

Semantics of Programming Languages: Solution of Assignment 4

Thorsten Brunklaus and Jan Schwinghammer

Exercise 4.1: (20) We have to show that

A trivial $\Leftrightarrow \forall \text{ sort } s \text{ of } \Sigma : A^s = \emptyset \lor \exists a : A^s = \{a\}$

Proof.

" \Rightarrow " Suppose A is trivial, s is a sort of Σ , and $a, b \in A^s$. It suffices to show that a = b.

Choose two distinct variables x, y and environment η for Σ , such that $\eta x = a$ and $\eta y = b$. Since A is trivial, it satisfies x = y[x:s,y:s]. Since η satisfies $\{x:s,y:s\}$, we have

$$a = \eta \ x = \llbracket \ x \ \rrbracket \eta = \llbracket \ y \ \rrbracket \eta = \eta \ y = b.$$

" \leftarrow " Suppose \forall sort s of $\Sigma : A^s = \emptyset \vee \exists A^s = \{a\}$. Let $M = N[\Gamma]$ be a Σ -Equation. Suppose η is an environment for A that satisfies Γ . It suffices to show that $\llbracket M \rrbracket \eta = \llbracket N \rrbracket \eta$.

Let s be the sort of M and N with respect to Σ . By Lemma 3.3.7 we know $\llbracket M \rrbracket \eta \in A^s$ and $\llbracket N \rrbracket \eta \in A^s$. Hence $\llbracket M \rrbracket \eta = \llbracket N \rrbracket \eta$ by the assumption.

Exercise 4.2: (10)

(a)

$$P = f x y$$

$$M = z$$

$$N = x$$

yields

$$[M, N/x, y] f x y = f z x$$

 $[M/x] ([N/y] f x y) = f z z$

(b) Consider

$$M_1,\ldots,M_k/x_1,\ldots,x_k$$
 P

and let V be an infinite set of variables. Choosing distinct variables $z_1, \ldots z_k \in V' = V \setminus \{ Vars(M_1), \ldots, Vars(M_k), Vars(P) \}$ yields

$$P' = [z_k/x_k] \dots [z_1/x_1] P$$

Since no variables of P' occur in M_1, \ldots, M_k , we can freely arrange any of the substitions M_i/z_i , thereby having

$$M_1, \ldots, M_k/x_1, \ldots, x_k P = [M_k/z_k] \ldots [M_1/z_1][z_k/x_k] \ldots [z_1/x_1] P$$

Exercise 4.3: (10) We have to show that

$$Th(A) \models M = N[\Gamma] \Rightarrow M = N[\Gamma] \in Th(A)$$

Suppose that $\operatorname{Th}(A) \models M = N[\Gamma]$. Since $A \models \operatorname{Th}(A) \Rightarrow A \models M = N[\Gamma]$. Thus, $M = N[\Gamma] \in \operatorname{Th}(A)$.

Exercise 4.4: (10)

$$\mathcal{E} \text{ semantically consistent} \Leftrightarrow \exists M = N[\Gamma] : \mathcal{E} \nvDash M = N[\Gamma] \\ \Leftrightarrow \exists A : A \vDash \mathcal{E} \land A \nvDash M = N[\Gamma] \\ \Leftrightarrow A \text{ nontrivial and } A \vDash \mathcal{E}.$$

Exercise 4.5: (15)

$$M = N[\Gamma, x : s]$$

$$M = N[\Gamma, y : s, x : s] y \text{ not in } \Gamma \qquad y = y[\Gamma, y : s]$$

$$[y/x] M = [y/x] N[\Gamma, y : s] \qquad P = Q[\Gamma]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$[y/x] M = [y/x] N[\Gamma \cup \Gamma', y : s] \qquad P = Q[\Gamma \cup \Gamma']$$

$$[P/y][y/x] M = [Q/y][y/x] N[\Gamma \cup \Gamma']$$

$$[P/x] M = [Q/x] N[\Gamma \cup \Gamma']$$

Exercise 4.6: (15) Let $\Gamma = \{x_1 : s_1, \dots, x_k : s_k\}$ and $S = [M_1, \dots, M_k/x_1, \dots, x_k]$. Using the results from exercise 3.4.9 we have that there exist distinct variables z_1, \dots, z_k , none of them occurring in any M_1, \dots, M_k , such that

$$S = [M_k/z_k], \dots, [M_1/z_1], [z_k/x_k], \dots [z_1/x_1]$$

This yields

Exercise 4.7: (20)

(a)

```
\begin{array}{lll} {\rm count} \; 3 \; ({\rm insert} \; 3 \; {\rm empty})) = & {\rm if} \; {\rm Eq?} \; 3 \; 5 \\ & {\rm then} \; ({\rm count} \; 3 \; ({\rm insert} \; 3 \; {\rm empty})) \; + \; 1 \\ & {\rm else} \; {\rm count} \; 3 \; ({\rm insert} \; 3 \; {\rm empty}) \\ & = {\rm count} \; 3 \; ({\rm insert} \; 3 \; {\rm empty}) \\ & = {\rm if} \; {\rm Eq?} \; 3 \; 3 \; {\rm then} \; ({\rm count} \; 3 \; {\rm empty}) \; + \; 1 \; {\rm else} \; ({\rm count} \; 3 \; {\rm empty}) \\ & = ({\rm count} \; 3 \; {\rm empty}) \; + \; 1 \\ & = 0 \; + \; 1 \\ & = 1 \end{array}
```

- (b) This is a simple proof done by case analysis. Use the algebraic specification to verify each case.
 - (i) $a = b \wedge a = c$.
 - (ii) $a = b \land a \neq c$.
 - (iii) $a \neq b \land a = c$.
 - (iv) $a \neq b \land a \neq c$.
- (c) $A = \langle \operatorname{list}_{\mathbb{N}}, \mathbb{N}, \mathbb{B}, true^A, false^A, 0^A, \dots, +^A, \operatorname{empty}^A, \operatorname{insert}^A, \operatorname{count}^A, \dots \rangle$.

$$\operatorname{empty}^A = \operatorname{nil}$$

$$\operatorname{insert}^A(x, l) = \operatorname{cons} x \ l$$

$$\operatorname{count}^A(n, l) = \operatorname{cnt}, \operatorname{where}$$

$$\operatorname{cnt}(n, l) = \begin{cases} \operatorname{count}^A(n, \operatorname{tl}(\ l)) + 1 & \text{if } n = \operatorname{hd}(l) \\ \operatorname{count}^A(n, \operatorname{tl}(\ l)) & \text{if } n \neq \operatorname{hd}(l) \end{cases}$$

yields

insert x (insert y m) = $\langle x, \langle y, m \rangle \rangle \neq \langle y, \langle x, m \rangle \rangle$ = insert y (insert x m)