

Semantics of Programming Languages Assignment 9

Andreas Podelski, Patrick Maier, Jan Schwinghammer http://www.ps.uni-sb.de/courses/sem-ws01/

Hand in until January, 23th, 2002

Disjunctive Completion

Consider the following program twentyone with program points $\{1,2\}$ and variables $Var = \{x, y, z\}$, whose values are integers (i. e., $Val = \mathbb{Z}$).

```
x := 17; y := 4; z := 21;
1:
x++; y--;
2:
z := x + y; goto 1;
```

Exercise 9.1 (5) Perform a parity-analysis for the program twentyone: Specify the acc-equations, the abstract acc[#]-equations and their abstract operations, and compute the least fixpoint. Why does this analysis not find out that z is always odd?

Exercise 9.2 (5) Make the above parity-analysis more precise (in particular, it should yield that z is odd) by considering a larger abstract domain.

Hint: Think of a way to represent disjunctions of the abstract elements from exercise 9.1.

Exercise 9.3 (5) A more ambitious goal for analyses is to find constant expressions in programs (constant propagation). Consider transitions from program point p to p' which are labeled by either of the following statements:

- x := c; for some $x \in Var$ and $c \in \mathbb{Z}$,
- x := y + c; for some $x, y \in Var$ and $c \in \mathbb{Z}$, or
- x := y + z; for some $x, y, z \in Var$.

For each of these transitions, give the collecting semantics acc and the abstract semantics $acc^{\#}$ for the abstract domain $Var \to D_{\mathbb{Z}}$, where $D_{\mathbb{Z}} = \mathbb{Z} \cup \{\bot, \top\}$ is the flat lattice of the integers. Argue that an analysis based on $acc^{\#}$ is not precise enough to find out that z is constant in program twentyone.

Exercise 9.4 (5) Outline a disjunctive version of constant propagation, i.e., specify an abstract domain and abstract operations analogously to exercise 9.2. Try to perform this analysis on program twentyone. What goes wrong?

Exercise 9.5 (5) Show that it is undecidable whether an abstraction is \top .

More precisely, prove that there is an abstraction α into an abstract domain $\langle D^{\#}, \sqsubseteq \rangle$ such that the following question is undecidable: Given a program P and a program point p in P, is $\alpha(acc(p)) = \top$?