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Plan for today

• finite set variables

• propagators for constraints on finite sets

• encoding binary relations

• encoding finite trees



Finite-set constraints



Finite-set variables

• A finite-domain integer variable 
takes values from a finite set of integers.

• A finite-domain set variable 
takes values from the power set of a finite set of integers.



Basic constraints

• approximation of assignments to FD variables:

• approximation of assignments to FS variables:

A ! S S ! A

I 2 A



FD constraint store

x ∈ {3,4,5}

x ! y x > 3



FS constraint store

{2,3} ⊆ S ⊆ {2,3,4,5}

S ⊆ T |S|=3



Approximate domains

• Let D be a domain.

• An approximate domain over D 
is a collection of subsets of D 
that contains D and is closed under intersection.

• For constraint propagation, 
we consider approximate domains that 
contain the empty set and all singletons.



Convex sets

• A convex set is a set of subsets of a domain D of integers
that can be described by 
a greatest lower bound and a least upper bound:

• The set of all convex sets of a domain D of integers 
forms an approximate domain over D.

C D f S ! D j bC c ! S ! dC e g



• express non-basic constraints in terms of 
basic constraints, using sets of inference rules

• express inferences in terms of 
the currently entailed lower and upper bounds

Non-basic constraints



Subset constraint

bS1c ! S2 S1 ! dS2e

S1 ! S2



Subset constraint

basic constraint

bS1c ! S2 S1 ! dS2e

S1 ! S2



Specification of FS constraints

• intensional specification of constraints using formulae

• uses fragment of existential monadic second-order logic

Q2 WWD 9S :Q2 j Q1

Q1 WWD 8x :B j Q1 ^ Q1

B WWD B ^ B j B _ B j :B j x 2 S j ?



Examples

S1 ! S2 " 8x: x 2 S1 ) x 2 S2

S1 D S2 [ S3 " 8x: x 2 S1 , x 2 S2 _ x 2 S3

S1 D S2 \ S3 " 8x: x 2 S1 , x 2 S2 ^ x 2 S3

S1 jj S2 " 8x: x … S1 _ x … S2



Evaluating range expressions

brc.S; s/ D bScs

brc.R1 [ R2; s/ D brc.R1; s/ [ brc.R2; s/

brc.R1 \ R2; s/ D brc.R1; s/ \ brc.R2; s/

brc.R; s/ D dre.R; s/

brc.;; s/ D ;



• translate each formula 
into two range expressions per variable

• translate each pair of range expressions 
into code for a propagator

Transformations

pS .s/ D hbrc.R1; s/ [ bScs; dre.R2; s/ \ dSesi



Properties of transformations

• All projectors are contracting and monotone.

• Every projector is sound for the constraint it implements.

• Translation into projectors is complete with respect to 
domain-consistency in the approximate domain.



Adding cardinality information

• We can strengthen our domain approximation by adding 
information about the cardinality of a domain.

• On the one hand, makes modelling more powerful. 
(Example: dual model of Sudoku)

• On the other hand, domain-consistent propagation of even 
simple constraints becomes an NP-complete problem.



Cardinality constraint

> H) jbScj ! I

> H) I ! jdSej

n ! I ^ jdSej D n H) dSe " S

I ! n ^ jbScj D n H) S " bSc

jS j D I



The social golfers problem

• Schedule g × s golfers into 
g groups of s players each over w weeks 
such that no golfer plays in the same group 
with any other golfer more than once.

• An instance of the problem is given by the triple w–g–s.

• Still open: Is there a solution to 10–8–4?



Model

• Represent a week as a list of g set variables, 
each one with cardinality s.

• Branch such that each player is assigned 
to all possible groups.



Constraints

• In each week, each player plays in exactly one group. 
For any given week, the set of players is partitioned 
by the collection of groups for that week.

• Each group shares at most one player 
with each other group.
The cardinality of the intersection 
of two groups is at most 1.



Best known solution

[ 01 02 03 04 | 05 06 07 08 | 09 10 11 12 | 13 14 15 16 | 17 18 19 20 | 21 22 23 24 | 25 26 27 28 | 29 30 31 32 ]

[ 01 05 09 13 | 02 06 10 14 | 03 07 11 15 | 04 08 12 16 | 17 21 25 29 | 18 22 26 30 | 19 23 27 31 | 20 24 28 32 ]

[ 01 06 11 16 | 02 05 12 15 | 03 08 09 14 | 04 07 10 13 | 17 22 27 32 | 18 21 28 31 | 19 24 25 30 | 20 23 26 29 ]

[ 01 07 17 23 | 02 08 18 24 | 03 05 19 21 | 04 06 20 22 | 09 15 25 31 | 10 16 26 32 | 11 13 27 29 | 12 14 28 30 ]

[ 01 08 19 22 | 02 07 20 21 | 03 06 17 24 | 04 05 18 23 | 09 16 27 30 | 10 15 28 29 | 11 14 25 32 | 12 13 26 31 ]

[ 01 10 18 25 | 02 09 17 26 | 03 12 20 27 | 04 11 19 28 | 05 14 22 29 | 06 13 21 30 | 07 16 24 31 | 08 15 23 32 ]

[ 01 12 21 32 | 02 11 22 31 | 03 10 23 30 | 04 09 24 29 | 05 16 17 28 | 06 15 18 27 | 07 14 19 26 | 08 13 20 25 ]

[ 01 14 20 31 | 02 13 19 32 | 03 16 18 29 | 04 15 17 30 | 05 10 24 27 | 06 09 23 28 | 07 12 22 25 | 08 11 21 26 ]

[ 01 15 24 26 | 02 16 23 25 | 03 13 22 28 | 04 14 21 27 | 05 11 20 30 | 06 12 19 29 | 07 09 18 32 | 08 10 17 31 ] 

9–8–4
tournament with 8 groups of 4 golfers each over 9 weeks



Binary relations



The plan

• use FS constraints to encode binary relations 
on a fixed (and finite) universe

• express constraints on binary relations 
as constraints on FS variables



Encoding

• define the notion of the relational image:

• understand binary relations as total functions
from the carrier to subsets of the carrier

• represent these functions as vectors of finite set variables

Rx D f y 2 U j Rxy g

fR D f x 7! Rx j x 2 U g



Union of two relations

8i 2 Œn!: C i D Ai [ Bi

A [ B D C

A node j is C-adjacent if and only if j is either A-adjacent to i or B-adjacent to i (or both).



Intersection of two relations

A node j is C-adjacent to i if and only if j is both A-adjacent to i and B-adjacent to i.

A \ B D C

8i 2 Œn!: C i D Ai \ Bi



Selection constraints

• generalization of binary set operations

• participating elements are variable, too

• example: union with selection

• propagation in all directions

S D

[

i2S 0

Si



Union with selection (1)

S 0 ! Œn!

S D
[

hS1; : : : ; SniŒS 0!

S
i2bS 0cbSi c ! S

S ! S
i2dS 0edSi e



Union with selection (2)

k 2 Œn! bSc ! S
i2dS 0e!fkgdSi e ¤ ;

k 2 S 0

i 2 Œn! bSi c › dSe
i … S 0

S D
[

hS1; : : : ; SniŒS 0!

k 2 Œn! bSc ! S
i2dS 0e!fkgdSi e ¤ ;

bSc ! S
i2dS 0e!fkgdSi e " Sk



Composition
A B B D C

8i 2 Œn!: C i D
[

hB1; : : : ; BniŒAi !

A node j is C-adjacent to i if and only if 
there exists a node k such that k is A-adjacent to i and j is B-adjacent to k.

k : A-adjacent to i B-adjacent to k C-adjacent to i



Transitivity constraint

R transitive () 8x: 8y: 8´: Rxy ^ Ry´ ) Rx´

() 8x: 8y 2 Rx: 8´ 2 Ry: Rx´

() 8x: 8y 2 Rx: 8´ 2 Ry: ´ 2 Rx

() 8x: 8y 2 Rx: Ry ! Rx

() 8x:

0

@
[

y2Rx

Ry

1

A ! Rx



Transitivity constraint

R transitive () 8x: 8y: 8´: Rxy ^ Ry´ ) Rx´

() 8x: 8y 2 Rx: 8´ 2 Ry: Rx´

() 8x: 8y 2 Rx: 8´ 2 Ry: ´ 2 Rx

() 8x: 8y 2 Rx: Ry ! Rx

() 8x:

0

@
[

y2Rx

Ry

1

A ! Rx

selection constraint



Summing up

• used vectors of FS variables 
to encode binary relations

• constraints on binary relations 
can be stated as constraints on FS variables

• featured on next assignment



Fourth graded assignment

• alternative model for Sudoku

• implement a structure for constraints on binary relations

• implement solvers for rooted trees:

• unordered trees

• ordered trees


