
Copying Garbage Collection

Guido Tack
14. November 2001

tack@ps.uni-sb.de



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



2 Before GC

A

D E F

G

CB

F
ro

m
T

o



3 After GC

T
o

B’ C’A’ D’ E’

F’ G’

A

D E F

G

CB

F
ro

m



4 Cheney’s algorithm(1)
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• Size of nodes known
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• Storage management dominated by allocation

(alloc. is cheap)

• Many small, short-lived objects

(copying small objects not much more expensive than marking)
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