
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics of Programming Languages
Solutions to Assignment 9

Patrick Maier, Jan Schwinghammer
http://www.ps.uni-sb.de/courses/sem-ws01/

���
�

�� k

I N F O R M A T I K

Additionally to the declarations on the exercise sheet, let Store = ValVar and PP = {1, 2}.

Exercise 9.1 Collecting semantics as system of equations:

acc(1) = S0 ∪ assignz:=x+y(acc(2))

acc(2) = decy(incx(acc(1)))

where the initial stores S0 = {s0} with s0(x) = 17, s0(y) = 4, s0(z) = 21, and

assignz:=x+y(S) = {s′ ∈ Store | ∃s ∈ S : s′(x) = s(x), s′(y) = s(y), s′(z) = s(x) + s(y)},

incx(S) = {s′ ∈ Store | ∃s ∈ S : s′(x) = s(x) + 1, s′(y) = s(y), s′(z) = s(z)},

decx(S) = {s′ ∈ Store | ∃s ∈ S : s′(x) = s(x), s′(y) = s(y) − 1, s′(z) = s(z)}

The least solution of the above system of equations (which is reached after running the
program for an infinite time) is acc with

acc(1) = {s ∈ Store | s(x) ≥ 17, s(y) ≤ 4, s(z) = s(x) + s(y) = 21}

acc(2) = {s ∈ Store | s(x) > 17, s(y) < 4, s(z) = s(x) + s(y) = 21}

Parity abstraction: Let 〈P,v〉 with P = {even, odd ,⊥,>} be the flat four-element
lattice (i. e., even and odd are incomparable). Then D# = PVar ordered by the pointwise
extension of v (which we will also denote by v) is also a lattice. Abstraction α maps a
set of stores S ∈ 2Store to an abstract store a ∈ D# where for all u ∈ Var ,

a(u) =

⊥ if S = ∅
even if S 6= ∅ and ∀s ∈ S : s(u) even
odd if S 6= ∅ and ∀s ∈ S : s(u) odd
> otherwise

Concretization γ maps an abstract store a ∈ D# to a set of stores

γ(a) = {s ∈ Store | ∀u ∈ Var : a(u) 6= ⊥ and a(u) = even ⇒ s(u) even

and a(u) = odd ⇒ s(u) odd}

Abstract semantics (parity semantics) as system of equations:

acc#(1) = a0 t assign
#
z:=x+y(acc

#(2))

acc#(2) = dec#
y (inc#

x (acc#(1)))

1

where a0 is the initial abstract store with a0(x) = odd , a0(y) = even, a0(z) = odd , and the
abstract operations are assign

#
z:=x+y(a) = a′ with a′(x) = a(x), a′(y) = a(y) and

a′(z) =

⊥ if a(x) = ⊥ or a(y) = ⊥
even if a(x), a(y) ∈ {even, odd} and a(x) = a(y)
odd if a(x), a(y) ∈ {even, odd} and a(x) 6= a(y)
> otherwise

Similarly, inc#
x (a) = a′ with a′(y) = a(y), a′(z) = a(z), and

a′(x) =

⊥ if a(x) = ⊥
even if a(x) = odd

odd if a(x) = even

> otherwise

In the same manner, dec#
y is defined.

The least solution of the system of abstract equations is acc# where acc#(1) = acc#(2) =
a with a(x) = a(y) = a(z) = >, i. e., the least solution is also the largest (hence least in-
formative) solution. Note that this least solution is reached after two iterations of the loop
body.

Exercise 9.2 Let P = {even, odd}. We define our new (disjunctive) abstract domain
〈D#,⊆〉 as D# = 2(PVar) ordered by inclusion ⊆, i. e., abstract elements A ∈ D# are sets of
abstract stores in P Var . The abstraction α : 2Store → D# is defined as α(S) =

⋃

{parity ◦ s | s ∈ S}
and the concretization γ : D# → 2Store as γ(A) = {s ∈ Store | ∃a ∈ A : a = parity ◦ s}.
Here, the function parity : Z → P is defined as usual, i. e., for all i ∈ Z, parity(i) = even

if i is even and parity(i) = odd otherwise.
Disjunctive parity semantics as system of equations:

acc#(1) = A0 ∪ assign
#
z:=x+y(acc

#(2))

acc#(2) = dec#
y (inc#

x (acc#(1)))

where A0 = {a0} is the initial set of abstract stores with a0(x) = odd , a0(y) = even,
a0(z) = odd , and the abstract operations are

inc#
x (A) = {a′ ∈ PVar | ∃a ∈ A : a′(x) 6= a(x), a′(y) = a(y), a′(z) = a(z)},

dec#
x (A) = {a′ ∈ PVar | ∃a ∈ A : a′(x) = a(x), a′(y) 6= a(y), a′(z) = a(z)},

assign
#
z:=x+y(A) = {a′ ∈ PVar | ∃a ∈ A : a′(x) = a(x), a′(y) = a(y), a′(z) = a(x) +P a(y)},

where for all s, t ∈ P , s +P t = even if s = t and s +P t = odd otherwise.
To compute the least solution acc# = 〈A1, A2〉 of the above system of equations, we

approximate from below by 〈Ai
1, A

i
2〉 for i = 0, 1, 2, 3, . . . iterations of the loop:

〈A0
1, A

0
2〉 = 〈∅, ∅〉

〈A1
1, A

1
2〉 = 〈{a0}, {a1}〉

〈A2
1, A

2
2〉 = 〈{a0, a1}, {a0, a1}〉

〈A3
1, A

3
2〉 = 〈{a0, a1}, {a0, a1}〉

2

where a0(x) = a0(z) = odd , a0(y) = even and a0(x) = even, a0(y) = a0(z) = odd .

Exercise 9.3 Collecting semantics acc : PP → 2Store :

• acc(p′) = {s′ ∈ Store | ∃s ∈ acc(p) : s′(x) = c and ∀u ∈ Var \ {x} : s′(u) = s(u)}

• acc(p′) = {s′ ∈ Store | ∃s ∈ acc(p) : s′(x) = s(y) + c and ∀u ∈ Var \ {x} : s′(u) =
s(u)}

• acc(p′) = {s′ ∈ Store | ∃s ∈ acc(p) : s′(x) = s(y) + s(z) and ∀u ∈ Var \ {x} : s′(u) =
s(u)}

Abstract semantics acc# : PP → D# where D# = DVar

Z
:

• For all u ∈ Var \ {x}, acc#(p′)(u) = acc#(p)(u) and acc#(p′)(x) = c.

• For all u ∈ Var \ {x}, acc#(p′)(u) = acc#(p)(u) and

acc#(p′)(x) =

{

acc#(p)(y) + c if acc#(p)(y) ∈ Z

acc#(p)(y) otherwise

• For all u ∈ Var \ {x}, acc#(p′)(u) = acc#(p)(u) and

acc#(p′)(x) =

acc#(p)(y) + acc#(p)(z) if acc#(p)(y) ∈ Z and acc#(p)(z) ∈ Z

> if acc#(p)(y) = > or acc#(p)(z) = >
⊥ otherwise

In program twentyone, after two iterations of the loop the abstract store maps x and
y to >, so the assignment z := x + y will also map z to >.

Exercise 9.4 The abstract domain for disjunctive constant propagation is D# = 2(ZVar)

ordered by inclusion ⊆. Hence, the concrete domain and the abstract domain are exactly
the same, and α and γ are the identity.

As already seen in exercise 9.1, computing the least solution of the system of equations,
takes an infinite number of iterations. Therefore, the disjunctive analysis does not work
here.

Exercise 9.5 We view a (GOTO-)program P as a labeled directed graph P = 〈VP , EP 〉
with a finite set of vertices VP (the program points) and labeled edges EP ⊆ VP × StoreStore × VP ,
i. e., edges are labeled by functions which transform the store Store = ValVar , where Var

is the finite set of program variables.
Given a program P = 〈VP , EP 〉, an initial program point p0 ∈ VP and an initial store

s0 ∈ Store, we say that a program point p ∈ VP is reachable from 〈p0, s0〉 in P if there
exists a finite sequence 〈p0, s0〉, 〈p1, s1〉, . . . , 〈pn, sn〉 such that p = pn and for all i < n,
〈pi, fi, pi+1〉 ∈ EP and si+1 = fi(si). In other words, p is reachable in P if acc(p) 6= ∅.

3

It is well-known that every Turing machine can be simulated by such a program, if
Val contains the natural numbers and the size of Var is not too small (two variables are
needed to encode the tape; a couple of auxiliary variables may also be needed). Thus, the
halting problem for Turing machines can be reduced to the question whether a particular
program point of the simulating GOTO-program is reachable from the initial program point
and the initial store. Hence, reachability of program points in GOTO-programs must be
undecidable.

Looking at dead code elimination, we have the abstract domain D# = {⊥,>} and
abstraction α : 2Store → D# with α(S) = > if and only if S 6= ∅. So α(acc(p)) = > if and
only if p is reachable in P , which is undecidable.

4

