Generational

Garbage Collection

Mirko Jerrentrup, Jerrentrup@ interactive-software.de

verview

motivation
at a glance

ISSUes

problems and limitations

conclusion

‘Motivation

,classical®, e.g. copying GC.:

e no Improvement of locality

e repeated handling of long-lived objects

The weak generational hypothesis

,Most objects die young.”

e partition objects into generations
e special handling of young objects:

® reduced pause times

® Dbetter collection efficiency

[Ungar, 1984]

>enerational garbage collection

objects partitioned into multiple generations

young generation frequently collected
(minor collection)

old generation seldomly collected
(major collection)

surviving young objects promoted into old generation

' Example: minor collection

root set for /
minor collection \@’

old generation

young generation

Inter-generational pointer

live nodes

,2garbage“ nodes

old generation

young generation

root set

root set

fﬁfeérirlssues In generational garbage collection

generational garbage collection ‘

=

promotion ‘

heap organization

scheduling ‘ inter-generational
pointers

generational garbage collection ‘

promotion ‘

heap organization

scheduling ‘ inter-generational
pointers

. Promotion

early promotion late promotion

long-living objects

short-living objects better

Promotion policies

Promotion policies ‘

E N

fixed ‘ adaptive ‘

Appel‘s collector for SML/NJ demographic feedback-
mediated tenuring

Appel's collector for SML/NJ (1)

LamES

ldea: manage promotion rates by
fixing heap occupancy of young objects

e two generations,
very large young generation

e major collections only if old objects
occupy half size of heap

e precondition: contigious heap

[Appel, 1989]

Appel‘s collector for SML/NJ (2)

(equal size
Ld

reserve

reserve

reserve

half heap size

old

reserve

2

equal size "

Eﬁbemographic feedback-mediated tenuring (1)

ldea. promote only when necessary
to hold maximum pause time

« only promote If pause time will be acceptable

e generate space-age table

e promote only as many objects to make
pause time acceptable

[Ungar, Jackson 1992] &&=

emographic feedback-mediated tenuring (2) ﬂ

young generation

maximum 1150 bytes
acceptable
pause time

survivors survivors

No promotion at next promotion of 150 bytes
collection ,oldest* objects

number of age | size of age group

SurV|\(ed 300 bytes
collections

200 bytes
100 bytes

size of objects
in age group

generational garbage collection ‘

promotion ‘

heap organization

scheduling ‘ inter-generational
pointers

Heap organization

Determination of object's generation

e copying collectors: subheaps for generation

contigious heaps ® object adress

non-contigious heaps ® header field or page-table

e non-copying collectors ® header field

'Heap organization schemes

heap organization schemes

creation space ‘ \

,high water mark* bucket system

Creation space (1)

Goals:
* no large semi-spaces

» improve locality

Organization of a generation:

e (small) aging area in two semi-spaces

 (large) new object area in one creation space

[Ungar, 1984]

generation 4
& occupancy

’

¢ creation
: space <

aging
semi-
spaces

e e
gc pause

[Ungar, 1984]

ngh water mark“ bucket system (1)

Goals:
e avoid age field in object header

e adaptive promotion threshold
Organization of generations:
e creation and aging spaces per generation
 two buckets per generation

e creation space partly holds first bucket

 high water mark seperates buckets

[Wilson, Moher 1989] =

High water mark“ bucket system (2)

heap A

occupancy

.

younger <
= generation

next
= generation

>
time

[Wilson, Moher 1989]

H|gh water mark“ bucket system (3)

,high water mark” effect:

objects from bucket 2 are promoted into older generation
objects from bucket 1 are stored in bucket 2
,high water mark* position determines promotion threshold

promotion threshold between 1 and 2

[Wilson, Moher 1989]

generational garbage collection ‘

promotion ‘

heap organization

scheduling ‘ inter-generational
pointers

Collection scheduling

Perform collection when :

e pause IS not interruptive hide collection from user

e large amount of garbage

can bhe expected efficent collection

_ ____I';'-:_Efficient collections

Key (large) objects :

* objects whose ,death” produces
much garbage (root of a large tree etc.)

o exclude key objects from generational scheme

e store key objects ,descendants” in
special large object area

» reclaiming of key objects trigger collection in key area

[Hayes 1991]

?--Efficient collections — key objects (1) -

root set

young generation key object

=

[Hayes 1991]

Efficient collections — key objects (2) ™

root set :
key objects

young generation keyed area

[Hayes 1991]

generational garbage collection ‘

promotion ‘

heap organization

scheduling ‘ Inter-generational
pointers

 Inter-generational pointers

-

old generation young generation

root set for
young generation

ISsues: . |
Inter-generational pointer

» detecting creation
* including into root set upon collection

e cost of detection / inclusion

j_'lnter-generational pointer handling

Inter-generational pointer handling ‘

/

detection / storing of inter-
generational pointers

- N

detecting individual marking pointer-
pointers containing areas

e pointer indirection page / word / card marking
» remembered sets

Detection

Detection of inter-generational pointers:
e trapping pointer stores
» only necessary to check objects in old generation(s)

« generally: only non-initializing stores

write-barrier

Individual pointers — entry table

ldea: indirect pointers through an entry table

generation 2 generation 1 generation 0

[Liebermann, Hewitt 1983]

‘Individual pointers — entry table

ldea: indirect pointers through an entry table

generation 2

generation 1

entry table

time

space

trapping stores (by mutator)

small constant
for every store

O(#stores),
small constant

inter-generational pointer-
handling at collection time

O(#stores)

N/A

generation 0

entry table

all pointers in the entry table
are added to the root set

[Liebermann, Hewitt 1983]

Individual pointers — remembered set A

ldea: remember objects with old-young pointers

old generation

young generation

time

space

trapping stores (by mutator)

small constant
for every store

o

pointer-
containers

inter-generational pointer-
handling at collection time

pointer-

O(# containers

N/A

;

no duplicate entries in set due
to bit in object header

Objects are scanned for pointers:
O(size of objects)
[Ungar 1984]

Pointer areas — page marking

ldea: mark (virtual) memory pages containing
objects with inter-generational pointers

hardware / virtual memory management support
only slight overhead for write barrier
problems intercepting VM signals

large pages ® high collection cost

time space

inter-generational pointer- o(#i.9.p. -

handling at collection time size of page [Moon 1984]

[Shaw 1988]

; small constant ;
L I R R N/A |—> pages are scanned for pointers

Pointer areas — card marking

ldea: don't mark to-large pages
or to-small words

» divide adress space into cards (~128 bytes)
* |lower collection cost if card size is near object size

» very low cost for write barrier: 2-3 instructions

time space

: small constant | small portion :
{=ping stores (by muiator) | | - every store i cards are scanned for pointers

inter-generational pointer- |~ #1.9.p. -
handling at collection time (size of card) e

[Sobalvarro 1988]
[Wilson, Moher 1989]

::::::Remembered sets vs. card marking

remembered sets (with sequential store buffers):

no scanning upon collection

collection overhead O(#pointer stores) x

duplicates in sequential store buffers x

small overhead for write barrier (2-3 instructions)

____'Remembered sets vs. card marking

card marking

scanning upon collection x

collection overhead O(#inter-gen. pointers)

small overhead for write barrier (2-3 instructions)

long-lived object’s cards must be scanned repeatedlyx

____'Remembered sets vs. card marking

hybrid card marking / remembered set GC

 write barrier like card-marking

e after collection, old-young-pointers

are added to remembered set

____-_I?roblems and limitations

heuristic fallure:

 cluster of long-lived objects ,pig in the snake*

« small heap-allocated objects

 large root sets

Conclusion

 Improvement, if assumptions hold

* highly variable

Thank you !

