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Plan for today

finite set variables
propagators for constraints on finite sets
encoding binary relations

encoding finite trees




Finite-set constraints




Finite-set variables

e A finite-domain integer variable
takes values from a finite set of integers.

e A finite-domain set variable
takes values from the power set of a finite set of integers.




Basic constraints

® approximation of assignments to FD variables:
I €A

® approximation of assignments to FS variables:

ACS Sc4




FD constraint store

x € {3,4,5}




FS constraint store

2,3} C S C {2,3,4,5)




Approximate domains

® Let D be adomain.

e An approximate domain over D
is a collection of subsets of D
that contains D and is closed under intersection.

For constraint propagation,
we consider approximate domains that
contain the empty set and all singletons.




Convex sets

® A convex set is a set of subsets of a domain D of integers
that can be described by

a greatest lower bound and a least upper bound:
C =38cD[C]cSc|C];

® The set of all convex sets of a domain D of integers
forms an approximate domain over D.




Non-basic constraints

express non-basic constraints in terms of
basic constraints, using sets of inference rules

express inferences in terms of
the currently entailed lower and upper bounds




Subset constraint

1511 € 55 S1 € [S2]




Subset constraint

1511 € 55 S1 € [S2]




Specification of FS constraints

® intensional specification of constraints using formulae

® uses fragment of existential monadic second-order logic

Oy == 35.0,2 | O

Q1 = Vx.B| Q11 O
B = BAB|BVB|-B|lxeS§S|_L




Examples

Vx.xe S =x€S
Vx.xe S & xeSHVvxeS;
Vx.xeS1 & xeSHAx E€S;
Vx.x &€ S1vx &S,




Evaluating range expressions

r1(S,s) = [S]s
(Rt UR3,s) = [r](Ry,s) U [r](Ra,s)
rJ(RiN Ry, s) = [r|(Ry,s) N |r](R2,s)

[r](R,5) (R, s)
17| (@,s) = O




Transformations

e translate each formula
into two range expressions per variable

e translate each pair of range expressions
into code for a propagator

ps(s) = ([r[(Ry,s) U [S]s, [r](R2,5) N[5 s)




Properties of transformations

® All projectors are contracting and monotone.
e Every projector is sound for the constraint it implements.

e Translation into projectors is complete with respect to
domain-consistency in the approximate domain.




Adding cardinality information

® \We can strengthen our domain approximation by adding
information about the cardinality of a domain.

® On the one hand, makes modelling more powerful.
(Example: dual model of Sudoku)

® On the other hand, domain-consistent propagation of even
simple constraints becomes an NP-complete problem.




Cardinality constraint

[1S]
J <

<1
|5

S1CS
S C|S]




The social golfers problem

Schedule g x s golfers into

g groups of s players each over w weeks
such that no golfer plays in the same group
with any other golfer more than once.

An instance of the problem is given by the triple w—g-s.

Still open: Is there a solution to 10-8-4?




Model

Represent a week as a list of g set variables,
each one with cardinality s.

Branch such that each player is assigned
to all possible groups.




Constraints

¢ In each week, each player plays in exactly one group.
For any given week, the set of players is partitioned
by the collection of groups for that week.

Each group shares at most one player
with each other group.

The cardinality of the intersection

of two groups is at most 1.




Best known solution

9-8-4
tournament with 8 groups of 4 golfers each over 9 weeks




Binary relations




The plan

use FS constraints to encode binary relations
on a fixed (and finite) universe

express constraints on binary relations
as constraints on FS variables




Encoding

e define the notion of the relational image:
Rx = {yeU | Rxy}

e understand binary relations as total functions
from the carrier to subsets of the carrier

fR = 4{x—>Rx|xeU}

® represent these functions as vectors of finite set variables




Union of two relations

AUB =C

A node j is C-adjacent if and only if j is either A-adjacent to i or B-adjacent to i (or both).

Vi € [n]. Ci = Ai U Bi




Intersection of two relations

ANB=C

A node j is C-adjacent to i if and only if j is both A-adjacent to i and B-adjacent to i.

Vi € [n]. Ci = Ai N Bi




Selection constraints

generalization of binary set operations

partici

examp

bating elements are variable, too

e: union with selection

S=1{)S

€S’

propagation in all directions




Union with selection (1)




Union with selection (2)

i € [n] [Si] £ [S]
i &S’

k € [n] S| —=Uiersi—ix[Sil # 90
LS ] = Uiersn—u [Si1 S Sk

k € [n] S — Uie[S’]—{k} [Si| # 0
kel




Composition

O,
S

k : A-adjacent to i B-adjacent to k C-adjacent to i

A node j is C-adjacent to i if and only if
there exists a node k such that k is A-adjacent to i and j is B-adjacent to k.

Vi e n].Ci =| J(BI....,B,)[Ai]




Transitivity constraint

R transitive < Vx.Vy.VzZ. Rxy A Ryz = RxZ
.Vy € Rx.Vz € Ry. Rxz
.VYye Rx.Vz € Ry.z € Rx
.Vy € Rx. Ry € Rx




Transitivity constraint

R transitive < Vx.Vy.Vz.Rxy AN RyzZ = RxZ
Vy e Rx.Vz € Ry. Rxz
.VYye Rx.Vz € Ry.z € Rx
.Yy € Rx. Ry C Rx

selection constraint




Summing up

e used vectors of FS variables
to encode binary relations

constraints on binary relations
can be stated as constraints on FS variables

featured on next assignment




Fourth graded assignment

® alternative model for Sudoku
e implement a structure for constraints on binary relations
e implement solvers for rooted trees:

® unordered trees

® ordered trees




