VA VIEWS

12. Übungsblatt zu Logik, Semantik und Verifikation SS 2001

Prof. Dr. Gert Smolka, Dr. Christian Schulte www.ps.uni-sb.de/courses/prog-lsv01/

Abgabe: Donnerstag, 5. Juli in der Vorlesungspause

Aufgabe 12.1: Eigenschaften von Quantoren (4) Zeigen Sie, dass die folgenden Aussagen im Allgemeinen falsch sind. Geben Sie Gegenbeispiele an mit $A, B \in Assn$.

- (a) $\models \forall X \exists Y A \Rightarrow \exists Y \forall X A$.
- (b) $\models (\forall XA \Rightarrow B) \Rightarrow \forall X(A \Rightarrow B)$.

Aufgabe 12.2: Alternative Vereinfachungsregeln (12) Sie sollen Vereinfachungsregeln für prädikatenlogische Klauselmengen angeben, die disjunktiv mit existenzieller Quantifizierung interpretiert werden.

• Eine Struktur \mathcal{A} heißt Modell einer Klausel C genau dann, wenn \mathcal{A} zu jeder Formel in C passt, und

$$\exists \sigma \in Val_A \ \forall A \in C : A \llbracket A \rrbracket \sigma = 1$$

- Eine Struktur \mathcal{A} heißt Modell einer Klauselmenge S genau dann, wenn \mathcal{A} Modell einer Klausel in S ist.
- Eine Klauselmenge *S* heißt allgemeingültig genau dann, wenn jede Struktur, die zu jeder Formel in *S* passt, ein Modell von *S* ist.
- (a) Geben Sie Vereinfachungsregeln für Klauselmengen S mit den folgenden Eigenschaften an:
 - 1. Wenn $S \stackrel{d}{\to} S'$, dann ist S genau dann allgemeingültig, wenn S' allgemeingültig ist.
 - 2. S ist literal genau dann, wenn es kein S' mit $S \stackrel{d}{\to} S'$ gibt.
 - 3. Wenn S endlich ist, dann gibt es keine unendliche Kette

$$S \stackrel{d}{\rightarrow} S_1 \stackrel{d}{\rightarrow} S_2 \stackrel{d}{\rightarrow} S_3 \stackrel{d}{\rightarrow} \cdots$$

(b) Geben Sie eine Ableitung von

$$\{\{\exists x \, (\neg \exists y (\neg p(x, y) \land \neg \neg q(x)) \land \exists y \neg p(x, y))\}\} \xrightarrow{d} \cdots \xrightarrow{d} S'$$

an mit S' literal.

Aufgabe 12.3: Unifikatoren (4) Gegeben sind die Terme

$$t_1 = f(x, g(y, y), z)$$

 $t_2 = f(g(h(u), y), u, h(x))$

- (a) Geben Sie einen prinzipalen Unifikator θ für t_1 und t_2 an.
- (b) Geben Sie zwei allgemeinste Unifikatoren $\theta_1 \neq \theta_2$ für t_1 und t_2 an, die nicht prinzipal sind.
- (c) Geben Sie zwei Unifikatoren $\theta_1 \neq \theta_2$ für t_1 und t_2 an, die nicht allgemeinst sind.

Aufgabe 12.4: Berechnung prinizipaler Unifikatoren (10) Gegeben sind die Terme

$$t_1 = g(x, y, z)$$

$$t_2 = g(h(y, z), a, f(z))$$

$$t_3 = g(h(y, y), h(u, u), f(x))$$

$$t_4 = g(z, z, f(a))$$

Entscheiden Sie, ob die Terme t_i und t_j $(i, j \in \{1, 2, 3, 4\} \land i \neq j)$ unifizierbar sind. Falls t_i und t_j unifizierbar sind, geben Sie einen prinizipalen Unifikator an. Falls t_i und t_j nicht unifizierbar sind, geben Sie eine Ableitung $\{t_i \doteq t_i\} \stackrel{u}{\rightarrow} \cdots \stackrel{u}{\rightarrow} E$ an, so dass E einen Konflikt enthält.

Aufgabe 12.5: Exponentiell grosse Unifikate (8) Geben Sie zwei unifizierbare Terme t_n und t'_n mit allgemeinstem Unifikator θ in Abhängigkeit von $n \in \mathbb{N}$ an, so dass

$$\gamma(\theta(t_n)) \in \Theta(2^n)$$

Dabei ist $\gamma \in Ter \to \mathbb{N}$ als Größe eines Termes wie folgt definiert:

$$\gamma(x) = 1$$

$$\gamma(f(t_1, ..., t_n)) = 1 + \sum_{i=1}^{n} \gamma(t_i)$$

Aufgabe 12.6: Resolution (12) Gegeben sind die Klauselmengen

$$S_1 = \{ \{p(a)\}, \{\neg p(x), p(f(x))\}, \{\neg p(f(f(y)))\} \}$$

$$S_2 = \{ \{p(x,x)\}, \{p(y,x), \neg p(x,y)\}, \{\neg p(x,y), p(x,z), \neg p(y,z)\} \}$$

$$S_3 = \{ \{p(f(x),y), p(z,f(z))\}, \{\neg q(f(a))\}, \{\neg p(x,f(x)), q(x)\} \}$$

Entscheiden Sie für jede Menge S_i ($i \in \{1, 2, 3\}$), ob S_i erfüllbar ist. Falls S_i erfüllbar ist, geben Sie ein Modell von S_i an. Fall S_i unerfüllbar ist, zeigen Sie mit einem Resolutionsgraphen, dass $\emptyset \in Res(S_i)$ ist.