Symmetry

Marco Kuhlmann & Guido Tack Lecture 10

Plan for today

- ROBDDs for finite set variables
- Symmetries in CSPs
- Avoiding symmetry

ROBDDs for finite set constraints

Set domains as Boolean functions

• Characteristic function of a set:

$$\chi_S(i) \Leftrightarrow i \in S$$

Sets of sets: disjunction of characteristic functions

$$\chi_{\mathscr{S}}(i) \Leftrightarrow \bigvee_{S \in \mathscr{S}} \chi_S(i)$$

Example

- $\bullet \quad \text{Consider the domain} \quad \left\{ \{\}, \{1,2\}, \{2,3\} \right\}$
- ullet Introduce propositional variables x_1, x_2, x_3
- Represent single variable domain as

$$(\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land x_3)$$

- Represent all variable domains as conjunction
- Efficient datastructure: ROBDDs

ROBDDs

- Canonical representation for Boolean functions
- Reduced decision tree with fixed variable order

ROBDDs

- Canonical representation for Boolean functions
- Reduced decision tree with fixed variable order

Operations on ROBDDs

- Conjunction, disjunction, implication, ...
- Projection $\exists x.\phi$

Constraints as ROBDDs

- Consider the constraint $X \subseteq Y$
- Written as a formula: $\forall v \in \mathcal{U} : v \in X \Rightarrow v \in Y$
- With fixed universe $\mathcal{U} = \{1, 2, 3\}$:

$$(X_1 \Rightarrow Y_1) \land (X_2 \Rightarrow Y_2) \land (X_3 \Rightarrow Y_3)$$

Boolean formula! Represent as ROBDD

Propagation

- ullet For each variable X we have a domain representation χ_X
- ullet Our propagator is represented as arphi
- Projection propagator for *Y*:

$$\exists \mathscr{X} \setminus \{Y\}. \bigwedge_{X \in \mathscr{X}} \chi_X \wedge \varphi$$

Propagation: example

Subset constraint on U={1,2,3}:

$$(X_1 \Rightarrow Y_1) \land (X_2 \Rightarrow Y_2) \land (X_3 \Rightarrow Y_3)$$

Current domain:

$$\{X \mapsto \{\emptyset, \{1, 2\}, \{2, 3\}\}, Y \mapsto \{\{2, 3\}, \{3\}\}\}\}$$

$$D = ((\overline{X_1 X_2 X_3}) \lor (X_1 X_2 \overline{X_3}) \lor (\overline{X_1} X_2 X_3)) \land ((\overline{Y_1} Y_2 Y_3) \lor (\overline{Y_1 Y_2} Y_3))$$

Propagation:

$$\exists Y_1, Y_2, Y_3. \ D \land (X_1 \Rightarrow Y_1) \land (X_2 \Rightarrow Y_2) \land (X_3 \Rightarrow Y_3)$$

 $\exists X_1, X_2, X_3. \ D \land (X_1 \Rightarrow Y_1) \land (X_2 \Rightarrow Y_2) \land (X_3 \Rightarrow Y_3)$

Pros and Cons

- Propagation is complete
- Propagators are compositional:
 - conjunction and disjunction of constraints easily expressible
- Possibly expensive
 - ROBDD operations worst case exponential
- Some constraints have exp. size formulas

Literature

- Hawkins, Lagoon, Stuckey. Solving Set Constraint Satisfaction Problems using ROBDDs. JAIR Volume 24, 2005
- Bryant. Symbolic Boolean manipulation with ordered binarydecision diagrams. ACM Comput. Surv., 24 (3), 1992

Symmetries

Social golfers

• Problem:

w weeks, g groups of p players eachall players play once a weekno two players in the same group more than once

• Model:

 $w \times g \times p$ integer variables

week I
week 2
week 3
week 4
week 5
week 6
week 7

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	3	6	1	4	9	2	7	12	5	10	13	8	11	14
0	4	13	1	3	11	2	6	10	5	8	12	7	9	14
0	5	14	1	10	12	2	3	8	4	7	11	6	9	13
0	7	10	1	8	13	2	4	14	3	9	12	5	6	11
0	8	9	1	5	7	2	11	13	3	10	14	4	6	12
0	11	12	1	6	14	2	5	9	3	7	13	4	8	10

group 3

group 4 group 5

group 2

group I

week I	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
week 2	0	3	6	1	4	9	2	7	12	5	10	13	8	11	14
week 3	0	4	13	1	3	11	2	6	10	5	8	12	7	9	14
week 4	0	5	14	1	10	12	2	3	8	4	7	11	6	9	13
week 5	0	7	10	1	8	13	2	4	14	3	9	12	5	6	11
week 6	0	8	9	1	5	7	2	11	13	3	10	14	4	6	12
week 7	0	11	12	1	6	14	2	5	9	3	7	13	4	8	10
	g	roup	I	g	roup	2	g	roup	3	g	roup	4	g	roup	5

week I	2	1	0	3	4	5	6	7	8	9	10	11	12	13	14
week 2	6	3	0	1	4	9	2	7	12	5	10	13	8	11	14
week 3	13	4	0	1	3	11	2	6	10	5	8	12	7	9	14
week 4	14	5	0	1	10	12	2	3	8	4	7	11	6	9	13
week 5	10	7	0	1	8	13	2	4	14	3	9	12	5	6	11
week 6	9	8	0	1	5	7	2	11	13	3	10	14	4	6	12
week 7	12	11	0	1	6	14	2	5	9	3	7	13	4	8	10
	g	roup	I	g	roup	2	g	roup	3	g	roup	4	g	roup	5

week I
week 2
week 3
week 4
week 5
week 6
week 7

2	1	0	3	4	5	6	7	8	9	10	11	12	13	14
6	3	0	1	4	9	2	7	12	5	10	13	8	11	14
13	4	0	1	3	11	2	6	10	5	8	12	7	9	14
14	5	0	1	10	12	2	3	8	4	7	11	6	9	13
10	7	0	1	8	13	2	4	14	3	9	12	5	6	11
9	8	0	1	5	7	2	11	13	3	10	14	4	6	12
12	11	0	1	6	14	2	5	9	3	7	13	4	8	10

group I

group 2

group 3

group 4 group 5

week I	2	1	0	3	4	5	6	7	8	9	10	11	12	13	14
week 2	6	3	0	1	4	9	2	7	12	5	10	13	8	11	14
week 3	13	4	0	1	3	11	2	6	10	5	8	12	7	9	14
week 4	14	5	0	1	10	12	2	3	8	4	7	11	6	9	13
week 5	10	7	0	1	8	13	2	4	14	3	9	12	5	6	11
week 6	9	8	0	1	5	7	2	11	13	3	10	14	4	6	12
week 7	12	11	0	1	6	14	2	5	9	3	7	13	4	8	10
'	group I			g	roup	2	g	roup	3	g	roup	4	g	roup	5

week I	2	1	О	9	10	11	6	7	8	3	4	5	12	13	14
week 2	6	3	0	5	10	13	2	7	12	1	4	9	8	11	14
week 3	13	4	0	5	8	12	2	6	10	1	3	11	7	9	14
week 4	14	5	O	4	7	11	2	3	8	1	10	12	6	9	13
week 5	10	7	0	3	9	12	2	4	14	1	8	13	5	6	11
week 6	9	8	0	3	10	14	2	11	13	1	5	7	4	6	12
week 7	12	11	0	3	7	13	2	5	9	1	6	14	4	8	10
	group I			g	roup	2	g	roup	3	g	roup	4	g	roup	5

week I
week 2
week 3
week 4
week 5
week 6
week 7

2	1	0	9	10	11	6	7	8	3	4	5	12	13	14
6	3	0	5	10	13	2	7	12	1	4	9	8	11	14
13	4	0	5	8	12	2	6	10	1	3	11	7	9	14
14	5	0	4	7	11	2	3	8	1	10	12	6	9	13
10	7	0	3	9	12	2	4	14	1	8	13	5	6	11
9	8	0	3	10	14	2	11	13	1	5	7	4	6	12
12	11	0	3	7	13	2	5	9	1	6	14	4	8	10

group 3

group 4 group 5

group 2

group I

week I	2	1	0	9	10	11	6	7	8	3	4	5	12	13	14
week 2	6	3	0	5	10	13	2	7	12	1	4	9	8	11	14
week 3	13	4	0	5	8	12	2	6	10	1	3	11	7	9	14
week 4	14	5	0	4	7	11	2	3	8	1	10	12	6	9	13
week 5	10	7	0	3	9	12	2	4	14	1	8	13	5	6	11
week 6	9	8	0	3	10	14	2	11	13	1	5	7	4	6	12
week 7	12	11	0	3	7	13	2	5	9	1	6	14	4	8	10
1	g	roup		σ	roup	2	σ	roup	3	σ	roup	4	g	roup	5

,															
week I	2	1	0	9	10	11	6	7	8	3	4	5	12	13	14
week 2	10	7	0	3	9	12	2	4	14	1	8	13	5	6	11
week 3	13	4	О	5	8	12	2	6	10	1	3	11	7	9	14
week 4	14	5	0	4	7	11	2	3	8	1	10	12	6	9	13
week 5	6	3	0	5	10	13	2	7	12	1	4	9	8	11	14
week 6	9	8	О	3	10	14	2	11	13	1	5	7	4	6	12
week 7	12	11	О	3	7	13	2	5	9	1	6	14	4	8	10
	g	roup		g	roup	2	g	roup	3	g	roup	4	g	roup	5

week I
week 2
week 3
week 4
week 5
week 6
week 7

2	1	0	9	10	11	6	7	8	3	4	5	12	13	14
10	7	0	3	9	12	2	4	14	1	8	13	5	6	11
13	4	0	5	8	12	2	6	10	1	3	11	7	9	14
14	5	0	4	7	11	2	3	8	1	10	12	6	9	13
6	3	0	5	10	13	2	7	12	1	4	9	8	11	14
9	8	0	3	10	14	2	11	13	1	5	7	4	6	12
12	11	0	3	7	13	2	5	9	1	6	14	4	8	10

group I

group 2

group 3

group 4 group 5

week I	2	1	0	9	10	11	6	7	8	3	4	5	12	13	14
week 2	10	7	0	3	9	12	2	4	14	1	8	13	5	6	11
week 3	13	4	0	5	8	12	2	6	10	1	3	11	7	9	14
week 4	14	5	0	4	7	11	2	3	8	1	10	12	6	9	13
week 5	6	3	0	5	10	13	2	7	12	1	4	9	8	11	14
week 6	9	8	0	3	10	14	2	11	13	1	5	7	4	6	12
week 7	12	11	0	3	7	13	2	5	9	1	6	14	4	8	10
	g	roup	I	g	roup	2	g	roup	3	g	roup	4	gı	roup	5

week I	2	1	0	7	10	11	6	9	8	3	4	5	12	13	14
week 2	10	9	0	3	7	12	2	4	14	1	8	13	5	6	11
week 3	13	4	О	5	8	12	2	6	10	1	3	11	9	7	14
week 4	14	5	0	4	9	11	2	3	8	1	10	12	6	7	13
week 5	6	3	0	5	10	13	2	9	12	1	4	7	8	11	14
week 6	7	8	0	3	10	14	2	11	13	1	5	9	4	6	12
week 7	12	11	0	3	9	13	2	5	7	1	6	14	4	8	10
	g	roup		g	roup	2	g	roup	3	g	roup	4	g	roup	5

week I
week 2
week 3
week 4
week 5
week 6
week 7

2	1	0	7	10	11	6	9	8	3	4	5	12	13	14
10	9	0	3	7	12	2	4	14	1	8	13	5	6	11
13	4	0	5	8	12	2	6	10	1	3	11	9	7	14
14	5	0	4	9	11	2	3	8	1	10	12	6	7	13
6	3	0	5	10	13	2	9	12	1	4	7	8	11	14
7	8	0	3	10	14	2	11	13	1	5	9	4	6	12
12	11	0	3	9	13	2	5	7	1	6	14	4	8	10

group 3

group 4

group 5

group 2

group I

2	1	0	7	10	11	6	9	8	3	4	5	12	13	14
10	9	0	3	7	12	2	4	14	1	8	13	5	6	11
13	4	0	5	8	12	2	6	10	1	3	11	9	7	14
14	5	0	4	9	11	2	3	8	1	10	12	6	7	13
6	3	0	5	10	13	2	9	12	1	4	7	8	11	14
7	8	0	3	10	14	2	11	13	1	5	9	4	6	12
12	11	0	3	9	13	2	5	7	1	6	14	4	8	10

permuting weeks and groups: $7! \times 5! = 604.800$

just permuting all players: 15! = 1.307.674.368.000

id

Example: Queens

Symmetric failure

id

Symmetric failure

Example: graph colouring

Example: graph colouring

Example: graph colouring

Kinds of symmetries

Variable symmetry:

permuting variables keeps solutions invariant

$$\{x_i \mapsto v_i\} \in \operatorname{sol}(P) \Leftrightarrow \{x_{\sigma(i)} \mapsto v_i\} \in \operatorname{sol}(P)$$

Value symmetry:

permuting values keeps solutions invariant

$$\{x_i \mapsto v_i\} \in \operatorname{sol}(P) \Leftrightarrow \{x_i \mapsto \sigma(v_i)\} \in \operatorname{sol}(P)$$

Kinds of symmetries

Variable/value symmetry:

permute both variables and values

$$\{x_i \mapsto v_i\} \in \operatorname{sol}(P) \Leftrightarrow \{x_{\sigma(i)} \mapsto \sigma'(v_i)\} \in \operatorname{sol}(P)$$

Symmetry

- Ubiquitous!
- Inherent in the problem (chess board)
- Artefact of the model (order of players in a group)
- Different kinds:
 - variable symmetry (swapping (sets of) variables)
 - value symmetry (permuting values)

Symmetry

- How can we avoid it?
 - ... by model reformulation
 - ... by adding constraints to the model
 - ... during search
 - ... by dominance detection

Avoiding symmetry by reformulation

Use set variables

- Sets are unordered
- Golfers example: represent groups as sets
- New model contains no symmetry in groups
- ... but still a lot of symmetries

- Recast your problem into a different problem without symmetries
- Example: all-interval series
 - find permutation of o...n such that differences between adjacent numbers are a permutation of 1...n

- Recast your problem into a different problem without symmetries
- Example: all-interval series
 - find permutation of 0...n such that differences between adjacent numbers are a permutation of 1...n

- Recast your problem into a different problem without symmetries
- Example: all-interval series
 - find permutation of 0...n such that differences between adjacent numbers are a permutation of 1...n

New problem:

find permutation of o...n such that

- the permutation starts with 0,n,1
- adjacent differences including x_n-x₀ contain all 1...n, and exactly one difference occurs twice
- Extract solutions of the original problem

Solve dual problem

- Let's say we know how to avoid variable symmetries
- But our problem has value symmetries
- Example: graph colouring
- Consider the *dual problem*:
 - for each value introduce a set such that

$$i \in X_v \Leftrightarrow y_i = v$$

(where y_i are the original variables)

Static symmetry breaking

Symmetry breaking constraints

• Idea:

- "break" symmetry by ruling out symmetric solutions
- add constraints to the original model

Lex-leader constraints

- Assumption: domains are ordered
- ullet Let Σ be the set of all variable symmetry permutations
- All variable symmetry can be broken by

$$\bigwedge_{\sigma \in \Sigma} [x_1, \dots, x_n] \leq_{\text{lex}} [x_{\sigma(1)}, \dots, x_{\sigma(n)}]$$

- Keep only lexicographically smallest solution
- Called lex-leader

Examples

• Distinct integers, $\sigma(1) \neq 1$:

$$[x_1,\ldots,x_n] \leq_{\text{lex}} [x_{\sigma(1)},\ldots,x_{\sigma(n)}] \Leftrightarrow x_1 < x_{\sigma(1)}$$

• Disjoint integer sets, $\sigma(1) \neq 1$:

$$[x_1,\ldots,x_n] \leq_{\text{lex}} [x_{\sigma(1)},\ldots,x_{\sigma(n)}] \Leftrightarrow \min(x_1) < \min(x_{\sigma(1)})$$

• Arbitrary integers or sets: special propagators

Gecode/J: decompose into rel(this, xs, IRT_LQ, ys)

Examples

• Queens:

$$q[0] < q[n-1]$$

• Golfers:

min(group(w,g)) < min(group(w,g+1))

• All-Interval:

$$|x[1]-x[0]| > |x[n-1]-x[n-2]|$$

What about value symmetries?

• Same idea:

$$\bigwedge_{\sigma \in \Sigma} [x_1, \dots, x_n] \leq_{\text{lex}} [\sigma(x_1), \dots, \sigma(x_n)]$$

- How implement $\sigma(x_i)$?
- Element constraint!

```
\sigma(v) = n - v
3 7 4 6 5 0 10 1 9 2 8 4 3 2 1 5 10 9 8 7 6
```



```
\bullet \sigma(v) = n - v
```


$$\bullet$$
 $\sigma(v) = n - v$

•
$$\sigma = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]$$

 $[x_0, \dots, x_n] \leq_{\text{lex}} [\sigma[x_0], \dots, \sigma[x_n]]$


```
\bullet \sigma(v) = n - v
```

$$\bullet \quad \sigma = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]$$

$$[x_0,\ldots,x_n] \leq_{\mathrm{lex}} [\sigma[x_0],\ldots,\sigma[x_n]] \quad \Leftrightarrow x_0 < \sigma[x_0]$$
 special case

- \bullet $\sigma(v) = n v$
- 4 3 2 1 5 10 9 8 7 6 4 3 2 1 5 10 9 8 7 6

 \bullet $\sigma = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]$

$$[x_0, \dots, x_n] \le_{\text{lex}} [\sigma[x_0], \dots, \sigma[x_n]] \Leftrightarrow x_0 < \sigma[x_0]$$

$$\Leftrightarrow x_0 < x_1$$

$$\Leftrightarrow x_0 < \sigma[x_0]$$

$$\Leftrightarrow x_0 < x_1$$

n-Queens

- \bullet $\sigma(v) = n v$
- $[q_0, \dots, q_{n-1}] \leq_{\text{lex}} [\sigma[q_0], \dots, \sigma[1_{n-1}]] \Leftrightarrow q_0 < \sigma[q_0]$

We have to invest more to break variable/value symmetries

Pros and Cons

- Good: for each symmetry, only one solutions remains
- Bad:
 - may have to add many constraints
 - remaining solution may not be the first one according to branching heuristic!
- Especially bad with dynamic variable selection (like first-fail heuristics!)

SBDS

(Symmetry Breaking During Search)

Adding constraints dynamically

• Idea:

upon backtracking, add constraints that prevent symmetric search states to be visited

- Similar to branch-and-bound search!
- Works for all kinds of symmetries

Goal: eliminate r90

 $\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$

Goal: eliminate r90

 $\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$

Goal: eliminate r90

 $\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$

Goal: eliminate r90

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

$$\{q_i \mapsto j\} \in \text{sol(queens)} \Leftrightarrow \{q_j \mapsto n-i\} \in \text{sol(queens)}$$

Implementation

Collect prefix:

$$(q[2] = 8) = b_1$$

$$(q[4] \neq 7) = b_2$$

$$b_1 \wedge b_2 \Rightarrow q[3] \neq 6$$

 $q[3] \neq 8-2$

• Use propagator for reified constraint

Disadvantages

- Can result in huge numbers of constraints being added (at each choice, one for each symmetry)
- All symmetries have to be specified explicitly

Literature

- Backofen, Will. *Excluding Symmetries in Constraint-Based Search*. Constraints 7(3), 2002.
- Gent, Smith. Symmetry Breaking in Constraint Programming. ECAI, 2000.

SBDD

(Symmetry Breaking by Dominance Detection)

Prune dominated subtrees

• Idea:

if a search node is *dominated* by a node previously visited, don't descend

- Domination can be programmed
- No constraints added
- But previous states are memorized
- Similar concepts: nogoods, conflict clauses

SBDD ingredients

• Dominance:

domain d_2 dominates d_1 iff $\forall x.d_1(x) \subseteq d_2(x)$

• Detection:

function $\Phi:\mathrm{Dom} o\mathbb{B}$ such that $\Phi(d_1,d_2)=\mathrm{true}$ iff d_2 dominates d_1 under some symmetry σ

• Database T of already seen domains

$$T = \{ \{q[o]=2\} \}$$

$$T = \{ \{q[0]=2\} \}$$

$$T = \{ \{q[0]=2, q[1]=4\} \}$$

$$T = \{ \{q[0]=2, q[1]=4\} \}$$

$$T = \{ \{q[0]=2, q[1]=4\} \}$$

Optimization for DFS

- Keeping all domains is infeasible
- Observation:

if d_2 is a successor of d_1 , then d_1 dominates d_2

• Optimization:

only keep domains left-adjacent to the path from the root to the current node

Observation:

if d_2 is a successor of d_1 , then d_1 dominates d_2

Optimization:

only keep domains left-adjacent to the path from the root to the current node

Using Φ for propagation

Derive a function

$$\operatorname{prop}_{\Phi}(d_1, d_2, x) = \{ v \in d_1(x) \mid \neg \Phi(d_1[x = v], d_2) \}$$

- If $\neg \Phi(d_1, d_2)$, use $\operatorname{prop}_{\Phi}$ to prune domains of all x
- Prunes obviously domainted sub-trees

Pros and Cons

- Good: No constraints added
- Good: Handles all kinds of symmetry
- Good: Very configurable (by implementing Φ)
- Bad: Still all symmetries must be encoded
- Bad: Checking dominance at each node may be expensive

Literature

- Fahle, Schamberger, Sellmann. Symmetry breaking. CP, 2001.
- Sellmann, Van Hentenryck. *Structural Symmetry Breaking*. IJCAI, 2005.

Group theory

Reminder

• A group (G, \times) is a set and an associated operation such that

•
$$G$$
 is closed under \times $i \times j \in G$

•
$$\times$$
 is associative $i \times (j \times k) = (i \times j) \times k$

•
$$G$$
 has an identity id $i \times id = id \times i = i$

• every element has an inverse $i \times i^{-1} = i^{-1} \times i = id$

Permutation groups

- The set of **permutations** of a sequence forms a group
- concatenation is multiplication
 - closedness: $\sigma \bullet \sigma'$ is again a permutation
 - associativity
 - identity: $\sigma_{id} = \{i \mapsto i\}$
 - inverse

Generators and orbits

ullet a set $S\subseteq G$ is called a **generator** of a group G iff

$$\forall g \in G \; \exists S' \subseteq S. \; g = \prod_{s \in S'} s$$

the orbit of an element i w.r.t. a permutation group G is

$$O_G(i) = \{ \sigma(i) \mid \sigma \in G \}$$

(can be extended to sets of points)

Using generators

- Generators describe groups compactly
- Examples:
 - symmetries of a square: < r90, d1 >
 - permutations of {1,...,n}: < (1,2,3,...,n),(1,2) >
- For variable or value symmetries: **easy**
- For variable/value symmetries: map pair (x_i, v) to i/U/+v
- Describe problem symmetries using generators

SBDS + group theory

• Recall SBDS:

- for each symmetry g, post a constraint $g(A) \Rightarrow \neg g(c)$
 - (for current partial assignment A and choice c)
- only interested in **different** g(A) and g(c)
- compute the orbit of the current partial assignment A!

SBDD + group theory

basically:

a domain d in T dominates the current node c if c is in the orbit of d

• more advanced:

use clever data structures and group theoretic algorithms

GAP

- Groups, Algorithms, Programming
- "A system for computational discrete algebra"
- http://www.gap-system.org

Literature

- Gent, Harvey, Kelsey. *Groups and Constraints: Symmetry Breaking during Search*. CP, 2002.
- Gent, Harvey, Kelsey, Linton. *Generic SBDD using GAP and ECLiPSe*. CP, 2003.

Summary

- Symmetry is everywhere
- Search enumerates symmetric failure
- Possible cure:
 - Model reformulation
 - Static symmetry breaking (lex-leader)
 - Dynamic symmetry breaking (SBDS, SBDD)
- Take advantage of **group theory**
 - compact specification of symmetries
 - algorithms