


7. Übungsblatt zu Programmierung 1, WS 2012/13

Prof. Dr. Gert Smolka, Sigurd Schneider, B.Sc. www.ps.uni-sb.de/courses/prog-ws12/

Lesen Sie im Buch: Kapitel 7

Aufgabe 7.9 Geben Sie einen Baum mit 5 Knoten an, der genau zwei Teilbäume hat. Wie viele solche Bäume gibt es?

Aufgabe 7.11 Schreiben Sie eine Prozedur *tree* : $int \rightarrow tree$, die für $n \ge 0$ binäre Bäume wie folgt liefert:

Achten Sie darauf, dass die identischen Unterbäume der zweistelligen Teilbäume jeweils nur einmal berechnet werden. Das sorgt dafür, dass Ihre Prozedur auch für n=1000 schnell ein Ergebnis liefert. Verwenden Sie die Prozedur *iter* aus § 3.4.

Aufgabe 7.15 (d) Schreiben Sie eine Prozedur *leaf* : $tree \rightarrow int \ list \rightarrow bool$, die testet, ob eine Adresse ein Blatt eines Baums bezeichnet.

Aufgabe 7.21 Die **Breite** eines Baums ist die Anzahl seiner Blätter. Beispielsweise hat der Baum t3 die Breite 7. Entwickeln Sie eine Prozedur *breadth* : $tree \rightarrow int$, die die Breite eines Baums bestimmt.

Aufgabe 7.22 Der **Grad** eines Baums ist die maximale Stelligkeit seiner Teilbäume. Beispielsweise hat der Baum t3 den Grad 3. Entwickeln Sie eine Prozedur *degree* : $tree \rightarrow int$, die den Grad eines Baums bestimmt.

Aufgabe 7.30 Schreiben Sie eine Prozedur *prest*: $tree \rightarrow int \rightarrow tree$, die zu einem Baum und einer Pränummer den entsprechenden Teilbaum liefert. Verwenden Sie die Idee aus der Vorlesung (Liste der Teilbäume in Präordnung bestimmen).

Aufgabe 7.31 Schreiben Sie eine Prozedur *post*: $tree \rightarrow int \rightarrow tree$, die zu einem Baum und einer Postnummer den entsprechenden Teilbaum liefert. Verwenden Sie die Idee aus der Vorlesung.

Aufgabe 7.33 Geben Sie die Prä- und die Postlinearisierung des Baums T[T[], T[T[]], T[T[]]] an.

Aufgabe 7.34 Gibt es Listen über \mathbb{N} , die gemäß der Prä- oder Postlinearisierung keine Bäume darstellen?

Aufgabe 7.43 Schreiben Sie eine Prozedur ltrd: $int \rightarrow int \ ltr$, die zu $n \ge 0$ einen balancierten Binärbaum der Tiefe n liefert, dessen Teilbäume mit ihrer Tiefe markiert sind. Für n=2 soll ltrd den Baum

liefern. Verwenden Sie die Prozedur iterup.

Aufgabe 7.46 Schreiben Sie eine Prozedur $lmap: (\alpha \rightarrow \beta) \rightarrow \alpha \ ltr \rightarrow \beta \ ltr$, die eine Prozedur auf alle Marken eines Baums anwendet. Verwenden Sie die Prozedur map für Listen.

Aufgabe 7.49 Schreiben Sie eine Prozedur *find* : $(\alpha \to bool) \to \alpha \ ltr \to \alpha \ option$, die zu einer Prozedur und einem Baum die gemäß der Präordnung erste Marke des Baums liefert, für die die Prozedur *true* liefert. Orientieren Sie sich an der Prozedur *prest* aus § 7.6.1.

Aufgabe 7.52 Schreiben Sie eine Prozedur $prep: \alpha ltr \rightarrow \alpha list$, die die Präprojektion eines markierten Baums liefert.

Aufgabe 7.53 Schreiben Sie eine Prozedur pop: α $ltr \rightarrow \alpha$ list, die die Postprojektion eines markierten Baums liefert.

Aufgabe 7.54 Die **Grenze** eines markierten Baums ist die Liste der Marken seiner Blätter, in der Ordnung ihres Auftretens von links nach rechts und mit Mehrfachauftreten. Die Grenze des Baums t3 (§ 7.9) ist [2,7,7,4,2,7,7]. Schreiben Sie eine Prozedur *frontier* : α *ltr* $\rightarrow \alpha$ *list*, die die Grenze eines Baums liefert.