

Semantics of Programming Languages Solutions to Assignment 8

Patrick Maier, Jan Schwinghammer http://www.ps.uni-sb.de/courses/sem-ws01/

Errata. The projections Π_i should be functions from $D = 2^{D_1 \times ... \times D_n}$ to 2^{D_i} , otherwise their definitions would be nonsense.

Exercise 8.1 To prove that in general there is no such function f it suffices to show that there is none for n = 2 and $D_1 = D_2 = \{0, 1\}$.

Let $S = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$. Then $\operatorname{app}(S) = \{0, 1\} \times \{0, 1\}$ is a set of cardinality 4 whereas for every function $f: D_1 \times D_2 \to D_1 \times D_2$, the set $\{f(s) \mid s \in S\} = \{f(\langle 0, 0 \rangle), f(\langle 1, 1 \rangle)\}$ has cardinality 1 or 2.

Exercise 8.2

- 1. Let $S \in D$. Then $app(S) = \Pi_1(S) \times \ldots \times \Pi_n(S) = \gamma(\langle \Pi_1(S), \ldots, \Pi_n(S) \rangle) = \gamma(\alpha(S))$.
- 2. Let $S \in D$. To prove that $\alpha(S)$ is the least element in $D^{\#}$ whose image under γ is above S, fix an arbitrary $\langle M_1, \ldots, M_n \rangle \in D^{\#}$ such that $\gamma(\langle M_1, \ldots, M_n \rangle) \supseteq S$. Let $x \in \Pi_i(S)$, i.e., there exists $\langle x_1, \ldots, x_i, \ldots, x_n \rangle \in S$ such that $x = x_i$. Then $\langle x_1, \ldots, x_i, \ldots, x_n \rangle \in \gamma(\langle M_1, \ldots, M_i, \ldots, M_n \rangle) = M_1 \times \ldots \times M_i \times \ldots \times M_n$, so $x = x_i \in M_i$. Hence $\alpha(S) = \langle \Pi_1(S), \ldots, \Pi_n(S) \rangle \sqsubseteq \langle M_1, \ldots, M_n \rangle$. Furthermore $\gamma(\alpha(S)) \supseteq S$, see exercise 8.3.2.
- 3. Let $\langle M_1, \ldots, M_n \rangle \in D^{\#}$. To prove that $\gamma(\langle M_1, \ldots, M_n \rangle)$ is the greatest element in D whose image under α is below $\langle M_1, \ldots, M_n \rangle$, fix an arbitrary $S \in D$ such that $\alpha(S) \sqsubseteq \langle M_1, \ldots, M_n \rangle$. Since $\langle \Pi_1(S), \ldots, \Pi_n(S) \rangle = \alpha(S) \sqsubseteq \langle M_1, \ldots, M_n \rangle$, we have for all i, $\Pi_i(S) \subseteq M_i$, so $\Pi_1(S) \times \ldots \times \Pi_n(S) \subseteq M_1 \times \ldots \times M_n$. Hence $S \subseteq \Pi_1(S) \times \ldots \times \Pi_n(S) \subseteq M_1 \times \ldots \times M_n = \gamma(\langle M_1, \ldots, M_n \rangle)$. Furthermore $\alpha(\gamma(\langle M_1, \ldots, M_n \rangle)) \sqsubseteq \langle M_1, \ldots, M_n \rangle$, see exercise 8.3.2.

Exercise 8.3

- 1. To prove monotonicity of α , let $S, S' \in D$ such that $S \subseteq S'$. Let $x \in \Pi_i(S)$, i.e., there exists $\langle x_1, \ldots, x_i, \ldots, x_n \rangle \in S$ such that $x = x_i$. Then $\langle x_1, \ldots, x_i, \ldots, x_n \rangle \in S'$, so $x = x_i \in \Pi_i(S')$. Hence for all i, $\Pi_i(S) \subseteq \Pi_i(S')$, and thus $\alpha(S) = \langle \Pi_1(S), \ldots, \Pi_n(S) \rangle \sqsubseteq \langle \Pi_1(S'), \ldots, \Pi_n(S') \rangle = \alpha(S')$.

 To prove monotonicity of γ , let $\langle M_1, \ldots, M_n \rangle, \langle M'_1, \ldots, M'_n \rangle \in D^\#$ such that $\langle M_1, \ldots, M_n \rangle \sqsubseteq \langle M'_1, \ldots, M'_n \rangle$. Then $M_i \subseteq M'_i$ for all i, hence $\gamma(\langle M_1, \ldots, M_n \rangle) = M_1 \times \ldots \times M_n \subseteq M'_1 \times \ldots \times M'_n = \gamma(\langle M'_1, \ldots, M'_n \rangle)$.
- 2. To prove $\mathrm{id}_D \subseteq \gamma \circ \alpha$, let $S \in D$. If $\langle x_1, \ldots, x_n \rangle \in S$ then $x_i \in \Pi_i(S)$ for all i, so $\langle x_1, \ldots, x_n \rangle \in \Pi_1(S) \times \ldots \times \Pi_n(S) = \gamma(\langle \Pi_1(S), \ldots, \Pi_n(S) \rangle) = \gamma(\alpha(S))$. Hence $S \subseteq \gamma(\alpha(S))$.

To prove $\alpha \circ \gamma \sqsubseteq \operatorname{id}_{D^{\#}}$, let $\langle M_1, \ldots, M_n \rangle \in D^{\#}$. Then $\alpha(\gamma(\langle M_1, \ldots, M_n \rangle)) = \alpha(M_1 \times \ldots \times M_n) = \langle \Pi_1(M_1 \times \ldots \times M_n), \ldots, \Pi_n(M_1 \times \ldots \times M_n) \rangle$. Now we have to distinguish two cases. If $M_1 \times \ldots \times M_n = \emptyset$ then for all $i, \Pi_i(M_1 \times \ldots \times M_n) = \emptyset$ otherwise $\Pi_i(M_1 \times \ldots \times M_n) = M_i$. Thus, $\alpha(\gamma(\langle M_1, \ldots, M_n \rangle))$ either equals $\langle M_1, \ldots, M_n \rangle$ or $\langle \emptyset, \ldots, \emptyset \rangle$. Hence in any case, $\alpha(\gamma(\langle M_1, \ldots, M_n \rangle)) \sqsubseteq \langle M_1, \ldots, M_n \rangle$.

3. Let $S \in D$ and $\langle M_1, \ldots, M_n \rangle \in D^{\#}$. Then

$$S \subseteq \gamma(\langle M_1, \dots, M_n \rangle) \Leftrightarrow S \subseteq M_1 \times \dots \times M_n$$

$$\Leftrightarrow \forall i \in \{1, \dots, n\} \ \forall \langle x_1, \dots, x_i, \dots, x_n \rangle \in S : x_i \in M_i$$

$$\Leftrightarrow \forall i \in \{1, \dots, n\} : \Pi_i(S) \subseteq M_i$$

$$\Leftrightarrow \langle \Pi_1(S), \dots, \Pi_n(S) \rangle \sqsubseteq \langle M_1, \dots, M_n \rangle$$

$$\Leftrightarrow \alpha(S) \sqsubseteq \langle M_1, \dots, M_n \rangle .$$

Exercise 8.4 Set $D^{\#'} = \{\langle \emptyset, \dots, \emptyset \rangle\} \cup \{\langle M_1, \dots, M_n \rangle \in 2^{D_1 \times \dots \times D_n} \mid M_i \neq \emptyset \text{ for all } i\}$. Abstraction and concretization mappings are as before, i. e., $\alpha'(S) = \langle \Pi_1(S), \dots, \Pi_n(S) \rangle$ and $\gamma'(\langle M_1, \dots, M_n \rangle) = M_1 \times \dots \times M_n$, hence the properties demanded in exercises 8.2 and 8.3 continue to hold. To see why $\alpha' \circ \gamma' = \mathrm{id}_{D^{\#'}}$ recall the case distinction in the proof of $\alpha \circ \gamma \sqsubseteq \mathrm{id}_{D^{\#}}$.