Symmetry

Marco Kuhlmann & Guido Tack
Lecture 10

Plan for today

e ROBDDs for finite set variables
e Symmetries in CSPs

e Avoiding symmetry

ROBDDs for
finite set constraints

Set domains as Boolean

functions

® Characteristic function of a set:
Xs(’i) S1e S

e Sets of sets: disjunction of characteristic functions

X (i) = \/ xs(i)

SeS

Example

e Consider the domain {{} {1,2},{2,3}}

® Introduce propositional variables X1, 2,23
® Represent single variable domain as

(_I£E1 N\ X9 N\ _IiEg) \% (2131 N\ L9 N\ _Iil?g) \ (_IZIZ‘1 N\ L9 N\ 2133)
® Represent all variable domains as conjunction

e Efficient datastructure: ROBDDs

ROBDDs

e Canonical representation for Boolean functions

® Reduced decision tree with fixed variable order

ROBDDs

e Canonical representation for Boolean functions

® Reduced decision tree with fixed variable order

Operations on ROBDDs

e Conjunction, disjunction, implication, ...

® Projection dz.¢

Constraints as ROBDDs

e Consider the constraint X C Y
e Writtenasaformula: Vvell:ve X =veY
e With fixed universe Y = {1,2,3}:

(X1 = Y1) A (Xe=Ye) A (X3 =Y5)

® Boolean formula! Represent as ROBDD

Propagation

® For each variable X we have a domain representation x x
® Our propagator is represented as ¢

® Projection propagator for Y-

IZ\AY}E N\ xxAe

XeX

Propagation: example

® Subset constraint on U=§1,2 3¢:
(X1 — Yl) N\ (X2 — YQ) A\ (Xg — Yg)

® Current domain:

{X = {0,{1,2},{2,3}},Y — {{2,3}, {3} }}
D= ((X1X2X3)V (X1X2X3)V (X1X2X3)) A (Y1YoY3) V (Y1Y,Y3))

e Propagation:
3Y1,Y2,Y3. D A (Xl = Yl) A (X2 = YQ) A (Xg = Yg)
Ele,XQ,Xg. D A (Xl — Yl) N\ (X2 — YQ) N\ (Xg —> Yg)

Pros and Cons

® Propagation is complete
® Propagators are compositional:

e conjunction and disjunction of constraints easily
expressible

® Possibly expensive
e ROBDD operations worst case exponential

® Some constraints have exp. size formulas

Literature

e Hawkins, Lagoon, Stuckey. Solving Set Constraint Satisfaction
Problems using ROBDD:s. JAIR Volume 24, 2005

® Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv., 24 (3), 1992

Symmetries

Social golfers

e Problem:
w weeks, g groups of p players each
all players play once a week
no two players in the same group more than once

Model:

w x g x p integer variables

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week | ‘ 0
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week | ‘ 2
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

week |
week 2
week 3
week 4
week 5

week 6

week 7

group | group 2 group 3 group 4 group 5

Example: Social golfers

permuting weeks and groups: 7! x 5! = 604.800
just permuting all players: |5! = 1.307.674.368.000

Example: Queens

Example: Queens

Example: Queens

Example: Queens

Example: Queens

Example: Queens

Example: Queens

Example: Queens

Symmetric failure

Symmetric failure

Example: graph colouring

Example: graph colouring

Example: graph colouring

Kinds of symmetries

e Variable symmetry:
permuting variables keeps solutions invariant
{2; = vi} € sol(P) < {xy(;) > v} € sol(P)
e Value symmetry:

permuting values keeps solutions invariant

{x; — v;} €s0l(P) & {x; — o(v;)} € sol(P)

Kinds of symmetries

e Variable/value symmetry:

permute both variables and values

{z; — v;} €s0l(P) & {xy0) — o' (v;)} € sol(P)

Symmetry

Ubiquitous!

Inherent in the problem (chess board)

Artefact of the model (order of players in a group)
Different kinds:

® variable symmetry (swapping (sets of) variables)

® value symmetry (permuting values)

Symmetry

¢ How can we avoid it?
e ..by model reformulation
e .. by adding constraints to the model
® ..during search

® .. by dominance detection

Avoiding symmetry by
reformulation

Use set variables

Sets are unordered
Golfers example: represent groups as sets
New model contains no symmetry in groups

... but still a lot of symmetries

Solve different problem

® Recast your problem into a different problem without
symmetries

e Example: all-interval series

e find permutation of 0..n such that differences between
adjacent numbers are a permutation of 1..n

OI101 92837465
109876543721

Solve different problem

® Recast your problem into a different problem without
symmetries

e Example: all-interval series

e find permutation of 0..n such that differences between
adjacent numbers are a permutation of 1..n

O101 92837465
109876543721

Solve different problem

® Recast your problem into a different problem without
symmetries

e Example: all-interval series

e find permutation of 0..n such that differences between
adjacent numbers are a permutation of 1..n

O101 92837465
109876543721

374650101 928
4321510 9876

Solve different problem

® New problem:
find permutation of 0...n such that
® the permutation starts with o,n,1

® adjacent differences including x,-x, contain all 1..n, and
exactly one difference occurs twice

e Extract solutions of the original problem

Solve dual problem

Let's say we know how to avoid variable symmetries
But our problem has value symmetries

Example: graph colouring

Consider the dual problem:

e for each value introduce a set such that

iEXU@yi:”U

(where y; are the original variables)

Static symmetry breaking

Symmetry breaking constraints

o ldea:
® "break” symmetry by ruling out symmetric solutions

® add constraints to the original model

Lex-leader constraints

Assumption: domains are ordered
Let 2. be the set of all variable symmetry permutations

All variable symmetry can be broken by

/\ [ml, “e ,xn] Slex [ma(l), ce ,ZEJ(n)]
oE

Keep only lexicographically smallest solution

Called lex-leader

Examples

e Distinct integers, o(1) # 1:

T, Tn) Slex [To(1)s -+ s Ton)] & T1 < To(1)
e Disjoint integer sets, o(1) # 1:

T, Tn) Slex [To(1)s- -+ To(n)] € min(zr) < min(z, (1))
e Arbitrary integers or sets: special propagators

Gecode/): decompose into rel(this, xs, IRT_LQ), ys)

Examples

Queens:

q[0] < q[n-1]

Golfers:

min(group(w,g)) < min(group(w,g+1))
All-Interval:

[x[1]-x[0]| > |x[n-1]-x[n-2]|

What about value symmetries?

e Same idea:

A (21, 2] <iex [0(21), -, 0(2n)]

oE
e How implemento(z;)?

e Element constraint!

Example: all-interval series

e o(v)=n—v

374650101928
4321510 9876

special
case

Example: all-interval series

e o(v)=n—v

374650101928 7364510091 82
4321510 9876 4321510 9876

special
case

Example: all-interval series

e o(v)=n—v

374650101928 7364510091 82
4321510 9876 4321510 9876

o o0=1/[10,9,8,7,6,5,4,3,2,1] .
special

[:IZO, c e ,Cl?n] <lex [O'[LE()], s 70-[3372]] case

Example: all-interval series

e og(v)=n—v

374650101928 7364510091 82
4321510 9876 4321510 9876

o o0=1/[10,9,8,7,6,5,4,3,2,1] .
special

[3307 e 73771] Slex [O‘[LU()], e 70-[33”]] = X0 < O-[:CO] casSc

Example: all-interval series

e og(v)=n—v

374650101928 7364510091 82
4321510 9876 4321510 9876

o o0=1/[10,9,8,7,6,5,4,3,2,1] .
special

[3307 e 73771] Slex [O‘[LU()], e 70-[33”]] = X0 < O-[:CO] casSc

& Lo < Iq

n-Queens

e og(v)=n—v

® [C]o, . -aQn—l] Slex [0[90]7 . -70[1n—1]] <~ qo < U[QO]

® We have to invest more to break variable/value symmetries

Pros and Cons

e Good: for each symmetry, only one solutions remains
e Bad:
® may have to add many constraints

® remaining solution may not be the first one according to
branching heuristic!

e Especially bad with dynamic variable selection (like first-fail
heuristics!)

SBDS

(Symmetry Breaking During Search)

Adding constraints dynamically

Idea:

upon backtracking, add constraints that prevent symmetric
search states to be visited

Similar to branch-and-bound search!

Works for all kinds of symmetries

Example: Queens with SBDS

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] =2 q[o] = 2

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] = 2 q[o] #2 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] = 2 q[o] #2 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] 22 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] 22 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] 22 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] 22 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] 22 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] 22 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Example: Queens with SBDS

q[o] 22 q[2] = 8-0

Goal: eliminate rgo

{q; — j} € sol(queens) < {q; — n — i} € sol(queens)

Implementation

e Collect prefix:
(q[2] =8) = b

(q[4] = 7) = b2

q[2] =8-0A q[4] # 8-1 =
e Use propagator for reified constraint q[3] = 8-2

Disadvantages

e Can result in huge numbers of constraints being added
(at each choice, one for each symmetry)

e All symmetries have to be specified explicitly

Literature

e Backofen, Will. Excluding Symmetries in Constraint-Based
Search. Constraints 7(3), 2002.

e Gent, Smith. Symmetry Breaking in Constraint Programming.
ECAI, 2000.

SBDD

(Symmetry Breaking by Dominance Detection)

Prune dominated subtrees

Idea:

if a search node is dominated by a node previously visited,
don't descend

Domination can be programmed
No constraints added
But previous states are memorized

Similar concepts: nogoods, conflict clauses

SBDD ingredients

¢ Dominance:

domaind; dominates d; iffVa.dy(x) C dao(x)
® Detection:

function @ : Dom x Dom — B

such that ®(d;,ds) = true iff d, dominates d; under some
symmetry o

e Database T of already seen domains

Example: Queens with SBDD

q[o] =2 q[o] = 2

Example: Queens with SBDD

T =729[0]=2§%

Example: Queens with SBDD

T =729[0]=2§%

0
0
q[2] = 3/ \(q[2] =8

Example: Queens with SBDD

T =729[0]=2§%

0
0
(4
dominated!
q[2] = ¢
ONRe®

Example: Queens with SBDD

T =729[0]=2§%

0
0
q[2] = 3/ \(q[2] =8

Example: Queens with SBDD

T =729[0]=2§%

0
0
q[2] = 3/ \(q[2] =8

Example: Queens with SBDD

T =319[0]=2, q[1]=4}§

0
0
q[2] = 3/ \(q[2] =8

Example: Queens with SBDD

T =319[0]=2, q[1]=4}§

Example: Queens with SBDD

T =319[0]=2, q[1]=4}§

Optimization for DFS

Keeping all domains is infeasible
Observation:

if d, is a successor of d;, then d; dominates d,
Optimization:

only keep domains left-adjacent to the path from the root to
the current node

Optimization for DFS

Keeping all domains is infeasible 5% C;%

Observation:
if d, is a successor of d;, then d; dominates d,
Optimization:

only keep domains left-adjacent to the path from the root to
the current node

Using ¢ for propagation

Derive a function
propg (di,do,x) = {v € di(z) | 7 P(d1|x = v|,d2)}
If = ®(dy,d2), use propg to prune domains of all x

Prunes obviously domainted sub-trees

Pros and Cons

Good: No constraints added

Good: Handles all kinds of symmetry

Good: Very configurable (by implementing ®)
Bad: Still all symmetries must be encoded

Bad: Checking dominance at each node may be expensive

Literature

e Fahle, Schamberger, Sellmann. Symmetry breaking. CP, 2001.

e Sellmann, Van Hentenryck. Structural Symmetry Breaking.
|JCAI, 2005.

Group theory

Reminder

® Agroup (G, %) is aset and an associated operation such that
® (G isclosed under x i Xje G
® X js associative I X(J xk) = (i Xj) Xk
G has an identity id I Xid =id X i =1

every element has an inverse i xi! =1 xj =id

Permutation groups

® The set of permutations of a sequence forms a group
® concatenation is multiplication
® closedness: o e ¢’ is again a permutation
® associativity
identity: 0iq = {7 — 1}

Inverse

Generators and orbits

e aset S C G is called a generator of a group G iff

sesS’
® the orbit of an element / w.r.t. a permutation group G is

Oc(i) = 10(i) | 0 € G}

(can be extended to sets of points)

Using generators

Generators describe groups compactly

Examples:

® symmetries of a square: <r9o,di1>

® permutations of §1,..,nk <(1,2,3,-,n),(1,2) >

For variable or value symmetries: easy

For variable/value symmetries: map pair (x;,v) to ifU[+v

Describe problem symmetries using generators

SBDS + group theory

e Recall SBDS:

e for each symmetry g, post a constraint g(A) = —g(c)

(for current partial assignment A and choice ¢)
e only interested in different g(A) and g(c)

e compute the orbit of the current partial assighment A!

SBDD + group theory

e basically:

adomaindin T dominates the current node c if cis in the

orbit of d

e more advanced:

use clever data structures and group theoretic algorithms

GAP

® Groups, Algorithms, Programming

® "A system for computational discrete algebra”

e http://www.gap-system.org

http://www.gap-system.org
http://www.gap-system.org

Literature

e Gent, Harvey, Kelsey. Groups and Constraints: Symmetry
Breaking during Search. CP, 2002.

e Gent, Harvey, Kelsey, Linton. Generic SBDD using GAP and
ECLiPSe. CP, 2003.

Summary

Symmetry is everywhere

Search enumerates symmetric failure
Possible cure:

® Model reformulation

e Static symmetry breaking (lex-leader)

® Dynamic symmetry breaking (SBDS, SBDD)
Take advantage of group theory

® compact specification of symmetries

® algorithms

