
Copying Garbage Collection

Guido Tack
14. November 2001

tack@ps.uni-sb.de



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



1 The idea of Copying GC

• Two “semi-spaces“ (From-space and To-space)

• Only From-space “active“

• At GC time, copy the live nodes from From-Space to To-Space

• Then “flip“ the spaces



2 Before GC

A

D E F

G

CB

F
ro

m
T

o



3 After GC

T
o

B’ C’A’ D’ E’

F’ G’

A

D E F

G

CB

F
ro

m



4 Cheney’s algorithm(1)

• Iterative algorithm

• Interleaves copying and scanning

• Two pointers needed: scan / free

• Forwarding pointers used to preserve sharing



4 Cheney’s algorithm(1)

• Iterative algorithm

• Interleaves copying and scanning

• Two pointers needed: scan / free

• Forwarding pointers used to preserve sharing



4 Cheney’s algorithm(1)

• Iterative algorithm

• Interleaves copying and scanning

• Two pointers needed: scan / free

• Forwarding pointers used to preserve sharing



4 Cheney’s algorithm(1)

• Iterative algorithm

• Interleaves copying and scanning

• Two pointers needed: scan / free

• Forwarding pointers used to preserve sharing



4 Cheney’s algorithm(1)

• Iterative algorithm

• Interleaves copying and scanning

• Two pointers needed: scan / free

• Forwarding pointers used to preserve sharing



5 Cheney’s algorithm(2)

Tricolour abstraction:

• Black nodes: GC finished, not to be considered again

• Grey nodes: Visited but not completed

• White nodes: Unvisited, considered garbage after tracing

GC terminates when all reachable nodes are black



5 Cheney’s algorithm(2)

Tricolour abstraction:

• Black nodes: GC finished, not to be considered again

• Grey nodes: Visited but not completed

• White nodes: Unvisited, considered garbage after tracing

GC terminates when all reachable nodes are black



5 Cheney’s algorithm(2)

Tricolour abstraction:

• Black nodes: GC finished, not to be considered again

• Grey nodes: Visited but not completed

• White nodes: Unvisited, considered garbage after tracing

GC terminates when all reachable nodes are black



5 Cheney’s algorithm(2)

Tricolour abstraction:

• Black nodes: GC finished, not to be considered again

• Grey nodes: Visited but not completed

• White nodes: Unvisited, considered garbage after tracing

GC terminates when all reachable nodes are black



5 Cheney’s algorithm(2)

Tricolour abstraction:

• Black nodes: GC finished, not to be considered again

• Grey nodes: Visited but not completed

• White nodes: Unvisited, considered garbage after tracing

GC terminates when all reachable nodes are black



5 Cheney’s algorithm(2)

Tricolour abstraction:

• Black nodes: GC finished, not to be considered again

• Grey nodes: Visited but not completed

• White nodes: Unvisited, considered garbage after tracing

GC terminates when all reachable nodes are black



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

scan
free



A

D E F

G

CB

Fr
om

To

A’

A’

scan
free



A

D E F

G

CB

Fr
om

To

A’

A’

scan
free



A

D E F

G

CB

Fr
om

To

A’

A’

scan
free



A

D E F

G

CB

Fr
om

To

A’

A’

scan
free



A

D E F

G

CB

Fr
om

To

A’

A’

scan
free



A

D E F

G

CB

Fr
om

To

A’

A’

scan
free



A

D E F

G

CB

Fr
om

To

A’

A’

B’

B’

free
scan



A

D E F

G

CB

Fr
om

To

A’

A’

B’

B’

free
scan



A

D E F

G

CB

Fr
om

To

A’

A’

B’

B’

free
scan



A

D E F

G

CB

Fr
om

To

A’

A’

B’

B’

free
scan



A

D E F

G

CB

Fr
om

To

A’

A’

B’

B’

free
scan



A

D E F

G

CB

Fr
om

To

A’

A’

B’

B’

free
scan



A

D E F

G

CB

Fr
om

To

A’

A’

B’

B’

C’

C’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’

G’

G’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’

G’

G’ scan
free



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’

G’

G’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’

G’

G’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’

G’

G’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’

G’

G’

free
scan



A

D E F

G

CB

Fr
om

To

A’

B’

B’

C’

C’A’

D’

D’

E’

E’

F’

F’

G’

G’

free
scan



6 Assumptions

• Size of nodes known

• Child fields known

• Two logically contiguous areas for the heap

• Ability to mark nodes



6 Assumptions

• Size of nodes known

• Child fields known

• Two logically contiguous areas for the heap

• Ability to mark nodes



6 Assumptions

• Size of nodes known

• Child fields known

• Two logically contiguous areas for the heap

• Ability to mark nodes



6 Assumptions

• Size of nodes known

• Child fields known

• Two logically contiguous areas for the heap

• Ability to mark nodes



6 Assumptions

• Size of nodes known

• Child fields known

• Two logically contiguous areas for the heap

• Ability to mark nodes



7 Properties

• Constant stack required

• Time depends only on no. of live nodes

• Covers cycles / sharing

• Heap is compacted

• Stop/start collector

• Nothing to do between GCs



7 Properties

• Constant stack required

• Time depends only on no. of live nodes

• Covers cycles / sharing

• Heap is compacted

• Stop/start collector

• Nothing to do between GCs



7 Properties

• Constant stack required

• Time depends only on no. of live nodes

• Covers cycles / sharing

• Heap is compacted

• Stop/start collector

• Nothing to do between GCs



7 Properties

• Constant stack required

• Time depends only on no. of live nodes

• Covers cycles / sharing

• Heap is compacted

• Stop/start collector

• Nothing to do between GCs



7 Properties

• Constant stack required

• Time depends only on no. of live nodes

• Covers cycles / sharing

• Heap is compacted

• Stop/start collector

• Nothing to do between GCs



7 Properties

• Constant stack required

• Time depends only on no. of live nodes

• Covers cycles / sharing

• Heap is compacted

• Stop/start collector

• Nothing to do between GCs



7 Properties

• Constant stack required

• Time depends only on no. of live nodes

• Covers cycles / sharing

• Heap is compacted

• Stop/start collector

• Nothing to do between GCs



8 Disadvantages

High Level

• Copying large objects is expensive

• Twice the logical memory needed

Low Level

• Breadth first ⇒ decreased locality

• Paging issues



8 Disadvantages

High Level

• Copying large objects is expensive

• Twice the logical memory needed

Low Level

• Breadth first ⇒ decreased locality

• Paging issues



8 Disadvantages

High Level

• Copying large objects is expensive

• Twice the logical memory needed

Low Level

• Breadth first ⇒ decreased locality

• Paging issues



8 Disadvantages

High Level

• Copying large objects is expensive

• Twice the logical memory needed

Low Level

• Breadth first ⇒ decreased locality

• Paging issues



8 Disadvantages

High Level

• Copying large objects is expensive

• Twice the logical memory needed

Low Level

• Breadth first ⇒ decreased locality

• Paging issues



9 Variations(1)

• Large Object Areas

(possibly handled by different collector)

• Areas for long living objects

(only scanned, not copied)

• Maintain locality by using other exploration strategies

(but then stack becomes an issue)



9 Variations(1)

• Large Object Areas

(possibly handled by different collector)

• Areas for long living objects

(only scanned, not copied)

• Maintain locality by using other exploration strategies

(but then stack becomes an issue)



9 Variations(1)

• Large Object Areas

(possibly handled by different collector)

• Areas for long living objects

(only scanned, not copied)

• Maintain locality by using other exploration strategies

(but then stack becomes an issue)



9 Variations(1)

• Large Object Areas

(possibly handled by different collector)

• Areas for long living objects

(only scanned, not copied)

• Maintain locality by using other exploration strategies

(but then stack becomes an issue)



9 Variations(1)

• Large Object Areas

(possibly handled by different collector)

• Areas for long living objects

(only scanned, not copied)

• Maintain locality by using other exploration strategies

(but then stack becomes an issue)



9 Variations(1)

• Large Object Areas

(possibly handled by different collector)

• Areas for long living objects

(only scanned, not copied)

• Maintain locality by using other exploration strategies

(but then stack becomes an issue)



9 Variations(1)

• Large Object Areas

(possibly handled by different collector)

• Areas for long living objects

(only scanned, not copied)

• Maintain locality by using other exploration strategies

(but then stack becomes an issue)



10 Variations(2)

Approximately depth-first copying(1)

Modification of Cheney’s agorithm by Moon (1984)

• Always start scanning on the last partially filled page in To-space

• When that page is completed, continue with ordinary scan

• As soon as an object is copied, start partial scan again

scan partial free



10 Variations(2)

Approximately depth-first copying(1)

Modification of Cheney’s agorithm by Moon (1984)

• Always start scanning on the last partially filled page in To-space

• When that page is completed, continue with ordinary scan

• As soon as an object is copied, start partial scan again

scan partial free



10 Variations(2)

Approximately depth-first copying(1)

Modification of Cheney’s agorithm by Moon (1984)

• Always start scanning on the last partially filled page in To-space

• When that page is completed, continue with ordinary scan

• As soon as an object is copied, start partial scan again

scan partial free



10 Variations(2)

Approximately depth-first copying(1)

Modification of Cheney’s agorithm by Moon (1984)

• Always start scanning on the last partially filled page in To-space

• When that page is completed, continue with ordinary scan

• As soon as an object is copied, start partial scan again

scan partial free



10 Variations(2)

Approximately depth-first copying(1)

Modification of Cheney’s agorithm by Moon (1984)

• Always start scanning on the last partially filled page in To-space

• When that page is completed, continue with ordinary scan

• As soon as an object is copied, start partial scan again

scan partial free



11 Variations(3)

Approximately depth-first copying(2)

• Drawback: Some nodes are scanned twice

• Tests indicate a 15 percent improvement of locality

• . . . and a 6 percent increased GC time



11 Variations(3)

Approximately depth-first copying(2)

• Drawback: Some nodes are scanned twice

• Tests indicate a 15 percent improvement of locality

• . . . and a 6 percent increased GC time



11 Variations(3)

Approximately depth-first copying(2)

• Drawback: Some nodes are scanned twice

• Tests indicate a 15 percent improvement of locality

• . . . and a 6 percent increased GC time



11 Variations(3)

Approximately depth-first copying(2)

• Drawback: Some nodes are scanned twice

• Tests indicate a 15 percent improvement of locality

• . . . and a 6 percent increased GC time



12 Increasing efficiency

• Making the semi-spaces bigger decreases frequency of GC

• Less frequent GC means older objects

⇒ More garbage



12 Increasing efficiency

• Making the semi-spaces bigger decreases frequency of GC

• Less frequent GC means older objects

⇒ More garbage



12 Increasing efficiency

• Making the semi-spaces bigger decreases frequency of GC

• Less frequent GC means older objects

⇒ More garbage



3

2

2

2

2

2

2x
3 

M
B



3

2

2

2

2

2

2x
3 

M
B

6

5

2

2x
6 

M
B



13 When to use copying

• Storage management dominated by allocation

(alloc. is cheap)

• Many small, short-lived objects

(copying small objects not much more expensive than marking)

• GC delay doesn’t matter (no real-time system)



13 When to use copying

• Storage management dominated by allocation

(alloc. is cheap)

• Many small, short-lived objects

(copying small objects not much more expensive than marking)

• GC delay doesn’t matter (no real-time system)



13 When to use copying

• Storage management dominated by allocation

(alloc. is cheap)

• Many small, short-lived objects

(copying small objects not much more expensive than marking)

• GC delay doesn’t matter (no real-time system)



13 When to use copying

• Storage management dominated by allocation

(alloc. is cheap)

• Many small, short-lived objects

(copying small objects not much more expensive than marking)

• GC delay doesn’t matter (no real-time system)



14 Outlook

• Hybrid systems can be used

(e.g. use copying only for small objects, mark-sweep for large

objects)

• Copying collection can be used as a foundation for

– incremental

– generational

GC algorithms.



14 Outlook

• Hybrid systems can be used

(e.g. use copying only for small objects, mark-sweep for large

objects)

• Copying collection can be used as a foundation for

– incremental

– generational

GC algorithms.



14 Outlook

• Hybrid systems can be used

(e.g. use copying only for small objects, mark-sweep for large

objects)

• Copying collection can be used as a foundation for

– incremental

– generational

GC algorithms.



14 Outlook

• Hybrid systems can be used

(e.g. use copying only for small objects, mark-sweep for large

objects)

• Copying collection can be used as a foundation for

– incremental

– generational

GC algorithms.



14 Outlook

• Hybrid systems can be used

(e.g. use copying only for small objects, mark-sweep for large

objects)

• Copying collection can be used as a foundation for

– incremental

– generational

GC algorithms.



14 Outlook

• Hybrid systems can be used

(e.g. use copying only for small objects, mark-sweep for large

objects)

• Copying collection can be used as a foundation for

– incremental

– generational

GC algorithms.


	The idea of Copying GC
	Before GC
	After GC
	Cheney's algorithm(1)
	Cheney's algorithm(2)
	Assumptions
	Properties
	Disadvantages
	Variations(1)
	Variations(2)
	Variations(3)
	Increasing efficiency
	When to use copying
	Outlook

