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Errata. The projections II; should be functions from D = 2P1%+>Pn to 2P otherwise
their definitions would be nonsense.

Exercise 8.1 To prove that in general there is no such function f it suffices to show that
there is none for n = 2 and Dy = Dy = {0, 1}.

Let S = {(0,0), (1,1)}. Then app(S) = {0,1} x {0,1} is a set of cardinality 4 whereas
for every function f : Dy x Dy — Dy X Do, the set {f(s) | s € S} = {f({0,0)), f((1,1))}
has cardinality 1 or 2.

Exercise 8.2
1. Let S € D. Then app(S) = II;(5) x...xIL,(S) = v((I1,(S), ... , I1,(9))) = v(a(S)).

2. Let S € D. To prove that a(S) is the least element in D# whose image under v
is above S, fix an arbitrary (M,,...,M,) € D¥ such that v((M,... ,M,)) D S.
Let x € II;(9), i.e., there exists (z1,...,2;, ... ,x,) € S such that z = x;. Then
(1, .. @y xn) € Y(My, .o My, ..o My)) = My X ... X My X ... X M,, so
r = x; € M;. Hence a(S) = (II(S),... ,II,(5)) C (My,...,M,). Furthermore
v(a(S)) D S, see exercise 8.3.2.

3. Let (M,...,M,) € D¥. To prove that v((M,...,M,)) is the greatest element
in D whose image under « is below (M, ..., M,), fix an arbitrary S € D such
that a(S) T (My,...,M,). Since (II;(S),... ,II,(9)) = a(S) T (My,...,M,),
we have for all 4, II;(S) C M;, so II;(S) x ... x II,(S) € M; x ... x M,. Hence
S C IL(S) x ... xI,(S) € My x...x M, = ~v((M,...,M,)). Furthermore
al(y((My, ..., My,))) E (M,...,M,), see exercise 8.3.2.

Exercise 8.3

1. To prove monotonicity of «, let S, S" € D such that S C S'. Let z € II;(S), i.e.,
there exists (z1,...,2, ... ,2,) € S such that x = ;. Then (x1,... 2, ... ,2,) €
S’ so x = z; € IL(S"). Hence for all i, II;(S) C II;(S"), and thus «(S) =
(TL(S), .. TL(S)) C (IL(S"), .. TL.(S")) = a(S).

To prove monotonicity of v, let (M, ..., M,),(M],... , M) € D# such that (M, ..., M,)

(M7,... ,M!). Then M; C M/ for all i, hence v({My,... ,M,)) = My x ... x M,
M x...x M =~({(Mj,...,M)).

N

2. To prove idp C yoa, let S € D. If (z1,...,z,) € S then z; € I1;(S) for all i,
SO (T1,...,xn) € II1(S) x ... x I1,(S) = v((I11(S), ... , I1,(5))) = v(a(S)). Hence
S € y(a(S)).



To prove a o~y C idp#, let (My,... ,M,) € D¥. Then a(y((M,...,M,))) =
a(My x...x M,) =TIy (My x ... x M,),... I,(M; x...x M,)). Now we have to
distinguish two cases. If My x...x M, = () then for all 7, ITT;(M; X ...x M,) = () other-
wise II;(My x ... x M,) = M;. Thus, a(y((Mi,...,M,))) either equals (M, ..., M,)
or (D,...,0). Hence in any case, a(y((My,...,M,))) T (M,...,M,).

3. Let S € D and (M,... ,M,) € D¥. Then

SCA((My,... M) < SC M x...x M,
sVie{l,... n}Y(xy,... ,z...,x,) €S :2; € M,
sVie{l,... n):IL(S)C M,
& (I1,(S), ..., I,(S)) E (M, ..., M,)
< aS)C (M, ..., M,) .

Exercise 8.4 Set D#' = {(0,... . 0)} U {(My,... ,M,) € 2P<-xDn | M; #£ () for all i}.
Abstraction and concretization mappings are as before, i.e., o/(S) = (II1(5), ..., I1.(S5))
and 7' ((My,... ,M,)) = My X ... x M,, hence the properties demanded in exercises 8.2
and 8.3 continue to hold. To see why o' o+’ = id 4 recall the case distinction in the proof
of e oy Cidps.



