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MotivationMotivation

„classical“, e.g. copying GC:

• repeated handling of long-lived objects

• no improvement of locality



The weak generational hypothesisThe weak generational hypothesis

• partition objects into generations

• special handling of young objects:

→ reduced pause times

→ better collection efficiency

• partition objects into generations

• special handling of young objects:

→ reduced pause times

→ better collection efficiency

„Most objects die young.“   

[Ungar, 1984]



Generational garbage collectionGenerational garbage collection

• objects partitioned into multiple generations

• old generation seldomly collected
(major collection)

• surviving young objects promoted into old generation

• young generation frequently collected
(minor collection)



ExampleExample: : minorminor collectioncollection
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PromotionPromotion

late promotionearly promotion

long-living objectsbetter worse 

short-living objects better worse

time



Promotion Promotion policiespolicies

fixedfixed adaptiveadaptive

Promotion policiesPromotion policies

Appel‘s collector for SML/NJ demographic feedback-
mediated tenuring



AppelAppel‘s ‘s collector forcollector for SML/NJ (1)SML/NJ (1)

• two generations,
very large young generation

• major collections only if old objects
occupy half size of heap

[Appel, 1989]

Idea: manage promotion rates by
fixing heap occupancy of young objects

• precondition: contigious heap



AppelAppel‘s ‘s collector forcollector for SML/NJ (2)SML/NJ (2)

equal size

old freereserve

old newreserve

freereserveold svr

freeold´svrfree

reserveold free
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freeold svr
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DemographicDemographic feedbackfeedback--mediated tenuringmediated tenuring (1)(1)

• only promote if pause time will be acceptable

[Ungar, Jackson 1992]

Idea: promote only when necessary
to hold maximum pause time

• promote only as many objects to make
pause time acceptable

• generate space-age table



free

DemographicDemographic feedbackfeedback--mediated tenuringmediated tenuring (2)(2)

[Ungar, Jackson 1992]
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Heap organizationHeap organization

Determination of object‘s generation

• copying collectors: subheaps for generation

contigious heaps → object adress

non-contigious heaps → header field or page-table

• non-copying collectors → header field



Heap organization schemesHeap organization schemes

creation spacecreation space
„high water mark“ bucket system„high water mark“ bucket system

heap organization schemesheap organization schemes



Creation Creation spacespace (1)(1)

Organization of a generation:

• (small) aging area in two semi-spaces

• (large) new object area in one creation space

[Ungar, 1984]

Goals:
• no large semi-spaces

• improve locality



gc pause

Creation Creation spacespace (2)(2)

[Ungar, 1984]

time

generation
occupancy

creation
space

aging
semi-
spaces



„High „High water markwater mark“ “ bucketbucket system (1)system (1)

[Wilson, Moher 1989]

Goals:
• avoid age field in object header

• adaptive promotion threshold

• two buckets per generation

• creation space partly holds first bucket

• high water mark seperates buckets

• creation and aging spaces per generation

Organization of generations:



„High „High water markwater mark“ “ bucketbucket system (2)system (2)

[Wilson, Moher 1989]
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„High „High water markwater mark“ “ bucketbucket system (system (33))

[Wilson, Moher 1989]

• objects from bucket 1 are stored in bucket 2

• objects from bucket 2 are promoted into older generation

„high water mark” effect:

• „high water mark“ position determines promotion threshold

• promotion threshold between 1 and 2
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Perform collection when :

• pause is not interruptive hide collection from userhide collection from user

efficent collectionefficent collection

Collection schedulingCollection scheduling

• large amount of garbage 
can be expected



Efficient collectionsEfficient collections

• objects whose „death“ produces 
much garbage (root of a large tree etc.)

[Hayes 1991]

• exclude key objects from generational scheme

• store key objects „descendants“ in
special large object area

• reclaiming of key objects trigger collection in key area

Key (large) objects :



[Hayes 1991]

Efficient collectionsEfficient collections –– key objectskey objects (1)(1)

young generation

root set

key objectkey object



[Hayes 1991]

Efficient collectionsEfficient collections –– key objectskey objects (2)(2)

young generation

root set
key objects

keyed area
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InterInter--generational pointersgenerational pointers

Issues:

• detecting creation

• including into root set upon collection

• cost of detection / inclusion

old generation young generation

root set

root set for 
young generation

root set for 
young generation

Inter-generational pointerInter-generational pointer



InterInter--generational pointer handlinggenerational pointer handling

detecting individual
pointers

detecting individual
pointers

marking pointer-
containing areas
marking pointer-
containing areas

• pointer indirection
• remembered sets

page / word / card marking

detection / storing of inter-
generational pointers

detection / storing of inter-
generational pointers

inter-generational pointer handlinginter-generational pointer handling



DetectionDetection

Detection of inter-generational pointers:

• trapping pointer stores

• only necessary to check objects in old generation(s)

• generally: only non-initializing stores

write-barrierwrite-barrier



Individual pointersIndividual pointers –– entryentry tabletable

Idea: indirect pointers through an entry table

[Liebermann, Hewitt 1983]

generation 2 generation 1 generation 0



Individual pointersIndividual pointers –– entryentry tabletable

Idea: indirect pointers through an entry table

[Liebermann, Hewitt 1983]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

small constant
for every store

O(#stores),
small constant

O(#stores) N/A

time space
all pointers in the entry table
are added to the root set

generation 2 generation 1 generation 0

entry table entry table



Individual pointersIndividual pointers –– remembered setremembered set

Idea: remember objects with old-young pointers

[Ungar 1984]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

time space

small constant
for every store

N/Apointer-
containersO(#                  )

pointer-
containersO(#                  )

no duplicate entries in set due
to bit in object header 

Objects are scanned for pointers:
O(size of objects)

old generation young generation



Pointer Pointer areasareas –– page markingpage marking

Idea: mark (virtual) memory pages containing 
objects with inter-generational pointers

• hardware / virtual memory management support

• only slight overhead for write barrier

• problems intercepting VM signals

• large pages → high collection cost

[Shaw 1988]

[Moon 1984]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

time space

N/A# i.g.p. •
size of page

O(                    )

N/Asmall constant
for every store pages are scanned for pointers



Pointer Pointer areasareas –– card markingcard marking

Idea: don´t mark to-large pages
or to-small words

[Wilson, Moher 1989]

• divide adress space into cards (∼128 bytes)

• lower collection cost if card size is near object size 

• very low cost for write barrier: 2-3 instructions

[Sobalvarro 1988]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

time space

small constant
for every store

N/A

small portion
of heap cards are scanned for pointers

# i.g.p. •
size of card

O(                    )



Remembered setsRemembered sets vs. vs. card markingcard marking

remembered sets (with sequential store buffers):

• small overhead for write barrier (2-3 instructions)

• no scanning upon collection

• duplicates in sequential store buffers

• collection overhead O(#pointer stores)



Remembered setsRemembered sets vs. vs. card markingcard marking

card marking

• scanning upon collection

• collection overhead O(#inter-gen. pointers)

• long-lived object´s cards must be scanned repeatedly

• small overhead for write barrier (2-3 instructions)



Remembered setsRemembered sets vs. vs. card markingcard marking

[Hosking, Hudson 1993]

hybrid card marking / remembered set GC

• write barrier like card-marking

• after collection, old-young-pointers 

are added to remembered set



Problems and limitationsProblems and limitations

heuristic failure:

• cluster of long-lived objects „pig in the snake“

• small heap-allocated objects

• large root sets



ConclusionConclusion

• improvement, if assumptions hold

• highly variable 



Thank youThank you !!


