved propagation

• Does it still compute the largest sim. fixpoint?

• Prove using loop invariant

• Does it terminate?

• not trivial any more, as possibly si+1 = si!



Loop invariant

• The loop has the following invariant:

for all p∈P−DP:    p(s) = s

• After termination, we have DP=∅, so

for all p∈P:    p(s) = s

• Proof obligations:

• invariant holds initially

• invariant is invariant



Loop invariant

• Holds initially, as P−DP=∅      (initialization: DP := P)

• Is invariant:

s' := p(s); DP = DP−{p};
MV := { x∈V | s(x)≠s'(x) };
N  := { q∈P | ∃x∈var(q): x∈MV };
DP := DP ∪ N; re-add propagators 

with modified 
variables



Improved propagation - fixpoint

• Loop invariant guarantees fixpoint

• As for naive propagation, it is the largest simultaneous 
fixpoint

• proof for naive version still works here



Improved propagation - 
termination

• Insight:

• if MV=∅, then p is removed from DP

• if MV≠∅, then p(s) < s

• Consider pairs (si, DPi) with

• si the store at the i-th iteration

• DPi the set DP at the i-th iteration

• Strictly decreasing w.r.t. well-founded lexicographic order of 
(Store,<) and (2P, ⊂)



Further improvements



Using fixpoint knowledge

• Up to now:

to find out whether p is at fixpoint, we have to propagate p!

• Idea:

let the propagator provide information about whether it is at 
fixpoint



Subsumed propagators

• A propagator is subsumed by a store s, iff

for all s'≤s: p(s') = s'

• All stronger stores are fixpoints

• (p is entailed by s, s entails p, s subsumes p)

• Remove p from P! Not needed from now on



Subsumed propagator: example

• Consider the propagator p≤ for x≤y:

p≤(s) = { x → { n∈s(x) | n≤max(s(y))},

              y → { n∈s(y) | n≥min(s(x))}}

• p≤ is entailed by s = { x → {1,2,3}, y → {3,4,5} }



Fixpoints

• Let us look at p≤ again

• After executing p≤, we can show that it is at fixpoint!

• But: var(p≤)={x,y}, so we add p≤ to DP

• How can we avoid that?

p≤(s) = { x → { n∈s(x) | n≤max(s(y))},

              y → { n∈s(y) | n≥min(s(x))}}



First idea: idempotent functions

• A function f∈X→X is idempotent iff

for all x∈X: f(f(x)) = f(x)

• For propagators:

• p(p(s)) = p(s), for all stores!

• very strong property!

• (but required in some CP systems, e.g. Mozart)



Better: weak idempotence

• A function f∈X→X is idempotent on x∈X iff

 f(f(x)) = f(x)                            now for just one element!

• For propagators, this means

if p is idempotent on s, it is not necessarily idempotent on s' 
with s'≤s



How to find out?

• Propagator returns status message

p ∈ Store→ SM×Store

with SM = {fix, nofix, subsumed}

• p(s) = (fix, s'):                       s' is fixpoint for p

• p(s) = (subsumed, s'):          s' subsumes p

• p(s) = (nofix, s'):                   possibly no fixpoint, as before



Extend propagation function
propagate ( (V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N  := { q∈P | ∃x∈var(q): x∈MV };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);
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Extend propagation function
propagate ( (V,D,P,b), s0)
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while DP ≠ ∅ do
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Correctness

• We have to check that

• the invariant is still invariant

• all solutions are preserved

• it still computes the largest simultaneous fixpoint

• Argument: fixpoints!



Propagation events

• For many propagators, we can easily decide whether still at 
fixpoint when domain changes

• We need to know how the domain changed

• Describe by propagation event (or just event)



Events: example

• Take the propagator p≤ again as an example

p≤(s) = { x → { n∈s(x) | n≤max(s(y))},

                   y → { n∈s(y) | n≥min(s(x))}}

• Only propagate if max(s(y)) or min(s(x)) changes!



Events: another example

• Take the propagator p≠ as an example

p≠(s) = { x → s(x) − single(s(y)),
                   y → s(y) − single(s(x))}

      where single({n}) = {n}, single(X)=X otherwise

• Only propagate if x or y become assigned!



Events

• Typical events:

• fix(x)                              x is assigned

• min(x)                            minimum of x changed

• max(x)                           maximum of x changed

• any(x)                            domain of x changed

• Clearly overlap:

• fix(x) implies any(x) and min(x) or max(x)

• min(x) or max(x) imply any(x)



Computing events

• When the store changes, for s'≤s:

• Events are monotonic:

s′′ ≤ s′ ≤ s : events(s, s′′) = events(s, s′) ∪ events(s′, s′′)

events(s, s′) = {any(x) | s′(x) ⊂ s(x)} ∪
{min(x) | min s′(x) > min s(x)} ∪
{max(x) | max s′(x) < max s(x)} ∪
{fix(x) | |s′(x)| = 1 ∧ |s(x)| > 1}



Computing events: example

• Given two stores

• Then

s1 = {x1 !→ {1, 2, 3}, x2 !→ {3, 4, 5, 6}, x3 !→ {0, 1}, x4 !→ {7, 8, 10}}
s2 = {x1 !→ {1, 2}, x2 !→ {3, 5, 6}, x3 !→ {1}, x4 !→ {7, 8, 10}}

events(s1, s2) = {max(x1), any(x1), any(x2),fix(x3),minx3, any(x3)}



Event sets for propagators

• Associate with every propagator p an event set es(p)

• Required properties:

• es(p) must contain some events that occur between stores 
s and s', if s'≤s, p(s)=s, p(s')≠s

• if p(p(s))≠p(s), then es(p) must occur some events from 
events(s, p(s))



Propagation with events
propagate ( (V,D,P,b), s0)

s := s0; DP = P;

while DP ≠ ∅ do
choose p∈DP;
(stat,s') := p(s); DP = DP−{p};

if stat=subsumed then P:=P−{p};

MV := { x∈V | s(x)≠s'(x) };
N  := { q∈P | events(s,s') ∩ es(q) ≠ ∅ };
if stat=fix then N:=N−{p};
DP := DP ∪ N;
s := s';

return (P,s);



Summary



CSPs, models and stores

• CSPs are abstract, mathematical objects

• good for reasoning and proofs

• not directly implementable

• Stores capture basic constraints

• Models containt propagators and branchings

• propagators implement constraints on stores

• branchings generate all assignments



Constraint propagation

• Propagators are contracting, monotonic functions on stores

• Compute largest simultaneous fixpoint of propagators

• Propagation preserves solutions

• Propagators are strong enough to decide for assignments



Efficient constraint propagation

• Dependency-directed propagation

• only re-run propagators whose variables have changed

• Use fixpoint knowledge to avoid useless re-execution

• idempotence, subsumption, events

• knowledge is provided by the propagator



Pointers

• Finite Domain Constraint Programming Systems, Christian 
Schulte, Mats Carlsson. In: Handbook of CP, 2006.

• Efficient Constraint Propagation Engines, Christian Schulte, 
Peter J. Stuckey. CoRR entry, 2006.



Thank you for your attention.


