
Generational Generational
Garbage CollectionGarbage Collection

Mirko Jerrentrup, Jerrentrup@interactive-software.de

OverviewOverview

• motivation

• at a glance

• issues

• problems and limitations

• conclusion

MotivationMotivation

„classical“, e.g. copying GC:

• repeated handling of long-lived objects

• no improvement of locality

The weak generational hypothesisThe weak generational hypothesis

• partition objects into generations

• special handling of young objects:

→ reduced pause times

→ better collection efficiency

• partition objects into generations

• special handling of young objects:

→ reduced pause times

→ better collection efficiency

„Most objects die young.“

[Ungar, 1984]

Generational garbage collectionGenerational garbage collection

• objects partitioned into multiple generations

• old generation seldomly collected
(major collection)

• surviving young objects promoted into old generation

• young generation frequently collected
(minor collection)

ExampleExample: : minorminor collectioncollection

old generation young generation

root set

root set

old generation young generation

root set for
minor collection

root set for
minor collection

live nodes

„garbage“ nodes

Inter-generational pointerInter-generational pointer

IssuesIssues in in generational garbage collectiongenerational garbage collection

promotionpromotion

heap organizationheap organization

schedulingscheduling inter-generational
pointers

inter-generational
pointers

generational garbage collectiongenerational garbage collection

promotionpromotion

heap organizationheap organization

schedulingscheduling inter-generational
pointers

inter-generational
pointers

generational garbage collectiongenerational garbage collection

PromotionPromotion

late promotionearly promotion

long-living objectsbetter worse

short-living objects better worse

time

Promotion Promotion policiespolicies

fixedfixed adaptiveadaptive

Promotion policiesPromotion policies

Appel‘s collector for SML/NJ demographic feedback-
mediated tenuring

AppelAppel‘s ‘s collector forcollector for SML/NJ (1)SML/NJ (1)

• two generations,
very large young generation

• major collections only if old objects
occupy half size of heap

[Appel, 1989]

Idea: manage promotion rates by
fixing heap occupancy of young objects

• precondition: contigious heap

AppelAppel‘s ‘s collector forcollector for SML/NJ (2)SML/NJ (2)

equal size

old freereserve

old newreserve

freereserveold svr

freeold´svrfree

reserveold free

equal size

freeold svr

half heap size

DemographicDemographic feedbackfeedback--mediated tenuringmediated tenuring (1)(1)

• only promote if pause time will be acceptable

[Ungar, Jackson 1992]

Idea: promote only when necessary
to hold maximum pause time

• promote only as many objects to make
pause time acceptable

• generate space-age table

free

DemographicDemographic feedbackfeedback--mediated tenuringmediated tenuring (2)(2)

[Ungar, Jackson 1992]

free

No promotion at next
collection

survivors survivors

promotion of 150 bytes
„oldest“ objects

150 bytes

age size of age group

1

2

3

300 bytes

200 bytes

100 bytes

number of
survived

collections

number of
survived

collections

size of objects
in age group

size of objects
in age group

young generation

maximum
acceptable
pause time

promotionpromotion

heap organizationheap organization

schedulingscheduling inter-generational
pointers

inter-generational
pointers

generational garbage collectiongenerational garbage collection

Heap organizationHeap organization

Determination of object‘s generation

• copying collectors: subheaps for generation

contigious heaps → object adress

non-contigious heaps → header field or page-table

• non-copying collectors → header field

Heap organization schemesHeap organization schemes

creation spacecreation space
„high water mark“ bucket system„high water mark“ bucket system

heap organization schemesheap organization schemes

Creation Creation spacespace (1)(1)

Organization of a generation:

• (small) aging area in two semi-spaces

• (large) new object area in one creation space

[Ungar, 1984]

Goals:
• no large semi-spaces

• improve locality

gc pause

Creation Creation spacespace (2)(2)

[Ungar, 1984]

time

generation
occupancy

creation
space

aging
semi-
spaces

„High „High water markwater mark“ “ bucketbucket system (1)system (1)

[Wilson, Moher 1989]

Goals:
• avoid age field in object header

• adaptive promotion threshold

• two buckets per generation

• creation space partly holds first bucket

• high water mark seperates buckets

• creation and aging spaces per generation

Organization of generations:

„High „High water markwater mark“ “ bucketbucket system (2)system (2)

[Wilson, Moher 1989]

time

heap
occupancy

younger
generation

next
generation

bucket 1

bucket 2

high
water
mark

„High „High water markwater mark“ “ bucketbucket system (system (33))

[Wilson, Moher 1989]

• objects from bucket 1 are stored in bucket 2

• objects from bucket 2 are promoted into older generation

„high water mark” effect:

• „high water mark“ position determines promotion threshold

• promotion threshold between 1 and 2

promotionpromotion

heap organizationheap organization

schedulingscheduling inter-generational
pointers

inter-generational
pointers

generational garbage collectiongenerational garbage collection

Perform collection when :

• pause is not interruptive hide collection from userhide collection from user

efficent collectionefficent collection

Collection schedulingCollection scheduling

• large amount of garbage
can be expected

Efficient collectionsEfficient collections

• objects whose „death“ produces
much garbage (root of a large tree etc.)

[Hayes 1991]

• exclude key objects from generational scheme

• store key objects „descendants“ in
special large object area

• reclaiming of key objects trigger collection in key area

Key (large) objects :

[Hayes 1991]

Efficient collectionsEfficient collections –– key objectskey objects (1)(1)

young generation

root set

key objectkey object

[Hayes 1991]

Efficient collectionsEfficient collections –– key objectskey objects (2)(2)

young generation

root set
key objects

keyed area

promotionpromotion

heap organizationheap organization

schedulingscheduling inter-generational
pointers

inter-generational
pointers

generational garbage collectiongenerational garbage collection

InterInter--generational pointersgenerational pointers

Issues:

• detecting creation

• including into root set upon collection

• cost of detection / inclusion

old generation young generation

root set

root set for
young generation

root set for
young generation

Inter-generational pointerInter-generational pointer

InterInter--generational pointer handlinggenerational pointer handling

detecting individual
pointers

detecting individual
pointers

marking pointer-
containing areas
marking pointer-
containing areas

• pointer indirection
• remembered sets

page / word / card marking

detection / storing of inter-
generational pointers

detection / storing of inter-
generational pointers

inter-generational pointer handlinginter-generational pointer handling

DetectionDetection

Detection of inter-generational pointers:

• trapping pointer stores

• only necessary to check objects in old generation(s)

• generally: only non-initializing stores

write-barrierwrite-barrier

Individual pointersIndividual pointers –– entryentry tabletable

Idea: indirect pointers through an entry table

[Liebermann, Hewitt 1983]

generation 2 generation 1 generation 0

Individual pointersIndividual pointers –– entryentry tabletable

Idea: indirect pointers through an entry table

[Liebermann, Hewitt 1983]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

small constant
for every store

O(#stores),
small constant

O(#stores) N/A

time space
all pointers in the entry table
are added to the root set

generation 2 generation 1 generation 0

entry table entry table

Individual pointersIndividual pointers –– remembered setremembered set

Idea: remember objects with old-young pointers

[Ungar 1984]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

time space

small constant
for every store

N/Apointer-
containersO(#)

pointer-
containersO(#)

no duplicate entries in set due
to bit in object header

Objects are scanned for pointers:
O(size of objects)

old generation young generation

Pointer Pointer areasareas –– page markingpage marking

Idea: mark (virtual) memory pages containing
objects with inter-generational pointers

• hardware / virtual memory management support

• only slight overhead for write barrier

• problems intercepting VM signals

• large pages → high collection cost

[Shaw 1988]

[Moon 1984]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

time space

N/A# i.g.p. •
size of page

O()

N/Asmall constant
for every store pages are scanned for pointers

Pointer Pointer areasareas –– card markingcard marking

Idea: don´t mark to-large pages
or to-small words

[Wilson, Moher 1989]

• divide adress space into cards (∼128 bytes)

• lower collection cost if card size is near object size

• very low cost for write barrier: 2-3 instructions

[Sobalvarro 1988]

trapping stores (by mutator)

inter-generationalpointer-
handling at collection time

time space

small constant
for every store

N/A

small portion
of heap cards are scanned for pointers

i.g.p. •
size of card

O()

Remembered setsRemembered sets vs. vs. card markingcard marking

remembered sets (with sequential store buffers):

• small overhead for write barrier (2-3 instructions)

• no scanning upon collection

• duplicates in sequential store buffers

• collection overhead O(#pointer stores)

Remembered setsRemembered sets vs. vs. card markingcard marking

card marking

• scanning upon collection

• collection overhead O(#inter-gen. pointers)

• long-lived object´s cards must be scanned repeatedly

• small overhead for write barrier (2-3 instructions)

Remembered setsRemembered sets vs. vs. card markingcard marking

[Hosking, Hudson 1993]

hybrid card marking / remembered set GC

• write barrier like card-marking

• after collection, old-young-pointers

are added to remembered set

Problems and limitationsProblems and limitations

heuristic failure:

• cluster of long-lived objects „pig in the snake“

• small heap-allocated objects

• large root sets

ConclusionConclusion

• improvement, if assumptions hold

• highly variable

Thank youThank you !!

